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Develop efficient uncertainty quantification (UQ) and stochastic media (SM) Mixed Monte Carlo 
Sampling (MMCS) transport methods for the GPU

Topic Area: Uncertainty Quantification/Stochastic Media3
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Uncertainty sources:
◦ Boundary conditions
◦ Coefficients
◦ Geometry
◦ Stochastic mixing
◦ SM 

hyperparameters

Uncertainty sources:
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Foundational Concept: Mixed Monte Carlo Sampling 
Efficiency4
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◦ MMCS: Monte Carlo sampling in uncertainty space and in solver with frequent resampling of 
uncertainty space

Optimize number of
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◦ Histories/sample
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Foundational Concept: Mixed Monte Carlo Sampling 
Embedding5

 Current UQ workflow
 (external linkage)

 Targeted UQ workflow
 (embedding)
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Initial MMCS Methods: CoPS and EVADE6

Conditional Point Sampling (CoPS):Embedded Variance Deconvolution (EVADE):
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Next-Gen MC LDRD Overview7

Four MMCS goals:
Develop UQ methods
Develop data-driven SM capabilities
Adapt UQ tools to incorporate SM uncertainty
Efficiently embed methods on the GPU

◦ Develop UQ methods

◦ Adapt UQ tools to incorporate SM 
uncertainty

◦ Develop data-driven SM 
capabilities

◦ Efficiently embed methods on the GPU

CHEETAH-MC

CoPS EVADE
New MMCS methods

LDRD     : Fall 2019-Fall 2022
CEMeNT: Fall 2020-Fall 
2025on the GPU

LDRD Key Questions:
◦ What is possible?
◦ What is practical?
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Progress: MMCS Polynomial Chaos Expansion Tools8

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
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PCE:

Non-intrusive spectral 
projection (NISP):
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Progress: MMCS Sobol’ Indices Tools9

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)

EVADE-based:     MC convergence
“Traditional” in MMCS limit:   Surprisingly well-performing
New “hybrid”:     Traditional sampling w/ EVADE

*
EVADE

EVADE

, efficient

EVADE
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Progress: Deep Learning SM Tool10

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)

Figure: Accuracy percentages for 3-D predictions

Figure: Jensen-Shannon divergence for 1-D predictionsMarkovian 
mixing (N-ary)
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Progress: SM Benchmarking Capabilities11

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)

Markovian

Box-Poisson

Voronoi

 Larmier, 
2017

Spherical
Inclusions

Gaussian
Process

SPPARKS 
(thermal 
spray)

 Brantley, 
2014

SNL



Estimation of Sobol indices:
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Progress: Proposed Test Problem12

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)
◦ Proposed test problem
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Progress: GPU Prototyping13

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)
◦ Proposed test problem
◦ Prototyped SM algorithm on GPU      

(Kersting, 2021)

4400X
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Progress: GPU Prototyping14

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)
◦ Proposed test problem
◦ Prototyped SM algorithm on GPU      

(Kersting, 2021)

>2X
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Progress: Limited-memory Algorithm15

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)
◦ Proposed test problem
◦ Prototyped SM algorithm on GPU      

(Kersting, 2021)
◦ “Limited-memory” SM algorithm      (Vu, 

2020; Vu, 2021)

Full memory: Recent memory:
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Progress: Limited-memory Algorithm16

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)
◦ Proposed test problem
◦ Prototyped SM algorithm on GPU      

(Kersting, 2021)
◦ “Limited-memory” SM algorithm      (Vu, 

2020; Vu, 2021)
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◦ XS calibration foundation

◦ Validation/calibration simulations
◦ Sensitivity method 

implementation/prototyping
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Progress: UNM Collaboration17

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)
◦ Proposed test problem
◦ Prototyped SM algorithm on GPU      

(Kersting, 2021)
◦ “Limited-memory” SM algorithm      (Vu, 

2020; Vu, 2021)

UNM collaboration goals/accomplishments:
◦ Adapt local sensitivity methods/prototype on 

GPUs
◦ Strengthened ITS validation suite (Davis, 

2021)

    “Coupled CLUTCH”
◦ 1D transport
◦ Photon/electron

◦ 3 groups
◦ 10 cells

◦ Sensitivity method 
implementation/prototyping

ITS Validation Suite:
◦ 7 experiments
◦ Assessment: Expand 

Lockwood albedo 
simulations

Improvements:
◦ Quantitative error 

metric
◦ More simulations
◦ Experimental errors

◦ Validation/calibration simulations
UNM Collaboration
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Opportunity: CEMeNT Collaboration?18

Four MMCS goals:
◦ Develop UQ methods
◦ Develop data-driven SM capabilities
◦ Adapt UQ tools to incorporate SM uncertainty
◦ Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):
◦ Initial PCE tools      (Geraci, 2021)
◦ Initial sampling-based Sobol indices    (Petticrew, 

2021)
◦ Initial machine learning SM capability (Davis, 2021)
◦ SM benchmarking capabilities      (Olson, 

2021)
◦ Proposed test problem
◦ Prototyped SM algorithm on GPU      

(Kersting, 2021)
◦ “Limited-memory” SM algorithm      (Vu, 

2020; Vu, 2021)

UNM collaboration goals/accomplishments:
◦ Adapt local sensitivity methods/prototype on 

GPUs
◦ Strengthened ITS validation suite (Davis, 

2021)

CEMeNT collaboration?
◦ Student internship
◦ Other

Internship Job Posting:
◦ Sandia Careers: https://bit.ly/2XzEuGD
◦ Posting number: 674437
◦ Posting live until Feb. 22

Wish list:

◦ Quantify Sobol performance, new and traditional

◦ Design MMCS UI/co-implementation strategies

◦ Develop PCE term selection/regression 
approaches

◦ Expand MMCS PCE/Sobol prototyping

◦ Your ideas!

https://bit.ly/2XzEuGD

