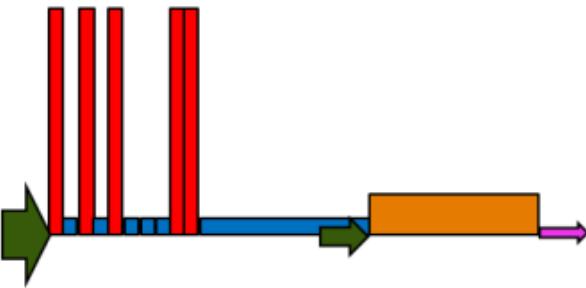
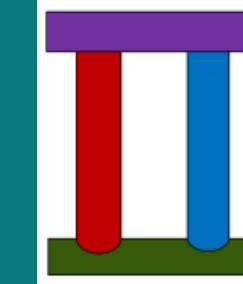


Next Generation Uncertainty Quantification and Stochastic Media Monte Carlo Transport Methods



PRESENTED BY

Aaron Olson

LDRD Summary

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

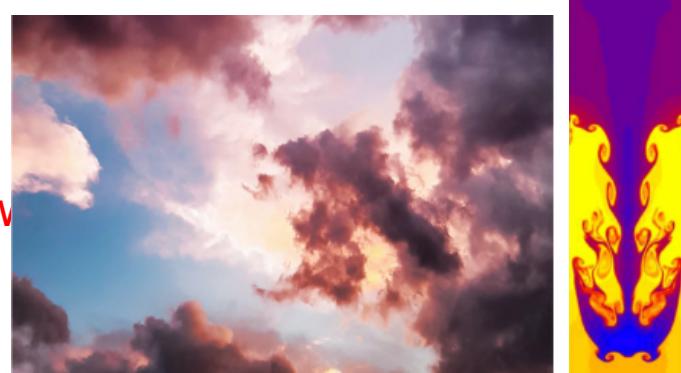
Topic Area: Uncertainty Quantification/Stochastic Media

Develop efficient uncertainty quantification (UQ) and stochastic media (SM) Mixed Monte Carlo Sampling (MMCS) transport methods for the GPU

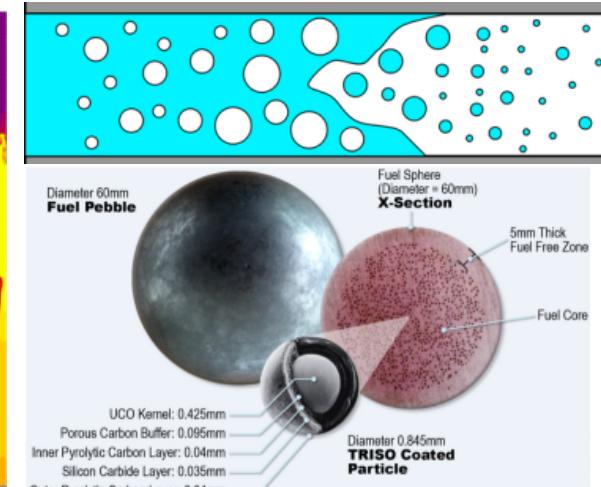
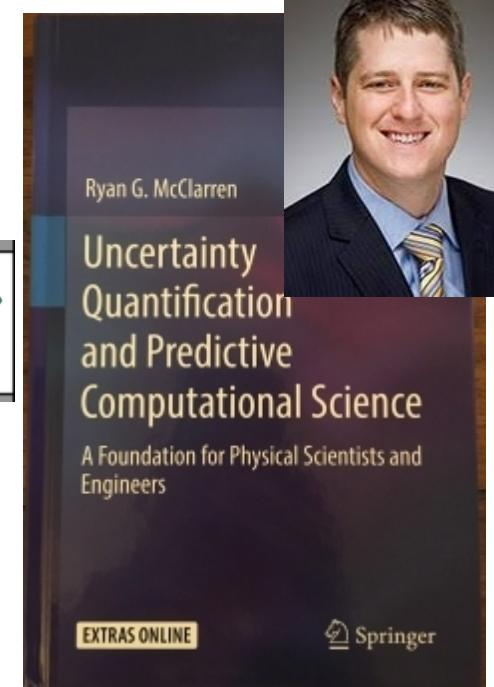
UQ – quantify effects of input uncertainty on outputs

$$T = e^{-r\Sigma_t}$$

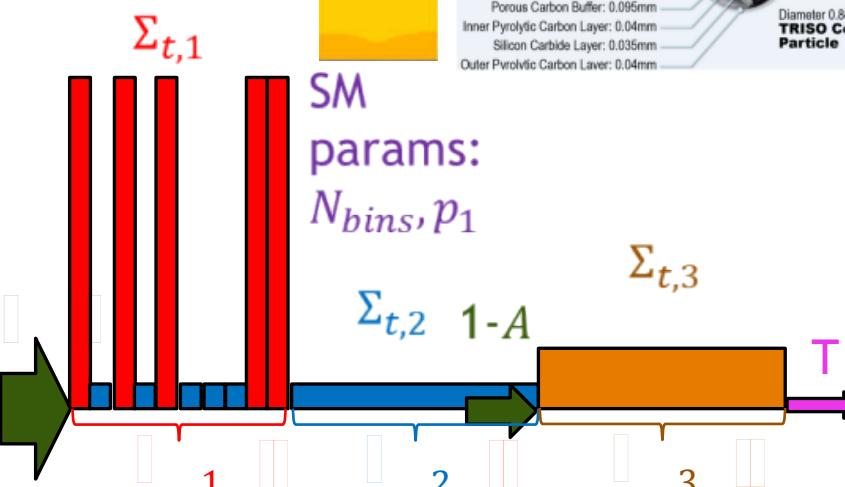
$$T(\xi) = e^{-r\Sigma_t(\xi)}$$



SM – structures only known statistically



Combined – treat SM as uncertainty source

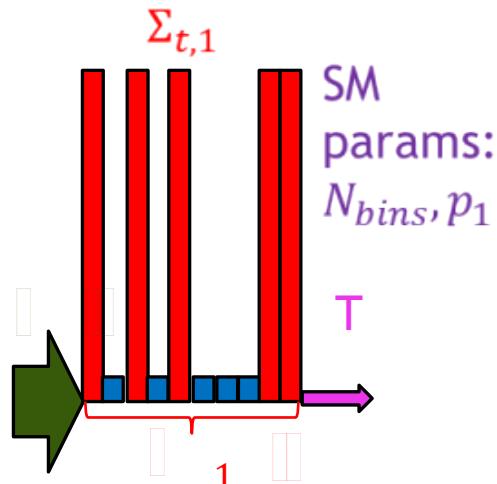


Uncertainty sources:

- Boundary conditions
- Coefficients
- Geometry
- Stochastic mixing
- SM hyperparameters

Foundational Concept: Mixed Monte Carlo Sampling Efficiency

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods for the GPU



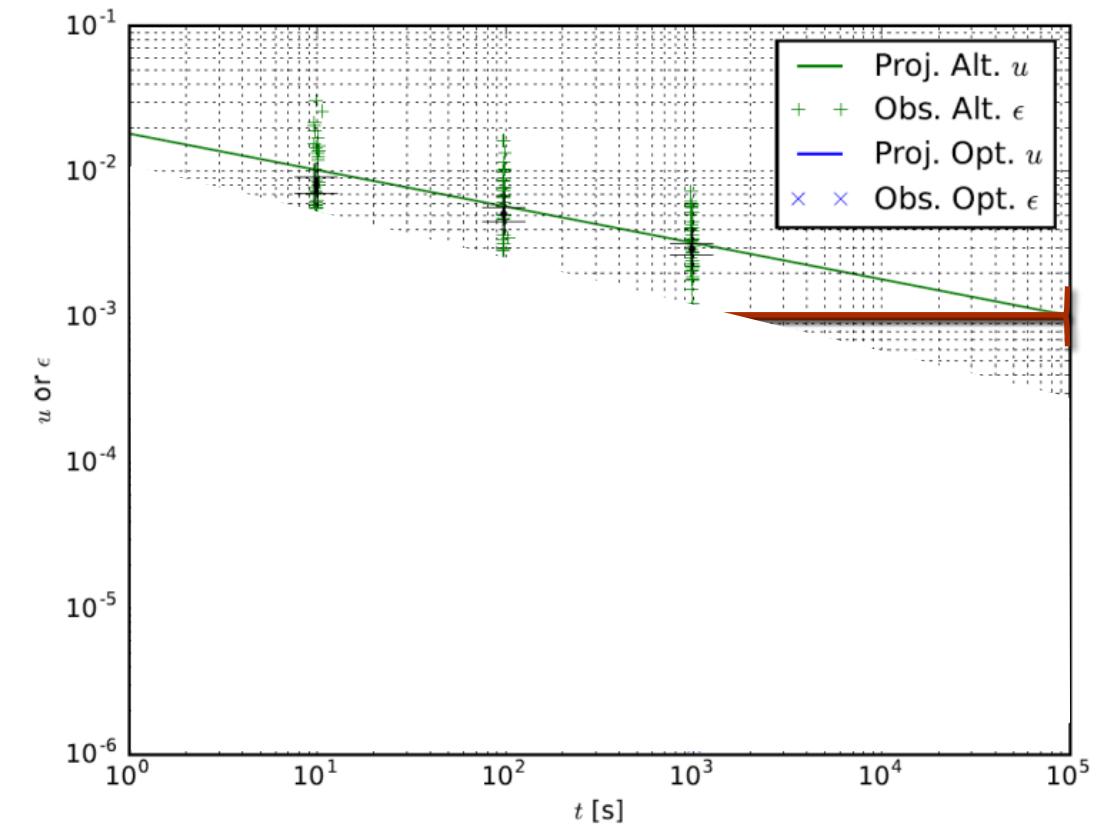
Monte Carlo sampling, Monte Carlo transport
Optimize number of
Samples
Histories/sample

An Optimal-Cost Monte Carlo Approach to Stochastic Media Transport Calculations

Aaron J. Olson* and Brian C. Franke*

$$N = \frac{\sigma_{MC}}{\sigma_{RS}} \frac{\sqrt{C_{RS}}}{\sqrt{C_{MC}}}$$

Set N
Converge w/
R



$$u_{alt} = \lim_{R \rightarrow \infty} u_{alt} = \sigma_{RS} C_{MC}^{1/4} t^{-1/4}$$

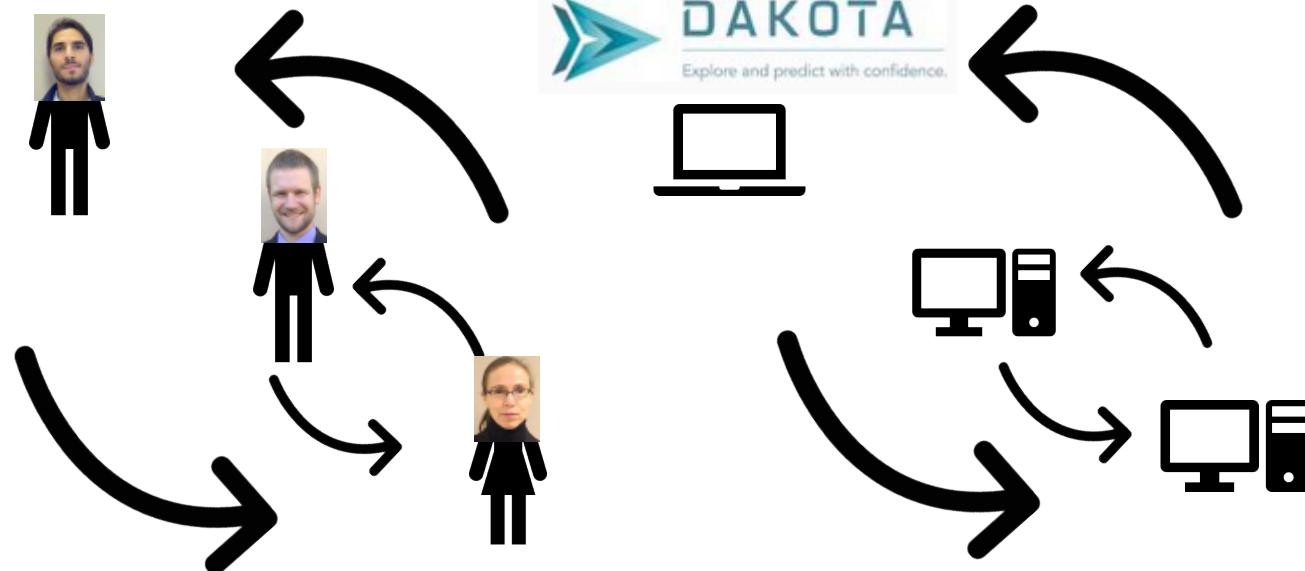
$$u_{tot} = (\sqrt{C_{RS}} \sigma_{RS} + \sqrt{C_{MC}} \sigma_{MC}) t^{-1/2}$$

- As long as cost of taking sample (C_{RS}) small, massive savings possible with histories per sample (N) small
- MMCS: Monte Carlo sampling in uncertainty space and in solver with frequent resampling of

Foundational Concept: Mixed Monte Carlo Sampling Embedding

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods for the GPU

Current UQ workflow
(external linkage)



Targeted UQ workflow
(embedding)

Initial MMCS Methods: CoPS and EVADE

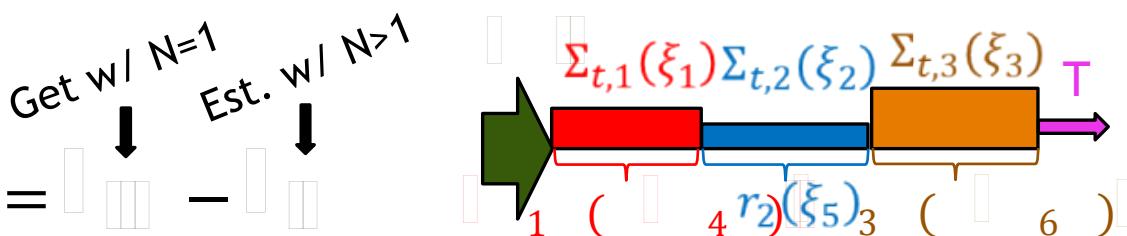
Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Embedded Variance Deconvolution (EVADE):

Parse parameter-driven variance from solver variance

Calculation of Parametric Variance using Variance Deconvolution

Aaron J. Olson*



Semi-an.	VVADE	EVADE
0.010069	0.11029	0.1001(2)
	0.00525	0.00053

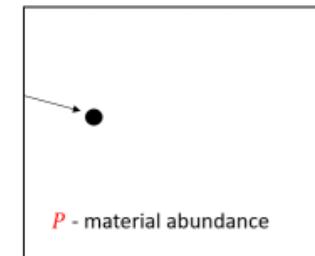
10X

Conditional Point Sampling (CoPS):

Sample stochastic media mixing only at discrete points

Conditional Point Sampling: A Novel Monte Carlo Method for Radiation Transport in Stochastic Media

Emily H. Vu*† and Aaron J. Olson†

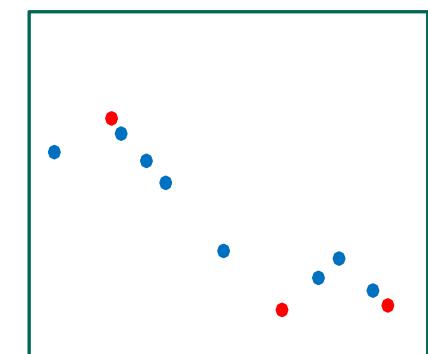


EVADE with CoPS for SM variance

An Extension of Conditional Point Sampling to Quantify Uncertainty Due to Material Mixing Randomness

Emily H. Vu^{1,2} and Aaron J. Olson²

	V _P -reflectance		V _P -transmittance	
	Bench	CoPS	Bench	CoPS
Case 2a	0.082	0.0823(4)	0.007	0.0079(3)



Next-Gen MC LDRD Overview

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

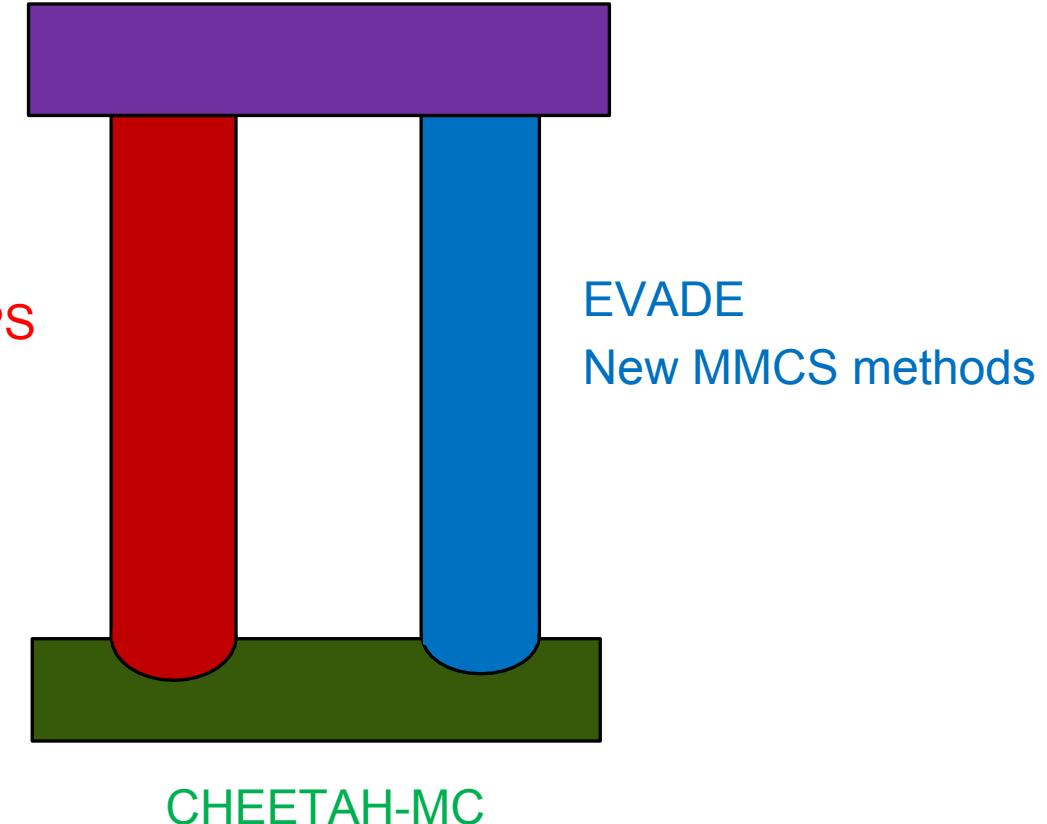
- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

LDRD Key Questions:

- What is possible?
- What is practical?

LDRD : Fall 2019-Fall 2022

CEMeNT: Fall 2020-Fall 2025

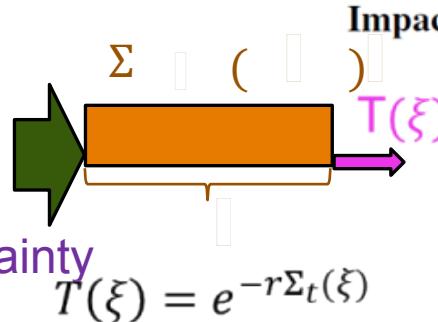


Progress: MMCS Polynomial Chaos Expansion Tools

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU



Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications

Gianluca Geraci¹ and Aaron J. Olson¹

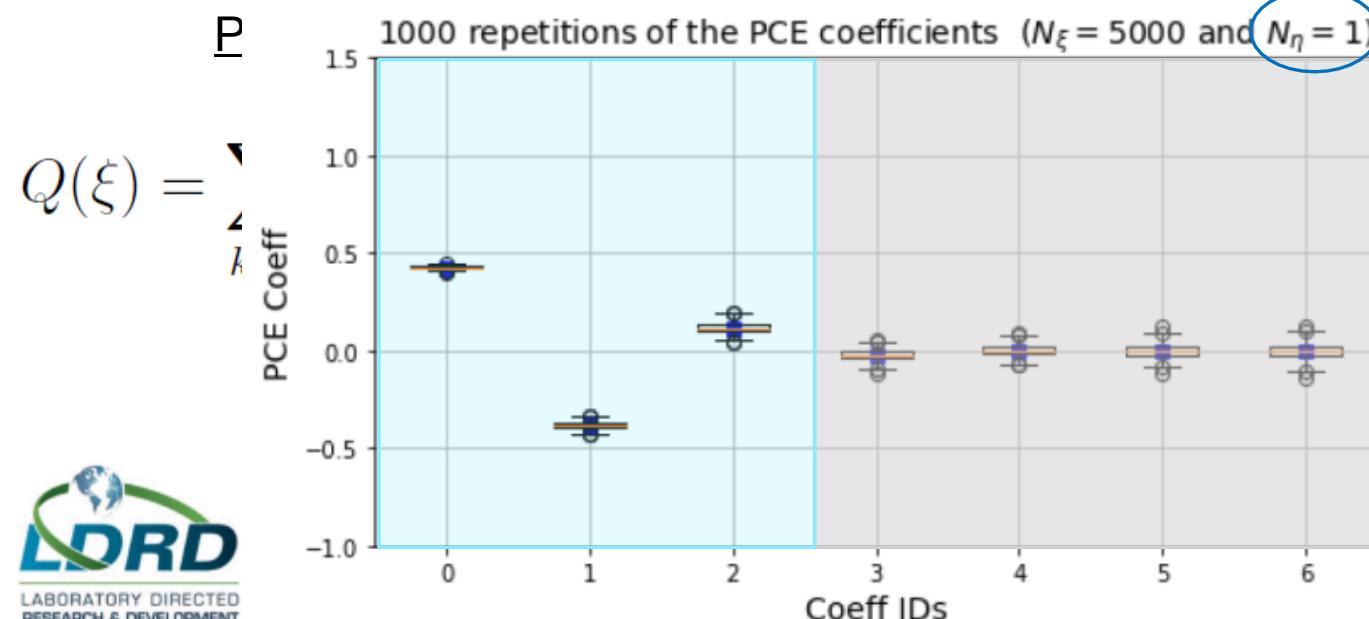
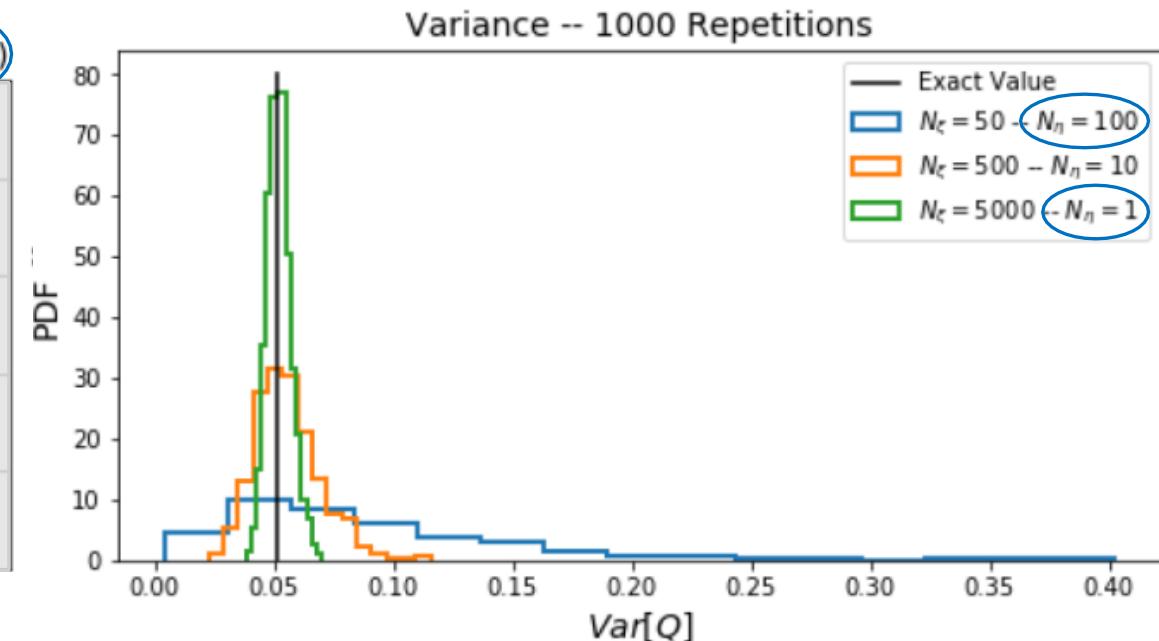
MMCS savings, small N_η :

$$\text{Var} [\hat{\beta}_k^s] = \frac{1}{b_k^2} \frac{N_\eta \text{Var} [\Psi_k Q] + \mathbb{E} [\Psi_k^2 \sigma^2]}{N}$$

Accomplishments (ANS/M&C papers):

- Initial PCE tools

(Geraci, 2021)



Progress: MMCS Sobol' Indices Tools

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)

S_i

$$S_i = 1 - \frac{E_{x_i} (V_{x_i} (Y|x_i))}{V(Y)}$$

EVADE

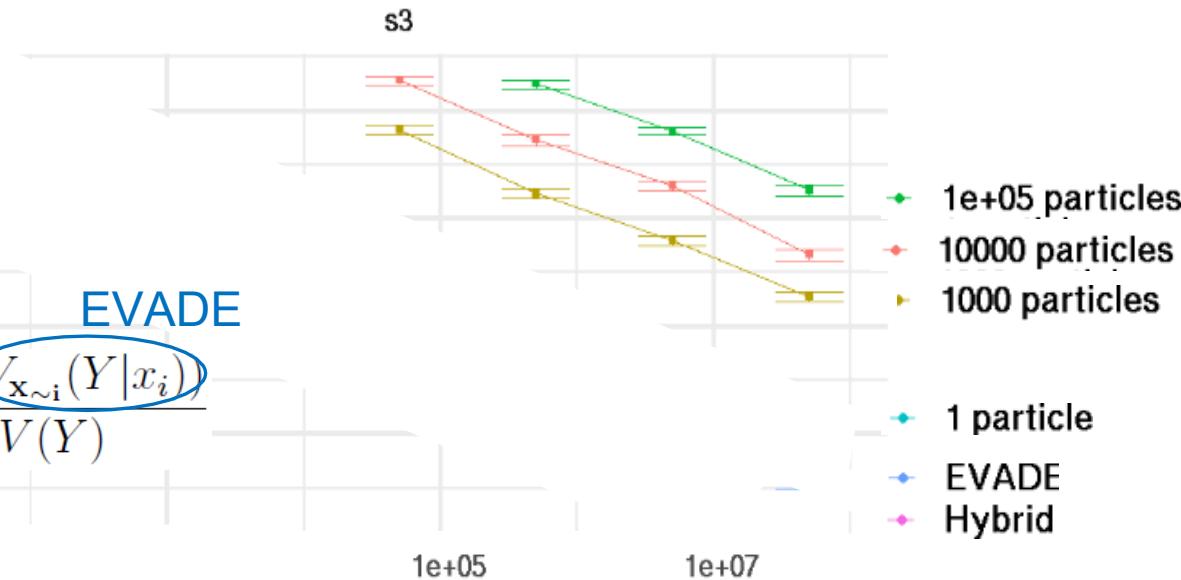
$$S_{T_i} = \frac{E_{x_{\sim i}} (V_{x_{\sim i}} (Y|x_{\sim i}))}{V(Y)}$$

EVADE

$$V(Y) = E (V(Y|x)) + V (E(Y|x))$$

COMPUTATION OF SOBOL' INDICES USING EMBEDDED VARIANCE DECONVOLUTION

James M. Petticrew¹, Aaron J. Olson²



EVADE-based:

“Traditional” in MMCS limit: Surprisingly well-performing
New “hybrid”: Traditional sampling w/ EVADE

MC convergence efficient

Progress: Deep Learning SM Tool

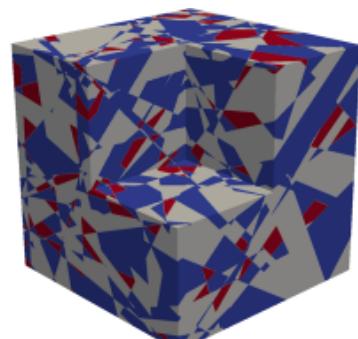
Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
Markovian mixing (N-ary)



USING DEEP NEURAL NETWORKS TO PREDICT MATERIAL TYPES IN CONDITIONAL POINT SAMPLING APPLIED TO MARKOVIAN MIXTURE MODELS

Warren L. Davis IV¹, Aaron Olson¹, Gabriel Popoola¹,
Dan Bolintineanu¹, Theron Rodgers¹, and Emily Vu^{1,2}

Method	Sample0	Sample1	Sample2	Sample3	Sample4	Average
CoPS2	.147	.146	.154	.151	.147	.149
DNN	.169	.153	.112	.129	.166	.146

Figure: Jensen-Shannon divergence for 1-D predictions

Method	Sample0	Sample1	Sample2	Sample3	Sample4	Average
CoPS2	84.8	83.6	90.2	86.1	83.2	85.6
DNN	87.8	87.3	91.1	87.4	86.0	87.9

Figure: Accuracy percentages for 3-D predictions

Progress: SM Benchmarking Capabilities

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

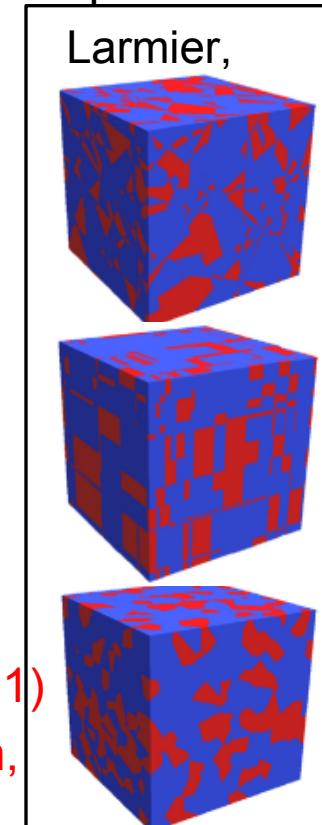
- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olson, 2021)

THEORY AND GENERATION METHODS FOR N -ARY STOCHASTIC MIXTURES WITH MARKOVIAN MIXING STATISTICS

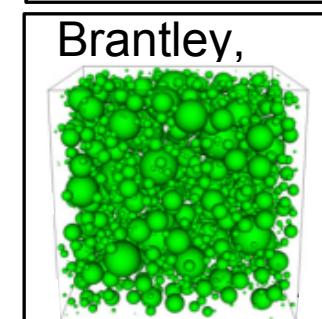
Aaron Olson¹, Shawn Pautz¹, Dan Bolintineanu¹, and Emily Vu^{1,2}



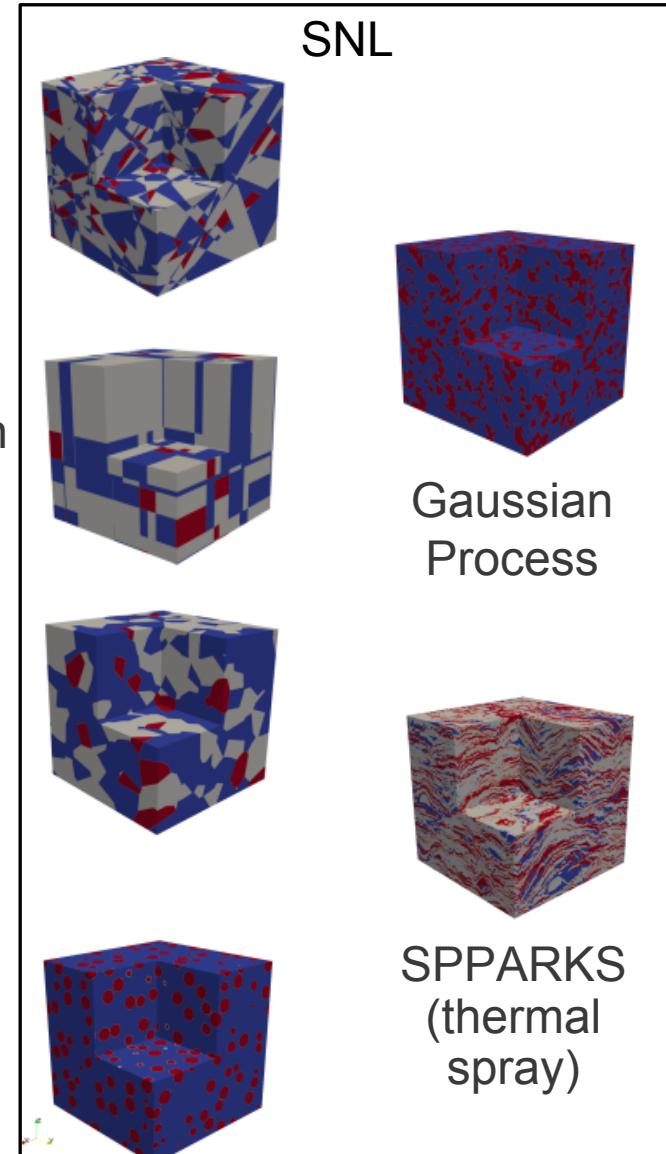
Markovian

Box-Poisson

Voronoi



Spherical
Inclusions



SNL

Gaussian
Process

SPPARKS
(thermal
spray)

Progress: Proposed Test Problem

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

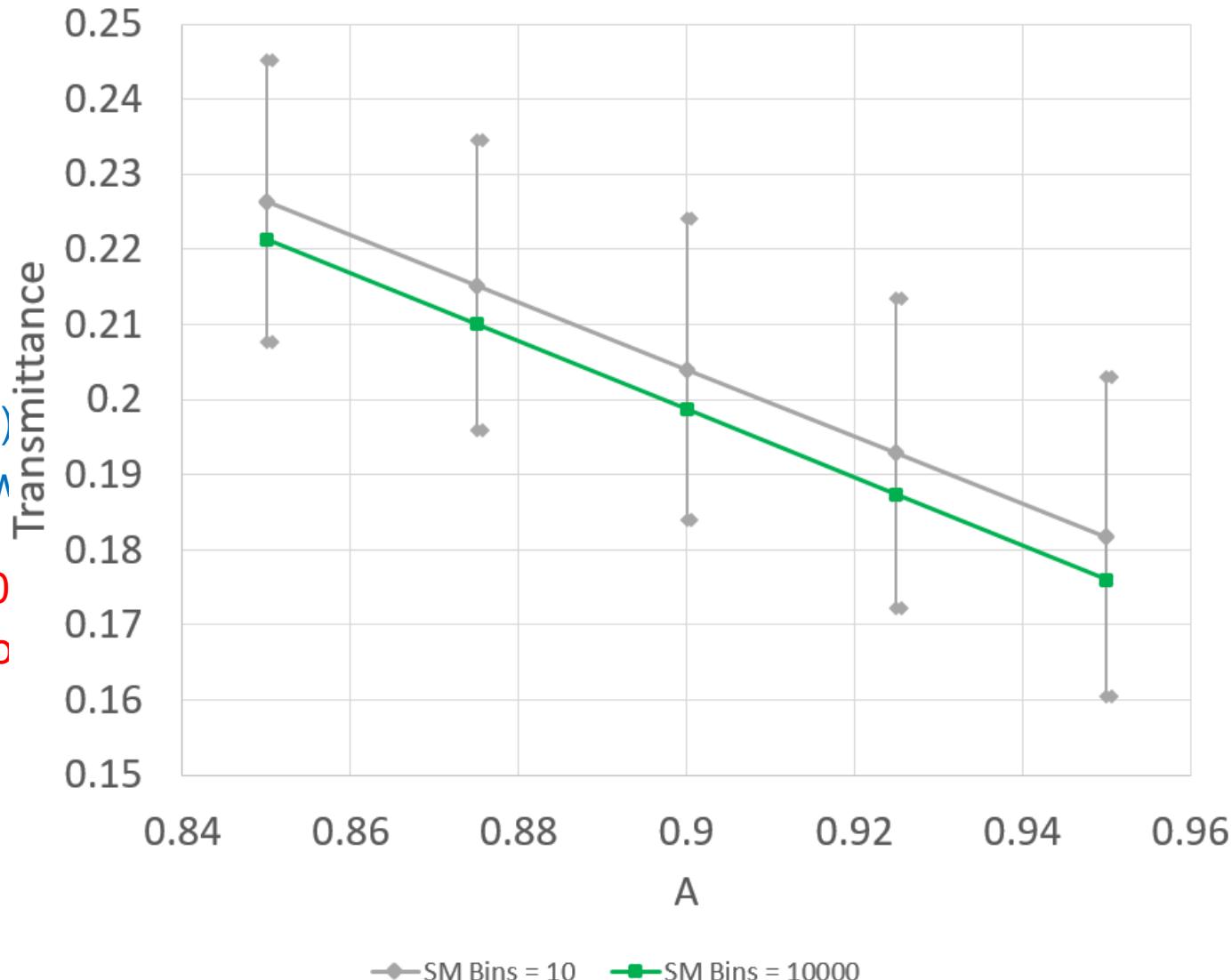
- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olso, 2021)
- Proposed test problem: Sobol indices:

Surrogate over fractional source distribution

“A”:



Progress: GPU Prototyping

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olso 2021)
- Proposed test problem

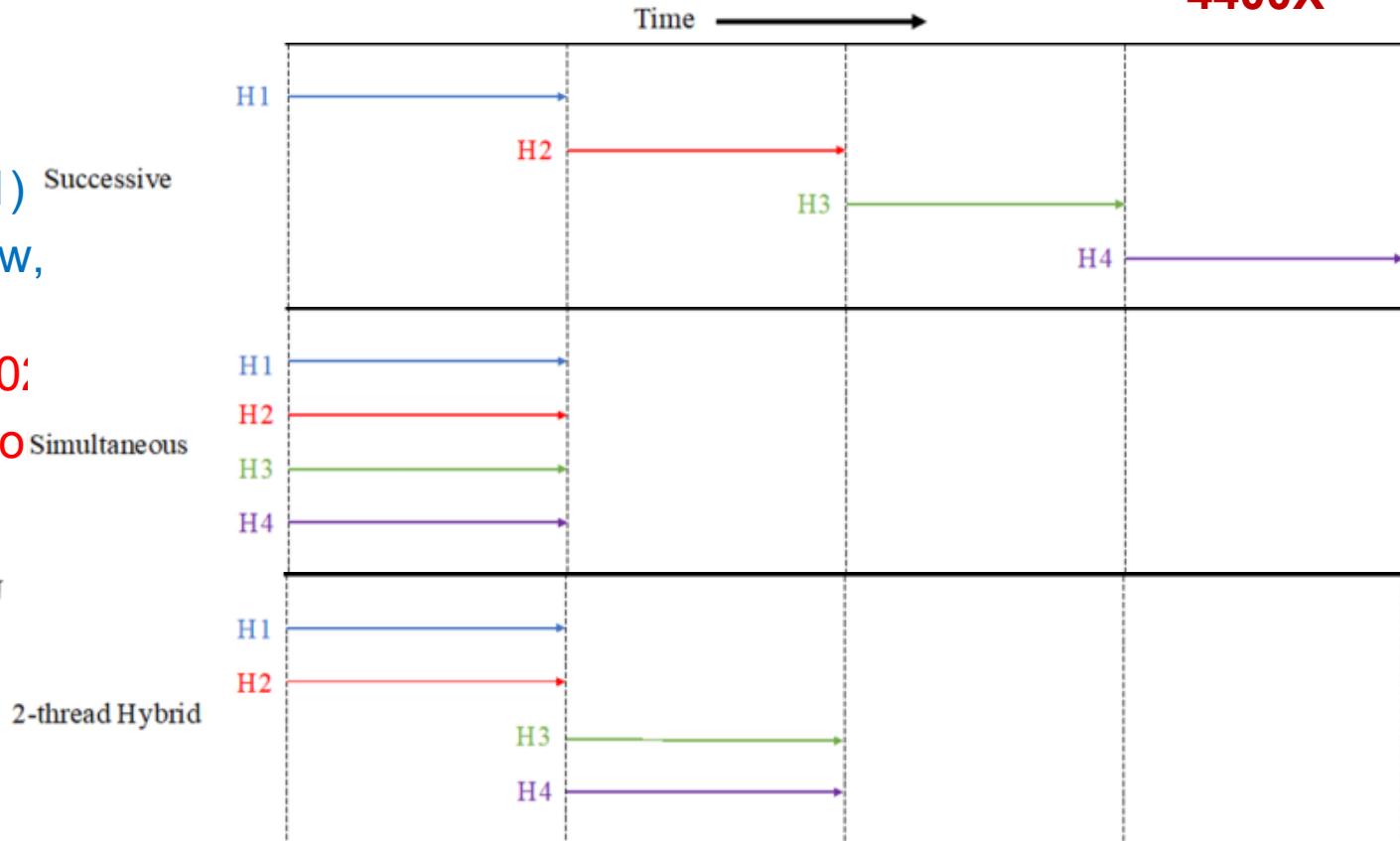
CONDITIONAL POINT SAMPLING IMPLEMENTATION FOR THE GPU

- Prototyped SM algorithm on GPU (Kersting, 2021)

Luke J. Kersting¹, Aaron Olson¹, and Kerry Bossler¹

2 c	Reflectance			Runtime (s)	
	Bench. [4]	CPU	GPU	CPU	GPU
	0.3438(6)	0.3135(5)	0.3133(5)	14539.8	3.3

4400X



Progress: GPU Prototyping

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

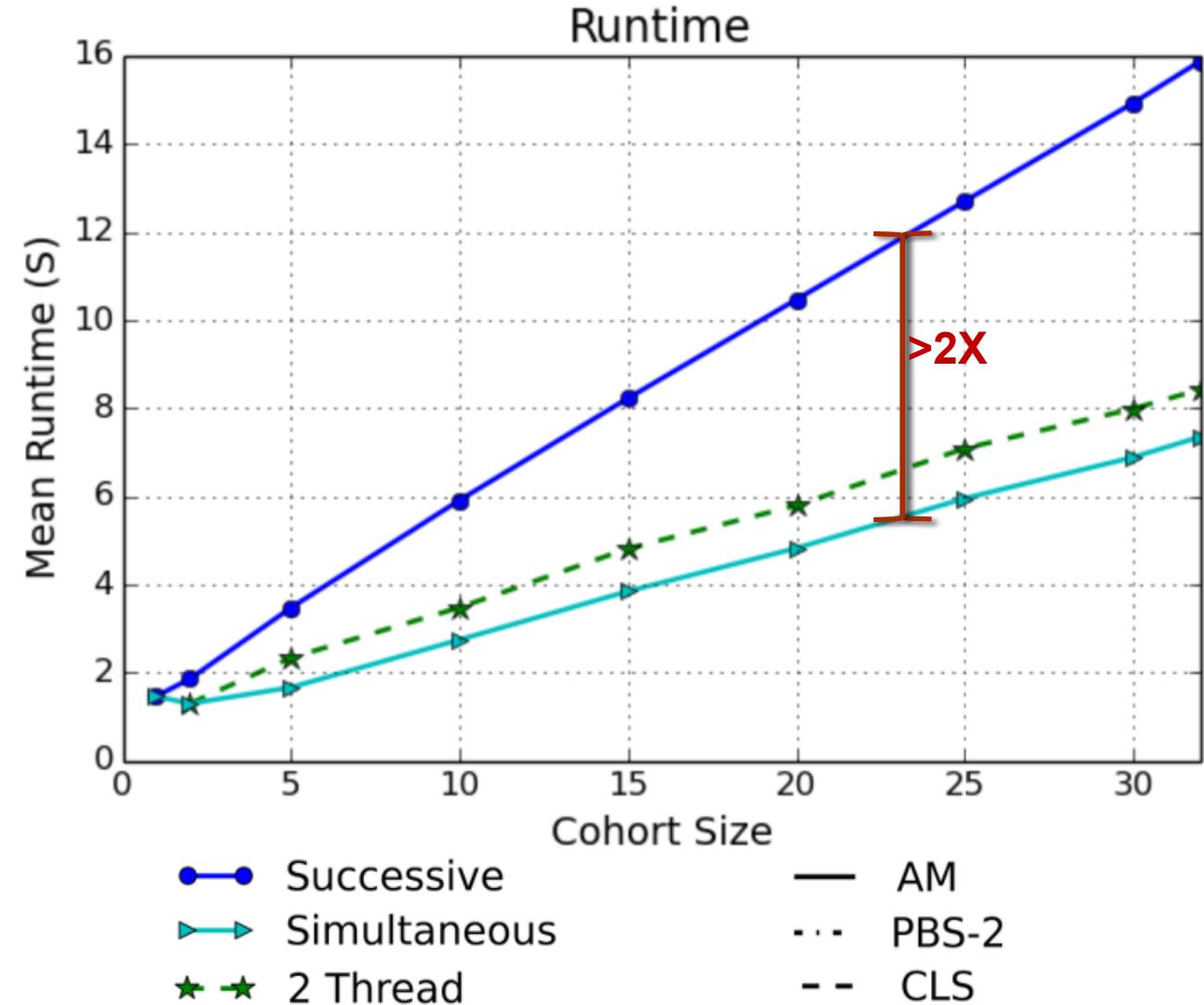
Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olson, 2021)
- Proposed test problem

CONDITIONAL POINT SAMPLING IMPLEMENTATION FOR THE GPU

- **Prototyped SM algorithm on GPU**
(Kersting, 2021)

Luke J. Kersting¹, Aaron Olson¹, and Kerry Bossler¹



Progress: Limited-memory Algorithm

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

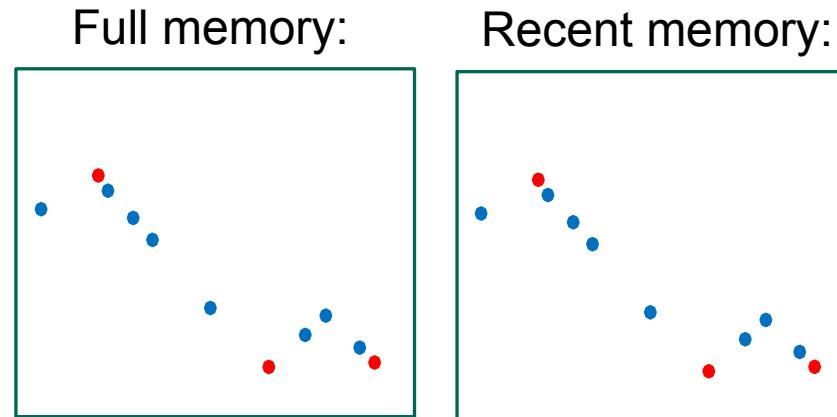
- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olson, 2021)
- Proposed test problem
- Prototyped SM algorithm on GPU (Kersting, 2021)
- “Limited-memory” SM algorithm (Vu, 2020; Vu, 2021)

Recent Memory Versions of Conditional Point Sampling for Transport in 1D Stochastic Media

Emily H. Vu*† and Aaron J. Olson†



	CoPS2- 1	CoPS2- 2	CoPS2- 3	CoPS2- ∞
Transmittance RMS E_R	0.362	0.288	0.257	0.042
Runtime (min.)	282	293	296	598

Progress: Limited-memory Algorithm

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

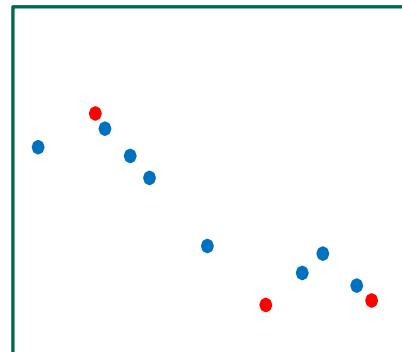
Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olson, 2021)
- Proposed test problem
- Prototyped SM algorithm on GPU (Kerst, 2021)

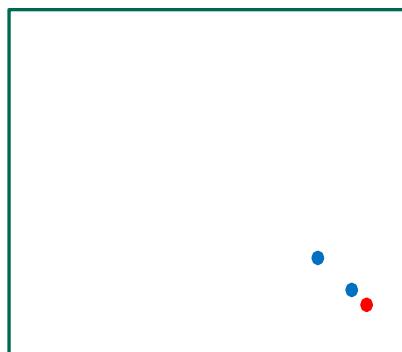
AMNESIA RADIUS VERSIONS OF CONDITIONAL POINT SAMPLING FOR RADIATION TRANSPORT IN 1D STOCHASTIC MEDIA

Emily H. Vu^{1,2} and Aaron J. Olson²

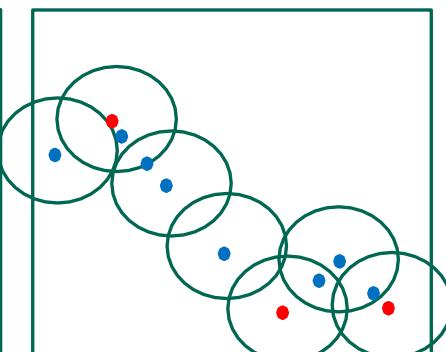
Full memory:



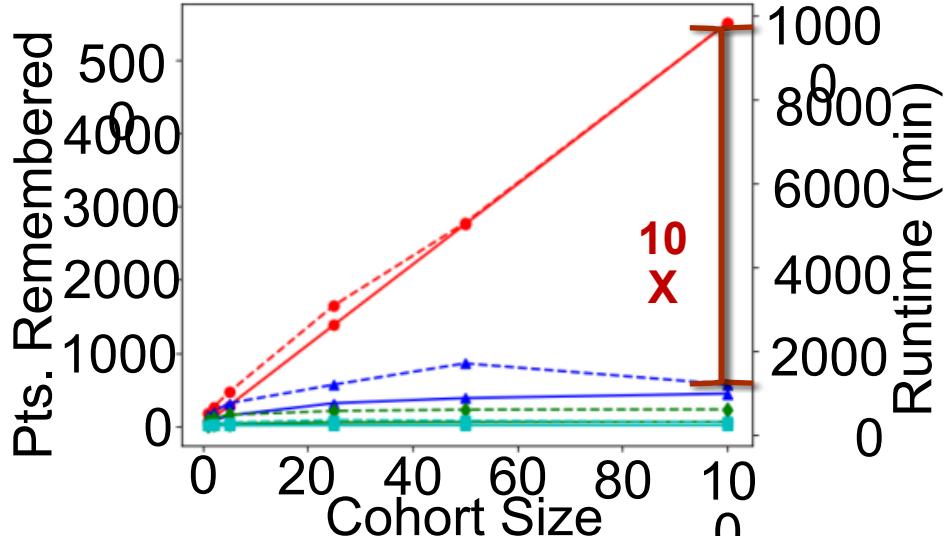
Recent memory:



Amnesia radius:



Cohort size 1E6:
0.7d vs. 190yr
13s vs. 15.8d



● Ave. Pts. Amnesia Radius = 0.0	● Runtime Amnesia Radius = 0.0
● Ave. Pts. Amnesia Radius = 0.01	● Runtime Amnesia Radius = 0.01
● Ave. Pts. Amnesia Radius = 0.1	● Runtime Amnesia Radius = 0.1
● Ave. Pts. Amnesia Radius = 1.0	● Runtime Amnesia Radius = 1.0

Progress: UNM Collaboration

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olson, 2021)
- Proposed test problem
- Prototyped SM algorithm on GPU (Kersting, 2021)

Sensitivity Analysis in Coupled Radiation Transport Simulations

Christopher M. Perfetti^a, Brian Franke^b, Ron Kensek^b, Aaron Olson^b

“Coupled CLUTCH”

- 1D transport
- 3 groups
- Photon/electron
- 10 cells

REVISITING THE LOCKWOOD ALBEDO MEASUREMENTS FOR VALIDATION OF THE INTEGRATED TIGER SERIES ELECTRON-PHOTON TRANSPORT CODE

R

Rowdy Davis¹, Ronald P. Kensek², Christopher M. Perfetti¹ and Aaron Olson²

ITS Validation Suite:

- 7 experiments
- Assessment: Expand Lockwood albedo simulations

Improvements:

- Quantitative error metric
- More simulations
- Experimental errors

UNM Collaboration

- Validation/calibration simulations
- Sensitivity method
- Implementation/prototyping

Opportunity: CEMeNT Collaboration?

Develop efficient **uncertainty quantification (UQ)** and **stochastic media (SM)** Mixed Monte Carlo Sampling (MMCS) transport methods **for the GPU**

Four MMCS goals:

- Develop UQ methods
- Develop data-driven SM capabilities
- Adapt UQ tools to incorporate SM uncertainty
- Efficiently embed methods on the GPU

Accomplishments (ANS/M&C papers):

- Initial PCE tools (Geraci, 2021)
- Initial sampling-based Sobol indices (Petticrew, 2021)
- Initial machine learning SM capability (Davis, 2021)
- SM benchmarking capabilities (Olson, 2021)
- Proposed test problem
- Prototyped SM algorithm on GPU (Kersting, 2021)

UNM collaboration goals/accomplishments:
◦ Limited by GPU memory
◦ Limited by GPU memory

Wish list:

- Develop PCE term selection/regression approaches
- Quantify Sobol performance, new and traditional
- Expand MMCS PCE/Sobol prototyping
- Design MMCS UI/co-implementation strategies
- Your ideas!

Internship Job Posting:

- Sandia Careers: <https://bit.ly/2XzEuGD>
- Posting number: 674437
- Posting live until Feb. 22

CEMeNT collaboration?

- Student internship
- Other