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Introduction
Direct methane aromatization (DMA) using Mo-ZSM-5 catalyst is an effective method for methane conversion. 
Microwave-assisted DMA offers quick reaction times, higher methane conversion and product selectivity and 
efficient catalyst activation due to direct microwave-active sites interactions. In order to achieve best catalytic 
performance, the microwave reactor should be optimized for various parameters that govern the microwave 
heating process1. 

Modeling Methods
• COMSOL Multiphysics was used to model microwave heating 

of Mo-ZSM-5 catalyst at 2450 MHz2,3

• Effect of tuning short position, reactor tube diameter, 
catalyst bed design, addition of SiC as absorber and, cavity 
design were studied

• Dielectric properties of catalyst were measured using Vector 
Network Analyzer using a two-probe method4

Dielectric Properties 
• Properties of fresh ZSM-5, and ZSM-5 loaded with Mo (0.5, 2, 4, 10 wt%) at 2450 MHz at room T
• Mo-ZSM-5 with 4 wt% loading has highest dielectric loss
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Mo-ZSM-5 + SiC
• Catalyst bed 1.5 in long and ID 0.5 in at 100 W
• Highest T at the center of the catalyst bed, non-uniform T
• Adding SiC in small quantities to Mo-ZSM-5 can help
• Dielectric properties calculated by COMSOL from Maxwell –

Wagner mixture rule
• Uniform T but lower T achieved compared to SiC at 100 W
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Outer region: Mo-ZSM-5
Inner region : SiC
Power in : 25 W for 30 min 
Tmax : 27 C

Outer region: Mo-ZSM-5
Inner region : quartz
Power in : 200 W for 30 min
Tmax : 55 C

Outer region: Mo-ZSM-5
Inner region : Alumina
Power in : 200 W for 30 min 
Tmax : 50 C

Outer region: SiC
Inner region : Mo-ZSM-5
Power in : 25 W for 30 min
Tmax : 200 C

Annular Catalyst Design to Improve Uniformity
• To increase uniformity of outer catalyst zone, annular design was tested with different materials
• SiC, glass, and Alumina on the inner region and Mo-ZSM-5 on the outer region
• SiC on the outer and Mo-ZSM-5 on the inside resulted in most uniform T profile 

Effect of Reactor Tube Geometry
• T increases with increase in tube diameter up to 20 mm, 

then decreases
• Penetration depth of Mo-ZSM-5 is 19.1 mm
• Not enough material to absorb MW effectively at lower 

tube diameter
• >20mm ID, too much material and maximum T-drops

Effect of Tuning Short Position
• Tuning short maximize the e-field in the catalyst bed
• T changes with change in tuning short position
• Changing short position affects standing wave pattern
• 0.12 is the optimum position for Mo-ZSM-5 catalyst in 

2m waveguide at 2450 MHz
• No effect on T-profile

Conclusions
• Microwave reactor geometry has significant impact on T profile in a Mo-ZSM-5 catalyst bed
• Reactor tube diameter should be selected based on material penetration depth
• Tuning short position should be optimized
• Adding SiC and h-field can result in uniform T profile
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Disclaimer
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or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
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