AnL/mes|ep-- 37415 “ENEIVED

— JAN 25 1995
CONF-4509,35-- | ot

Additive Synthesis with DIASS_M4C on Argonne National Laboratoi'y’s
IBM POWERparallel System (SP)

Hans Kaper David Ralley Juan Restrepo Sever Tipei

Argonne National Computer Music Project ~ Argonne National Computer Music Project
Laboratory Uniersity of Ilinois Laboratory University of Illinois
kaper@mcs.anl.gov d-ralley@uiuc.edu restrepo@mcs.anl.gov s-tipei@uiuc.edu

ABSTRACT: DIASS_MA4C, a digital additive instrument, was implemented on the Argonne National
Laboratory’s IBM POWERparallel System (SP). This paper discusses the need for a massiviey parallel
supercomputer and shows how the code was parallelized. The resulting sounds and the degree of control the
user can have justify the effort and the use of such a large computer.

DIASS, a Digital Instrument for Additive Synthesis on Supercomputers, is designed to allow control over
- the finest details in sound synthesis and to uncover the possibilities that current supercomputer architectures can
offer the experimental music composer. In DIASS, any sound can have up to 65 partials (sine waves), but this
current limit can be replaced by any arbitrary number (Kriese, C. and Tipei. S). Each wave/partial is defined by
12 static parameters or constant values (such as start time. duration, hall size and decay time for the
reverberation) and 13 dynamic parameters or time-variant values (such as pitch, amplitude, tremolo, vibrato,
transients, mix between direct and reverberated sound). The dynamic parameters use macros. or envelopes, of
up to ten segments to define their behavior in time; these envelopes are custom designed by the user/composer,
who can specify the x or time values, the y values and a path to be followed between y values. DIASS functions
within the framework of the M4C sound synthesis language. an expanded C version of the 4BF program from
the MusicN family,

AL 65 partials/sound and 25 controlling parameters for each partial, the amount of data to be specified by
the user soon becomes hard to manage. Scor5, an editor or scorewriter, assists the user in creating an ASCII
score file, a stack of "I cards” each 41 lines long. Through an interactive menu, the user creates every sound
from scrach and later can edit it. A number of macros help increase the efficiency of the process by
automatizing certain operations: assigning amplitudes to all partials of a sound when given particular envelopes
and either a percentage of the fundamental’s amplitude or a "taper” factor; ensuring that when the user specifies
a cenain loudness (in sones), the same perceived level results for sounds of different frequencies and number of
partials (equal loudness): calculating the correct frequencies for all partials so they stay in the same relationship
during a glissando: coordinating the use of randomness during vibrato or tremolo so that all partials of a sound
are affected in the same way. at the same time and "gel” into a complex timbre; making sure that at no time the
ceiling of maximum amplitude is crossed. Even then. choosing this many options for each of the hundreds of
sounds that make up a piece is tedious. Since the most efficient use of DIASS is in connection with a
computer-assisted composition program, an interface, diaint.f, automatically translates the composition
program’s output into a script to be used as input for Scors.

The time and memory requirements for DIASS_M4C can vary according to the complexity of each
sound and of the music in general. The more partials (waves) in a sound. the more options selected, or the
. more simultaneous sounds, the longer it takes to compute a second of music. To give an example, apiece for
three voices (streams of sounds and/or chords), lasting about 12 minutes and containing 674 individual sounds
some with 21 waves, some with 34, and some with 65, generated at a sampling rate of 22,050 Hz, stereo,

~ Y

hy [}
é%!f The submitted manuscrnipt has been authored
ag by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38B.

Accordingly, the U. S. Government retaing a
nonexclusive, royalty-free license 10 oublish

n— ‘S UNL ﬁ,"ﬁllTEg or reproduce the published form of this

" g0 A contribution, or allow others to do so, ‘or
DISTRIBUTION OF THIS D glide N :

U. S. Government purposes.




involves a 60 MB sound file and a 30 MB score file. On an IBM RS/6000. it takes about 90 min. to write the
score with Scor5 from the script produced with diaint.f and about 12 times longer to compute the samples.

It is obvious that even such a relatively modest piece requires a high-speed computer with large amounts
of RAM and disk space. DIASS was developed successively on NeXT, CRAY Y-MP, and RS/6000 platforms,
but none of them appeared adequate for the production stage. Only a massively parallel computer such as
Argonne National Laboratory’s IBM POWERparallel System (SP), a cluster of 128 RS/6000s with 128 MB
RAM on each node, could become an effective tool for the composer.

So far we concentrated on modifying the code for DIASS_M4C, the most time-consuming part of the
process, in order to enable it to run in parallel on the IBM SP. Our approach is that of "task farming":
individual sounds are computed on different nodes and the results are mixed together at the end. One node
controls the entire operation and assigns tasks to other nodes as they become available. The user provides the
score file (list of sound events to be synthesized) and requests a number of nodes on which the computations are
to take place.

The decision of parallelizing at the sound level and not at a lower one was made for two main reasons:
(1) the efficiency of message passing between nodes was estimated 1o be at its peak at this level; and (2) within
a sound, individual partials need to have access to the same random numbers in order to coordinate non-
deterministic features such as vibrato, transients and tremolo. The tool used was MPI, a portable parallel
programming message-passing interface and library (Gropp, W., Lusk, E., Skjellum, A).

Preliminary results were convincing: a 6 minute piece of 200 sounds 16 waves each was computed in a
lite less than 1 hour, showing that the time for generating the binary samples is almost exactly the time
necessary for sequential computation divided by the number of nodes used. It follows that with 100 or so
nodes, the 12 minute piece described above could be computed in less than real time.

Additive synthesis is an expensive proposition, and DIASS_M4JC takes it almost to the limit of what
supercomputer architectures can offer at the present ime. Why then not settle for alternatives that are less
costly and easier to implement ? The answer is in the kind of sounds which would be very hard, if not
impossible, to obtain any other way: sounds whose harmonics are progressively "detuned”. to produce
percussion- or noise-like timbres, and noises that are transformed: into sounds through tuning; the "morphing”
of a complex timbre which is decomposed into chords or. even further, into individual sine waves; as well as the
reverse process; the use of amplitude and frequency transients to better approximate acoustic instruments when
used in moderation or to create unusual sonorities when exaggerated: and the accurate scaling of amplitudes.
taking into account masking effects and the Fletcher-Munson curves of equal loudness to reflect the loudness
level desired by the composer, even in the case of large chords made out of complex timbres.

More than anything else, though. on Argonne National Laboratory’s IBM SP supercomputer,
DIASS_MA4C is a practical instrument that gives the user control over the internal structure of a sound in as
much detail as desired and as far as his/her imagination and patience will go. It is easy to see also how
DIASS_M4C might become a powerful tool for the sonification of complex scientific data.

References: -Gropp,W.,Lusk.E. and Skjellum, A. - Using MPI, The MIT Press, 1994.
-Kriese, C., and Tipei, S. - A Compositional Approach to Additive Synthesis on Supercomputers,
Proceedings of the 1992 International Computer Music Conference, San Jose, California, 1992.
Acknowledgments: This work was supported by the Mathematical, Information, and Computational Sciences

Division subprogram of the Office of Computational and Technology Research, U.S. Department of Energy,

under contract W-31-109-Eng_38. Part of the research was funded by Univ. of Illinois Research Board. Thanks
to D. Blumenthal, M. Lauria, T. Lawrence, and S. Pakin for writing the parallel version of M4C.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.




