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ABSTRACT

Long short-term memory (LSTM) is a kind of recurrent neural net-
works (RNN) for sequence and temporal dependency data modeling
and its effectiveness has been extensively established. In this work,
we propose a hybrid quantum-classical model of LSTM, which we
dub QLSTM. We demonstrate that the proposed model successfully
learns several kinds of temporal data. In particular, we show that
for certain testing cases, this quantum version of LSTM converges
faster, or equivalently, reaches a better accuracy, than its classical
counterpart. Due to the variational nature of our approach, the re-
quirements on qubit counts and circuit depth are eased, and our work
thus paves the way toward implementing machine learning algo-
rithms for sequence modeling such as natural language processing,
speech recognition on noisy intermediate-scale quantum (NISQ) de-
vices.

Index Terms— Quantum machine learning, Variational quan-
tum circuits, Long short-term memory and Recurrent neural network

1. INTRODUCTION

Recently, machine learning (ML), in particular deep learning (DL),
has found tremendous success in computer vision [1} 2, 3]], natural
language processing [4]], and mastering the game of Go [5]. One of
the most commonly used ML architectures is recurrent neural net-
works (RNN), which is capable of modeling sequential data. RNNs
have been applied to study several natural language processing tasks
such as machine translation [4]], speech recognition [6] as well as
other signal processing and function approximation tasks in scien-
tific research (7, 18].

In the meantime, quantum computers, both general- and special-
purpose ones, are introduced to the general public by several tech-
nology companies such as IBM [9]], Google [10], and D-Wave
[11]. While in theory quantum computers can provide exponential
speedup to certain classes of problems and simulations of highly-
entangled physical systems that are intractable on classical com-
puters, quantum circuits with a large number of qubits and/or a
long circuit depth cannot yet be faithfully executed on these noisy
intermediate-scale quantum (NISQ) devices [12] due to the lack of
quantum error correction [13| [14)]. Therefore, it is non-trivial to
design an application framework that can be potentially executed on
the NISQ devices with meaningful outcomes.

Recently, Mitarai et al. proposed variational quantum algo-
rithms, circuits, and encoding schemes [15] which are potentially
applicable to NISQ devices. These quantum algorithms successfully
tackled several simple ML tasks, including function approximation
and classification. It takes advantage of quantum entanglement
[15, 16] to reduce the number of parameters in a quantum circuit,
and iterative optimization procedures are utilized to update the cir-
cuit parameters. With such an iterative process, the noise in quantum
devices can be effectively absorbed into the learned parameters with-

out incorporating any knowledge of the noise properties. With these
in hand, hybrid quantum-classical algorithms becomes viable and
could be realized on the available NISQ devices. Such variational
quantum algorithms have succeeded in classification tasks [17, 18],
generative adversarial learning [[19] and deep reinforcement learn-
ing [20]. However, the problem of learning sequential data, to our
best knowledge, has not been investigated thoroughly in the quantum
domain.

In this work, we address the issue of learning sequential, or tem-
poral, data with quantum machine learning (QML) [21} 22 23]]. We
propose a novel framework to demonstrate the feasibility of imple-
menting RNNs with variational quantum circuits (VQC) — a kind
of quantum circuits with gate parameters optimized (or trained) clas-
sically — and show that quantum advantages can be harvested in
this scheme. Specifically, we implement long short-term memory
(LSTM) — a famous variant of RNNs capable of modeling long tem-
poral dependencies — with VQCs, and we refer to our QML archi-
tecture as quantum LSTM, or QLSTM for brevity. In the proposed
framework, we use a hybrid quantum-classical approach, which is
suitable for NISQ devices through iterative optimization while uti-
lizing the greater expressive power granted by quantum entangle-
ment. Through numerical simulations we show that the QLSTM
learns faster (takes less epochs) than the classical LSTM does with a
similar number of network parameters. In addition, the convergence
of our QLSTM is more stable than its classical counterpart; specifi-
cally, no peculiar spikes that are typical in LSTM’s loss functions is
observed with QLSTM.

This paper is organized as follows. First, in Section [2] we intro-
duce VQCs, the building block of the proposed framework. Next, we
discuss our QLSTM architecture and its detailed mechanism in Sec-
tion[3} In Section ] we investigate through simulations the QLSTM
capability for several different kinds of temporal data and compare
with the outcomes of their classical counterparts. Finally, we con-
clude in Section[3}

2. VARIATIONAL QUANTUM CIRCUITS

VQCs are a kind of quantum circuits that have tunable parameters
subject to iterative optimizations, see FigurdT] for a generic VQC
architecture. There, the U (x) block is for the state preparation that
encodes the classical data x into the quantum state of the circuit and
is not subject to optimization, and the V(@) block represents the
variational part with learnable parameters 6 that will be optimized
through gradient methods. Finally, we measure a subset (or all) of
the qubits to retrieve a (classical) bit string like 0100.

Previous results have shown that such circuits are robust against
quantum noise [24} 25 [26] and therefore suitable for the NISQ de-
vices. VQCs have been successfully applied to function approxima-
tion [15], classification [17, [18, 127 28], generative modeling [19],
deep reinforcement learning [20], and transfer learning [29]. Fur-
thermore, it has been pointed out that the VQCs are more expressive
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Fig. 1: Generic architecture for variational quantum circuits (VQC).
U (x) is the quantum routine for encoding the (classical) input data
x and V'(0) is the variational circuit block with tunable parameters
6. A quantum measurement over some or all of the qubits follows.

than classical neural networks [30, [11} [16] and so are potentially
better than the latter. Here, the expressive power refers to the ability
to represent certain functions or distributions with a limited num-
ber of parameters. Indeed, artificial neural networks (ANN) are said
to be universal approximators [31], meaning that a neural network,
even with only one single hidden layer, can in theory approximate
any computable function. As we will see below, using VQCs as the
building blocks of quantum LSTM enables faster learning.

3. QUANTUM LSTM

In this paper, we extend the classical LSTM into the quantum realm
by replacing the classical neural networks in the LSTM cells with
VQCs, which would play the roles of both feature extraction and data
compression, see Figurd3] for a schematic of the proposed QLSTM
architecture. The VQC components used in QLSTM are shown in
Figure@ The VQC is composed of three major parts: data encoding,
variational layer and quantum measurements. The data encoding
circuit is used to transform the classical vector (input) into a quantum
state. The variational layer is the actual learnable components, with
circuit parameters updated via gradient descent algorithms. Finally,
the quantum measurements are used to retrieve the values for further
processing. The mathematical construction of QLSTM is given in
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Fig. 2: Generic VQC architecture for QLSTM. It consists of three
layers: the data encoding layer (with the H, R,, and R, gates), the
variational layer (dashed box), and the quantum measurement layer.
Note that the number of qubits and the number of measurements can
be adjusted to fit the problem of interest, and the variational layer can
contain several dashed boxes to increase the number of parameters,
all subject to the capacity and capability of the quantum machines
used for the experiments.
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Fig. 3: The proposed quantum long short-term memory (QLSTM)
architecture. Each VQC box is of the form as detailed in Figurd?]
The o and tanh blocks represent the sigmoid and the hyperbolic
tangent activation function, respectively. x: is the input at time ¢,
h: is for the hidden state, c; is for the cell state, and ¥ is the out-
put. ® and @ represents element-wise multiplication and addition,
respectively.

4. EXPERIMENTS AND RESULTS

In this section we study and compare the capability and performance
of the QLSTM with its classical counterpart. Specifically, we study
QLSTM’s capability to learn the representation of various functions
of time. We present numerical simulations of the proposed QLSTM
architecture applied to several scenarios.

To make a fair comparison, we employ a classical LSTM with
the number of parameters comparable to that of the QLSTM. The
classical LSTM architecture is implemented using PyTorch [32] with
the hidden size 5. It has a linear layer to convert the output to a single
target value y;. The total number of parameters is 166 in the classi-
cal LSTM. As for the QLSTM, there are 6 VQCs (Figur@, in each
of which we use 4 qubits with depth = 2 in the variational layer. In
addition, there are 2 parameters for the final scaling. Therefore, the
number of parameters in our QLSTM is 6 x4 X 2 x 342 = 146. We
use the same (Q)LSTM architecture throughout this section. Finally,
we use PennyLane [33] [34] and Qulacs [35] for the simulation of
quantum circuits, and train the QLSTM in the same PyTorch frame-
work applied to LSTM.

We consider the following scheme for training and testing: the
(Q)LSTM is expected to predict the (N + 1)-th value given the first
N values in the time sequence. For example, at step ¢ if the input is
[€t—a,Tt—3,2¢—2,Tt—1] (i.e., N = 4), then the QLSTM is expected
to generate the output y;, which should be close to the ground truth
x¢. We set N = 4 throughout. For data generated by mathematical
functions, we rescale them to the interval [—1,1]. We use the first
67% elements in the sequence for training and the rest (33%) for
testing. For each experiment, we train with maximum 100 epochs.



The optimization method is chosen to be RMSprop [36]], a vari-
ant of gradient descent methods with an adaptive learning rate that
updates the parameters 6 as:

E[g*], = aB[g’],_, + (1 - a)g, (2a)
Ui

041 =0 — ————0t, 2b

t+1 ¢ Bl + Egt (2b)

where g; is the gradient at step ¢t and E/ [g2] , is the weighted moving

average of the squared gradient with E[g*]s—0 = g3. The hyperpa-
rameters are set as follows for both LSTM and QLSTM: learning
rate 7 = 0.01, smoothing constant o = 0.99, and € = 1075,

4.1. Periodic Functions

We first investigate our QLSTM’s capability in learning the sequen-
tial dependency in periodic functions. Without loss of generality we
consider the sine function, a simple periodic function with constant
amplitude and period:

y = sin(z) 3)
It is expected that such a function is easier to model or represent
compared to functions with time-dependent amplitudes or more
structure, which we discuss later. The result is shown in Figurd4]
By comparing the results from different epochs, it can be seen that
both the QLSTM and LSTM successfully learn the sine function.
While both of them converge well, we point out that the QLSTM
learns significantly more information after the first training epoch
than the LSTM does. For example, QLSTM’s training loss at Epoch
15 is slightly lower than LSTM’s (see Table [T), a trend that will
become more evident later). In addition, QLSTM’s loss is more
stably decreasing than LSTM’s; there are no spikes in the quantum
case (see the right panels in Figure[d).

LSTM

Fig. 4: Learning the sine function. QLSTM already learns the
essence of sin(x) by Epoch 1, and has no peculiar bumps in the loss
function. The orange dashed line represents the ground truth sin(z)
[that we train the (Q)LSTM to learn] while the blue solid line is the
output from the (Q)LSTM. The vertical red dashed line separates the
training set (left) from the festing set (right).

Training Loss
1.89 x 1072
2.86 x 1072

Testing Loss
1.69 x 1072
2.81 x 1072

QLSTM
LSTM

Table 1: The comparison of loss values at Epoch 15 for the sine
function experiment.

4.2. Physical Dynamics

In this part of the experiments, we study the capability of the pro-
posed QLSTM in learning the sequential dependency in physical
dynamics.

4.2.1. Damped harmonic oscillator

Damped harmonic oscillators are one of the most classic textbook
examples in science and engineering. It can describe or approximate
a wide range of systems, from mass on a spring to electrical circuits.
The differential equation describing the damped simple harmonic
oscillation is,

d%x dx 2

@ +2CWOE +UJQ$:0, (4)
where wo = % is the (undamped) system’s characteristic fre-
quency and ( = 2\;"76 is the damping ratio. In this work, we con-

sider a specific example from the simple pendulum with the follow-
ing formulation,

2

%+%%+%sm9:o )
in which we set the system with the parameters gravitational con-
stant g = 9.81, damping factor b = 0.15, pendulum length [ = 1
and mass m = 1. The initial condition at ¢ = 0 is with angular dis-
placement § = 0 and the angular velocity 6 = 3 rad/sec. We present
the QLSTM learning result of the angular velocity 6.

The simulation results are shown in Figurdd] Like the previous
(sine) case, QLSTM surprisingly learns more on the damped oscil-
lation as early as Epoch 1, refines faster than the classical LSTM (cf.
Epoch 15), and has stabler decreasing in loss. We further note two
observations: first, the testing loss values are significantly lower than
the training ones. The reason is that the testing set (on the right of
the red dashed line) has smaller amplitude compared to the training
set. After the training, both the training and testing loss converge to a
low value. Second, while both QLSTM and LSTM have undershots
at the local minima/maxima (cf. Epoch 100), QLSTM’s symptom is
milder. In addition, QLSTM does not have overshots as seen in the
LSTM (Epoch 30).

With these two case studies, we hope to establish that the QL-
STM’s advantages we see are a common pattern that is portable
across different input functions, as we will see below.

Epoch 1 Epoch 15 Epoch 30 Epoch 10¢
A

QLSTM o0

LSTM onof T
o

Time Time Time Time

Fig. 5: Learning damped oscillations. The QLSTM learns faster
and predicts more accurately than the classical LSTM with a fixed
number of epochs. The orange dashed line represents the ground
truth [that we train the (Q)LSTM to learn] while the blue solid
line is the output from the (Q)LSTM. The vertical red dashed line
separates the training set (left) from the testing set (right).



Testing Loss
6x10°
5x107°

Training Loss
2.92 x 1072
3.15 x 1072

QLSTM
LSTM

Table 2: The comparison of loss values at Epoch 15 for the damped
oscillator experiment.

4.2.2. Bessel functions

Bessel functions of the first kind, J (x), obeys the following differ-
ential equation

d? d
2 y+ y+(x2_

2 _
e o)y =0, (6)

to which the solution is

L& () ayeme
Ja(z) = m,Z:O i m+ o+ 1) (5) ) N

where I'(z) is the Gamma function. Bessel functions are also com-
monly encountered in physics and engineering problems, such as
electromagnetic fields or heat conduction in a cylindrical geometry.

In this example, we choose J; for the training. The results are
shown in Figurd6] As in the case of damped oscillation, QLSTM
learns faster, converges stabler, and has a milder symptom in un-
dershooting. It is particularly interesting to note the poor prediction
made by the LSTM at Epoch 1 and 15, in sharp contrast to that by
the QLSTM.

Epoch 1 Epoch 15 Epoch 30 Epoch 10¢
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Fig. 6: Learning the Bessel function of order 2 (J2). QLSTM’s per-
formance in prediction and convergence is even better than LSTM’s
with a slightly more complicated input (a non-exponential decay)
compared to the previous cases. The orange dashed line represents
the ground truth Jo [that we train the (Q)LSTM to learn] while
the blue solid line is the output from the (Q)LSTM. The vertical
red dashed line separates the training set (left) from the festing set

(right).

Testing Loss
55x107°
1.28 x 107

Training Loss
2.26 x 107
5.43 x 10~

QLSTM
LSTM

Table 3: The comparison of loss values at Epoch 15 for the Bessel
function J> experiment.

5. CONCLUSION AND OUTLOOK

We provide and study the first hybrid quantum-classical model of
long short-term memory (QLSTM) which is able to learn data with
temporal dependency. We show that under the constraint of similar
number of parameters, the QLSTM learns significantly more infor-
mation than the LSTM does right after the first training epoch, and its
loss decreases more stably and faster than that of its classical coun-
terpart. It also learns the local features (minima, maxima, etc) better
than the LSTM does in general, especially when the input data has a
complicated temporal structure. Our work paves the way toward us-
ing quantum circuits to model sequential data or physical dynamics,
and strengthens the potential applicability of QML to many other
scientific problems or commercial applications.
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S1. CLASSICAL MACHINE LEARNING

Here we introduce the basic concepts of classical RNNs and its variant LSTM to set the stage for the discussion for their quantum counterparts.

S1.1. Recurrent neural network

The RNNs (FigurdST)) are a class of ML models that can effectively handle sequential data by memorizing previous inputs so as to make better
predictions and perform temporal modeling [42] 43]]. Temporal data can be processed and fed into ML models that are equipped with finite
memory in the time domain. It then becomes possible to make predictions using the ML models after trained with known data, say, retrieved
from experiments [7, 18} 146} 147]]. For example, to design a ML model capable of generating control signals to guide the state evolution of a
physical system of interest, one can train an RNN with the measured temporal data from that system by minimizing a given loss function at
each time step .

i Recurrent |
i Neural !
1 Network !

T -
—

Fig. S1: A schematic for recurrent neural networks (RNN). For each time step ¢, the RNN takes an input value x;, output a value o; and a
hidden value h; which will be fed into itself at step ¢t + 1, enabling such architectures to learn temporal dependency. By unfolding the RNN
in time, each time step can be seen as a unit cell of the RNN architecture.

The reason that RNNs can capture well the temporal dependency is because the network not only outputs a target value for the current
time step but also keeps another value, referred to as the hidden state, that loops back to the network itself, making the information from the
previous time steps retained. The hidden state in RNNG is critical to the memory capability. As an illustration, in FigurdST|we consider a time
sequence {Zo,Z1,- - ,Zn} as the input of the RNNSs, and their outputs are sequences as well. The input x; is fed into the RNN at the time
step ¢, and the returned output is y;. At each time step, the RNN also outputs another hidden value h:, which will be fed into itself in the next
time step. This feedback mechanism is the key that distinguishes RNNs from conventional feed-forward neural networks that do not retain
the information from previous steps. The information flow can be seen more clearly by unfolding along the time axis (see FigurdSI]on the
right).

S1.2. Long short-term memory

The LSTM [48] is a special kind of RNNs that can learn a longer range of sequential dependency in the data. It is one of the most popular ML
approaches in sequence modeling and has found successes in a wide spectrum of applications, such as machine translation [4] and question
answering [S0] in natural language processing. It partially solves an important issue of vanishing gradients in the original RNNs: each LSTM
cell at time step ¢ has an additional cell state, denoted by c;, which allows the gradients to flow unchanged and can be seen as the memory of
the LSTM cell (so LSTM has two memory components h; and c¢; while the RNN has only h). This property makes the LSTM numerically
more stable in training processes and predicts more accurately. These successes then further inspired RNN applications in learning quantum
evolution dynamics from experimental data that also have a sequential characteristic [7} [8].
The information flow in a classical LSTM cell (FigurdS2) is

ft ZU(Wf-Ut+bf), (Sla)
Ut :U(W¢~Ut+bi), (S1b)
Cy = tanh (We - v + be) (Slc)
et = fi* com1 4 i % Ct, (S1d)
ot =0 (Wo - v + bo), (Sle)
ht = o, * tanh (¢¢) , (S1f)

where o denotes the sigmoid function, {W,,} are classical neural networks (n = f,4,C,0), b, is the corresponding bias for W,,, vy =
[ht—12¢] refers to the concatenation of h¢—1 and x+, and the symbols * and + denotes element-wise multiplication and addition, respectively.



Fig. S2: A schematic for a classical long short-term memory (LSTM) cell. See the main text and Eq. (SI) for the meaning of each component.

S2. ANATOMY OF QUANTUM LONG SHORT-TERM MEMORY

S2.1. Circuit Blocks

Here we describe the building blocks for our proposed QLSTM framework. The VQC used here is presented in FigureZ] Every circuit blocks
used in a QLSTM cell consist of three layers: the data encoding layer, variational layer, and quantum measurement layer.

S$2.1.1. Data Encoding Layer

Any classical data to be processed with a quantum circuit needs to be encoded into its quantum state. A general N-qubit quantum state can
be represented as:

lv) = Z Car.a2,an |01) @ |g2) ® -+ @ |an ), (82)
(q1,92,+ ,an)€{0,1}

where ¢q, ... q € C is the complex amplitude for each basis state and each ¢; € {0,1}. The square of the amplitude cg, ,... 45 is the
probability of measurement with the post-measurement state in |¢1) ® |g2) ® - - - ® |gn) such that the total probability is equal to 1:

Z ||C¢117"'7¢1NH2 =1 (S3)

(g1, ,an)€{0,1}

An encoding scheme here refers to a predefined procedure that transforms the classical vector ¢/ into quantum amplitudes cq, ... .q, that define
the quantum state. In the proposed architecture, inspired by Ref. [[15]], the classical input vector will be transformed into rotation angles to
guide the single-qubit rotations.

The first step of our encoding scheme is to transform the initial state |0) ® - - - ® |0) into an unbiased state,

(H10)*Y = (10) + 1) *~

N

1
N

Il ﬁ"_‘

-3

(10)®---@0) +--+ 1) ®---®]1))

2N _1

= li) , (S4)

where the running index ¢ is the decimal number for the corresponding bit string that labels the computational basis.

Next, we generate 2N rotation angles from the N-dimensional input vector ¢ = (z1,x2,- - ,xn) by taking 6; 1 = arctan(z;) and
0; 2 = arctan(z?) for each element ;. The first angle ; ; is for rotating along the y-axis by applying the R, (;,1) gate and 6; » for the
z-axis by the R (6;2) gate, respectively. We choose the arctan function here, as opposed to arcsin and arccos used in Ref. [[15]], because in
general the input values are not in the interval of [—1, 1] but in R, which is also the domain of arctan. Taking 2 is for creating higher-order
terms after the entanglement operations. The unbiased state Eq. (S4) is then transformed into the desired quantum state corresponding to the
classical input vector ¥, which is to be sent to the subsequent layers. The 2V rotation angles are for state preparation and are not subject to
iterative optimization in the present work.



$2.1.2. Variational Layer

The encoded classical data, which is now a quantum state, will then go through a series of unitary operations. These quantum operations
consist of several CNOT gates and single-qubit rotation gates (dashed box in Figurd2). The CNOT gates are applied to every pairs of qubits
with a fixed adjacency 1 and 2 (in a cyclic way) to generate multi-qubit entanglement. The 3 rotation angles {c;, B;,~: } along the axes z, y,
and z, respectively, in the single-qubit rotation gates {R; = R(«s, 8;,7:)} are not fixed in advance; rather, they are to be updated in the
iterative optimization process based on a gradient descent method. Note that the dashed box may repeat several times to increase the depth of
this layer and thus the number of variational parameters. In this study, we set the depth to 2 in all experiments.

$2.1.3. Quantum Measurement Layer

The end of every VQC block is a quantum measurement layer. Here we consider the expectation values of every qubit by measuring in the
computational basis. With quantum simulation software such as PennyLane [33] and IBM Qiskit [53], it can be calculated numerically on
a classical computer, whereas with real quantum computers, such values are statistically estimated through repeated measurements, which
should be in theory close to the value obtained from simulation in the zero-noise limit. The returned result is a fixed-length vector to be further
processed on a classical computer. In the proposed QLSTM, the measured values from each of the VQCs will be processed within a QLSTM
cell, to be discussed in the next section.

S2.2. Stack All the Blocks

To construct the basic unit of the proposed QLSTM architecture, a QLSTM cell, we stack the aforementioned VQC blocks together. In
FigurdJ] each of the VQC; block is described in the previous section (see also FigurdZ). There are six VQCs in a QLSTM cell. For VQC to
V QCl4, the input is the concatenation v, of the hidden state h,—1 from the previous time step and the current input vector x, and the output
is four vectors obtained from the measurements at the end of each VQCs. The measured values, which are Pauli Z expectation values of each
qubit by design, then go through nonlinear activation functions (sigmoid and tanh).

A formal mathematical formulation of a QLSTM cell is given by [cf. Eq. (ST) for classical LSTM]

fr =0 (VQCi(v1)) (S5a)
it = 0 (VQC2(vy)) (S5b)
C; = tanh (VQCs(vt)) (S5¢)
co=fexc1+ixCy (S5d)
ot = 0 (VQC4(vr)) (S5e)
hy = VQC5(o¢ * tanh (¢t)) (S5f)
y: = VQCs (ot x tanh (ct)), (S5g)

which can be grouped into three layers for their purposes:

* Forget Block [Eq. (S3a)]: The VQC' block examines v; and outputs a vector f; with values in the interval [0, 1] through the sigmoid
function. The purpose of f; is to determine whether to “forget” or “keep” the corresponding elements in the cell state ¢;—1 from the
previous step, by operating element-wisely on c¢;—1 (i.e., f; * c;—1). For example, a value 1 (0) means that the corresponding element
in the cell state will be completely kept (forgotten). In general, though, the vector operating on the cell state is not 0 or 1 but something
in between, meaning that a part of the information carried by the cell state will be kept, making (Q)LSTM suitable to learn or model
the temporal dependencies.

+ Input and Update Block [Eqs. (S3b)-(S5d)]: The purpose of this part is to decide what new information will be added to the cell state.
There are two VQCs in this part. First, VQC processes v;, and the output then goes through the sigmoid function so as to determine
which values will be added to the cell state. In the meanwhile, VQC5 processes the same concatenated input and passes through a
tanh function to generate a new cell state candidate C;. Finally, the result from VQC> is multiplied element-wisely by Ct, and the
resulting vector is then used to update the cell state.

* Output Block [Eqgs. (S5¢)-(S5g)1: After the updates of the cell state, the QLSTM cell is ready to decide what to output. First, VQCl4
processes v; and goes through the sigmoid function to determine which values in the cell state ¢; are relevant to the output. The cell
state itself goes through the tanh function and then is multiplied element-wisely by the result from VQC}4. This value can then be
further processed with VQC's to get the hidden state h; or VQCs to get the output ;.

For a given problem size, the total number of qubits used in a VQC block is determined so as to match the dimension of the input vector
vt = [he—12¢] to that of the QLSTM cell, and the number of qubits to be measured is of the dimension of the hidden state of the QLSTM. In
general, the dimensions of the cell state ¢;, the hidden state h; and the output y; are not the same. To ensure we have the correct dimensions of
these vectors and keep the flexibility of designing the architecture, we include V' QCs5 to transform c; to hy, and likewise V' QCs to transform
ct 10 Y.



S2.3. Optimization Procedure

In the optimization procedure, we employ the parameter-shift method [37, 33] to derive the analytical gradient of the quantum circuits. For
example, given the expectation value of an observable B

F(2:0:) = <o ‘UJ(m)UJ (0:) BU; (6;) Uo(x)’ 0> - <oc ‘UJ (6:) BU (6;)

x> : (S6)

where z is the input value, Ug(x) is the state preparation routine to encode x into the quantum state, 4 is the circuit parameter index for which
the gradient is to be calculated, and U;(6;) is the single-qubit rotation generated by the Pauli operators, it can be shown [15] that the gradient
of f with respect to the parameter 6; is

Vo i (w00 =5 [7 (w04 5) — £ (w0 - 2)]. (s7)
: 2 2 2
This allows us to analytically evaluate the gradients of the expectation values and apply the gradient descent optimization from classical ML
to VQC-based ML models.

S3. QLSTM FOR QUANTUM CONTROL PROBLEMS

In this section, we consider several interesting problems in open quantum systems (OQS). We again demonstrate the superiority of QLSTM
over LSTM in efficiently learning sequential data. The results presented in this section, although with much harder datasets, are consistent
with the results in the main text.

8§3.0.1. Delayed Quantum Control

We consider a syetem with delayed quantum feedback: a two-level atom (or qubit) coupled to a semi-infinite, one-dimensional waveguide,
one end of which is terminated by a perfect mirror that 100% reflects any incoming propagating photons. This system can be cast to an OQS
problem by treating the waveguide as the environment seen by the qubit, and in this context it is known to be non-Markovian [54, 155 156], in
particular when the qubit-mirror separation, denoted by L, is an integer multiple of the qubit’s resonant wavelength Ag. Due to the delayed
feedback (photons taking round trips to bounce in-between the qubit and the mirror) a bound state in the continuum (BIC) is formed in
this case, causing a portion of incoming photons trapped in the interspace between the qubit and the mirror [S7} 54} I58]. By ‘“‘shaking”,
or modulating, the qubit frequency in time so as to change Ao and break the resonant condition, the trapped photon can be released to the
waveguide and detected by measuring the output field intensity [54]]. In FigurdS3] we learn this temporal dependence using (Q)LSTM.
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Fig. S3: Learning the dynamics with delayed quantum feedback. The QLSTM fits the local minima better than the LSTM does. The orange
dashed line represents the ground truth [that we train the (Q)LSTM to learn] while the blue solid line is the output from the (Q)LSTM. The
vertical red dashed line separates the training set (left) from the testing set (right).

In this example, we consider a sinusoidal modulation of the qubit frequency such that the average frequency satisfies the resonant condition
[54]), and the result is shown in FigurgS3] Not only are QLSTM’s advantages carried over to this case (without surprise by now we hope), but
it also predicts better at the local minima than the LSTM does (cf. Epoch 100). In particular, note that QLSTM’s training loss is almost one
order of magnitude smaller than LSTM’s by Epoch 15 (see Table[ST).



Training Loss
2.88 x 1077
1.44 x 1072

Testing Loss
5.7 x 107°
4.7x 1077

QLSTM
LSTM

Table S1: The comparison of loss values at Epoch 15 for the delayed quantum control experiment.

8$3.0.2. Population Inversion

Finally, we consider a textbook OQS problem: a simple cavity quantum electrodynamics (CQED) system [38] [39] 40Q], in which a qubit
coherently interacts with a cavity, both subject to possible loss to the environment. CQED systems have been used as a cornerstone in
quantum computing and quantum information science, ranging from superconducting quantum computers [39]] to optical quantum networks
[60Q], due to its conceptual simplicity and yet high tunability and controllability.

By preparing the cavity in a coherent state

2 — a"
a) =exp (—|al?/2 —|n (S8)
) (=lal”/2) ; ml )
with a complex-valued amplitude « at ¢ = 0 and letting it evolve in time, a population death and revival of the qubit can be observed [41]],
meaning the probabilities p, and p. of finding the qubit in its ground state |g) and excited state |e), respectively, oscillate in time. This is due
to the interference among all possible bosonic number states |n) where an excitation can leave the qubit and goes to (and vice versa). This
can be characterized by the population inversion

7|a‘2 |a|2n
e —— cos (Qg\/n + lt) ,

: (s9)
n:

D(t) = py(t) — pe(t) = >

n=0

where g is the qubit-cavity coupling.

In Figur we study D(t) with g = 1, 7 = |a|? = 40, and the summation truncated to 7,4 = 100. The QLSTM outperforms the
LSTM, as before, in the learning speed, accuracy, and convergence stability. It is interesting to note that the LSTM has a hard time learning
the zero offset (when pg = pe s.t. D = 0): at Epoch 15 and 30, for example, the LSTM has a large nonzero offset whereas the QLSTM
already learns this feature. Also, QLSTM’s training loss is (again) one order of magnitude smaller than LSTM’s by Epoch 15 (see Table[S2).
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Fig. S4: Learning the population inversion. The QLSTM predicts better than the LSTM, in particular when the populations in the ground and
excited states are balanced (D = 0). The orange dashed line represents the ground truth D(t) [that we train the (Q)LSTM to learn] while the
blue solid line is the output from the (Q)LSTM. The vertical red dashed line separates the training set (left) from the testing set (right).

Training Loss

Testing Loss

QLSTM

1.78 x 1073

21x1073

LSTM

1.25 x 102

1.26 x 102

Table S2: The comparison of loss values at Epoch 15 for the population inversion experiment.
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