
Exponential Time Differencing Schemes for Fuel Depletion

and Transport in Molten Salt Reactors: Theory and

Implementation ∗

Zack Taylor,∗,a Benjamin S. Collins,a and G. Ivan Maldonadob

aOak Ridge National Laboratories, Nuclear Energy and Fuel Cycle Division
1 Bethel Valley Road, P.O. Box 2008, MS-6172, Oak Ridge, TN 37831-6172

bUniversity of Tennessee, Department of Nuclear Engineering
1412 Circle Dr, Knoxville, Tennessee

∗Email: taylorrz@ornl.gov

Number of pages: 53

Number of tables: 12

Number of figures: 19

∗Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with
the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes.
DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).

mailto:taylorrz@ornl.gov

Abstract

A numerical framework for modeling depletion and mass transport in liquid fueled molten salt

reactions is presented based on exponential time differencing. The solution method involves using

the finite volume method to transform the system of partial differential equations into a much

larger system of ordinary differential equations. The key part of this method involved solving for

the exponential of a matrix. We explore six different algorithms to compute the exponential in a

series of progression problems which explore physical transport phenomena in molten salt reactors.

This framework shows good results for solving linear parabolic partial differential equations with

each of the six matrix exponential algorithms. For large problems, the series solvers such as Padé

and Taylor have large run times, which can be mitigated by using the Krylov subspace.

Keywords — Molten Salt Reactors, Depletion, Burnup, Species Transport, Exponential Time

Differencing

2

I. INTRODUCTION

Liquid fuel molten-salt reactors (MSRs) are a class of next-generation advanced nuclear re-

actors which not only show great promise, but also have a significant operational history. By

design, MSRs operate in a much different way than traditional nuclear reactors. While conven-

tional nuclear reactors employ fixed-geometry fuel elements, MSRs dissolve fuel in a molten salt

that continuously flows throughout the reactor’s primary loop. This allows for various chemical

and isotopic species to transport and react in the loop. Moreover, during operation of any nu-

clear reactor, the material composition of the fuel is constantly changing. These changes come

from transmutation due to neutron flux irradiation, nuclear decay, chemical reactions, and mass

transport. Thus, understanding how the fuel composition changes is key to understanding many

other physical processes which occur in nuclear reactors. Modeling these composition changes also

provides insights into fuel safety and performance.

Modeling the composition changes in nuclear reactor fuel is referred to as nuclear fuel deple-

tion analysis. The calculations presented herein model the atomic density of various isotopes in

a nuclear reactor over long and short periods of time, referred to as transients. Modeling shorter

transients is required in postulated accident scenarios and is necessary when tracking transient

fission products like xenon and samarium. Long depletion steps are important for understanding

fuel burnup and cycle length and for optimizing fuel performance. In traditional nuclear reactors,

these calculations involve solving a large system of stiff first-order ordinary differential equations.

The problem of accurately solving these equations has been resolved [1, 2, 3, 4, 5] by using modern

matrix exponential methods. The existing depletion codes were developed to model the current

fleet of reactors with fixed-geometry fuel. Consequently, advances in modern depletion codes have

led to the ability to add external feed and removal of fuel materials, allowing for lumped depletion

MSR analysis [2, 6, 7]. However, these codes do not characterize the underlying physical phe-

nomena in advanced reactors with flowing fuel. There have been efforts to solve the problem of

precursor drift in MSRs, but these analyses are limited to either steady-state analyses, or they

employ numerical methods not well suited for full depletion calculations [8, 9].

The objective of this work is to redefine fuel depletion calculations in a nuclear reactor with

flowing fuel, not only to set up the mathematical expressions to model the physical phenomena,

but also to develop robust, accurate solutions to these equations. As part of this effort, the MSR

3

depletion code libowski has been developed based on a finite volume discretization of the transient

species transport equation using an exponential time differencing scheme. In utilizing the species

transport equation to track changes in isotopic composition, the nuclear/chemical reactions and

mass transport that occur in MSRs can be accurately modeled. Many of the decay- and neutron-

induced reactions occurring in nuclear reactors create a very stiff system of equations that must

be solved. Traditional numerical integration techniques will not be able to model the lifetime of

a reactor. Therefore, a method based on exponential time differencing is employed, requiring the

computation of a matrix exponential [10, 11, 12]

II. BURNUP EQUATIONS

Traditional burnup calculations involve solving a system of first-order linear ordinary differ-

ential equations (ODEs) as shown in Eq. (1):

dni
dt

=

N∑
j=1

(
λj→i + φ

K∑
k=1

γj→i,kσk,j

)
nj(t)−

(
λi + φ

K∑
k=1

σk,i

)
ni(t), (1)

where N is the number of nuclides in the system, and K is the number of neutron-induced reactions

for a specific isotope. The first term on the right-hand side of Eq. (1) represents generation from

decay of nuclide j and neutron-induced reactions. The second term includes losses from decay and

transmutation reactions. Microscopic reaction rates and the neutron flux are collapsed into single

group constant values over a time step. Spatially, the reactor core can be divided into depletion

zones, or the reactor can be homogenized into a single point for lumped calculations.

Equation (1) is more commonly represented in matrix vector form:

dn

dt
= An, n(t0) = n0, (2)

where n(t) is the nuclide concentration vector, A is the transition matrix, and n0 is the initial

condition vector. Eq. (2) has the solution n(t) = eAtn0, where eAt is defined as follows [1, 13, 14]:

eA =

∞∑
k=0

1

k!
Ak (3)

The transition matrix contains the decay and transmutation coefficients:

4

ai,i = −
(
λi + φ

K∑
k=1

σk,i

)
, (4)

ai,j 6=i = bj→iλj +

K∑
k=1

γj→i,kσk,jφ. (5)

There are two major matrix properties which influence the accuracy of many popular nu-

merical matrix exponential algorithms used to compute Eq. (3): matrix norm and the location of

the eigenvalues on the imaginary plane. Series approximations such as Padé and Taylor are most

accurate around the origin, meaning that the norm of the matrix must be small, they have no

requirements for the eigenvalues [14]. How small the norm must be depends on the order of the

approximation. When using the `1 norm, At is known to be

||At||1 = |t| ||A||1 ≥ |t| max|ai,j |, (6)

meaning that the norm must be greater than or equal to the absolute value of the maximum

matrix element multiplied by the absolute value of time. Because burnup calculations are often

taken over long time steps and include isotopes which can greatly increase the norm of the matrix,

series approximations incur complications. Therefore, to use these approximations, the matrix

exponential algorithm must be combined with scaling and squaring to reduce the norm to a suitable

value.

Solutions based on the Cauchy integral formula do not have a requirement on the norm of

the matrix, but they do have a requirement on the eigenvalues [3]. In particular, the eigenvalues

of the transition matrix must fall in a region enclosed by the contour function. It is noted by Pusa

that the eigenvalues of the transition matrix are clustered around the negative real axis [1]. This

makes the CRAM algorithm well suited to solve the system given in Eq. (2). A number of papers

discuss the accuracy of CRAM vs many commonly used matrix exponential methods for depletion

calculations [1, 15]. Isotalo and Pusa demostrate that CRAM outperformed the methods tested.

Many matrix exponential algorithms rely on solving systems of linear equations, and the

choice of linear solvers affects the algorithms’ accuracy. The half lives and microscopic cross

sections for nuclides can vary significantly, causing the magnitude coefficients in the transition

matrix to vary from zero to 1021 [16]. For example, radioactive decay results in half lives that

5

range from 10−24 seconds to billions of years [17]. Many iterative solvers have difficulty dealing

with the rounding errors introduced by the coefficients, and the resulting system will also have

extremely small and large eigenvalues. Iterative solves that rely on Krylov subspace methods

become disadvantageous for solving such systems because of the spectral properties of the matrix

[16]. To achieve a high order of accuracy and stability, direct solvers are chosen over iterative ones.

Such solvers include SuperLU or sparse Gaussian elimination with partial pivoting.

II.A. Burnup Equations in Molten Salt Reactors

Depletion calculations in MSRs can be better represented by the multicomponent chemical

species transport equation. The species transport equation, shown in Eq. (7), is derived by a

conservation of mass basis which accounts for change in time, convective and diffusion transport,

and rate of generation from reaction [18].

∂ρi
∂t︸︷︷︸

Change in
density

with time

+∇ · ρi(r, t)v︸ ︷︷ ︸
Transport
with fluid
velocity

+∇ · ji(r, t)︸ ︷︷ ︸
Transport
with mass
diffusion

= Ri(r, t)︸ ︷︷ ︸
Generation

from
reaction

(7)

Using Eq. (7) as the basis, depletion equations in MSRs can be derived by using Eq. (1) to

represent the source terms from nuclear reactions in burnup calculations. Reaction rates for nuclear

reactions must be converted from atomic density to mass density using Avogadro’s constant and

molar mass, ni = ρiNA/Mi. The MSR depletion equation represents the change in an isotope’s

density via fluid transport, mass diffusion, and nuclear reactions:

∂ρi
∂t

+∇ · ρiv +∇ · ji =

N∑
j=1

Mi

Mj

(
bj→iλj +

K∑
k=1

γj→i,kσk,jφ

)
ρj

−
(
λi + φ

K∑
k=1

σk,i(r)

)
ρi.

(8)

It is important to note that v is the mass averaged velocity, and ji is the diffusive flux which can

account for both molecular and turbulent diffusion.

6

II.B. Spatial Discretization

The spatial dependence of Eq. (8) is approximated using a cell-centered 2D finite volume

scheme. Each dimension is split, meaning that the 2D implementation consists of one dimension

scheme in each direction [19]. A schematic for a single cell P is shown in Figure 1.

Fig. 1. 2D finite volume representation

II.B.1. Transport Terms

The diffusive flux is represented with Fick’s law of diffusion for an ideal mixture:

ji,x = −Di
dρi
dx

. (9)

Each volume element is integrated in the x and y direction to produce a second-order spatial

discretization of the diffusive flux. For the x direction, the diffusion flux is integrated over the

cell’s surface:

1

V

∫
V

∂

∂x

(
Di
∂ρi
∂x

)
dxdy =

De,i

∆x∆y

(
∂ρi
∂x

)
e

∆y − Dw,i

∆x∆y

(
∂ρi
∂x

)
w

∆y. (10)

7

The diffusion coefficients are averaged between each pair of points. After the derivative approxi-

mation is plugged into each surface, the method is the same, using a second-order central difference

with cell centers as finite difference points.

The convective transport term is more difficult to deal with than diffusion. Diffusion has no

primary direction of flow, it simply causes a species to evenly distribute through a medium through

a concentration gradient. Convection, on the other hand, has a primary flow direction that is driven

by a pressure gradient. One of the major drawbacks of using a second-order central differencing

scheme is the inability to identify flow direction. In addition to the neglect in identifying the flow

direction, the central differencing scheme will cause numerical instability problems for flows with

high Péclet numbers [20]. To combat these numerical problems and to handle flow direction, a

second-order upwind differencing scheme is used.

There are a number of classical upwind differencing schemes—such as first order, power law,

and QUICK—each of which has a different order of accuracy and stability region. Second-order

or higher convection schemes can lead to undershooting or overshooting, and applying boundary

conditions can be problematic [20]. Because of the potential problems with higher order schemes,

efforts have been made to derive a class of second-order total variation diminishing (TVD) schemes

that avoid stability and oscillation issues. TVD schemes have the property of preserving mono-

tonicity, meaning that they must not create local extrema, the value of an existing local minimum

must be non-decreasing, and the value of a local maximum must be non-increasing [21]. One other

consequence of a monotonicity preserving scheme is that the total variation of the solution should

diminish or remain the same with time.

For flow in the x direction, the convection operator is integrated over the control volume to

approximate the convective flux into the cell:

−1

V

∫
V

∂

∂x
(ρiv)dxdy ≈ −1

∆x∆y

[
veρe,i − vwρw,i

]
∆y, (11)

where ve and vw are the velocity components in the x direction normal to the cell’s surface. The

second-order convection flux approximation is represented in a general form for the east and west

faces:

8

ρe = ρP +
1

2
ψ(re)(ρE − ρP), and

ρw = ρW +
1

2
ψ(rw)(ρP − ρW),

(12)

where ψ is the flux limiter function, and r is the ratio of the upwind side gradient and the downwind

side gradient [20]. The capital letters P, E and W represent the species concentrations in cells W,

E and P. The ratio is defined as the upwind difference over the downwind difference. For positive

flow, the gradient ratio for the east and west cell faces is as follows:

re =

(
ρP − ρW
ρE − ρP

)
, rw =

(
ρW − ρWW

ρP − ρW

)
, (13)

where, WW is the concentration in the cell west of cell W. The generic form of Eq. (12) al-

lows for the use of first-, second- or higher order convection schemes, depending on the flux limiter

function. Many linear limiter functions exist which are more stable than central differencing and

more accurate than first-order upwind, but these schemes are still vulnerable to unphysical oscil-

lations which occur because no linear convection scheme greater than first order can be monotonic

[19]. Nonlinear schemes solve this problem and have been heavily used in the computational fluid

dynamics community. There are many flux limiter functions, but for the context of this work, only

the Superbee and MUSCL functions are presented here in Eqs. (14) and (15):

ψ(r) = max[0,min(2r, 1),min(r, 2)] Superbee (14)

ψ(r) = max

[
0,min

(
2r,

r + 1

2
, 2

)]
MUSCL (15)

More often, these higher order convection flux methods are implemented in a manner known

as deferred corrections to ensure that the coefficients in the matrix do not introduce negative

concentrations [22]. The deferred correction method applies to the first-order upwind convection

flux implicitly and the second-order portion explicitly. The second-order correction is calculated

using species concentrations from the previous time step and is applied as a constant source

term [20]. Because the second-order term is applied explicitly, small time steps can increase the

9

accuracy of the convective flux approximation, and the transition matrix must be updated after

each iteration. For smooth functions, this formulation is second order, but it reverts back to first

order for discontinuous functions.

II.B.2. Boundary Conditions

Dirichlet and Neumann boundary conditions are implemented using a mixture of numerical

and direct methods. The first-order portion of the convective flux is directly calculated for a

Dirichlet boundary, and the second order correction term requires information for a cell outside

the boundary. A ghost cell is placed outside the domain, and its concentration is calculated by

linear extrapolation. For cell P on the west boundary, the corresponding ghost cell will have the

following concentration:

ρW = 2ρb − ρP , (16)

where ρb is the Dirichlet boundary value. Neumann boundary conditions are applied in a similar

manner by approximating the derivative at the boundary using a second-order central difference

approximation at the boundary. For a the east boundary, this leads to the following:

ρW = ρP − ρ′bδx, (17)

where ρ′b is the value of the Neumann boundary condition.

II.B.3. Volumetric Source Terms and Initial Conditions

Volumetric source terms and initial conditions must be applied in a way that preserves the

spatial discretization technique. This means that initial conditions and volumetric sources must

be integrated over the cell using the mean value theorem. Nuclear reaction rates are calculated

in a way that preserves reaction rates. This is done by integrating over all neutron energies and

the volume of the cell. Over a single burn-up calculation step, the scalar neutron flux and all

cross sections are assumed to be constant. Using volume average operators and the multigroup

approximation, the neutron flux and microscopic cross section are collapsed into single values for

each depletion zone [23]:

10

σk,j =

∫
V

∫∞
0
σk,j(r, E)φ(r, E)dEdV∫
V

∫∞
0
φ(r, E)dEdV

, and (18)

φ =
1

V

∫
V

∫ ∞
0

φ(r, E)dEdV. (19)

Source terms for nuclear reactions are not calculated inside libowski. Thus, for nuclear reactions,

an external source must provide the cross sections, neutron flux, and decay constants, and they

must already be calculated in the correct manner.

III. EXPONENTIAL TIME DIFFERENCING METHODS

Using the approximation methods in Section II, Eq. (8) is transformed from a coupled system

of partial differential equations to an even larger system of coupled ordinary differential equations.

In matrix vector form, this set of equations takes the following form:

dρ

dt
= Lρ+N(t,ρ), (20)

where the operators L and N denote the linear and nonlinear parts, respectively. The linear

operator is a matrix, commonly referred to as the transition matrix, that contains all of the nuclear

source terms, as well as the linearized convection and diffusion coefficients. Although the high-

order flux limiter functions are nonlinear, they are implemented as constant source terms. These

convection flux correction terms are calculated explicitly from the previous time step and added

to the transition matrix. The nonlinear operator contains any nonlinear source terms that might

arise when modeling transport in MSRs, although none were present in Eq. (8). These source

terms may include chemical reactions and phase transition models, for example. Accounting for

nonlinear source terms here allows for them to be added in future work.

Exponential time differencing (ETD) is a class of methods used for solving stiff systems

of ordinary differential equations, in which the stiffness arises from the linear operator. These

methods have been extensively used to solve nonlinear partial differential equations in a wide

range of scientific fields [10, 11, 12, 24, 25, 26, 27]. Using ETD methods, the solution to Eq. (20)

is known to be [10]

11

ρ(tn + ∆t) = e∆tLρ(tn) + e∆tL

∫ ∆t

0

e−LτN(tn + τ,ρ(tn + τ))dτ. (21)

This formalization is exact, and exponential time differencing methods work to approximate

the integral of the nonlinear portion. Exponential time differencing methods have the property

of being exact when N(ρ, t) = constant [12]. The integral in Eq. (21) can be evaluated using

traditional multistep methods or Runge-Kutta methods [10]. While constant source terms can

be implemented in this framework, it should be noted that other methods have been developed

to handle constant and nonlinear time-dependent source terms in reactor depletion calculations.

For example, constant source terms in libowski are implemented using the dummy species method

described by Isotalo et al [2]. This creates the same system shown above in Eq. (2),

ρ(tn + ∆t) = e∆tLρ(tn), (22)

where matrix L constants all have the same depletion coefficients as transition matrix A, but with

the addition of coefficients from diffusion and convection. The size of matrix L is also much larger

than A, being on the order of the number of species times the number of finite volume cells.

IV. COMPUTING THE EXPONENTIAL OF A MATRIX

When obtaining solutions based on exponential time differencing, an exponential of a matrix

must be computed. There are multiple computational methods for solving for the matrix expo-

nential, many of which were developed specifically to evaluate eAt or eAtv: the former evaluates

the matrix exponential directly, and the latter calculates the action of the exponential on a vector.

Because of the way the system is presented in Eq. (22), only the action of the matrix on the vector

is required. However, in some of the methods presented below, only direct evaluation of the matrix

exponential is possible.

Computation of the exponential of a matrix is by far the most difficult part of the ETD

methods. The basis for many of the methods is mathematically in depth, and the methods are also

difficult to deploy in a manner that ensures fast, accurate computation of the matrix exponential.

Numerous methods for computing the matrix exponential are discussed here, but they are not

limited to those presented here.

12

IV.A. Series Approximations

Solvers of this nature often exploit the following relation when computing the matrix expo-

nential:

eAt =
(
eAt/m

)m
, (23)

where m is a scalar that scales matrix At. This method is known as scaling and squaring, and

its purpose is to reduce the norm of matrix At, especially in situations for At, when t → ∞, as

mentioned above. For series methods near the origin, the accuracy of the method diminishes as

the matrix norm increases.

IV.A.1. Padé Approximation

The Padé approximation represents a function by expanding it as a ratio of two power series.

A (p, q) Padé approximation for eAt is defined by [14]

eAt ≈ Rp,q(At) =
Np,q(At)

Dp,q(At)
, (24)

where

Np,q(At) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

(At)j , (25)

Dp,q(At) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

(−At)j . (26)

Padé methods are similar to those in the Taylor series, as they approximate a function using

a series solution however, Padé series usually outperform Taylor series when the function contains

poles. Series solutions methods such as Padé are also more accurate near the origin, so the matrix

norm ||At||must be sufficiently small for the approximation to be accurate [1]. Yet another problem

arises when A has a wide spread of eigenvalues, causing an ill-conditioned linear system [13, 14].

There are many ways to develop an algorithm for computing the matrix exponential using

the Padé approximation [13, 28, 29]. The key in deriving an algorithm is to understand the error

associated with the size of the matrix norm and to limit the computation time. Moler and Van

13

Loan derived an elegant, simple proof for determining values for p, q, and m given a matrix norm

[14]. As noted by Higham [28], this derivation contains weaknesses. Moler and Van Loan assumed

that the matrix norm needed to be less than one half (||At|| < 1/2), but Higham proved that

this is not the case. Higham further showed that the required minimal matrix norm is different

for each order of the Padé implementation. Above this norm, a higher order Padé approximation

would be required, or matrix scaling would need to occur. One other weakness was the derivation

of the error bound. It was designed to be easily commutable, which resulted in the error bound

not being sharp [28]. When the error bound is not sharp, then it is possible to overscale the

matrix, resulting in a loss of accuracy. Higham and Al-Mohy describe two algorithms to resolve

the overscaling problem found in other work by Higham. Higham’s work in 2009 [29] is an update

to the algorithm described in the work from 2005 [28], which fixes the overscaling problem.

In combination with scaling and squaring, the Padé approximation is probably the most

widely used method for computing the exponential of a matrix. In fact, the expm function in

MATLAB is based on this approach [29]. Two methods based on the Padé approach are imple-

mented in libowski—Padé - Method 1 and Padé - Method 2. Both algorithms work to form a Padé

approximation of type p = q and are further denoted by m, combined with scaling and squaring,

eA = (e2−sA)2s

≈ rm(2−sA)2s

, (27)

where s is the scaling and squaring parameter, m = 2s, and A is At and rm is the Pad/’e

approximation of order m. The scaling parameter s is chosen so that the exponential is computed

with a backward error bounded by the unit roundoff. Method 1 is based on the algorithm developed

by Higham [28], in which the backwards error is based on ||A||. Method 2 is based on Higham’s

later work [29], which reduces the Method 1 problem of overscaling by tightening the backwards

error based on ||Ak||1/k:

||Ak||1/k ≤ ||A||, k = 1 :∞. (28)

14

IV.A.2. Taylor Series

Formally, matrix exponential is defined using an infinite Taylor series:

eAt =

∞∑
k=0

1

k!
(At)k. (29)

Therefore, a straightforward way to calculate the matrix exponential is to use its formal definition.

However, this method is not commonly used in application for either the matrix or the scalar case.

The number of terms required to achieve convergence can be large and can produce computational

inefficiency. This method also suffers from numerical roundoff errors from cancellation for large

values of k [14].

While not commonly used in practice, Al-Mohy and Higham developed an algorithm for

computing the action of the matrix exponential of matrix A ∈ Cn×n on matrix B ∈ Cn×n0 , where

n0 << n based on a truncated Taylor series [30]:

eAB = (e2−sA)2s

B ≈ Tm(2−sA)2s

B, (30)

where Tm is a truncated Taylor series of order m. Unlike the Padé methods presented above, the

Taylor series does not require linear solves.

The Taylor method presented here was developed in a manner similar to that used for the

Padé methods, as it is derived using a backward error analysis based on ||Ak||1/k, keeping in mind

the computational cost. Unlike Padé Method 2, the Taylor method uses two key preprocessing

steps to reduce the norm of A. These steps include shifting and optional balancing. Shifting is

implemented in libowski however, optional balancing is not. This algorithm is implemented in

libwski with the suggested parameters found in reference ([30]).

IV.B. Rational Approximations

While the Padé approximation is indeed a rational function approximation, it differs from

the methods presented in this section. The rational functions presented here are represented in

partial fraction decomposition form. These types of methods are algorithms that were developed

by transforming the matrix exponential into the complex plane using Cauchy’s integral formula:

15

eAt =
1

2πi

∫
Γ

ez(zI −At)−1dz, (31)

where At is analytic inside the closed contour Γ that winds once around the eigenvalues of At [3]

[31]. In practice, the action of the matrix exponential on vector v must be evaluated, which leads

to evaluating the following:

eAtv =
1

2πi

∫
Γ

ez(zI −At)−1vdz. (32)

Three solvers based on rational approximations were implemented in libowski: hyperbolic,

parabolic and CRAM. The following sections briefly discuss the theories behind these solvers.

IV.B.1. Quadrature Contours

This method involves evaluating the contour integral by choosing an analytic function φ(θ)

that maps the real line onto the contour. Because the function eφ(θ) decreases exponentially as

|θ| → ∞, the approximation can be truncated to a finite number of quadrature points. When the

spectrum of the transition matrix falls on the left-hand side of the complex plane close to the real

axis, the contour Γ denotes a Hankel-like contour that winds from −∞−0i on the lower half-plane

and −∞+ 0i on the upper half-plane [31]. This allows for definition of a general contour function

that will enclose the eigenvalues on the left-hand side of the complex plane around the negative

real axis.

Trefethen et al. note three contour functions to Γ, two of which are presented here [31]. The

simplest contour function is a parabola defined by

φ = N [0.1309− 0.1194θ2 + 0.2500iθ], (33)

which has a convergence rate of O(2.85−N). Accuracy of about 14 or more digits can be achieved

with N = 32. The approximation of ez on the complex plane is shown in Figure 2. The second

contour function is that of a hyperbola, which is defined by

φ = 2.246N [1− sin(1.1721− 0.3443iθ)], (34)

16

which has a convergence rate of O(3.20−N), with an accuracy of about 16 or more digits with N

= 32. The same approximation for ez on the complex plane is shown in Figure 3. Figures 2 and

3 show high levels of accuracy not only on the negative real axis, but also for a wide region of the

left-hand side of the complex plane.

Fig. 2. log10 |r(z)−ez| for N = 32, where the contour is defined by a parabola, Eq. (33); quadrature
points are denoted with x marks

Applying these approximations to real valued scalars or matrices requires half the amount

of computational cost, because the poles of a rational function with real valued coefficients form

conjugate pairs [3]. For matrix At, the solution becomes

eAtv ≈ r(At)v = 2Re

(N/2∑
k=1

ck(At− zkI)−1v

)
, (35)

requiring N/2 solves of the linear system x = (At− zkI)−1ckv. It is important to note that these

linear systems are independent of one another and can be solved in parallel.

IV.B.2. Best Rational Approximation

A different approach is to choose a function r(z) that is the best approximation of the

exponential function on the negative real axis, thus bypassing the need for a contour function

[17] [31]. This method is known as the Chebychev Rational Approximation Method (CRAM) and

17

Fig. 3. log10 |r(z) − ez| for N = 32, where the contour is defined by a hyperbola, Eq. (34);
quadrature points are denoted with x marks

has a similar form as the previous rational approximation . The convergence rate for CRAM

is of the order O(9.28903−N), which is remarkably faster than those previously shown. With

N = 16 quadrature points, CRAM gives about 15 or more digits of accuracy. Thus, the same

order of accuracy can be achieved with half the number of quadrature points than in the rational

approximations defined by contour functions.

The difficulty with using the CRAM approximation is in finding the coefficient for the rational

approximation. For CRAM of orders 14 and 16, the rational coefficient can be found in Pusa ([3])

for up to 20 digits. Figure 4 shows the accuracy of CRAM to the function ez on the complex plane.

Because the rational function was built to ensure the best approximation on the negative real axis,

the accuracy of CRAM is in a more narrow range of the real axis. For a real values matrix, the

CRAM algorithm leads to the following solution:

eAtv ≈ r(At)v = c0v + 2Re

(
N/2∑
k=1

ck(At− zkI)−1v

)
. (36)

18

Fig. 4. log10 |r(z)− ez| for CRAM with N = 16; quadrature points are denoted with x marks

IV.B.3. Accuracy of Rational Approximations

While the matrix exponential can be formally defined by Eq. (29), when examining the

accuracy of rational approximations presented, it is more useful to define the matrix exponential

in terms of the transition matrix’s eigenvalues. Because the contour Γ must wind around the

eigenvalues of At, if A has eigenvalues with non-trivial imaginary parts, then these eigenvalues

will scale as a function of t. If these eigenvalues scale to a portion of the complex plane which

fall outside the contour, then the accuracy of these methods can be compromised. As stated

above, for traditional burnup matrices, the eigenvalues are clustered around the negative real

axis [1]. Therefore, the accuracy of CRAM and the other two rational approximations are not

a function of time t [32]. For burnup calculations in MSRs defined by Eq. (8), the eigenvalues

are not necessarily clustered around the negative real axis, as they have non-trivial imaginary

parts. Numerical experiments were used to find that these imaginary parts were introduced by

the addition of convection terms in the transition matrix. In addition, these imaginary parts were

found to be correlated with the ratio of the velocity to the spatial discretization, as well as the

boundary conditions.

While rational approximations such as CRAM have shown exemplary results in burnup

calculations, the relative accuracy of CRAM diminishes when the nuclide concentration diminishes

19

significantly over the time step. For a nuclide concentration ni(t) << ni(0), the error estimate for

CRAM follows [5]:

δn̂i(t)

ni(t)
= ε̂k,k

ni(0)

ni(t)
. (37)

This means that for CRAM of order k, a concentration smaller than ε̂k,kni(0) is not captured by

the rational approximation. Additionally, the accuracy of CRAM is diminished when performing

calculations on fresh fuel vs depleted fuel. For fresh fuel, the concentrations of nuclides depends on

transitions corresponding to only a few nuclides in the initial condition. If CRAM introduces large

errors in approximating the matrix elements of a few transitions which influence the production of

a large number of nuclides, then the relative error in calculating nuclides concentrations increases.

For used fuel depletion, these errors are averaged out to provide an overall more accurate calcu-

lation. While this error was derived for transition matrices built from solving tradition burnup

calculations in the form of Eq. (2), it is assumed that the same holds true for MSR calculations

in the form of Eq. (8). To increase the accuracy of CRAM methods for depletion calculations, a

sub-stepping approach was introduced into ORIGEN [5]. This sub-stepping method is also used

in this work in the implementation of the CRAM, hyperbolic and parabolic algorithms.

The absolute error in computing rational approximations in the form of Eq. (35) do not

follow the same error as CRAM. In the scalar case of CRAM, if the absolute error is plotted on

the negative real axis as x → −∞, then the absolute error asymptotically approaches ε̂k,k. This

is because the exponential function tends to zero, while CRAM stabilizes at ε̂k,k. As x → 0, the

absolute error oscillates between −ε̂k,k and ε̂k,k [32]. While the errors for rational functions based

on quadrature contours do not necessarily follow this same behavior, the sub-stepping method was

implemented and is later shown to also increase their accuracy.

Sub-stepping is implemented by scaling the time step size and evaluating the solution from

the previous step, as shown in Algorithm 1 below, where m is the number of substeps to be taken:

Algorithm 1 Sub-stepping

1: v0 = ρ0

2: t = t/(m+ 1)
3: for j = 0, 1, . . .m do
4: ρm+1 = r(At)v0

5: v0 = ρm+1

6: end for

20

IV.C. Krylov Subspace Approximation

Krylov subspace approximations are a class of popular methods used in sparse matrix al-

gorithms. The idea of Krylov subspace methods is to project the sparse n × n A matrix into a

lower dimensional subspace. The new lower dimension projection is of size m×m, where m < n.

Because the matrix is of lower dimension, calculating its matrix exponential is much faster. It is

important to note that Krylov subspace methods can only be used as an operation on a vector:

direct calculation of the matrix exponential is not possible [33].

The objective is to approximate the matrix exponential as a polynomial of order m− 1: this

takes the following form:

eAv ≈ pm−1(A)v. (38)

Because the polynomial interpolates the exponential function in the Hermite sense at the eigenval-

ues, the eigenvalues must be sufficiently close to one another for the approximation to be accurate

[1]. This approximation is an element of the Krylov subspace, which is defined by

Km = span{v,Av,A2v, ...,Am−1v}. (39)

For a general nonsymmetric matrix, the Arnoldi algorithm can be used to build the Krylov space

[33] [34]. Algorithm 2 constructs an orthonormal basis—V m = [v1,v2, ...vm]—of the Krylov

subspace, as well as an m×m upper Hessenberg matrix:

Algorithm 2 Arnoldi

1: Compute v1 = v/||v||2
2: for j = 1, 2, . . .m do
3: Compute w = Avj
4: for i = 1, 2, . . . j do
5: Compute hi,j = (w,vi)
6: Compute w = w − hi,jvi
7: end for
8: Compute hj+1,j = ||w||2 and vj+1 = w/hj+1,j

9: end for

The Arnoldi algorithm produces the following relation:

AV m = V mHm + hm+1,mvm+1e
T
m, (40)

21

where Hm = V T
mAV m, and em is the unit vector of dimension m. The Hessenberg matrix Hm

represents the projection of A onto the Krylov subspace. The approximation in Krylov space is

known to be

eAv ≈ βV me
Hme1, (41)

where β = ||v||2 [34]. The computation of eHm becomes much easier because Hm is dense and

smaller than A. After the Krylov approximation is made, a typical method for solving the matrix

exponential is used on eHm . The quality of this approximation is exact when n = m. This is

because at step m, hm+1,m = 0, and Eq. (40) becomes:

AV m = V mHm. (42)

The Arnoldi process will be exact after m steps, when m is greater than or equal to the degree of

the minimal polynomial in Eq. (38). At this point, Eq. (38) is exact, but this is unlikely to occur

until m = n [33] [34].

V. RESULTS

A number of mass transport tests were conducted to access each of the presented matrix

exponential algorithms. The first problem set explored the spatial convergence of the convection

and diffusion differential operators in typical reaction-convection-diffusion problems. Secondly, the

six neutron precursors were modeled for short transients. This problem induced a transition matrix

with large imaginary parts to introduce sub-stepping in reducing the numerical error. Lastly, a

depletion problem was run with a small number of nuclides. Whereas most of the problems would

have analytical solutions, a select few would not. For these select problems, the reference solutions

are further discussed in the specific section.

All problems showed an error based on a reference solution. For the following results, the

relative errors are defined as:

E∞ = max

(
û− u

)
E1 =

1

N

N∑
i=1

ûi − ui,

where N is the number of elements in the solution domain. Sometimes it is more meaningful to

22

show an absolute error instead of a relative error. The results explicitly state whether a relative

or absolute difference is used. Runtime is also reported for some tests and is reported as the wall

time for calling the solve function. This includes the time to build the matrix, run the solution

algorithm, and unpacking the solution. For problems with multiple time steps, the matrix was

rebuilt before each time step to update the deferred correction source term. While these run times

are reported with no standard deviation, some changes are to be expected when running problems

multiple times or on different machines.

As discussed above, sub-stepping can increase the accuracy of Cauchy-based solvers. Unless

otherwise noted, for all results shown, no substeps were used for the CRAM, parabolic, or hyper-

bolic solvers. For some of the reaction-diffusion-convection problems, sub-stepping did not play a

role in increasing the accuracy of the solution, but it did increase the runtime. Exceptions to this

are discussed further in the results.

Cauchy solvers CRAM, Parabolic and Hyperbolic have the ability to run with different

orders. In the case of CRAM, these coefficients for different orders need to be precomputed, but

the Parabolic and Hyperbolic solvers can have their coefficients computed on the fly. For the results

shown in this report, the default order for CRAM is N = 16 and for Parabolic and Hyperbolic,

the order is N = 32.

In some of the tests each of the matrix exponential algorithms achieves the same error to a

number of significant figures. For these cases, the reported error represents each of the six matrix

exponential methods. Runtimes for each of the algorithms are different, and is still shown in these

cases.

V.A. Spatial Convergence Study

V.A.1. Diffusion

The first diffusion problem consisted of a 2D system shown as:

∂U

∂t
= k

∂2U

∂x2
+ k

∂2U

∂y2
, (43)

on the domain x ∈ [0, 1], y ∈ [0, 1], subject to periodic boundary conditions and initial condition:

U(x, y, 0) = sin(2πx) sin(2πy) (44)

23

with solution:

U(x, y, t) = e−t sin(2πx) sin(2πy), (45)

with k = 1/(8π2). The problem was run for a total time of 2.0 seconds, with the number of cells

in the x and y directions being the same [10, 20, 40, 80]. Errors and convergence rates for each of

the solvers were the same and are presented in Table I.

TABLE I
Convergence rate for diffusion problem 1 using absolute error

Cells E∞ Rate E1 Rate E∞ Error E1 Error
100 - - 4.39e-03 2.20e-04
400 2.02 2.02 1.08e-03 4.53e-04
1,600 1.97 2.01 2.76e-04 1.13e-04
6,400 1.99 2.00 6.94e-05 2.82e-05

These results show good convergence rates for the E∞ and E1 error functions, showing second

order convergence for the diffusion operator. While each of the solvers maintained the same error,

the runtimes were drastically different. Runtimes for all of the solvers are shown in Figure 5.

Fig. 5. Runtime performance for diffusion problem

As seen in Figure 5, each of the Cauchy solvers showed a monomial relation between the

problem size and run time. The Taylor solver also showed this relation, but with a slightly convex

24

shape. The parabolic and hyperbolic solvers have almost the same solve time. This is because

each solver must compute the solution to 16 linear systems. The CRAM solver requires half the

number of linear solves, making it about twice as fast. For this example, the Taylor solver was the

fastest but it was only slightly faster than either of the Cauchy solvers. The Padé solvers show

poor scaling with an increased number of spatial cells.

Due to the relatively long solve times, particularly for the Padé solvers, the Krylov subspace

approximation was used to analyze the error and runtime. For a spatial resolution of 160 cells in

both the x and y direction, results for various subspace dimensions M are shown in Table II.

TABLE II
Error and run times for different Krylov subspace dimensions

Solver M E∞ Error E1 Error Run time (sec)
Padé-method 1 5 1.74e-05 7.05e-06 1.13e-02

- 10 1.74e-05 7.05e-06 1.47e-02
- 25 1.74e-05 7.05e-06 3.31e-02
- 50 1.74e-05 7.05e-06 9.27e-02
- 100 1.74e-05 7.05e-06 3.33e-01
- 150 1.74e-05 7.05e-06 7.30e-01
- 200 1.74e-05 7.05e-06 1.33e+00

Padé-method 2 5 1.74e-05 7.05e-06 9.15e-03
- 10 1.74e-05 7.05e-06 1.18e-02
- 25 1.74e-05 7.05e-06 2.96e-02
- 50 1.74e-05 7.05e-06 8.95e-02
- 100 1.74e-05 7.05e-06 3.28e-01
- 150 1.74e-05 7.05e-06 8.20e-01
- 200 1.74e-05 7.05e-06 1.55e+00

Interestingly, in Table II, the error associated with reducing the overall dimension of the

problem did not change, even though the runtime drastically decreased leading to the conclusion

that the dimension of the true space is much smaller.

V.A.2. Reaction-diffusion

In the second example, a 1D reaction-diffusion problem was modeled. This problem was

taken from work performed by Chou et al. ([11]). The partial differential equations (PDEs) are as

follows:

25

∂U

∂t
= d

∂2U

∂x2
− aU + V,

∂V

∂t
= d

∂2V

∂x2
− bV,

(46)

on the domain x ∈ [0, π/2]. The system is subject to the following boundary conditions:

∂U

∂x
(0, t) = 0,

∂V

∂x
(0, t) = 0, U(

π

2
, t) = 0, V (

π

2
, t) = 0, (47)

with the following initial condition:

U(x, 0) = 2 cos(x), V (x, 0) = (a− b) cos(x). (48)

The exact solution is given by

U(x, t) =

(
e−(a+d)t + e−(b+d)t

)
cos(x),

V (x, t) = (a− b)e−(b+d)t cos(x).

(49)

The same three test problems that were conducted in the work by Chou et al. ([11]) were

also conducted in libowski. These test results correspond to changes in coefficients [a, b, d], which

produced a diffusion-dominated system [0.1, 0.01, 1.0], a reaction-dominated system [2.0, 1.0,

0.001], and a stiff reaction system [100, 1.0, 0.001]. Each test case was run with one time step to

t = 1, so ∆t = 1. The number of cells in the x direction was varied from 10 to 320. Results for

the spatial convergence for the CRAM solver for the diffusion-dominated, reaction-dominated and

stiff reaction–dominated cases are shown in Tables III, IV, and V. Each solver produced the same

error at up to five decimal places for this set of n values.

While there is little difference between the errors from these solvers for this first problem,

there is a notable difference in runtimes for the Padé and Taylor solvers. With n = 1000, runtimes

for each solver are shown in Table VI.

Table VI shows that CRAM was the fastest solver, followed by the parabolic and hyperbolic

26

TABLE III
Convergence rate for diffusion–dominated problem using absolute error

n E∞ Rate E1 Rate E∞ Error E1 Error
20 2.00 2.00 1.87e-04 1.19e-04
40 2.00 2.00 4.69e-05 2.99e-05
80 2.00 2.00 1.17e-05 7.46e-06
160 2.00 2.00 2.93e-06 1.87e-06
320 2.00 2.00 7.33e-07 4.67e-07

TABLE IV
Convergence rate for reaction–dominated problem using absolute error

n E∞ Rate E1 Rate E∞ Error E1 Error
20 2.00 2.00 2.23e-04 1.42e-04
40 2.00 2.00 5.58e-05 3.55e-05
80 2.00 2.00 1.40e-05 8.88e-06
160 2.00 2.00 3.49e-06 2.22e-06
320 2.00 2.00 8.72e-07 5.55e-07

TABLE V
Convergence rate for stiff reaction–dominated problem using absolute error

n E∞ Rate E1 Rate E∞ Error E1 Error
20 2.00 2.00 9.42e-03 6.00e-03
40 2.00 2.00 2.36e-03 1.50e-03
80 2.00 2.00 5.89e-04 3.75e-04
160 2.00 2.00 1.47e-04 9.38e-05
320 2.00 2.00 3.68e-05 2.34e-05

TABLE VI
Runtime (sec) for reaction-diffusion problem with 1,000 mesh cells

Problem Domination
Solver Diffusion Reaction Stiff Reaction
CRAM 1.98e-02 2.54e-02 2.87e-02
Parabolic 3.01e-02 3.08e-02 3.07e-02
Hyperbolic 2.97e-02 3.08e-02 2.88e-02
Padé method-1 9.90e+01 5.84e+01 6.02e+01
Padé method-2 1.37e+02 7.77e+01 8.07e+01
Taylor 2.36e+02 1.33e-01 1.55e-01

solvers. Both of the Padé solvers had drastically much longer run times for the diffusion-dominated

cases, with Method 2 being the longest. Interestingly, the Taylor solver showed dramatically dif-

ferent runtimes based on the physical process dominating the problem. In the diffusion-dominated

cases, the Taylor solver took the longest, but in the reaction-dominated cases, the runtime was on

the order of the CRAM, parabolic, and hyperbolic solvers.

The Krylov subspace approximation was applied to each of the sub-problems with 1,000

27

cells in the x direction. The Krylov dimensions were varied from 2 to 100, and the results are

shown in Figure 6. Unlike the previous diffusion example, a much larger Krylov dimension was

required to reach a converged error for the diffusion dominated case. The reaction dominated

cases showed faster convergence rates as a function of Krylov dimension. Each solver showed the

same error behavior, but with slightly different converged errors due to numerical accuracy in the

algorithms. Each solver also showed similar behavior, with runtime scaling as a function of the

Krylov dimension; however, each axis was scaled differently.

V.A.3. Convection

Convection was tested using PDEs of the form

∂U

∂t
= −v ∂U

∂x
, (50)

where v is velocity. Two tests were shown to demonstrate the problem on numerical diffusion and

to show the second-order accuracy of the TVD scheme. First, Eq. (50) was applied to a system

on the domain x ∈ [0, 100], t ∈ [0, 20] subject to the following boundary conditions:

U(0, t) = 1.0,
∂U

∂x
(100, t) = 0.0, (51)

and the initial condition:

U(x, 0) = 0.0. (52)

Results at t = 20 for a first-order upwind differencing scheme are shown in Figure 7 for a first-order

backward differencing formula (BDF1) and the ETD scheme. This figure depicts the temporal

accuracy of ETD schemes when compared to traditional time integration methods. In just a single

time step, ETD achieved the same level of accuracy that BDF1 achieved as ∆t −→ 0.

28

Fig. 6. Results for the Krylov subspace approximation for each sub-problem

292929

Fig. 7. First-order upwind differencing, dx = 0.5, v = 2

Second-order upwind flux approximations are discussed above, and while there are a number

of flux limiter functions to choose from, only the Superbee and MUSCL functions are presented

in this work due to their popularity. For the same problem depicted in Figure 7, the second-order

TVD scheme with Superbee and MUSCL limiters, along with the first-order upwind scheme, are

shown in Figure 8. Because of the deferred corrections implementation, many time steps were

needed to accurately add the second-order flux correction. While this method was not second

order for discontinuous functions, it did increase the accuracy of handling discontinuous functions.

To show the convergence rate for the TVD scheme, the problem depicted by Eq. (50) is

solved using a smooth initial condition:

U(x, 0) = e−((x−30)/10)2 (53)

with periodic boundary conditions on the domain x ∈ [0, 100], t ∈ [0, 2]. Because of the finite

volume discretization, the initial condition must be implemented using the mean value theorem

(MVT). Results for EDT are shown in Tables VII, VIII and IX using absolute error. These results

are shown at t = 2, with dt = 0.1.

Table VII shows that the first-order upwind flux has a convergence rate of about one for

E∞ and E1. The Superbee limiter shows a better convergence rate than first-order upwind, but it

30

Fig. 8. Comparison of flux limiters, dx = 1.0, dt = 0.2, v = 2

shows a convergence rate a little lower than 2. Table IX shows that the MUSCL limiter had the

best convergence rate, which is at or above 2 for the E1 error.

TABLE VII
Convergence rate for smooth convection problem first-order upwind using absolute error

n E∞ Rate E1 Rate E∞ Error E1 Error
20 1.00 0.95 1.41e-01 2.92e-02
40 0.66 0.83 8.87e-02 1.64e-02
80 0.90 0.97 4.76e-02 8.36e-03
160 0.96 0.98 2.44e-02 4.24e-03
320 0.98 0.99 1.23e-02 2.13e-03

TABLE VIII
Convergence rate for smooth convection problem superbee limiter using absolute error

n E∞ Rate E1 Rate E∞ Error E1 Error
20 2.10 2.06 5.69e-02 1.17e-02
40 0.88 1.50 3.10e-02 4.13e-03
80 1.15 1.64 1.40e-02 1.33e-03
160 0.75 1.71 8.27e-03 4.07e-04
320 1.24 1.82 3.50e-03 1.15e-04

Runtimes for the smooth initial condition are shown in Figure 9, shown as an average of

the flux limiter functions. These problems show an opposite trend to the diffusion problems, the

Cauchy solvers show higher runtimes until the number of cells reach a large value. The Padé

31

TABLE IX
Convergence rate for smooth convection problem MUSCL limiter using absolute error

n E∞ Rate E1 Rate E∞ Error E1 Error
20 1.85 1.97 6.82e-02 1.25e-02
40 0.99 2.00 3.44e-02 3.13e-03
80 1.54 2.10 1.18e-02 7.30e-04
160 1.47 2.05 4.28e-03 1.76e-04
320 1.57 2.05 1.44e-03 4.26e-05

solvers begin at a low runtime but scale poorly as a function of matrix size. The Taylor solver

shows the best results as far as runtime, being that it is the lowest for all values of dx.

Fig. 9. Runtimes for smooth convection problem, dt = 0.01, v = 2

V.B. Neutron Precursors

This problem examines a convection-driven flow with the 6 neutron precursor groups, as

shown in Eqs. (54) and (55):

∂Ci
∂t

= −vx
∂Ci
∂x
− vy

∂Ci
∂y

+ βiΨ(x, y)− λiCi, (54)

32

Ψ(x, y) =


ψ0 sin

(
πx
50

)
sin
(
πy
100

)
, x ∈ [0, 50], y ≤ 100

0 , otherwise,

(55)

where i ∈ [1, 6], x ∈ [0, 50], y ∈ [0, 400], t ∈ [0, 60], vx = 0, and vy = 25, subject to the following

boundary conditions:

Ci(x, 0) = Ci(x, 400),
dCi
dx

(0, y) = 0,
dCi
dx

(50, y) = 0. (56)

Coefficients for the system are shown in Table X [35]. Each precursor had the same initial

condition of zero, and the source term for each precursor was scaled in the x and y directions by

the sine function. The spatial domain was modeled to mimic an MSR with a core region extending

from y ∈ [0, 100] and x ∈ [0, 50], with a core exterior loop modeled from y ∈ [100, 400].

TABLE X
Parameters for Neutron Precursors

Group λ β
1 0.0127 0.0006
2 0.0317 0.00364
3 0.115 0.00349
4 0.311 0.00628
5 1.4 0.00179
6 3.87 0.0007

While there is no analytic solution for this example problem, a reference solution was gen-

erated in Matlab using the symbolic tool box to solve for the matrix exponential. To make the

analytic matrix exponential easier to solve in Matlab, the first order upwind scheme was used for

the convection operator. A small, spatially discretized problem was set up with 5 cells in the x

direction and 20 in the y direction. The transition matrix that was built was then exported to

Matlab, and the matrix exponential was solved at various times and saved as the reference solution.

While the spatial accuracy was not tested in this case, this method will access the accuracy of each

matrix exponential algorithm. To further simplify the problem, the first-order upwind difference

scheme was applied to the convective flux.

One important feature for many of these solvers was the location of the eigenvalues for the

transition matrix. The spectrum was calculated using the Matlab symbolic tool box and is plotted

in Figure 10 various values of dt. Figure 10 show 6 elliptical rings, one at each dt, each one

33

representing a precursor group. For a given time step size, the eigenvalues shifted along lines

with slopes that are the ratio of their real and imaginary parts [32]. For a system in which the

eigenvalues are located in a region where solutions based on Cauchy’s integral break down, these

eigenvalues can be shifted into a region where the solutions hold. These eigenvalues can be shifted

either by using sub-stepping or by reducing the time step size. Figure 10 shows how changing the

time step size can shrink the real and imaginary parts of the eigen spectrum.

Fig. 10. Spectrum for the Neutron Precursors

To understand how sub-stepping can work to improve the accuracy of a Cauchy-based solver,

the neutron precursors problem was computed at 10-second time step intervals. The location of

the eigenvalues is a function of the ratio vx/dx in the transition matrix; therefore, at the prescribed

discretization, this ratio was manipulated by changing the flow velocity. For each Cauchy solver,

the eigenvalues at two different flow velocities, 25 and 50, are shown in Figure 11. As shown in

Figure 11, as the ratio increased, so did the spread of the eigenvalues on the real and imaginary axis.

This led to a limitation of the velocity to discretization size for convection problems when using

Cauchy solvers. One solution, which is also shown in Figure 11, is to use sub-stepping to reduce

the time step size, thus confining the eigenvalues. As the number of substeps is increased, the

eigenvalues become confined in a region in which the contour encloses the spectrum, theoretically

increasing the solver’s accuracy. Each plot in Figure 11 shows how the the spectrum was confined

34

using 0, 2 and 6 substeps. As the number of substeps increased, the spectrum shrank into the

confines of the contour.

The relative E∞ error for each solver is shown in Figure 12 for low and high velocity cases,

with each of the Cauchy solvers shown with six substeps. These results indicate that regardless of

the flow velocity, the series solvers maintained about the same error. This is because the matrix

l1 norm was not greatly increased by this change in flow velocity. The Padé-method 1 performed

the worst of the six solvers, whereas Taylor performed the best, achieving a remarkably accurate

approximation to the transition matrix. It is also interesting to note how the Cauchy solver error

decayed, while the series solver errors tended to increase with time.

Errors relative to the Matlab symbolic tool box for each Cauchy solver as a function of

substeps for both velocities of 25 and 50 are shown in Figure 13. Each Cauchy solver started

out with a large error with zero substeps for both cases, with the error for v = 50 being larger

than v = 25. This is to be expected because the eigenvalues had a larger imaginary component

which pushed them past the contour. For each case, every Cauchy solver increased in accuracy

as the number of substeps increased. Another interesting note is the rate at which each of the

solvers errors converge as a function of time. In the high velocity case, the errors tend to linearly

decay, especially with a low number of substeps. For the low velocity case, the errors tend to

exponentially decay. Looking at Figure 11, the eigenvalues for the Parabolic solver fall outside of

the quadrature points with zero substeps. This coincides with the error for the Parabolic being

large with zero substeps.

Sub-stepping increases the accuracy of the Cauchy solvers, but the manner in which it is

implemented has a negative effect on runtime. The runtime performance for each solver is shown

in Table XI. As expected, runtime for the Cauchy solvers increased linearly with the number of

substeps. CRAM was the fastest solver for zero substeps, with Taylor being close behind.

V.C. Simple MSR Depletion

A simplified version of equation 8 is presented to show depletion with flowing fuel:

35

Fig. 11. Eigenvalues of the neutron precursor problem superimposed on Cauchy scalar error plots

36

Fig. 12. Relative E∞ error for neutron precursors

37

Fig. 13. Neutron precursor errors as a function of substeps for Cauchy solvers

38

TABLE XI
Runtime in seconds for neutron precursor problem

Substeps
0 2 4 6 12

CRAM 0.715 2.16 3.59 5.01 9.33
Parabolic 1.42 4.24 7.07 10.0 18.5
Hyperbolic 1.42 4.26 7.09 9.98 18.5
Padé-method 1 1.84 NA NA NA NA
Padé-method 2 3.38 NA NA NA NA
Taylor 0.735 NA NA NA NA

∂ρi
∂t

+ vy
∂ρi
∂y

=

N∑
j=1

Mi

Mj

(
bj→iλj +

K∑
k=1

γj→i,kσk,jφ

)
ρj

−
(
λi + φ

K∑
k=1

σk,i(r)

)
ρi.

(57)

The spatial domain is x ∈ [0, 0.6858], y ∈ [0, 5.761] with vy = 0.25. The total depletion time

is 100 days at 20 day time step intervals. The spatial discretization is kept small (3 cells in the

x-direction and 9 in y-direction) so that a reference solution can be computed. A small section

of 103 isotopes taken from Reference [36] Appendix B was selected, making the total number of

equations 2,781. Reaction rates were generated using an ORIGEN library for light-water reactor

fuel. After the transition matrix was generated in libowski, it was exported into Matlab to generate

the analytical matrix exponential at each of the time step intervals. Again, the first order upwind

convection scheme is used to make this solution easier to compute. The initial condition is taken

from Reference [37] for the MSRE salt and converted to mass density. The neutron flux follows a

sinusoidal shape function in the lower part of the reactor, the 3x3 cell region. The upper 3x6 region

does not have a neutron flux. Periodic boundary conditions are added at the top and bottom of

the spatial domain to mimic a flow loop.

Eigenvalues for the problem are shown in Figures 14 and 15 for both base eigenvalues of

the transition matrix and ones adjusted for the 20 day time step size. Figure 14 shows an elliptic

ring of nine eigenvalue clusters which are close to the negative real axis and when combined with

Figure 15 shows that the base eigenvalues behave well for Cauchy solvers. Each one of these nine

eigenvalue clusters it self contains many sets of eigenvalues. When the base line eigenvalues are

39

plotted in Figure 14, the are zoomed out so that they appear as a single point. When adjusted for

the 20 day time step size, the eigenvalue clusters are pushed far on the negative real axis and on

the imaginary axis as well. This seemly does not effect the accuracy of Cauchy solvers based on

the placement of the eigenvalues based on Figure 15. The adjusted eigenvalues in the left column

in Figure 15 only show the cluster at the origin of the axis.

Fig. 14. Base eigenvalues for MSR depletion and adjusted with time step size

Error for each of the solvers is shown in Figure 16. The Taylor, Hyperbolic, CRAM and

Padé-method 1 solvers all begin with low errors which gradually increase. The Parabolic solver

40

Fig. 15. Base eigenvalues for MSR depletion and adjusted with time step size superimposed on
Cauchy scalar error plot

41

begins with a high error, which decreases rapidly until following the other solvers. Padé-method

2 follows the same trend as the other solvers but has a larger overall error. Substepping can be

used to increase the accuracy of the Cauchy solvers. The error as a function of substep for the

first time step at 20 days is shown for each of the Cauchy solvers in Figure 17. As the number

of substeps increases, the error for CRAM and Hyperbolic reach a constant level. The Parabolic

solver has the worst error of the three Cauchy solvers and does not reach the constant value over

the substep range. The reduction in error for Cauchy solvers with substepping can come from

three possible avenues. The first is moving the eigenvalues into a region where the solver will be

more accurate. The eigenvalues for this problem do create an epileptic ring on the left hand side

of the imaginary plane, but the imaginary values of these eigenvalues are already in a region far

enough down the negative real axis, that their error contributions should not be seen. The second

is that the nuclide concentrations are small enough over the time step range that they might not

be accurately captured using the Cauchy solvers. This might be the case for some of the nuclides

due to the relatively small concentrations. The last has to do with the generation pathways for

fission products. In fresh fuel calculations the generation rates for all nuclides depends on the

matrix coefficients of a few transitions. If the error of calculating the matrix exponential is large

for these few transitions, then the overall error in the solution can be greater, than in depleted

fuel calculations. Error is largest in the first step for Cauchy solvers then seems to diminish as the

fuel is depleted, this reduction in error could possibly come from both the second and third points.

More analysis will need to be conducted to understand this behavior.

Runtimes for each solver is shown in Table XII for the total solve time of the problem, this

includes the five 20 day steps to reach 100 day depletion. With zero substeps the CRAM solver

has the lowest solve time, followed by the Parabolic and Hyperbolic solvers, Padé-method 1 runs

slightly longer, followed by method 2 and the Taylor solver.

Because of the long runtimes for these solvers, it would be useful to apply the Krylov method

to reduce this runtime. In section IV.C it was stated that the eigenvalues of the transition matrix

would need to be sufficiently close for the Krylov subspace to be accurate. As the depletion time

increases, the spread of the eigenvalues does as well, pushing them further away from one another.

So, for the Krylov approximation to be accurate, the time step size must be sufficiently small. To

test the accuracy of this method, a single depletion step of 20 days is calculated using different

42

Fig. 16. MSR 2D depletion error. Cauchy solvers are shown with 4 substeps

Fig. 17. MSR 2D depletion error at the first time step of 20 days as a function of Cauchy substeps

43

TABLE XII
Runtime in seconds for MSR 2D depltion problem

Substeps
0 2 4 6 8 10

CRAM 3.65e+02 1.08e+03 1.79e+03 2.48e+03 3.17e+03 3.94e+03
Parabolic 6.47e+02 1.92e+03 3.18e+03 4.43e+03 5.70e+03 7.00e+03
Hyperbolic 6.54e+02 1.96e+03 3.23e+03 4.49e+03 5.77e+03 7.21e+03
Padé-method 1 7.36e+02 NA NA NA NA NA
Padé-method 2 1.48e+03 NA NA NA NA NA
Taylor 2.21e+04 NA NA NA NA NA

dt values to approach it. These values range from a single 20 day time step, down to a time step

size of 0.5 days. The results are shown in Figure 18 for a range of Krylov dimensions. Although

it appears that the error starts low, increases, then begins to drop again, the solutions for the

low Krylov dimensions of 5 and 10 do not converge to a reasonable solution. The concentrations

of nuclides are zero or nearly zero, resulting in an error of about 1. With a single time step of

20 days, the error does not decrease to a suitable value over the Krylov dimensions. As the time

step size is decreased, the Krylov dimension required for suitable error decreases. Because of the

overall size of the reduced order system is much smaller than the original system of 2,781 equations,

the problem can run much faster. Runtimes for each solver using the Krylov subspace is shown

in Figure 19. These results show great promise in reducing the runtime of this problem while

maintaining great accuracy. For example, with a Krylov dimension of 100 at a dt of 0.5 days, the

solution has a relative accuracy on the order of 10−8 with just a 2 second runtime for the Cauchy

solvers. Runtimes for all solvers is also reduced but the Taylor solver still takes the longest. There

is slight variation for the Cauchy solvers as a function of Krylov dimension, but the over all trend

is up.

VI. CONCLUSION

This paper describes the use of exponential time differencing to solve a large system of

parabolic PDEs arising in mass transport and depletion problems in MSRs. First, the mass trans-

port equations were defined to model nuclear depletion in MSRs by combining volumetric nuclear

reaction source terms with the species transport equation. Next, this equation was discretized

on a finite volume mesh using a second-order diffusive approximation and a variable order TVD

scheme for convection. Application of these algebraic approximations to the transport equation

44

Fig. 18. MSR 2D depletion error with Krylov Dimension and time step size

45

Fig. 19. MSR 2D depletion runtimes with Krylov subspace

46

transformed the system of PDEs to in a larger system of ODEs. Because of the vast differences in

nuclear reaction rates, this system of linear ODEs is very stiff, and the time step lengths required

for depletion analysis can be large. Therefore, exponential time differencing is used to integrate

the ODEs. A major component of exponential time differencing involves computing the action of

the exponential of a matrix on a vector. This computation can be difficult and time consuming,

depending on the numerical algorithm. A number of these algorithms are presented here, three

involving series approximations, and three involving transforming the computation into the com-

plex plane using Cauchy’s integral formula. A number of mass transport tests were conducted to

assess the accuracy of the spatial operators, linear source terms, matrix exponential algorithms,

and run times of these algorithms. These tests show that the numerical framework developed can

be used to solve mass transport problems in MSRs. The framework presented in this paper shows

great promise in developing future work for solving these type of problems.

Numerical properties of the transition matrix play a large part in the accuracy of matrix

exponential algorithms. Series approximations are most accurate about the origin, indicating

that the matrix norm must be sufficiently small. These approximations combine the scaling and

squaring property to reduce the matrix norm enough for them to be accurate. However, for large

transition matrices, these algorithms can have long run times, so a Krylov subspace is often used

in their computation. Solutions based on Cauchy’s integral formula do not have a requirement

on the matrix norm, but they do have a requirement on placement of eigenvalues. Each of these

Cauchy solvers requires that the eigenvalues be located on the left-hand side of the complex plane.

Additionally, the imaginary parts of the eigenvalues must be located in a region in which the contour

function encloses them. In the case of CRAM, this eigenvalue requirement is more strict. While

scaling and squaring are not explicitly implemented in these Cauchy methods, the consequence is

in the manner of substeps. Sub-stepping works by moving the eigenvalue spectrum into a region

which increases the solver’s accuracy for convection diffusion problems. Accuracy can also be

improved in general depletion problems by the use of sub-stepping and by reducing the rate at

which nuclide concentrations change over a time interval.

Results from the spatial convergence test show excellent convergence rates in both diffusion

problems for each matrix exponential solver. Convection problems at higher than first order, as

well as the MUSCL limiter, show second-order convergence rates for smooth solutions. In the case

47

of step changes in Dirichlet boundary conditions, both the Superbee and MUSCL limiter functions

limit the amount of numerical diffusion seen in the first-order upwind difference scheme. Results

from the neutron precursor problem show how shrinking the magnitude of the imaginary parts

increases the accuracy of Cauchy solvers. For larger problems, like the one shown in the MSR

depletion example, the Krylov subspace can show good results with decreasing the overall runtime

while maintaining reasonable solution accuracy.

Solving mass transport and depletion problems in molten salt reactors has proved to be a

complex mathematical problem. These problems involve a large number of isotopes or chemical

species, with as many as 2,200 isotopes in large analyses, or up to 90 in small analyses. As the

number of cells grows in the system, the number of unknowns increases significantly. When high-

fidelity simulation is needed, then these methods must be used in a parallel structure. Future

work will involve modeling a larger number of isotopes for reactor analysis, as well as adding mass

transport models for phase transition and surface chemical reactions.

48

ACKNOWLEDGMENTS

This work was funded by the Department of Energy-Office of Nuclear Energy’s Nuclear

Energy Advanced Modeling and Simulation (NEAMS) program.

49

REFERENCES

[1] M. Pusa and J. Leppänen, “Computing the Matrix Exponential in Burnup Calculations,”

Nuclear Science and Engineering, 164, 2, 140 (2010); 10.13182/NSE09-14.

[2] A. Isotalo and W. Wieselquist, “A method for including external feed in depletion cal-

culations with CRAM and implementation into ORIGEN,” Annals of Nuclear Energy, 85, 68

(2015); https://doi.org/10.1016/j.anucene.2015.04.037.

[3] M. Pusa, “Rational Approximations to the Matrix Exponential in Burnup Calculations,”

Nuclear Science and Engineering, 169, 2, 155 (2011); 10.13182/NSE10-81.

[4] A. Yamamoto, M. Tatsumi, and N. Sugimura, “Numerical Solution of Stiff Bur-

nup Equation with Short Half Lived Nuclides by the Krylov Subspace Method,” Jour-

nal of Nuclear Science and Technology - J NUCL SCI TECHNOL, 44, 147 (2007);

10.1080/18811248.2007.9711268.

[5] A. Isotalo and M. Pusa, “Improving the Accuracy of the Chebyshev Rational Ap-

proximation Method Using Substeps,” Nuclear Science and Engineering, 183 (2016);

10.13182/NSE15-67.

[6] B. R. Betzler, J. J. Powers, and A. Worrall, “Molten salt reactor neutronics and fuel

cycle modeling and simulation with SCALE,” Annals of Nuclear Energy, 101, 489 (2017);

https://doi.org/10.1016/j.anucene.2016.11.040.

[7] S. Xia, J. Chen, W. Guo, D. Cui, J. Han, J. Wu, and X. Cai, “Development of a Molten

Salt Reactor specific depletion code MODEC,” Annals of Nuclear Energy, 124, 88 (2019);

https://doi.org/10.1016/j.anucene.2018.09.032.

[8] M. Cheng and D. Zhi-Min, “Development of a three dimension multi-physics code for

molten salt fast reactor,” Nuclear Science and Techniques, 25 (2014); 10.13538/j.1001-

8042/nst.25.010601.

[9] C. Wan, T. Hu, and L. Cao, “Multi-physics numerical analysis of the fuel-addition tran-

sients in the liquid-fuel molten salt reactor,” Annals of Nuclear Energy, 144, 107514 (2020);

https://doi.org/10.1016/j.anucene.2020.107514.

50

[10] S. Cox and P. Matthews, “Exponential Time Differencing for Stiff Systems,” Journal of

Computational Physics, 176, 2, 430 (2002); https://doi.org/10.1006/jcph.2002.6995.

[11] C.-S. Chou, Y.-T. Zhang, R. Zhao, and Q. Nie, “Numerical methods for stiff reaction-

diffusion systems,” Discrete and Continuous Dynamical Systems - Series B, 7 (2007);

10.3934/dcdsb.2007.7.515.

[12] H. Ashi, L. Cummings, and P. Matthews, “Comparison of methods for evaluating

functions of a matrix exponential,” Applied Numerical Mathematics, 59, 3, 468 (2009);

https://doi.org/10.1016/j.apnum.2008.03.039., selected Papers from NUMDIFF-11.

[13] R. Sidje, “Expokit: A Software Package for Computing Matrix Exponentials,” ACM Trans.

Math. Softw., 24, 130 (1998); 10.1145/285861.285868.

[14] C. Moler and C. Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a

Matrix, Twenty-Five Years Later,” SIAM Review, 45, 1, 3 (2003); 10.1137/S00361445024180.

[15] A. Isotalo and P. Aarnio, “Comparison of depletion algorithms for

large systems of nuclides,” Annals of Nuclear Energy, 38, 2, 261 (2011);

https://doi.org/10.1016/j.anucene.2010.10.019.

[16] M. Pusa and J. Leppänen, “Solving Linear Systems with Sparse Gaussian Elimination in

the Chebyshev Rational Approximation Method,” Nuclear Science and Engineering, 175, 3,

250 (2013); 10.13182/NSE12-52.

[17] M. Pusa, “Numerical methods for nuclear fuel burnup calculations: Dissertation,” PhD

Thesis, Aalto University, Finland (2013).

[18] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley

and Sons, Inc., New York (2006).

[19] N. Waterson and H. Deconinck, “Design principles for bounded higher-order convec-

tion schemes – a unified approach,” Journal of Computational Physics, 224, 1, 182 (2007);

https://doi.org/10.1016/j.jcp.2007.01.021., special Issue Dedicated to Professor Piet Wessel-

ing on the occasion of his retirement from Delft University of Technology.

51

[20] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynam-

ics The Finite Volume Method, Pearson Prentice Hall (2007).

[21] P. K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation

Laws,” SIAM Journal on Numerical Analysis, 21, 5, 995 (1984)URL http://www.jstor.

org/stable/2156939.

[22] P. Khosla and S. Rubin, “A diagonally dominant second-order accurate implicit scheme,”

Computers & Fluids, 2, 2, 207 (1974); https://doi.org/10.1016/0045-7930(74)90014-0.

[23] A. Isotalo, “Computational Methods for Burnup Calculations with Monte Carlo Neutron-

ics,” PhD Thesis, Aalto University, Finland (2013).

[24] A. Bratsos and A. Khaliq, “An exponential time differencing method of lines for Burgersâ-

Fisher and coupled Burgers equations,” Journal of Computational and Applied Mathematics,

356, 182 (2019); https://doi.org/10.1016/j.cam.2019.01.028.

[25] G. Beylkin, J. M. Keiser, and L. Vozovoi, “A New Class of Time Discretization Schemes

for the Solution of Nonlinear PDEs,” Journal of Computational Physics, 147, 2, 362 (1998);

https://doi.org/10.1006/jcph.1998.6093.

[26] A. Bratsos and A. Q. Khaliq, “A conservative Exponential Time Differencing method for

the nonlinear cubic Schrödinger equation,” International Journal of Computer Mathematics,

94, 1 (2015); 10.1080/00207160.2015.1101458.

[27] Q. Du and W. Zhu, “Analysis and Applications of the Exponential Time Differencing

Schemes and Their Contour Integration Modifications,” BIT Numerical Mathematics, 45,

307 (2005); 10.1007/s10543-005-7141-8.

[28] N. J. Higham, “The Scaling and Squaring Method for the Matrix Exponential Revisited,”

SIAM Journal on Matrix Analysis and Applications, 26, 4, 1179 (2005); 10.1137/04061101X.

[29] A. Al-Mohy and N. Higham, “A New Scaling and Squaring Algorithm for the Matrix Expo-

nential,” SIAM Journal on Matrix Analysis and Applications, 31 (2009); 10.1137/09074721X.

52

http://www.jstor.org/stable/2156939
http://www.jstor.org/stable/2156939

[30] A. H. Al-Mohy and N. J. Higham, “Computing the Action of the Matrix Exponential,

with an Application to Exponential Integrators,” SIAM Journal on Scientific Computing, 33,

2, 488 (2011); 10.1137/100788860.

[31] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, “Talbot quadratures and

rational approximations,” BIT Numerical Mathematics, 46, 3, 653 (2006); 10.1007/s10543-

006-0077-9.

[32] M. Pusa, “Accuracy considerations for Chebyshev rational approximation method (CRAM)

in Burnup calculations,” Proceedings, 973–984 (2013)International Conference on Mathematics

and Computational Methods Applied to Nuclear Science and Engineering, M&C 2013,

M&C 2013 ; Conference date: 05-05-2013 Through 09-05-2013.

[33] Y. Saad, “Analysis of Some Krylov Subspace Approximations to the Matrix Exponential

Operator,” SIAM Journal on Numerical Analysis, 29, 1, 209 (1992)URL http://www.jstor.

org/stable/2158085.

[34] E. Gallopoulos and Y. Saad, “On the parallel solution of parabolic equations,” ICS ’89,

17–28 (1989).

[35] K. Ott and R. Neuhold, Introductory nuclear reactor dynamics, American Nuclear Society

(1985)URL https://books.google.com/books?id=3yVPAQAAIAAJ.

[36] R. Z. Taylor, “Libowski: A Numerical Framework for Solving Depletion and Mass Transport

in Molten Salt Reactors,” PhD Thesis, University of Tennessee (2021)URL https://trace.

tennessee.edu/utk_graddiss/6662.

[37] M. Fratoni, D. Shen, G. Ilas, and J. Powers, “Molten Salt Reactor Experiment Bench-

mark Evaluation,” Project 16-10240, University of California Berkeley and Oak Ridge National

Laboratory (2020).

53

http://www.jstor.org/stable/2158085
http://www.jstor.org/stable/2158085
https://books.google.com/books?id=3yVPAQAAIAAJ
https://trace.tennessee.edu/utk_graddiss/6662
https://trace.tennessee.edu/utk_graddiss/6662

	Introduction
	Burnup Equations
	Burnup Equations in Molten Salt Reactors
	Spatial Discretization
	Transport Terms
	Boundary Conditions
	Volumetric Source Terms and Initial Conditions

	Exponential Time Differencing Methods
	Computing the Exponential of a Matrix
	Series Approximations
	Padé Approximation
	Taylor Series

	Rational Approximations
	Quadrature Contours
	Best Rational Approximation
	Accuracy of Rational Approximations

	Krylov Subspace Approximation

	Results
	Spatial Convergence Study
	Diffusion
	Reaction-diffusion
	Convection

	Neutron Precursors
	Simple MSR Depletion

	Conclusion

