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INTRODUCTION

This paper describes the investigation of
temperature-dependent critical experiments using the Seven
Percent Critical Experiments (7uPCX) and Burnup Credit
Critical Experiments (BUCCX) fuel types within the Sandia
Pulsed Reactor Facility/Critical Experiments (SPRF/CX)
apparatus at Sandia National Laboratories (Sandia). The goal
of these experiments is to test the effect of varying system
temperature on the kerr bias of water-moderated systems.
Temperatures of 5-95°C were considered in this work.
Eighteen representative lattice configurations were analyzed
that had variations in the number of fuel rods and water holes,
as well as in the array configuration, to achieve a variety of
moderation regimes. The configurations were based on those
detailed in the LEU-COMP-THERM-078 [1] and LEU-
COMP-THERM-079 [2] experiments, both of which were
published in the International Handbook of Evaluated
Criticality ~ Safety Benchmark Experiments (ICSBEP
Handbook) [3].

The proposed integral experiments will be performed
using the 7uPCX or BUCCX fuel, or potentially both. The
7uPCX fuel is 6.90 wt % enriched UO; fuel, and the BUCCX
fuel is 4.31 wt % enriched UO, fuel. Both fuels have been
used in previous critical experiments and are available for use
[1, 2]. This paper discusses the nuclear and thermal analysis
performed to support this experiment, and it also briefly
discusses potential facility modifications for SPRF/CX.

NUCLEAR ANALYSIS

This work examines a series of critical configurations
performed at the SPRF/CX, as well as some additional arrays
developed with the help of Sandia staff [4] in an effort to
examine a broad range of moderation regimes and provide
flexibility in the performance of the final experiments. The
goal of this work is to allow Sandia staff to select final
configurations with which to perform experiments instead of
prescribing the arrays to be used. The arrays considered
herein used both 7uPCX and BUCCX fuel. If a fuel array was
used in a previous experiment that is documented in an
ICSBEP Handbook evaluation or pending evaluation, then
the array is referred to by its ICSBEP designation. A fuel
array that has not been in a documented experiment is
referred to by the grid plate pitch and some descriptive term.

All the arrays presented herein calculate within 700 pcm of
criticality at 25°C, and most are substantially closer,
indicating that these are obtainable critical configurations.
The 7uPCX fueled arrays considered are described in Table
I, and the BUCCX fueled arrays considered are described in
Table II. Tables I and II contain the grid plate pitch used the
number of rods in the critical array, and the fuel-to-water
volume ratio. The fuel-to-water volume ratio is not included
for the channeled arrays because it is not directly comparable
to the other arrays.

TABLE I. 7uPCX Fueled Arrays Considered in the Analysis

Fuel array G.rid plate Number of | F uel-to-wat?r-

pitch (cm) rods volume ratio
LCT-102-001 0.8001 1,449 0.671
LCT-102-007 0.8550 1,045 0.524
LCT-102-012 0.8001 928 0.225
LCT-102-016 0.8550 413 0.189
LCT-102-020 0.8001 338 0.097
LCT-102-024 0.8550 346 0.083
LCT-102-027 0.8550 367 0.077
0483) 5W Cg‘l:;ﬂ: 0.8550 948 N/A
0.855 cmPpltehi | g gss0 1,128 N/A

TABLE II. BUCCX Fueled Arrays Considered in the
Analysis

Fuel arra Grid plate Number of | Fuel-to-water-
y pitch (cm) rods volume ratio
LCT-079-001 2.0 258 0.641
LCT-079-006 2.8 132 0.238
2.8 cm pitch 3 holes 2.8 136 0.231
2.8 cm pitch 6 holes 2.8 139 0.225
2.8 cm pitch 18 2.8 145 0.205
holes
2.8 cm pitch 42 2.8 145 0.173
holes
2.8 cm pitch 81 93 190 0154
holes
2.8 cm pitch 28 150 N/A
channel: 1 row
2.8 cm pitch 28 194 N/A
channel: 2 rows
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All the calculations were performed with KENO using
a specialized version of the Evaluated Nuclear Data File
(ENDF)/B-VIIL.1 library with expanded thermal scattering
data. The thermal neutron scattering cross sections for light
water were generated using the LEAPR module of NJOY21
version 1.0.5 and AMPX 6.3.pre-beta6 for SCALE. For the
LEAPR inputs, the continuous phonon density of states,
translational weight, continuous normalization, and oscillator
weights were linearly interpolated from the values provided
in Appendix 10.2.1 of Mattes and Keinert [5].

To understand which physical effects are most
important to the evolution of ks for each array, a series of
calculations was performed. The first set of calculations
considered the combined effects of water density, water
thermal scattering data, and fuel Doppler broadening for each
of the 18 arrays in Tables I and II to identify arrays that had
the most positive response of ker to system temperature

T 2.8 em pezn € Ross 28 om pren 91 males

(PTR), the most negative response of ke to system
temperature (NTR), and the minimum response of kesr to
system temperature (MTR). The results of those calculations
are shown in Fig. 1. Separate effects calculations were
performed with the NTR, PTR, and MTR arrays in which the
water density, water thermal scattering data, and fuel
temperature were varied independently. The results of the
separate effects calculations are shown in Fig. 2. The results
showed that in all arrays the increased temperature resulted
in positive contributions from the thermal scattering effect,
negative contributions from the water density effect, and
small but negative contributions from the fuel temperature
effect. The relative magnitudes of these effects in each array
were responsible for the overall temperature response.
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THERMAL ANALYSIS

The existing SPRF/CX apparatus does not provide the
capability to control the water moderator temperatures in the
5-90°C range because it was designed to operate closer to
room temperature. Currently, one immersion heater is
installed in the dump tank to maintain the moderator at a
constant temperature (typically 25°C). To facilitate the larger
range of temperature-controlled experiments described
herein, several facility upgrades will be required. The
following thermal calculations were completed to analyze the
capability gaps of the existing apparatus and to advise
upgrade decisions.

e Heat loss through the sides and tops of the tanks was
calculated to inform insulation and heating
requirements for high-temperature operation.

e  The thermal equilibrium time was calculated for two
different fuel assemblies.

e  The impact of water evaporation on heat and mass
losses was analyzed.

e Cooling requirements were calculated to inform chiller
sizing.

Heat Losses

The steady-state heat losses for an uncovered,
uninsulated assembly tank are shown in Fig. 3. The analysis
shows that the system could require more than 16 kW of
heating if it remained uninsulated and uncovered at 90°C.
Even with well-insulated surfaces, evaporation can
contribute more than 7.5 kW of heat loss at 90°C.
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heated to the desired temperature within 10 min. This was
done to verify that fuel heating would not prolong the
experiment time. If the moderator temperature remains
within a few degrees of the desired temperature, then it
should not significantly impact the fuel heating. Thus,
isothermal water could be assumed in the fuel heating model.
A diagram of the ANSY'S models is shown in Fig. 4; BUCCX
fuel is shown on the left, and the 7uPCX fuel is shown on the
right.

The temperature of the fuel centerline as a function of
time is shown in Fig. 5. For this simple analysis, the
maximum time required to heat a fuel rod centerline within
0.5°C of the water temperature would be less than five min.
This initial analysis shows that the time required for heating
should not be a major issue in performing experiments.
However, current analysis only considers one rod with an
isothermal temperature boundary; it does not consider the
potential impact of neighboring rods or the assembly
restricting mixing of the water, which might reduce the heat
transfer rate. The initial time required to heat the water will
likely be greater than the time required to establish
equilibrium.

Fig. 4. Mesh used in the two fuel rod geometries:
BUCCX (left) and 7uPCX (right).
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Fig. 3. Calculated evaporative and convective heat loss for

the current assembly and dump tanks. . . .
Fig. 5. Fuel centerline temperature over time for the two

fuel types.

A transient finite element model was used to determine
the time required for the fuel rods to reach thermal
equilibrium. Both the BUCCX and 7uPCX fuel rod
geometries were analyzed to verify that the system could be

POTENTIAL FACILITY MODIFICATIONS

To accommodate operation at temperatures other than
room temperature, upgrades to the existing SPRF/CX facility
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were suggested. The potential facility modifications are
shown in Fig. 6. The dump tank could be replaced with a
larger capacity tank to increase the available thermal mass of
water supplied to the assembly tank during an experiment.
Elevated temperatures would be enabled using immersion
heaters and a proportional-integral-derivative controller.
The dump tank should also be insulated to limit thermal
losses. Alternatively, a heated, insulated jacket would
provide secondary temperature regulation in the assembly
tank. The assembly tank could also feature immersion
heaters, provided that they do not cause thermal gradients in
the water and/or fuel. Significant evaporative mass and health
loss would be expected when operating at the upper
temperature range. Therefore, an insulated cover should be

Dump Tank

Controller

installed that would reduce evaporative losses while still
allowing for instrumentation and ease of fuel loading.

Upgrades should also consider reduced temperatures in
the experiment facility. A chilling system could be coupled
to the dump tank to control its water temperature. Because
the temperature difference between the environment and the
chilled water will be relatively low compared with
high-temperature measurements, the insulation and water
recirculation from the dump to the assembly tank are
expected to be adequate for controlling temperatures below
room temperature.

Assembly Tank

Insulated Cover

Overflow
standpipe

Controller

Immersion Heater

Recirculation
Pump

Fig. 6. Schematic of SPRFCX apparatus during operation with a heated moderator.
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