
 

 

SUBTASK 3.1 – BAKKEN RICH GAS ENHANCED 
OIL RECOVERY PROJECT 
 
Topical Report 
 
(for the period of September 1, 2017, through January 31, 2022) 
 
Prepared for: 
 
AAD Document Control 
 
National Energy Technology Laboratory 
U.S. Department of Energy 
626 Cochrans Mill Road 
PO Box 10940, MS 921-107 
Pittsburgh, PA 15236-0940 
 
Cooperative Agreement No.: DE-FE0024233 
DOE Technical Monitor: Gary Covatch 

Prepared by: 
 

Steven A. Smith 
James A. Sorensen 

Bethany A. Kurz 
Loreal V. Heebink 

Nicholas A. Azzolina 
Lu Jin 

Lingyun Kong 
Xue Yu 

Xincheng Wan 
Yang Yu 
Jin Zhao 

Christopher J. Beddoe 
Blaise A.F. Mibeck 

Shane K. Butler 
Alexander Azenkeng 

Marc D. Kurz 
Chad A. Wocken 

Alexander V. Chakhmakhchev 
Todd Jiang 

Nicholas W. Bosshart 
Matthew E. Burton-Kelly 

David V. Nakles 
Charles D. Gorecki 

John A. Harju 
Edward N. Steadman 

 
Energy & Environmental Research Center 

University of North Dakota 
15 North 23rd Street, Stop 9018 

Grand Forks, ND 58202-9018 
 

2022-EERC-01-09 January 2022 



 

 

EERC DISCLAIMER 
 
 LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory 
(NETL) and the North Dakota Industrial Commission (NDIC). Because of the research nature of 
the work performed, neither the EERC nor any of its employees makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement or recommendation by the EERC. 
 
 
ACKNOWLEDGMENT 
 
 This material is based upon work supported by DOE NETL under Award No. DE-FE-
0024233. 
 
 
DOE DISCLAIMER 
 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government, nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government or any 
agency thereof. 
 
 
NDIC DISCLAIMER 
 
 This report was prepared by the Energy & Environmental Research Center (EERC) pursuant 
to an agreement partially funded by the Industrial Commission of North Dakota, and neither the 
EERC nor any of its subcontractors nor the North Dakota Industrial Commission nor any person 
acting on behalf of either: 
 

(A) Makes any warranty or representation, express or implied, with respect to the 
accuracy, completeness, or usefulness of the information contained in this report or 
that the use of any information, apparatus, method, or process disclosed in this report 
may not infringe privately owned rights; or 



 

 

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the 
use of, any information, apparatus, method, or process disclosed in this report. 

 
 Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the North Dakota Industrial Commission. The views and opinions 
of authors expressed herein do not necessarily state or reflect those of the North Dakota Industrial 
Commission. 



 

iv 

TABLE OF CONTENTS 
 

LIST OF FIGURES ...................................................................................................................... vii 
 
LIST OF TABLES ...................................................................................................................... xvii 

NOMENCLATURE .................................................................................................................... xix 

EXECUTIVE SUMMARY ........................................................................................................ xxii 

SUBTASK 3.1 – BAKKEN RICH GAS EOR RESEARCH EFFORTS: OVERALL 
OBSERVATIONS AND CONCLUSIONS ................................................................................... 1 

OBSERVATIONS .......................................................................................................................... 1 

CONCLUSIONS............................................................................................................................. 2 

ACKNOWLEDGMENTS .............................................................................................................. 2 

BACKGROUND ............................................................................................................................ 3 

ACTIVITY 2.0 – RICH GAS INTERACTIONS WITH RESERVOIR FLUID AND ROCKS.... 4 

INTRODUCTION .......................................................................................................................... 4 
Subactivity 2.1 – Rich Gas–Oil Fluid Behavior and Rock Extraction Studies ..................... 4 

MMP Studies ............................................................................................................... 4 
Miscible-Phase Compositional Studies ....................................................................... 7 
Rock Extraction Experiments .................................................................................... 10 

Subactivity 2.2 – Rich Gas in Shale Permeability and Sorption Studies ............................ 12 
Background ................................................................................................................ 12 
Sample Selection ....................................................................................................... 13 
Test Methods ............................................................................................................. 15 
Results........................................................................................................................ 18 

ACTIVITY 3.0 – RICH GAS CHARACTERIZATION FOR EOR OPERATIONS .................. 29 
Subactivity 3.1 – Rich Gas Recovery, Processing, and Reinjections ................................. 29 
Subactivity 3.2 – Examinations of Temporal Change in Gas and Fluid Compositions ...... 29 

Temporal Evaluation of Bakken Fluids ..................................................................... 29 
Activity 3.0 – Summary of Key Findings ........................................................................... 37 

ACTIVITY 4.0 – ITERATIVE MODELING OF SURFACE AND SUBSURFACE EOR 
COMPONENTS ........................................................................................................................... 39 

INTRODUCTION ........................................................................................................................ 39 
Subactivity 4.1 – Modeling of Surface EOR Components ................................................. 39 
Subactivity 4.2 – Modeling of Subsurface EOR Components ............................................ 41 

Methodology for Reservoir Modeling ....................................................................... 41 
 

Continued . . . 



 

v 

TABLE OF CONTENTS (continued) 
 
 

Geologic Model Development ................................................................................... 42 
Equation of State Model ............................................................................................ 43 
History Match ............................................................................................................ 47 
EOR Forecasting ........................................................................................................ 48 

ACTIVITY 5.0 – PILOT PERFORMANCE ASSESSMENT ..................................................... 52 
Location and Well Pattern ................................................................................................... 52 
Hydraulic Fracturing ........................................................................................................... 54 

Jet Pumps ................................................................................................................... 55 
Compression .............................................................................................................. 55 
Field Pilot Execution ................................................................................................. 57 
Injection Rates and Pressures; Production Well Responses ...................................... 58 
Interpretations from the Pilot Testing ........................................................................ 59 

Lessons Learned for Future EOR Pilots in the Bakken ...................................................... 60 

ACTIVITY 6.0 – ADVANCED RESERVOIR CHARACTERIZATION FOR RICH  
GAS EOR...................................................................................................................................... 62 

Subactivity 6.1 – Wettability and Relative Permeability Studies ....................................... 62 
Introduction ................................................................................................................ 62 
Method on the Measurement of IFT and Contact Angle ........................................... 63 
Determination of Relative Permeability .................................................................... 64 
Results – IFT and Contact Angle ............................................................................... 65 
Results – Relative Permeability ................................................................................. 71 
Conclusions................................................................................................................ 74 

Subactivity 6.2 – Cuttings Characterization for Geomechanical Properties ....................... 74 
Introduction ................................................................................................................ 74 
Methods ..................................................................................................................... 76 
Results and Validation ............................................................................................... 78 
Discussion and Conclusion ........................................................................................ 83 

ACTIVITY 7.0 – MODELING CONFORMANCE TREATMENTS AND EOR  
STRATEGIES............................................................................................................................... 85 

INTRODUCTION: BACKGROUND AND OBJECTIVES ........................................................ 85 
Subactivity 7.1 – Conformance Treatment ......................................................................... 85 

Site Selection and Well Interference Identification ................................................... 86 
Subactivity 7.2 – Alternative EOR Strategies Integrated with Conformance Control ...... 105 
Conclusions ....................................................................................................................... 120 

ACTIVITY 8.0 – MACHINE LEARNING AND BIG DATA ANALYTICS FOR 
UNCONVENTIONAL EOR STRATEGIES ............................................................................. 122 

Subactivity 8.1 – Virtual Learning .................................................................................... 122 
Introduction .............................................................................................................. 122 

 
Continued . . . 



 

vi 

TABLE OF CONTENTS (continued) 
 
 

Subactivity 8.2.1 – Real-Time Visualization, Forecasting, and Control ........................... 166 
Introduction .............................................................................................................. 166 
Pilot Test Screening ................................................................................................. 167 
Geologic Model and Reservoir Simulation ............................................................. 173 
Reservoir Simulation ............................................................................................... 174 
Propane Injection ..................................................................................................... 175 
Tracer Injection ........................................................................................................ 177 
Data Extraction and Preprocessing .......................................................................... 178 
Real-Time Visualization and Forecasting ............................................................... 179 
Real-Time Control ................................................................................................... 191 
Summary and Conclusions ...................................................................................... 191 

Subactivity 8.2.2 – Embedded Discrete Fracture Modeling–Artificial Intelligence–
Automatic History Matching Testing ................................................................................ 191 

Introduction .............................................................................................................. 191 
Methods ................................................................................................................... 192 
Results...................................................................................................................... 196 
Subtask 8.2 Summary .............................................................................................. 202 

SUBTASK 3.1 – BAKKEN RICH GAS EOR RESEARCH EFFORTS: OVERALL 
OBSERVATIONS AND CONCLUSIONS ............................................................................... 204 

OBSERVATIONS ...................................................................................................................... 204 

CONCLUSIONS......................................................................................................................... 205 

MILESTONES ............................................................................................................................ 205 

REFERENCES ........................................................................................................................... 207 
 

DIAGNOSTIC PLOTS FOR LINEAR REGRESSION MODELS .............................. Appendix A 
  



 

vii 

LIST OF FIGURES 
 

1 Experimental MMP values for crude oils from Bakken and Three Forks petroleum  
reservoirs .................................................................................................................................. 6 

2 Effect of adding ethane or propane to produced gas on MMP values for Bakken  
crude oil at 110°C .................................................................................................................... 7 

3 Test cell and cell with two fluid phases present ...................................................................... 8 

4 10 mL of crude oil equilibrated with 10 mL of injected C1, C2, C3, or produced  
gas in headspace at reservoir conditions before taking five sequential aliquots at  
1-hour intervals ........................................................................................................................ 9 

5 Concentration of vaporized HCs in methane-rich injection phase versus produced  
gas-dominated injection phase ............................................................................................... 10 

6 Example core specimen and core holder ............................................................................... 11 

7 Recoveries with methane and produced gas are highly dependent on pressure;  
ethane is moderately controlled by pressure; and pressure has little effect on  
propane .................................................................................................................................. 12 

8 North Dakota Geological Survey  core analysis map of Tmax for Upper Bakken Shale ........ 14 

9 Apparatus designed for rich gas flow-through tests .............................................................. 17 

10 Sample 118939 MicroCT cross sections showing pretest fracture, posttest fracture  
“healing,” and handling damage ............................................................................................ 19 

11 Sample 126950 MicroCT cross sections showing pretest fracture and posttest fracture 
“healing.” ............................................................................................................................... 19 

12 Sample 118939 organic matter pre-/posttest showing loss of calcite leaving behind  
empty cracks .......................................................................................................................... 21 

13 Sample 126950 showing the presence of salt that formed dendrites inside of  
organic matter particles .......................................................................................................... 22 

14 A simplified diagram of a T1/T2 map adapted from Fleury and Romero-Sarmiento ........... 23 

15 Pretest NMR pore-size distributions comparing Samples 118939 and 126950 .................... 24 

16 Comparing the pre- and post-flow-through test NMR data for Sample 126950 ................... 25 
 

Continued . . . 
 
 
 
 



 

viii 

LIST OF FIGURES (continued) 
 

17 Preferential flow test results showing concentrations of methane, ethane, and  
propane from the produced gas compared to the baseline injected methane concentrations 
for Samples 126950 and 118939 ........................................................................................... 26 

18 Desorption test results for Samples 126950 and 118939 compared to injected gas 
compositions .......................................................................................................................... 27 

19 Gas compositional trends for both a Middle Bakken and Three Forks well ......................... 31 

20 Daily and cumulative oil production for all three wells ........................................................ 32 

21 Daily and cumulative water production for all three wells .................................................... 33 

22 Produced water compositional trends for MB1 well ............................................................. 34 

23 Produced water compositional trends for TF1 well ............................................................... 35 

24 Star plot derived from HC fingerprinting data for all three wells. ........................................ 36 

25 Scatterplots showing GOR and water cut as surrogates for production over time and the  
A/A ratio, total 3-rings/C18–C24, for the temporal oil samples collected up to  
April 2020 for the temporally evaluated wells ...................................................................... 37 

26 Leon–Gohrick DSU surface facility process flow ................................................................. 40 

27 Gohrick facility constraints and historic peak conditions ...................................................... 41 

28 Well logs showing Bakken and Three Forks Formations ...................................................... 42 

29 Southwestern view of modeled volume ................................................................................. 43 

30 Complexity level of simulation models ................................................................................. 44 

31 Illustrations of single-stage simulation model: a) top view of DSU sector model showing 
area of single-stage model, highlighted in pink; b) top view of single-stage model;  
and c) cross-sectional view of single-stage model ................................................................ 46 

32 History match of Gohrick 5MBH fluid rates and BHP ......................................................... 48 

33 Gohrick pad oil recovery increment with 3-month injection cycle for each well at  
constant 3-MMscfd injection rate and BHP constraint of 500 psi ......................................... 49 

34 Gohrick pad oil recovery increment with 3-month injection cycle for each well at  
constant 3-MMscfd injection rate, using simulation estimated BHP of 1200–1400 psi ....... 50 

35 Leon–Gohrick DSU well pattern ........................................................................................... 53 
 

Continued . . . 
 



 

ix 

LIST OF FIGURES (continued) 
 

36 Leon–Gohrick DSU east–west cross section ......................................................................... 53 

37 3D illustration of well lateral layout of DSU ......................................................................... 54 

38 Rental compression units ....................................................................................................... 56 

39 Refurbished high-pressure compressor .................................................................................. 56 

40 Leon–Gohrick injection pilot test profile .............................................................................. 57 

41 Cross section of well pattern with injection well sequence numbered 1 through 5 and 
quantities of injected gas ....................................................................................................... 57 

42 Relationships between BHP and cumulative gas injection for the five injection wells ........ 58 

43 Schematic of the experimental setup ..................................................................................... 63 

44 Experimental workflow for IFT and contact angle measurements ........................................ 64 

45 Results of IFT testing using multiple fluid pairs in the presence of different brine  
salinities ................................................................................................................................. 67 

46 Distribution of Bakken samples evaluated for changes in wettability .................................. 68 

47 Changes in contact angle and their impact on surface wettability ......................................... 69 

48 Results of contact angle testing in the presence of multiple fluid pairs ................................ 70 

49 Example of the change in wettability observed in the relative permeability curve ............... 71 

50 Relative permeability curves based on capillary pressure for four Bakken samples 
representing varying thermal maturity areas of the Bakken .................................................. 73 

51 Workflow of BI calculation from well cuttings ..................................................................... 75 

52 Schematic diagram of basic neural network architecture ...................................................... 77 

53 Absolute difference between inferred mineral composition and XRD results ...................... 79 

54 Absolute difference between inferred mineral composition and XRD results in terms of  
each mineral type ................................................................................................................... 80 

55 MAE of ML prediction performance ..................................................................................... 81 

56 Validation on ML prediction using XRD results of four new Middle Bakken samples ....... 81 

57 Box chart of predicted BI and well log interpreted BI from previous studies. ...................... 82 
 

Continued . . . 
 



 

x 

LIST OF FIGURES (continued) 
 

58 Distribution of wells in the DSU located in Dunn County, North Dakota ............................ 86 

59 Illustration of well interference effect observed in wells completed in the MB Unit and  
the TF Formation based on analysis of oil production rate ................................................... 88 

60 Illustration of well interference effect observed in wells completed in the MB Unit and  
the TF Formation based on analysis of water cut .................................................................. 89 

61 Distribution of wells in the DSUs located in Williams County, North Dakota ..................... 90 

62 Illustration of well interference effect observed in the DSUs located in Williams County 
based on analysis of water cut ............................................................................................... 91 

63 Example of EOS regression results for the PVT data from the two sites: a) Dunn site and  
b) Williams site ...................................................................................................................... 93 

64 Explanation of physical and computational domains of EDFM and connections between 
wellbore, fractures, and matrix .............................................................................................. 95 

65 Schematic of fracture distribution in the simulation model for the Dunn site ....................... 96 

66 History match results for Well MB2: a) liquid rate, b) oil rate, c) gas rate, and  
d) water rate ........................................................................................................................... 97 

67 Schematic of fracture distribution in the simulation model for the Williams site ................. 98 

68 History match results for Well 2TFH: a) liquid rate, b) oil rate, c) gas rate, and  
d) water rate ........................................................................................................................... 99 

69 History match results for Well 3MBH: a) liquid rate, b) oil rate, c) gas rate, and  
d) water rate ......................................................................................................................... 100 

70 Location of wells used for interference test in a) Dunn site and b) Williams site ............... 101 

71 Comparison of BHP during normal pressure depletion and water injection processes in  
Well MB2 at the Dunn site .................................................................................................. 102 

72 Water cut behavior in Well TF2 when water was injected in Well MB2 at the Dunn site . 102 

73 Water cut behavior in Well MB1 when water was injected in Well TF2 in the Dunn site . 103 

74 Comparison of BHP during normal pressure depletion and water injection processes in  
Well 5TFH at the Williams site ........................................................................................... 104 

75 Water cut increases in Well 4MBH when water was injected in Well 5TFH at the  
Williams site ........................................................................................................................ 104 

 
Continued . . . 



 

xi 

LIST OF FIGURES (continued) 
 

76 Water cut increases in Well 10TFH when water was injected in Well 11MBH at the 
Williams site ........................................................................................................................ 105 

77 BHP behavior in the HnP well and its adjacent offset wells in the first year of EOR 
operation when rich gas was injected at 3 MMscfd ............................................................ 107 

78 Oil production performance in the HnP well and its adjacent offset wells through the  
entire EOR process .............................................................................................................. 108 

79 Comparison of cumulative oil production of Well MB2 with pressure depletion and gas 
EOR operations .................................................................................................................... 108 

80 BHP behavior in the HnP well with different gas injection rates ........................................ 109 

81 Oil production performance in the HnP well with different gas injection rates .................. 109 

82 Comparison of oil production performance between pressure depletion and gas  
injection EOR with different injection rates ........................................................................ 110 

83 Schematic of gas and water injectors distribution for conformance control in the EOR 
process at the Dunn site ....................................................................................................... 111 

84 Comparison of BHP behavior in the HnP well when the gas injection rate is 3 MMscfd  
with and without conformance control by water injection in the adjacent offset wells ...... 112 

85 Comparison of oil production performance between pressure depletion and gas EOR  
with and without conformance control by water injection in the adjacent offset wells. ..... 112 

86 Measurements of pore-size distribution using rocks collected from the MB and  
Upper TF .............................................................................................................................. 113 

87 IFT between a) oil and water and b) rich gas and water in the Bakken reservoir  
considering a wide range of pressure and salinity conditions ............................................. 114 

88 Effect of different surfactants on reducing oil–water contact angle in the Bakken ............. 114 

89 Comparison of BHP behavior in the HnP well when the gas injection rate is 3 MMscfd  
with and without conformance control by surfactant injection in the adjacent  
offset wells ........................................................................................................................... 115 

90 Comparison of oil production performance between pressure depletion and gas EOR  
with and without conformance control by surfactant injection in the adjacent  
offset wells ........................................................................................................................... 115 

91 Comparison of oil production performance in gas EOR wells a) 5MBH and b) 12MBH .. 117 
 

Continued . . . 
 



 

xii 

LIST OF FIGURES (continued) 
 

92 Comparison of oil production performance in conformance control wells a) 5TFH and  
b) 11TFH ............................................................................................................................. 118 

93 Schematic of producer and injector distribution for rich gas EOR with conformance  
control in multiple DSUs at the Williams site ..................................................................... 119 

94 Comparison of oil production performance with different operational strategies in the 
Williams site with multiple DSUs ....................................................................................... 120 

95 Illustration of the DSU models identifying the MB and TF wellbores included in each  
model and the wells that were used for rich gas injection or production ............................ 123 

96 Summary of the fitted regression model output for Set 1 for the target variable: DSU 
incremental oil production ................................................................................................... 130 

97 Factorial plots for main effects and interactions for DSU well count, EOR development 
timeline, and injectate from the fitted regression model for Set 1 for the target variable:  
DSU incremental oil production .......................................................................................... 131 

98 Regression output summary for Set 1 for the target variable: DSU incremental water 
production ............................................................................................................................ 132 

99 Factorial plots for main effects and interactions for DSU well count, EOR development 
timeline, and injectate from the fitted regression model for Set 1 for the target variable:  
DSU incremental water production ..................................................................................... 133 

100 Regression output summary for Set 1 for the target variable: DSU incremental gas 
production ............................................................................................................................ 134 

101 Factorial plots for main effects and interactions for DSU well count, EOR development 
timeline, and injectate from the fitted regression model for Set 1 for the target variable:  
DSU incremental gas production ......................................................................................... 135 

102 Regression output summary for Set 1 for the target variable: DSU Net Revenue at 
$60oil_$3wtr and DSU Net Revenue at $50oil_$4wtr ........................................................ 136 

103 Factorial plots for main effects and interactions for DSU well count, EOR development 
timeline, and injectate from the fitted regression model for Set 1 for the target variable: 
$60oil_$3wtr and $50oil_$4wtr .......................................................................................... 137 

104 Summary of the fitted regression model output for Set 2 for the target variable: DSU 
incremental oil production ................................................................................................... 138 

 
Continued . . . 

 
 
 



 

xiii 

LIST OF FIGURES (continued) 
 

105 Factorial plots for main effects and interactions for injection rate, injection time,  
soak time, and production time from the fitted regression model for Set 2 for the target 
variable: DSU incremental oil production ........................................................................... 140 

106 Summary of the fitted regression model output for Set 2 for the target variable: DSU 
incremental water production .............................................................................................. 140 

107 Factorial plots for main effects and interactions for injection rate, injection time,  
soak time, and production time from the fitted regression model for Set 2 for the target 
variable: DSU incremental water production ...................................................................... 142 

108 Summary of the fitted regression model output for Set 2 for the target variable: DSU 
incremental gas production .................................................................................................. 142 

109 Factorial plots for main effects and interactions for injection rate, injection time,  
soak time, and production time from the fitted regression model for Set 2 for the target 
variable: DSU incremental gas production .......................................................................... 144 

110 Summary of the fitted regression model output for Set 2 for the target variable:  
DSU Net Revenue at $60oil_$3wtr and DSU Net Revenue at $50oil_$4wtr ..................... 144 

111 Factorial plots for main effects and interactions for injection rate, injection time,  
soak time, and production time from the fitted regression model for Set 2 for the target 
variable: $60oil_$3wtr and $50oil_$4wtr  .......................................................................... 146 

112 Pairwise plots of the three DSU production metrics and four EOR operational  
parameters ............................................................................................................................ 148 

113 Crossplots of observed and predicted DSU incremental oil production from four ML 
algorithms fitted to the training set ...................................................................................... 149 

114 Crossplots of observed and predicted DSU incremental oil production from four ML 
algorithms fitted to the training data set, and then evaluated on the test set ....................... 150 

115 Bar charts showing the r2 values between training and test sets for each of the four ML 
models for predicting DSU oil, water, gas production, and net revenue ............................. 152 

116 Variable importance diagram for the four ML models for predicting oil production ......... 153 

117 Predicted DSU incremental oil production based on the predictive models built using  
four ML algorithms: linear regression, SVM, RF, and XGBoost ....................................... 154 

118 Correlation matrix plot of the full operational matrix and the predicted oil production  
from each of the four predictive models: linear regression, SVM, RF, and XGBoost ........ 154 

 
Continued . . . 

 



 

xiv 

LIST OF FIGURES (continued) 
 

119 Contour plots of predicted DSU incremental oil production for three combinations of  
input parameters: injection rate vs. injection time, injection rate vs. soak time, and  
injection rate vs. production time for each of the four ML algorithms ............................... 155 

120 Contour plots of predicted DSU incremental oil production for each of the four ML 
algorithms, showing injection rate on the y-axis, production time fixed at the median  
value, and soak time fixed at either 5 days or 20 days ........................................................ 157 

121 Correlation matrix plot of the full operational matrix and the predicted water production 
from each of the four predictive models: linear regression, SVM, RF, and XGBoost ........ 158 

122 Contour plots of predicted DSU incremental water production for each of the four ML 
algorithms and three combinations of input parameters: injection rate vs. injection time, 
injection rate vs. soak time, and injection rate vs. production time ..................................... 159 

123 Correlation matrix plot of the full operational matrix and the predicted gas production  
from each of the four predictive models: linear regression, SVM, RF, and XGBoost ........ 161 

124 Contour plots of predicted DSU incremental gas production for each of the four ML 
algorithms three combinations of input parameters: injection rate vs. injection time,  
injection rate vs. soak time, and injection rate vs. production time ..................................... 161 

125 Comparison of five cases for calculating net revenue against the base case of $60/stb  
oil and $/bbl water ............................................................................................................... 162 

126 Contour plots of predicted DSU net revenue for each of the four ML algorithms and  
three combinations of input parameters: injection rate vs. injection time, injection rate  
vs. soak time, and injection rate vs. production time ........................................................... 163 

127 Sobol sensitivity indices for the SVM model for predicting DSU incremental oil  
production ............................................................................................................................ 164 

128 Percentage of Bakken EOR pilot tests by EOR injectate types ........................................... 169 

129 Schematic of the gas injector and offset producer wells and horizontal laterals in the  
Hess propane EOR pilot test ................................................................................................ 170 

130 Monthly gas injection rate in the Hess propane EOR pilot test ........................................... 171 

131 The daily fluid production rate and propane injection rate in M1 and C3_Inj,  
respectively, for the Hess propane EOR pilot test: A, gas; B, oil; and C, water ................. 172 

132 Monitoring of propane concentration in the gas stream produced from M1 and the  
propane injection rate in C3_Inj for the Hess propane EOR pilot test ................................ 173 

 
Continued . . . 

 



 

xv 

LIST OF FIGURES (continued) 
 

133 Illustration of the 7-well DSU model identifying the MB and TF wellbores and the wells  
that were used for rich gas injection or production, as described in the text ....................... 174 

134 General layout of the UI showing the Welcome page ......................................................... 181 

135 Tracer Injection page of the UI showing the rich gas EOR reservoir simulation results  
for injection Well MB2 and the oil, water, and gas production rates .................................. 182 

136 Tracer Injection page of the UI showing the BHP tab for Wells MB2, TF2, and TF3 for  
the given conditions of gas injection rate of 18 MMscfd, closed external offset  
production wells, and 7500-psi injection well BHP ............................................................ 183 

137 Tracer Injection page of the UI showing the Tracer tab for Wells MB2, TF2, and TF3  
for the given conditions of gas injection rate of 18 MMscfd, closed external offset 
production wells, and 7500-psi injection well BHP ............................................................ 184 

138 Tracer Injection page of the UI showing the Cumulative Production tab for Wells MB2, 
TF2, and TF3 for the given conditions of gas injection rate of 18 MMscfd, closed  
external offset production wells, and 7500-psi injection well BHP .................................... 184 

139 Tracer Injection page of the UI showing the Production Rate tab for Wells MB2, TF2,  
and TF3 for the given conditions of gas injection rate of 18 MMscfd, closed external  
offset production wells, and 7500-psi injection well BHP .................................................. 185 

140 Propane Injection page of the UI showing the Tracer tab for Wells MB2, TF2, and TF3  
for the given conditions of gas injection rate of 18 MMscfd, closed external offset 
production wells, and 7500-psi injection well BHP ............................................................ 186 

141 Quantile plots of the modeling performance evaluated by r2 and RRMSE values for the 
training and test sets of EOR rich gas or propane injection ................................................ 188 

142 Prediction page of the UI showing results of the XGBoost predictions of cumulative oil, 
water, and gas production for Wells TF2 and TF3 for rich gas injection with tracer, open  
and closed offset wells, and two different sets of user inputs: 18-MMscfd injection rate  
and 7500-psi injection well maximum BHP and 9.1-MMscfd injection rate and  
3750-psi injection well maximum BHP .............................................................................. 190 

143 AHM workflow ................................................................................................................... 193 

144 Illustration of the seven-well DSU model identifying the MB and TF wellbores and the  
well that was used for rich gas injection or production, as described in the text ................ 194 

145 Representation of a simple feedforward NN showing input, hidden, and output layers ..... 195 
 

Continued . . . 
 
 



 

xvi 

LIST OF FIGURES (continued) 
 

146 Simulation results for the 40 initial simulation cases for Well TF3 a) oil rate, b) gas  
rate, and c) water rate ........................................................................................................... 196 

147 Simulation results of the 120 history-matching solutions with global errors smaller than  
the error constraints for Well TF3 a) oil rate, b) gas rate, and c) water rate ....................... 197 

148 Simulation results of the best solution for Well TF3 a) oil rate, b) gas rate, and  
c) water rate ......................................................................................................................... 198 

149 Prior and posterior distribution of the four uncertain fracture parameters from the 120 
solutions with global errors smaller than the error constraints for Well TF3: a) fracture 
height, b) fracture half-length, c) fracture conductivity, and d) fracture initial water 
saturation .............................................................................................................................. 199 

150 Parallel coordinate plot of the four uncertain fraction parameters for all 160 simulation  
cases of well TF3, showing the 40 non-history-matching solutions, 120 history- 
matching solutions, and the best solution ............................................................................ 200 

151 Comparison of manually tuned and EDFM–AI–AHM-tuned history-matching results  
for the cumulative oil production of the well group of Wells MB2, MB3, TF2, and TF3. . 201 

152 Comparison of EOR predictive results for the well group using the manually tuned and 
EDFM–AI–AHM-tuned reservoir simulation models ......................................................... 202 

153 Percentage difference between EOR predictive results for the well group using the  
manually tuned and EDFM–AI–AHM-tuned reservoir simulation models ........................ 202 



 

xvii 

LIST OF TABLES 
 

1 Reservoir Temperatures and Crude Oil Densities and Viscosities .......................................... 5 

2 Sample Dimensions and Properties Determined by Helium Porosimeter and NMR ............ 15 

3 Comparison of Rich Gas Flow-Through Test Parameters .................................................... 26 

4 Proposed Injection Composition ........................................................................................... 44 

5 Summary of Simulation Results with Different Injection Conditions .................................. 50 

6 Maximum Operating Conditions During Compressor Operations ........................................ 56 

7 Test Matrix for Determination of IFT ................................................................................... 66 

8 Samples Selected for Use in Contact Angle Studies ............................................................. 68 

9 Design of Contact Angle Measurement ................................................................................ 69 

10 IFT and Contact Angles Used in the Determination of Relative Permeability ..................... 72 

11 Idealized Chemical Compositions of Minerals in This Study ............................................... 77 

12 Dynamic Elastic Parameters of Four Middle Bakken Samples and Corresponding BI ........ 83 

13 Essential Parameters for Wells in the DSU Located in Dunn County, North Dakota .......... 86 

14 Essential Parameters for Wells in the DSUs Located in Williams County, North Dakota ... 90 

15 Components in the EOS Models for the Dunn and Williams Sites ....................................... 93 

16 Basic Well and Fracturing Data for the Simulated Wells in the Dunn Site .......................... 96 

17 Basic Well and Fracturing Data for the Simulated Wells in the Williams Site .................... 98 

18 Well Interference Test Design in the Dunn and Williams Sites .......................................... 101 

19 Operational Parameters Considered in the EOR Sensitivity Study ..................................... 106 

20 Parameters for Rich Gas EOR with Conformance Control in the Williams Site ................ 119 

21 Set 1 Reservoir Simulation Case Matrix Referencing the Well Counts Shown in  
Figure 96 .............................................................................................................................. 124 

22 Descriptive Statistics for Set 2 Reservoir Simulation Case Matrix..................................... 125 

23 Performance on the Training and Test Sets for Each of the Four Algorithms for the  
Target Variables of Oil, Water, and Gas Production and Net Revenue .............................. 151 

 
Continued . . . 

 



 

xviii 

LIST OF TABLES (continued) 
 

24 Summary of Bakken EOR Pilot Tests Used to Screen Candidate RTVFC Methods. ......... 167 

25 Summary of Available Data for the Previous Bakken EOR Pilot Tests ............................. 169 

26 Composition of the EOS for Gas Breakthrough and EOR Simulations .............................. 175 

27 Propane Injection Reservoir Simulation Case Matrix for the 28 Simulations .................... 176 

28 Injection–Soaking–Production Cycles in the HnP Process ................................................. 177 

29 Change of Well Status for MB2 in Different HnP Stages When All of the Offset Wells 
MB1, MB3, TF1, TF2, TF3, and TF4 Were Kept Open ..................................................... 177 

30 Change of Well Status for MB2, TF2, and TF3 in Different HnP Stages When External 
Offset Wells MB1, MB2, TF1, TF2, TF3, and TF4 Were Closed ...................................... 177 

31 Hyperparameters of the XGBoost Algorithm ..................................................................... 187 

32 Uncertain Fracture Parameters and Initial Ranges Used for the EDFM–AI–AHM 
Simulations for Wells MB2, MB3, TF2, and TF3 .............................................................. 194 

33 Simulation Case Matrix Used for EOR Predictive Results Comparison ............................ 201 

34 Milestones ........................................................................................................................... 206 

 



 

xix 

NOMENCLATURE 
 
 
2D  two-dimensional 
3D  three-dimensional 
A/A  aromatic/aliphatic 
AHM  automatic history matching 
AI  artificial intelligence 
API  American Petroleum Institute 
bbl  barrel 
BDA  big data analytics 
bfpd  barrels of fluid per day 
BHP  bottomhole pressure 
bhp  brake horsepower 
BI   brittleness index 
BIC  Bayesian information criterion 
bpd  barrel per day 
bpm  barrels per minute 
BPS  Bakken petroleum system 
CA  contact angle 
CCE  constant composition expansion 
CMG  Computer Modelling Group 
CO2  carbon dioxide 
CT  computed tomography 
DFN  discrete fracture network 
DI  deionized 
DOE  U.S. Department of Energy 
DSU  drill spacing unit 
ECDF  empirical cumulative distribution function 
EDFM  embedded discrete fracture model 
EDFN  embedded discrete fracture network 
EDS  energy-dispersive spectroscopy 
EERC  Energy & Environmental Research Center 
EOR  enhanced oil recovery 
EOS  equation of state 
fc  fracture conductivity 
FESEM field emission scanning electron microscopy 
FID  flame ionization detection 
fsw  fracture initial water saturation 
FVF  formation volume factor 
GC  gas chromatography 
GOF  global objective function 
GOR  gas:oil ratio 
HC  hydrocarbon 
HnP  huff ‘n’ puff 
IC  isoalkanes 
IFT  interfacial tension 
IP  initial production 



 

xx 

LB  Lower Bakken 
LBS  Lower Bakken Shale 
LHS  Latin hypercube sampling 
LP  Lodgepole 
LR  Liberty Resources Management Company LLC 
MAE  mean absolute error 
MB  Middle Bakken 
MCMC Markov Chain Monte Carlo 
MINC  multiple interacting continua 
ML  machine learning 
MM  million 
MMP  minimum miscibility pressure 
MMscf  million standard cubic feet 
MMscfd million standard cubic feet per day 
MP(I)R monthly production (and injection) rates 
MW  molecular weight 
NC  normal alkanes 
NDGS  North Dakota Geological Survey 
NDIC  North Dakota Industrial Commission 
NETL  National Energy Technology Laboratory 
NGL  natural gas liquid 
NMR  nuclear magnetic resonance 
NN  neural network 
NNC  nonneighboring connection 
Pa  pascal 
PSD  particle-size distribution 
PVT  pressure, volume, temperature 
RF  random forest 
RMSE  root mean square error 
RRMSE relative root mean square error 
RTVFC real-time visualization, forecasting, and control 
SRV  stimulated reservoir volume 
stb  stock tank barrel 
stbd  stock tank barrel per day 
STP  standard temperature and pressure 
SVM  support vector machine 
Sw  water saturation 
TDS  total dissolved solids 
TF  Three Forks 
Tmax  thermal maturity 
TOC  total organic carbon 
UB  Upper Bakken 
UBS  Upper Bakken Shale 
UI  user interface 
VIT  vanishing interfacial tension 
WHP  wellhead pressure 
xf  fracture half-length 
XGBoost extreme gradient boosting 



 

xxi 

XRD  x-ray diffraction 
XRF  x-ray fluorescence 



 

xxii 

SUBTASK 3.1 – BAKKEN RICH GAS ENHANCED OIL RECOVERY PROJECT 
 
 
EXECUTIVE SUMMARY 
 
 Total in-place oil for the Bakken petroleum system (BPS) (which includes the Bakken and 
Three Forks Formations) has been estimated to be 600 billion barrels (bbl). However, BPS wells 
have decline rates as high as 85% over the first 3 years of their lives, and primary recovery factors 
typically range from 3% to 10% of original oil in place. Given the low initial recovery rates, even 
small incremental productivity improvements could dramatically increase technically recoverable 
oil in the BPS. One potential solution is enhanced oil recovery (EOR) using gas injection, such as 
carbon dioxide (CO2) or hydrocarbon (HC) gases. While commonly used in conventional 
reservoirs, CO2 EOR in unconventional tight oil reservoirs has been limited to pilot tests. EOR 
using rich gas (mixture of methane, ethane, and propane) has also been employed in numerous 
pilots in several unconventional plays and has recently been successfully applied in the Eagle Ford 
play. If successful, large-scale gas-based EOR in the BPS could dramatically increase oil 
productivity and recovery factors and extend the life of the play for decades. 
 
 While CO2 may be a technically suitable working fluid for EOR in the BPS, supplies are 
limited and costs for using CO2 in EOR pilots are prohibitively high. Meanwhile, produced gas 
flaring has presented challenges for BPS operators in North Dakota. Analysis conducted by the 
North Dakota Pipeline Authority indicates that the current gas-gathering infrastructure in North 
Dakota is insufficient to accommodate all of the associated gas that is produced from the BPS. The 
geographically isolated location of North Dakota relative to large natural gas markets, combined 
with suppressed natural gas prices, has made it economically challenging for industry to invest 
capital in expanding gas-gathering infrastructure in the state. These circumstances led to a research 
program conducted by the Energy & Environmental Research Center (EERC) in partnership with 
Liberty Resources Management Company LLC (LR) to examine the potential to use rich gas 
injection for EOR and mitigate flaring.  
 
 A rich gas EOR pilot test was designed and executed by LR at its Stomping Horse 
development area in Williams County, North Dakota. From July 2018 through May 2019, a total 
of 160 million standard cubic feet (MMscf) of rich produced gas was injected into the BPS using 
five different wells in a sequential injection strategy. LR’s Leon–Gohrick drill spacing unit (DSU) 
was used as the test site. Regulatory oversight was provided by the North Dakota Industrial 
Commission (NDIC). Technical support was provided by the EERC through a series of laboratory, 
modeling, and field-based activities, and additional post-pilot research activities incorporated 
learnings from the test, developed new laboratory data, improved fracture modeling methods, and 
developed machine learning and big data analytics. 
 

The results from the Stomping Horse rich gas EOR pilot activities indicate that developing 
an effective, economical EOR approach for the BPS will require more field tests. Another key 
lesson learned from the Stomping Horse tests is that detailed pre- and posttest data on reservoir 
conditions and fluids production are essential. Robust reservoir characterization provides 
information that is crucial to creating realistic geomodels and conducting valid dynamic 
simulations of potential EOR scenarios. A detailed understanding of the completions and 
production history of offset wells is also necessary for valid test result interpretations. This 
knowledge is essential to designing the operational parameters of injectivity tests and interpreting 
the results. A conformance control strategy is also essential to success.  
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Laboratory-based examinations of rich gas interactions with reservoir fluids and rocks were 
conducted, with an emphasis on determining the ability to mobilize oil in the tight reservoir rocks 
and shales of the BPS. Injection fluid composition was shown to have a positive impact on 
reducing reservoir oil minimum miscibility pressure (MMP), reducing interfacial tension (IFT), 
and altering wettability. IFT and contact angle measurements demonstrated that wettability can be 
altered in the presence of rich gas, suggesting the potential to improve oil recovery. 
 

Iterative modeling of surface infrastructure and reservoir performance using data generated 
by the various project activities was conducted. A geologic model of the Stomping Horse area was 
built; history-matched oil, gas, and water production was used in simulations of various EOR 
scenarios. Early programmatic modeling results were used to support LR’s design and operation 
of the EOR pilot and to provide insight regarding optimization of future commercial-scale BPS 
EOR design and operations. Post-pilot modeling focused on alternative methods of understanding 
complex fracture networks and accelerating simulation time. These led to improved simulation run 
times and provide excellent history-matching results. Several of these iterative models were used 
as the bases for developing algorithms into machine learning and big data analytics. 
 
 History matching in reservoir simulation is time-consuming and computer processing-
intensive. Machine learning algorithms were created, and an automated history-matching tool was 
developed. A large set of synthetic reservoir simulations were created to generate well responses 
(oil, gas, and water production, well bottomhole pressure [BHP], and tracer or propane 
breakthrough) for a set of EOR operating parameters that included offset well status (open or 
closed), injectate (rich gas or propane), injection rate, and injection well BHP. A user interface 
was developed to provide real-time visualization. Machine learning-based models were developed 
to provide rapid forecasting of well performance given a set of user-defined EOR operating 
parameters. These predictive models allow the user to modify the offset well status, injection rate, 
and injection well BHP and rapidly forecast future production performance. The combination of 
real-time visualization tools with real-time forecasting tools provides a framework for real-time 
control—operational changes that the EOR site operator can enact (e.g., changing gas injection 
rates) to affect the observed performance and potentially improve the EOR outcome. 
 
 There is great reason to be optimistic about the future of EOR in the Bakken. The results of 
the laboratory studies suggest significant potential for high rates of oil mobilization using produced 
field gas injection under the right conditions. The results of the lab studies, combined with rigorous 
statistical analysis of well production data and associated modeling efforts, confirm the notion that 
fluid mobility within the reservoir is controlled by fractures. As more knowledge is gained about 
the nature and distribution of fracture networks in the Bakken, the industry will be in a better 
position to predict and, ultimately, influence fluid mobility. New field tests are necessary to 
develop a more complete understanding of those conditions. Thoughtful and creatively engineered 
field tests within a well-characterized geologic setting will yield the fundamental knowledge 
needed to take Bakken oil production to the next level. 
 
 This subtask was cofunded through the EERC–U.S. Department of Energy Joint Program 
on Research and Development for Fossil Energy-Related Resources Cooperative Agreement 
No. DE-FE0024233. Nonfederal funding was provided by the North Dakota Industrial 
Commission’s Oil and Gas Research Program and Computer Modelling Group.
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SUBTASK 3.1 – BAKKEN RICH GAS EOR RESEARCH EFFORTS: OVERALL 
OBSERVATIONS AND CONCLUSIONS 

 
 
OBSERVATIONS 
 
 The laboratory, modeling, and field-based activities conducted by the Energy & 
Environmental Research Center (EERC) over the course of Subtask 3.1 yielded valuable insight 
regarding the potential for using rich gas injection as a means of enhanced oil recovery (EOR) in 
the Bakken petroleum system (BPS). Key observations from the project include the following: 
 

• Minimum miscibility pressure (MMP) was not achieved in the reservoir during the pilot 
test. Achieving MMP in a reservoir at an advanced state of depletion requires 
considerable quantities of injection gas or, perhaps, the use of water injection as a means 
of pressurization prior to gas injection.  
 

• Reservoir surveillance and monitoring data demonstrate the injected gas can be controlled 
and contained within the DSU (drill spacing unit). 

 
• Injection fluid composition has a large impact on reservoir oil MMP, and enriching 

produced gas with additional ethane and/or propane before injection will favorably alter 
reservoir response. The lower MMP achievable with enriched gas would also allow for 
using less injection gas for initial repressuring of the reservoir and continuation of 
injection operations at lower pressure. 

 
• Injection of rich gas (ca. 70/20/10 methane/ethane/propane) produced from the BPS can 

achieve MMP at pressures that are similar to the pressures required by CO2, 
approximately 2420 psi. Methane requires very high pressures to achieve MMP:  
4200 psi. Ethane requires approximately 1350 psi to reach MMP and propane about  
550 psi to achieve MMP. 

 
• Adding NGLs (natural gas liquids) like ethane and propane to produced gas is an efficient 

way to lower MMP if excess NGLs are available.  
 

• At pressures above MMP, phase partitioning occurs between the thousands of complex 
HC (hydrocarbon) components in crude oil and the injected gas. The HC composition of 
both the injectant-dominated phase and the bulk crude oil phase continually changes with 
pressure and temperature. The oil-rich phase has higher molecular weights, viscosities, 
and densities (lower API [American Petroleum Institute] gravities) after exposure to all 
tested injection fluids, but propane shows the least negative changes, since it vaporizes 
the broadest spectrum of liquid HC components. 

 
• Results of HC extraction experiments from core specimens are consistent with the 

miscible-phase sampling experiments, as would be expected based on the concentration 
gradient/diffusion extraction mechanism that appears to be a major factor controlling rock 
extractions. 
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• At 5000 psi, produced gas does nearly as well as propane at extracting the bulk of HCs 
from core samples. However, even at 5000 psi, methane can only slowly extract heavier 
HCs. 
 

• The traditional fracture system model used for simulation can replicate the depletion and 
evaluate the EOR mechanisms using a small-scale model, but it encounters numerical 
challenges in the gas injection simulation at larger scale and has difficulties handling 
strong interference effects between wells. 

 
 
CONCLUSIONS 
 
 The results and lessons learned from the Stomping Horse rich gas EOR pilot activities 
indicate that developing an effective, economical EOR approach for the Bakken will require more 
field tests. Robust reservoir characterization and understanding of the behavior of the injected fluid 
in the reservoir are necessary to create realistic geomodels and conduct valid dynamic simulations 
of potential EOR scenarios. This knowledge is essential to designing the operational parameters 
of injectivity tests and interpreting the results.  
 
 There is great reason to be optimistic about the future of EOR in tight oil formations such as 
the Bakken. The results of EERC laboratory studies suggest significant potential for high rates of 
oil mobilization using both CO2 and produced field gas injection under the right conditions. The 
results of the lab studies, combined with rigorous statistical analysis of well production data and 
associated modeling efforts, confirm the notion that fluid mobility within the reservoir is controlled 
by fractures. As more knowledge is gained about the nature and distribution of fracture networks 
in the Bakken, the industry will be in a better position to predict and, ultimately, influence fluid 
mobility. New field tests are necessary to develop a more complete understanding of those 
conditions. Improvements in modeling software specifically designed to address challenges 
inherent in unconventional tight reservoirs, combined with the application of machine learning and 
artificial intelligence to reservoir surveillance data processing and interpretation, will streamline 
the design and execution of future EOR pilots. Thoughtful and creatively engineered field tests 
within a well-characterized geologic setting will yield the fundamental knowledge needed to take 
Bakken oil production to the next level.  
 
 
ACKNOWLEDGMENTS 
 
 The authors acknowledge the tremendous personal commitments and contributions to this 
work made by Mark Pearson, Gordon Pospisil, Duane Fadness, Ken Tompkins, Paul Weddle, 
Jeremy McChesney, and Stacy Strickland of Liberty Resources, as well as Bryan Bugg and 
Tammy Kaier formerly of Liberty Resources. The authors also acknowledge and thank Jared 
Ciferno, Gary Covatch, and Olayinka Ogunsola of the U.S. Department of Energy (DOE) for their 
support of this program. The modeling work conducted under this program was made possible by 
contributions of software licenses from Computer Modelling Group (CMG) and Schlumberger 
Oilfield Services. 



 

3 

BACKGROUND 
 
 DOE has taken a leading role in developing programs aimed at advancing energy options to 
fuel the American economy, strengthen security, and improve the environment. With respect to oil 
and gas, enhanced resource production and environmentally prudent development of resources are 
priorities for the National Energy Technology Laboratory’s (NETL’s) Natural Gas and Oil 
Program. To support NETL in its goals, the EERC is currently conducting a project as part of the 
EERC–DOE Joint Cooperative Agreement Subtask 3.1 entitled “Bakken Rich Gas Enhanced Oil 
Recovery Project.” The overall goal of the project is to determine the feasibility of reinjecting 
captured rich gas into a Bakken reservoir for EOR. Laboratory, modeling, and field-based 
activities conducted by the EERC since July 2017 have focused on supporting a pilot-scale rich 
gas EOR field test being conducted by Liberty Resources Management Company (LR) at the 
Stomping Horse complex in western North Dakota. Early observations from the site-specific work, 
combined with the results of recently completed DOE-funded efforts at the EERC to examine the 
use of CO2 for EOR in the Bakken, have led to a recognition that broad application of rich gas for 
EOR throughout the Bakken play will require data beyond what can be generated by the current 
activities at Stomping Horse.  
 
 To expand the applicability of the results of Subtask 3.1, the EERC added additional 
activities to address three technical areas. The additional efforts will support the goal of developing 
cost-effective EOR schemes that can be deployed across the Bakken and other tight oil plays. The 
additional activities will 1) improve understanding of wettability, relative permeability, and 
fracture network distribution across the Bakken in support of EOR optimization; 2) use advanced 
reservoir models to evaluate alternative injection strategies to minimize early breakthrough and 
develop optimized EOR strategies at scales beyond the Stomping Horse pilot test; and 3) use 
science-informed machine learning (ML) and big data analytics (BDA) to perform iterative 
modeling of surface and subsurface EOR components to streamline pilot performance 
assessments. This work has resulted in knowledge that is being applied in the near-term within the 
Bakken play. At the time of reporting, the scientific understanding gained from these research 
activities is supporting pilot-scale deployment of rich gas EOR in the Bakken. 
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ACTIVITY 2.0 – RICH GAS INTERACTIONS WITH RESERVOIR FLUID AND 
ROCKS 

 
 
INTRODUCTION 
 
 Laboratory-based examinations of rich gas interactions with reservoir fluids and tight rocks 
(including oil-rich shales) have been conducted. These studies focused on determining 1) the MMP 
of Bakken petroleum system crude oil with different candidate gas injectant mixtures, 2) the HC 
composition in the “miscible” phase generated by crude oil/injectant exposures, and 3) the mixed 
fluids’ ability to recover oil from rock samples collected from tight reservoir rocks of the BPS 
(Three Forks Formation and the Middle Member of the Bakken Formation) and the Upper and 
Lower Bakken Shales. All experiments were performed at relevant reservoir temperatures and 
pressures. The following provides a summary of Activity 2.0. 
 

Subactivity 2.1 – Rich Gas–Oil Fluid Behavior and Rock Extraction Studies 
 

MMP Studies 
 
 Selection of injection fluids and required pressures for EOR will depend both on their 
relative abilities to mobilize crude oil as well as their availability and costs. A fundamental 
parameter used to select and compare potential injectant fluids and operational pressures required 
for EOR is their MMP, which is the pressure required for significant mobilization of reservoir 
crude oil by the injected fluid. Therefore, to support LR’s design of an EOR scheme, the EERC 
conducted work to present a “baseline” of laboratory data to aid in the initial design of the 
Stomping Horse Field project by measuring the MMPs obtained with individual pure component 
HCs (methane, ethane, and propane), and mixtures of those HC gases that commonly occur in 
Bakken produced gas (i.e., rich gas) for crude oils from the BPS. Data generated from previous 
EERC studies on MMPs for CO2 in Bakken crude oil are presented for comparison purposes. 
MMPs were determined using a capillary-rise vanishing interfacial tension (VIT) method 
originally developed by Rao and Lee (2003), modified as described in detail (Hawthorne and 
others, 2016; Hawthorne and Miller, 2018), and validated by comparison to the traditional slim-
tube technique (Hawthorne and others, 2016; Rao and Lee, 2003; Ayirala and Rao, 2011; Ghorbani 
and others, 2014; Ahmad and others, 2016; Thomas and others, 1994).  
 
 To broaden the applicability of the study, two produced crude oil samples were collected 
from test separators in a developed area of the Bakken in North Dakota: one from a non-LR-
operated well producing from the Middle Bakken Formation and one from a LR well producing 
from the Three Forks Formation in the Stomping Horse complex. All samples were refrigerated, 
shipped, and stored in sealed glass vessels until use. Crude oil viscosities and densities are given 
in Table 1. 
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Table 1. Reservoir Temperatures and Crude Oil Densities and Viscosities 
 Reservoir Viscosity, Density, API, 
Crude Oil Temp., °C μPa·s g/mL Gravity 
Middle Bakken 110 2220 0.817 41.7 
Three Forks 127 2040 0.824 40.2 

 
 
 Similar data sets were obtained for both crude oils, with five injection test fluids, methane, 
ethane, propane, a representative produced gas mixture, and CO2. The MMPs determined with 
duplicate experiments for each test fluid with each crude oil are shown in Figure 1. MMP values 
varied dramatically with the different pure fluids for both oil samples. As expected, for both oils, 
methane has much higher MMP, about 30 MPa (4350 psi). The pressure required to achieve MMP 
with CO2 was about 17 MPa (2470 psi). Ethane required about 9.3 MPa (1350 psi), and propane’s 
MMP was even lower, approximately 3.8 MPa (550 psi) (Figure 1). Produced gas yielded 
intermediate results, about 17 MPa (2470 psi), similar to CO2. 
 
 Although the MMP data presented show that the rich gas produced from the Bakken is 
potentially useful for EOR, the excess of produced NGLs in North Dakota suggests that enriching 
produced gas with additional ethane and/or propane could be a practical way to lower MMPs and 
further enhance oil recoveries at lower pressures. Therefore, the EERC determined the effect of 
adding additional ethane and propane to produced gas on MMP values. MMP values were obtained 
with the initial HC mixtures, then ethane (or propane) was added to the mixing chamber and mixed 
overnight before the MMP with the enriched fluid was measured. This process was continued until 
propane was added to 25 mol% and ethane added to 68 mol%. 

 
 The results of added ethane and propane on MMPs are shown in Figure 2. MMPs with added 
propane decreased from 17.9 MPa (2600 psi) (with the original 70.7/22.6/6.7 mole ratio mix) to 
12.7 MPa (1840 psi) when the propane was increased to 25 mol%. Adding ethane was also 
effective in lowering MMP, with the MMP decreasing from 18.6 MPa (2700 psi) (with the original 
76/13.5/10.5 mole ratio mix) to 12.7 MPa (1840 psi) as the ethane concentration was increased to 
68 mol%. Figure 2 also shows the MMPs that might be expected if only a linear combination of 
the MMP values for the pure methane, ethane, and propane were considered (i.e., multiplying the 
MMP for each pure fluid times its mole fraction and summing those values). For example, 
estimating the MMP of the initial 70.7/22.6/6.7 HC mixture based only on the pure fluid MMPs 
and their mole ratios would yield an MMP of 24.4 MPa (3540 psi), a value about double the 
experimental MMP for the same mixture. Similar results were found for all of the mixtures 
enriched with added ethane or propane (Figure 2), showing that enriching produced gas is more 
effective at lowering MMPs than might be expected based on only the pure fluids’ MMP values 
and that estimates of produced or mixed gas MMPs based on pure component calculations may be 
too pessimistic. 
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Figure 1. Experimental MMP values for crude oils from Bakken and Three Forks 
petroleum reservoirs. The MMPs with each injection fluid for each oil were determined 
with duplicate experiments using the capillary-rise VIT technique. Error bars are based 
on the standard deviation in MMP values from the three different-sized capillaries used to 
perform each experiment. Produced gas molar ratios for methane/ethane/propane were 
69.5/21/9.5. 
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Figure 2. Effect of adding ethane or propane to produced gas on MMP values for Bakken 
crude oil at 110°C. The initial methane/ethane/propane molar fractions for the propane 
additions (orange) and ethane additions (blue) are shown in the figure. 

 
 
 In summary the results of the MMP determinations for Bakken and Three Forks crude oils 
yield several key observations that can be applied to the design and operation of an EOR project: 
 

• Rich gas mixtures (ca. 70/20/10 methane/ethane/propane) produced from the BPS can 
achieve MMP at pressures similar to the pressures required by CO2. 

 
• Methane requires very high pressures, 2 to 3 times those required by CO2 or produced 

gas, to achieve MMP. 
 
• Both ethane and propane are superior to CO2 (and produced gas), with ethane requiring 

about one-half of the pressure and propane about one-sixth of the pressure needed by CO2 
to achieve MMP. 

 
• Adding NGLs like ethane and propane to produced gas is an efficient way to lower MMP 

if excess NGLs are available. 
 

Miscible-Phase Compositional Studies  
 
 In addition to the measurement of MMP for several EOR fluids, additional experiments were 
performed to measure the variation of HC concentration in the different injection gases at different 
pressures. This information provides insight into the effects of pressure on mobilizing 
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different molecular weight species of HCs within the target reservoir. More detail can be found in 
Hawthorne and Miller (2019). The experiments were performed because conventional VIT 
experiments to measure MMP showed the continued existence of two fluid phases in the cell, even 
at pressure considerably above MMP. The upper, gas-dominated phase contained mostly injection 
fluid plus dissolved HCs, while the lower, liquid-dominated phase contained mostly bulk crude oil 
plus dissolved injection gas. The VIT test cell was modified to be able to draw samples of fluid 
from the gas-dominated phase within the cell that could then be analyzed using gas 
chromatography/flame ionization detection (GC/FID) methods (Figure 3). 
 
 

 
 

Figure 3. Test cell (left image) and cell with two fluid phases present (right image). The gas is 
percolated through a 10-mL (8-gram) oil column and equilibrated at reservoir temperature 
(23°F) and pressure (1500–5000 psi). The upper “miscible” phase is sampled while 
maintaining reservoir temperature and pressure. Dissolved HCs are collected and analyzed by 
GC/FID. 

 
 
 The experimental results show considerable variation in the ability of different injection 
gases to vaporize different amounts of oil components and, significantly, that all the tested 
injection gases continue to vaporize more and more HCs as pressure continues to increase above 
MMP. This is illustrated by the three plots shown in Figure 4. Each plot shows the same 
experiments but performed at different constant pressure conditions: 1500, 3000, and 5000 psi. All 
tests were performed at 230°F. The HC concentration, in mg/mL, is shown on the y-axis, while 
the x-axis shows the sequential samplings of the gas-dominated phase. Propane is effective at all 
pressures, ethane requires higher pressures, and methane is the least effective at all pressures. 
Produced gas is moderately effective at 5000 psi but not at lower pressures. Methane, ethane, and 
propane mass (g/mL) and molar (moles/L) densities correlate with their general abilities 
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Figure 4. 10 mL of crude oil equilibrated with 10 mL of injected C1, C2, C3, or produced gas 
in headspace at reservoir conditions before taking five sequential aliquots at 1-hour intervals. 
The error bars represent the standard deviation in HC concentrations for triplicate experiments 
at each condition.  

 
 
to mobilize crude oil HCs into the gas-dominated phase. Higher pressure does not affect propane’s 
capability nearly as much as methane and ethane since propane’s density does not change much 
above 1000 psi. Figure 5 compares the performance of methane and produced gas at different 
pressures. At 1500 psi, both methane and produced gas are poor with respect to vaporizing HC 
components; 1500 psi is below the MMP for both gases. At 3000 psi, produced gas is somewhat 
better than pure methane since the MMP for produced gas is below 3000 psi. At  
5000 psi, both improve their vaporization performance, but both remain less effective than either 
ethane or propane. 
 
 Properties of the residual liquid or oil-dominated phase were also measured. All fluid 
exposures favor the mobilization and removal of lower-molecular-weight (MW) HCs and leave 
HC residues with higher MW, viscosity, and density. Propane is the best for dissolving higher-
MW HCs and leaves behind the least viscous and lightest-residue oil. Methane and 70/20/10 
(C1/C2/C3) do not dissolve enough HCs to significantly change the residue crude, except at 
5000 psi. 
 
 The results of miscible-phase sampling experiments yield valuable insight regarding the 
effects of the key EOR operational parameters of injected gas composition and pressure on 
mobilizing different HC species. Potentially useful observations include: 
 

• All injection fluids prefer vaporized lower-MW HCs, regardless of whether pressures are 
below or above MMP. Propane does the best with higher-MW HCs; ethane is next best 
followed by CO2. Methane can only mobilize the lightest HCs, except at very high 
pressures. 
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Figure 5. Concentration of vaporized HCs in methane-rich injection phase versus produced gas-
dominated injection phase. Produced gas does not become more effective until pressure exceeds 
1500 psi. 

 
 

• Phase partitioning occurs between thousands of HC components and the injected gas. The 
HC composition of both the injectant-dominated phase and bulk crude oil phase is 
continually changing with pressure and temperature. 

 
• Residual oils have higher MWs, viscosities, and densities (lower API gravities) after 

exposure to all fluids, but propane shows the least negative changes. 
 

Rock Extraction Experiments 
 
 HC extraction experiments using a series of rich gas EOR fluids were performed using a set 
of Middle Bakken and Bakken Lower Shale core samples. Core was obtained from the North 
Dakota Geological Survey (NDGS) Wilson M. Laird Core and Sample Library on the campus of 
the University of North Dakota (Grand Forks, North Dakota), where the cores had been stored at 
room temperature since collection. Rods were drilled from the original collected 10.2-cm (4-in.) 
cores with a 12.7-mm (½-in.) core bit yielding rods with a measurement of 11.2-mm diameter and 
4−5-cm length. The selected core well location was approximately 20 miles south of and in a 
similar structural position as the LR pilot test site. It is important to note that the rock core samples 
were used as-received and that there was no pretreatment (other than drilling the core rods). Thus 
all oil HCs recovered from the rock samples were “native” (not added) HCs that were present in 
the rock samples when they were collected from the reservoir. Figure 6 shows an example 
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Figure 6. Example core specimen (left) and core holder (right). 
 
 
of the test specimens. Samples were placed in a test vessel, also shown in Figure 6, where the EOR 
test fluids were introduced around the sample at elevated temperature and pressure. It is important 
to note that the core samples were bathed or soaked in the EOR fluid and were not subjected to 
differential pressure displacement or flow-through testing. Recovered HCs were collected 
periodically and analyzed by GC/FID (kerogen not determined); 100% HC recovery was based on 
final-crushing the sample and solvent extracted after EOR fluid exposure. The experimental 
methodology is discussed in more detail in Hawthorne and others (2019). Exposures were 
performed at pressures of 1500–5000 psi and 230°F. EOR fluids used for the tests were methane, 
ethane, propane, and a 70/20/10 molar ratio mixture of C1/C2/C3 to represent produced gas.  
 
 Results from the experiments are shown in Figure 7. Each of the plots within the figure 
represents a different injection gas. Each plot contains three experiments using Middle Bakken 
samples and three experiments using Lower Bakken Shale samples. Ethane and propane are more 
effective solvents, particularly for the Middle Bakken samples. Results are more mixed for the 
methane and produced gas experiments. Higher pressure, 5000 psi, is needed for both methane and 
produced gas to approach 100% extraction of in situ HCs. 
 
 As with the miscible-phase studies, the results of the Bakken HC extraction experiments 
yield information regarding the effects of injected gas composition and pressure on the 
mobilization of oil. Key observations include the following: 
 

• The HC gas mixture that is representative of the wellhead rich gas stream produced from 
wells in the Stomping Horse complex was found to be effective at mobilizing oil from 
Middle Bakken and Bakken Shale rock samples.  
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Figure 7. Recoveries with methane and produced gas are highly dependent on pressure; 
ethane is moderately controlled by pressure; and pressure has little effect on propane. 

 
 

• Results are consistent with miscible-phase sampling experiments, as would be expected 
based on the concentration gradient/diffusion extraction mechanism that appears to be a 
major factor controlling the rock extractions. 

 
• At 5000 psi, produced gas does nearly as well as propane at extracting the bulk of the oil 

HCs. 
 
• Even at 5000 psi, methane can only slowly extract heavier HCs. 

 
Subactivity 2.2 – Rich Gas in Shale Permeability and Sorption Studies 

 
Background 

 
 The Bakken Formation is an unconventional tight oil formation that holds hundreds of 
billions of barrels of oil (Nordeng and Helms, 2010). However, the extremely low permeability 
limits primary recovery to around 10% or less. Tight oil formations like the Bakken are attractive 
candidates for EOR as they present a significant opportunity for additional oil recovery. Previous 
laboratory-based rock extraction experiments by the EERC indicate that carbon dioxide, ethane, 
and methane/ethane mixtures can mobilize oil from Bakken shales (Jin and others, 2016; 
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Hawthorne and others, 2017). Other experiments suggest that Bakken shales are capable of sorbing 
CO2 (Psarras and others, 2017; Weniger and others, 2010; Hu, 2014).  
 
 Based on these earlier studies, it was hypothesized that during a rich gas EOR pilot where 
the gas could contact organic-rich shale there could be preferential sorption of one gas species over 
another. Preferential sorption would imply that the composition of gas produced during an EOR 
operation may change and affect both surface operations and reservoir performance.  
 
 To address these issues, a flow-through experiment was designed to evaluate the potential 
migration and/or sorption of mixed gas blends in the Bakken Shales. A rich gas flow-through 
apparatus was built based on previous experience with multiphase permeability experiments 
involving brine, sCO2 (supercritical CO2), and oil.  
 
 Two samples of Upper Bakken Shale from different wells were used in the rich gas flow-
through experiments. Each test began by measuring the breakthrough of methane, ethane, and 
propane followed by a pressure drawdown to observe desorption. During testing, gas samples were 
collected and analyzed using GC. The composition of the gas blend was measured before and after 
exposure to the shale samples to evaluate preferential sorption of specific hydrocarbon gas species. 
Most of the analytic work focused on the characterization of the samples pre- and postexperiment 
at micrometer to nanometer scales.  
 

Sample Selection 
 
 Two samples were selected for testing. One sample (126950) was from North Dakota 
Industrial Commission (NDIC) well 24123, and one sample (118939) was from NDIC well 29097. 
The EERC assigns unique sample numbers as part of the EERC’s laboratory sample management 
system. Those numbers are used as identifiers for the two shale samples in this report. The 
respective well locations from which the core samples were collected are shown in Figure 8, which 
also shows the estimated thermal maturity (Tmax). There is an approximate 30-mile well separation, 
and the Tmax of 118939 is higher than that of 126950, while the estimated total organic content 
(TOC) of 126950 appears to be higher than 118939. However, as shale formations are highly 
heterogeneous, the TOC present in individual samples can fluctuate significantly, even in very 
close proximity. Sample properties are listed in Table 2. 
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Figure 8. NDGS core analysis map of Tmax for Upper Bakken Shale (2020). 
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Table 2. Sample Dimensions and Properties Determined by Helium Porosimeter and NMRa  
Sample: 118939 126950 
NDIC Well Number 24123 29097 
Depth, ft 11,056.9 10,798 
Lithofacies Upper Bakken Shale Upper Bakken Shale 
Diameter, cm 3.02 2.39 
Length, cm 3.77 2.88 
Mass, g 59.9 29.1 
Bulk Volume, mL 26.9 12.4 
Bulk Density, g/mL 2.23 2.25 
Grain Density, g/mL 2.41 2.33 
Pore Volume, mL 2.01 0.448 
Stressed Permeability, µD:     2400 psi 0.296 102.6 

4800 psi 0.117 38.59 
7200 psi 0.0543 18.90 

Porosity Helium (unconfined), vol% 7.47 3.46 
Stressed Porosity, vol%:        2400 psi 4.64 0.41 

4800 psi 3.83 0.24 
7200 psi 0.98 0.11 

Porosity NMR, vol% 2.56 (pre) 1.50 (pre) 1.69 (post) 
Total Organic Carbon, %mass 10.51 13.0–16.0b 
Hydrogen Index, mg/g TOC 137.6 100–200b 
Tmax, °C 455 440–445b 
a Nuclear magnetic resonance. 
b Indicates data from NDGS (2020). 
 
 

Test Methods 
 

MicroCT 
 
 MicroCT uses a series of x-ray images to reconstruct the 3D distribution of mass in a sample. 
The GE v|tome|x s MicroCT 240-kV microfocus x-ray CT (computed tomography) system was 
used to scan samples both before testing and after rich gas flow-through experiments. Prior to 
testing, samples were screened for sample integrity to eliminate samples with large inclusions, 
such as shell fossils, voids, or large fractures, that would negatively impact flow-through testing. 
The resulting 3D images have a voxel size around 35 µm and a 16-bit gray-scale format. MicroCT 
volume data were aligned and comparisons made before and after flow-through testing to identify 
structural changes in the sample.  
 

Nuclear Magnetic Resonance  
 
 NMR is a method in which nuclei in a strong constant magnetic field are perturbed by a 
weak oscillating magnetic field and respond by producing an electromagnetic signal with a 
frequency characteristic of the magnetic field at the nucleus. This signal can then be processed in 
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such a way to allow for the determination of pore-size distributions, effective porosity, and fluid 
typing (i.e., water vs. hydrocarbon) within a rock sample. An Oxford Geospec2 Core NMR was 
used to determine pore-size distributions and effective porosity of the two Bakken shale samples 
and to perform 2D T1–T2 mapping (fluid typing). Samples were submitted for NMR before and 
after rich gas flow-through experiments to identify changes in pore saturations and hydrocarbon 
mobilization. Unfortunately, the NMR instrument used for this project suffered a data acquisition 
system failure in the latter stages of the study which required service. The instrument was 
unavailable for the final posttest analysis; therefore, no data exist for 118939 posttest.  
 

Unstressed Porosity Measurements  
 
 A modified MetaRock PDP-300 gas porosimeter was used to measure grain volume of each 
core plug. The grain volume (VG) of a sample was determined by applying Boyle’s gas law 
equations as referenced in API RP 40 (American Petroleum Institute, 1998). Sample preparation 
involved machining of the inlet and outlet face to be perpendicular to the plug axis, and bulk 
volume (VB) was determined using a micrometer. Porosity (fraction) was calculated as ∅ = 𝑉𝑉𝐵𝐵−𝑉𝑉𝐺𝐺

𝑉𝑉𝐵𝐵
. 

Low-porosity, low-permeability samples such as Bakken Shale are challenging and require that 
the vacuum and fill steps in the porosimeter are of significantly longer duration than those required 
for conventional samples.  
 

FESEM 
 
 Electron microscopy works by impacting a surface with a beam of electrons. The resulting 
interaction provides spatial and composition information in the form of images and spectra for 
element analysis. The Hitachi SU5000 field emission scanning electron microscope (FESEM) has 
a large magnification range and nanometer resolution and allows for variable-pressure operation. 
Point and area elemental composition was measured with the included Bruker Quantax energy-
dispersive spectroscopy (EDS) system. Samples were submitted for FESEM imaging before and 
after flow-through experiments with rich gas to identify structural and chemical changes to the 
sample. 
 

Gas Chromatography 
 
 GC involves separation of sample constituents with a column followed by their measurement 
on one or more detectors. The EERC operates a Hewlett-Packard GC refinery gas-analyzing 
system (HP-5972) employing three capillary columns and five packed columns and operates with 
three detectors (two thermal conductivity and one flame ionization). This instrument requires at 
least 50 mL of sample gas at standard temperature and pressure (STP). The limit of detection for 
methane, ethane, and propane is on the order of 10–20 ppm. Repeated tests on samples of certified 
gas mixtures resulted in deviations below ±5%. GC was used to monitor changes in gas 
composition during testing. Injection and production gas compositions were compared to identify 
preferential sorption of gas species. 
 
 
 



 

17 

Pulse Decay Permeameter 
 
 A pulse decay permeameter provides measurement of permeability by monitoring the 
pressure response of the sample to a pulse of gas passed through the sample. This method provides 
accurate measurement of porosity and permeability in the 0.1 millidarcy to 1 nanodarcy ranges. 
Tests were operated using nitrogen gas at ambient temperature over a range of pore pressures and 
confining pressures to evaluate the stress sensitivity of the samples. As confining pressures are 
increased, fractures and pores are squeezed closed.  
 

Rich Gas Flow-Through Test 
 
 The rich gas flow-through apparatus shown in Figure 9 was constructed to allow for the 
measurement of injected and produced gas samples during flow-through testing. Comparing the 
injected and produced gas concentrations allows for observations of gas sorption and sorption, 
which contribute to preferential gas storage and flow-through shale reservoirs.  
 
 The injection pump supplies water to the gas transfer vessel to pressurize the 70% methane, 
20% ethane, and 10% propane mixture for core injection. After the system was filled with rich gas, 
the system was heated to 230°F (110°C) and pressurized to 5000 psi (345 bar). Initially, the 
injection side of the system was pressurized with rich gas, and the production side and sample 
were pressurized with argon up to the core injection valve (V3). Injection and production samples 
were collected for GC analysis before the start of the test to serve as a baseline.  
 
 

 
 

Figure 9. Apparatus designed for rich gas flow-through tests. 
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 The sorption test was started by setting the injection flow rate to 0.0016 mL/min and opening 
V3. The production gas pump was set to maintain a constant system back pressure. Production gas 
was sampled at approximately 2- to 4-hour increments as gas was produced out of the sample. The 
back-end volume was maintained at approximately 4 mL after each sampling event. Sampling 
continued until the produced gas composition matched the injected gas composition. At this point, 
the flow was assumed to be steady state. When testing was completed, the injection flow rate was 
stopped, and V3 was closed.  
 
 The desorption test was started after the adsorption test was completed. The purpose of this 
test was to help determine if the sample was adsorbing gas or if it was being restricted by a physical 
flow mechanism. If the sample were preferentially adsorbing a specific type of gas, then that gas 
should be released in larger concentrations as the sample was depressurized with V3 closed and 
the production valve open (V2). This depressurization was accomplished by taking gas samples 
from the production side of the core every 1 to 2 hours through the production gas-sampling valves. 
The gas samples are analyzed using GC to determine the compositional changes throughout the 
depressurization process. 
 

Results 
 

MicroCT 
 
 MicroCT data for each sample before and after flow-through testing were processed and 
compared to each other. The voxel size is approximately 35 µm for each scan. At this level of 
detail, both samples show a laminated fine grain matrix containing fractures (red arrows) along 
bedding planes and similar fossil and pyrite content. After flow-through tests, most fractures in 
both samples “healed,” which experience shows results from applying confining pressure at 
temperature and pressure. One exception to this is the appearance of a fracture perpendicular to 
the plug axis for Sample 118939 posttest (yellow arrow) (Figure 10). This fracture may have 
occurred during the test or was the result of damage during posttest handling. It is not expected to 
be significant. 
 
 Sample 126950 appears to be more heavily fractured than 118939 before flow-through 
experiments. After the flow-through experiment, most fractures disappear, meaning that they are 
smaller than 35 µm (Figures 10 and 11). 
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Figure 10. Sample 118939 MicroCT cross sections showing pretest fracture (red arrow), posttest 
fracture “healing,” and handling damage (yellow arrow). 

 
 
 

 
 

Figure 11. Sample 126950 MicroCT cross sections showing pretest fracture (red arrows) 
and posttest fracture “healing.” 
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FESEM 
 
 The outlet face of Sample 118939 was imaged using FESEM before and after testing with 
an emphasis on imaging the same scenes during each session, as shown in Figure 12. The surface 
was not coated or polished before posttest imaging which allowed for direct comparison of 
structures. Observations include the collapse of some fractures, the creation of small fractures, and 
the formation of faceted halite associated with fractures. Fracture structures show compression and 
closing as was also observed in the MicroCT scans. Figure 12 shows the removal of calcite crystals 
that are dispersed within a grain of organic matter. The dissolution appears to be concentrated near 
the center of the organic grain. The mobilization of some of these structures may be attributable to 
a small amount of water or moisture moving through the core. 
 
 No pretest imaging was performed on Sample 126950. After the test, the outlet face was 
hand-polished to 2000 grit and imaged. The most significant observation was the formation of 
halite/sylvite associated with organic solids, shown in Figure 13 (inset). These salt crystals appear 
to be dendrites, indicating they formed by diffusion-limited aggregation (Choudhury and others, 
2015). Element maps of the same area confirm that these halite/sylvite crystals are indeed 
suspended inside the organic matter particle. At lower magnification, many organic grains showed 
similar dendritic salt. The yellow circles of Figure 13 represent other instances of dendritic salts, 
showing that this occurrence was not unique in the frame. 
 
 Sample 118939 was prepared again after the critical structures were imaged to investigate 
the possible presence of diffusion-limited dendrite structures inside the internal organic-filled 
pores. The pores were surveyed, but no such structures were found. Qualitatively, it appears that 
126950 contains a higher number and/or larger-sized organic matter particles compared to  
118939 and regional NDGS data (Figure 8) shows that 126950 is located in a region with lower 
thermal maturity.  
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Figure 12. Sample 118939 organic matter pre-/posttest showing loss of calcite leaving behind 
empty cracks (yellow oval). The dissolution of this calcite could be because of the presence of 
water in this sample.  
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Figure 13. Sample 126950 (posttest) showing the presence of salt that formed dendrites inside 
of organic matter particles (yellow ovals). Inset (close-up of red oval) shows detail of this 
crystal habit also known as diffusion-limited aggregation. 

 
 

NMR 
 
 NMR is sensitive to the concentration and decay behavior of protons in the sample. These 
protons are present as hydrogen from water, hydroxyls within clay and hydrogen in organic fluids, 
and gases present in pore space. The decay behavior is governed by the fluid properties (density, 
viscosity), the wettability of pore walls and, finally, the size distribution of the pore space. The 
results reported by NMR take two forms: the two-dimensional T1–T2 map (2D NMR) and the 
one-dimensional T2 relaxation, which gives the pore-size distribution (PSD). The pore sizes in the 
PSD are in terms of T2 relaxation time which is related to pore size; as pore size increases, so does 
the T2 relaxation time.  
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 2D NMR plots correlate T2 relaxation time with the T1 relaxation time. T1–T2 maps are 
interpreted by recognizing the regions that signals occupy. Figure 14 (adapted from Fleury and 
Romero-Sarmiento, 2016) depicts the approximate locations of typical fluids present in shales. 
The ratio T1/T2 equals one for water and at low T2 times is associated with clay or organic-bound 
water. Signals with T1/T2 ≥ 2 and low T2 times are because of solid organics, bound gas, and oil. 
Signals from T1/T2 ≥2 and high T2 times represent organic fluids and gas occupying pore space.  
 
 

 
 

Figure 14. A simplified diagram of a T1/T2 map adapted from Fleury and Romero-
Sarmiento (2016). 

 
 
 There is no NMR data for the posttest Sample 118939 because of a lack of instrument 
availability. NMR indicates that Samples 118939 and 126950 are different (Figure 15). Data from 
NDGS and Rock Eval suggest that Sample 118939 is more thermally mature (Table 2). Both 
samples contain organic solids and a mobile organic liquid. In 126950, the organic liquid phase 
occupies a smaller-sized pore space compared to the same phase in Sample 118939. This can be 
seen in the T2 values: for 118939, the mobile phase is between 4.6 and 23 ms, while the mobile 
phase in 126950 is between 1.8 and 11.8 ms. 
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Figure 15. Pretest NMR pore-size distributions comparing Samples 118939 and 126950. 
 
 
 In Figure 15 (118939), there are three distinct fluid types: bound water phase (R1), organic 
solids (R2), and a mobile oil phase (R3). In stark contrast, 126950 shows one contiguous region 
(R4), containing possibly more organic solids, and has no significant bound water. Directly 
measured Rock Eval is required for identifying the types of organic matter in this sample. 
 
 Comparing pre- and postexperiment NMR data for Sample 126950 (Figure 16), clear 
evidence shows that mobile organic fluid has been moved to larger pore spaces. It appears the 
contiguous region (R4) evolved into a solid organic (R6) and mobile organic phase (R7). A signal 
from water also appears more defined from the pretest NMR and occupies R5. The water in the 
posttest sample appears to be bound to organic matter because of the low T2 relaxation time. 
 
 Figure 16 PSD plots indicate a slight increase in porosity after flow-through testing for 
Sample 126950. The pretest NMR porosity was measured at 1.56%, and the posttest porosity was 
measured at 1.69%. The shift represents a slight increase in porosity. This shift is because of both 
an increase in low T2 signal (because of water seen in R5) and the movement of fluid to large 
pores. 
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Figure 16. Comparing the pre- and post-flow-through test NMR data for Sample 126950. 
 
 

Rich Gas Flow-Through Tests 
 
 Figure 17 shows the normalized GC results for the preferential flow tests for Samples 
126950 and 118939. The relative concentrations of methane, ethane, and propane are plotted 
against the injected pore volumes of gas at the time of production gas sampling. Table 3 lists the 
flow conditions of the tests for each sample. 
 
 Plotting gas injection as unconfined pore volume allows for direct comparison of the two 
samples where the sample geometry and porosity are otherwise significantly different. The 
behavior of the two samples was distinctly different. The NMR results and helium porosity suggest 
Sample 126950 should have significantly more restrictive flow characteristics. In contrast, the 
fractures observed in MicroCT and the permeability data suggest that the fracture networks play a 
significant role in the flow distribution and contact within this sample. FESEM analysis suggested 
that 126950 contains more organic matter. If a higher organic matter content is present, this would 
increase the sorption capacity of the shale matrix (Hu, 2014). In testing, Sample 126950 does show 
a significant delay in the expected breakthrough of the rich gas. Ethane and propane break through 
at approximately 2 pore volumes injected, and methane does not break through until after 4 pore 
volumes, indicating some significant interactions between the injected gas and the rock matrix. 
Conversely, Sample 118939 shows breakthrough before 1 pore volume of fluid is injected at 
approximately 0.7 pore volumes. This along with the lower permeability measurement suggests 
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Figure 17. Preferential flow test results showing concentrations of methane, ethane, and 
propane from the produced gas compared to the baseline injected methane concentrations for 
Samples 126950 and 118939. 

 
 
Table 3. Comparison of Rich Gas Flow-Through Test Parameters 
Sample 118939 126950 
Volumetric Flow Rate, mL/min 0.0016 0.0016 
Pore Volume Exchange, 1/hour 0.048 0.214 
Apparent Cross Section, cm2 0.534 0.156 
Superficial Velocity, cm/min 0.0030 0.0103 
Residence Time, hours, assuming no interaction 20.97 4.67 

 
 
that the sample pore volume is not being completely accessed on this sample and flow may be 
concentrated through, or in proximity to, the single dominant fracture as observed in the CT data 
within Figure 10. Sample 118939 also shows a slightly delayed methane response of 
approximately 0.1 pore volumes, but it is less pronounced. The slight methane delay could be 
attributable to the presence of organic matter in Sample 118939 but in lower levels to that in 
126950, reducing gas retention. There also could be reduced retention because of a physical 
mechanism such as flow dominated by a single major fracture as shown in Figure 10. In 
comparison, it takes 6 pore volumes of production for Sample 126950 to reach the same mixed 
gas concentrations observed after 1 pore volume of Sample 118939 production. Sample 126950 
shows a capacity to sorb approximately 200% more rich gas than the calculated pore volume, and 
the sorption capacity of methane alone may be much higher at 400%–600%. Sample 118939 shows 
almost no capacity to sorb the injected gas mixture in comparison. It is possible that with extended 
contact times the injected rich gas will make contact with additional pore space.  



 

27 

 Figure 18 shows the changes in relative gas concentrations from the desorption test 
performed on both samples. If methane is preferentially sorbed, it is expected that as the pore 
pressure decreases, trapped methane should be released. There appears to be a slight trend for 
increasing methane concentrations throughout the desorption test above the baseline injection 
concentrations shown by the horizontal lines.  
 
 

 
 

Figure 18. Desorption test results for Samples 126950 and 118939 compared to injected 
gas compositions. 

 
 
 The ethane and propane concentrations seem to trend together at decreasing concentrations 
while the methane increases slightly above baseline. This supports observations from the 
preferential flow test that the methane is being held inside the sample. However, further 
investigation is required to determine the mechanism. Sampling directly into a GC instrument in 
an automated fashion is recommended for future testing to reduce air intrusion, increase the sample 
quality, and reduce noise in the data. 
 

Interpretation and Conclusions 
 
 The long delay of methane breakthrough for Sample 126950 indicates that significant 
interactions between rich gas and rock matrix are occurring. The data suggest methane is being 
preferentially sorbed over both ethane and propane. Sample 118939 was initially selected to 
accentuate the duration of this observed hydrocarbon breakthrough delay, but instead breakthrough 



 

28 

was near immediate. Sample 118939 did show the same trend of the methane gas breakthrough 
delay compared to 126950; however, the magnitude of the delay was significantly reduced. The 
overall observation indicated that there is a significant difference between the two samples that 
allows 126950 to retain a significant portion of the injected hydrocarbons while some similarities 
that still impact methane flow in 118939 but to a much lesser degree. Stress sensitivity in the 
permeability results suggests that both samples are significantly affected by fracture flow. The 
highly fractured nature of 126950 increases the gas contact with the sample as opposed to Sample 
118939, which appears to have only one major fracture visible in MicroCT data.  
 
 The NMR results show differences between the organic content between the two samples, 
with Sample 126950 having a higher organic content. This higher organic content combined with 
better gas contact within the sample appears to be responsible for the higher observed gas retention. 
NDGS data also suggest that Sample 126950 has a lower Tmax.  
 
 The presence of diffusion-limited dendrite halite/sylvite salt structures in 126950 and lack 
of similar structures in 118939 may provide some evidence that diffusion-dominated flow through 
organics plays a role in the retention of these hydrocarbons. This diffusion flow is also supported 
by the much lower unstressed porosity of only 3.46% for Sample 126950. This porosity is reduced 
to 1% or less depending on the stress regime that will have been further reduced through closure 
of the numerous fractures shown by x-ray CT (Figure 11). More investigation is required to 
determine which mechanisms dominate flow and retention of HCs in Bakken shales. 
 
 Research by Hu (2014) suggests that organic matter content plays a significant role in the 
sorptive capacity of shales. Additional testing is required to prove organic matter gas sorption is 
responsible for the observed gas retention. 
 
 One significant consequence of the observed difference in gas retention is that field operators 
could see wildly variable injection performances and storage capacities depending on the 
mechanisms controlling this gas retention and their presence in the reservoir rock matrix. This 
testing suggests that some organic-rich shales in the Bakken Formation may retain greater than 
200% more injected gas than would otherwise be calculated based on available pore space. 
Volumes may be as high as 400%–600% for high concentrations of methane injection, as shown 
in Figure 18. There is evidence to suggest that organic content and compositions of the Bakken 
shales play a major role in these observations. The retention of these gases is likely because of a 
combination of physical flow restriction and trapping within the nanoscale pores and organic 
structures. Further investigations to identify the specific driving mechanisms and the magnitude 
of their contributions will be critical for the design and application for rich gas storage and EOR 
activities in the Bakken. 
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ACTIVITY 3.0 – RICH GAS CHARACTERIZATION FOR EOR OPERATIONS 
 

Subactivity 3.1 – Rich Gas Recovery, Processing, and Reinjections 
 
 Rich gas produced in association with oil recovery is the preferred EOR fluid for the 
Stomping Horse pilot EOR operations. The project team has evaluated the quality and quantity of 
rich gas available from the appropriate Stomping Horse production separator(s) at various points 
in the complex. Modeling work has been conducted to determine compression requirements to 
achieve the desired EOR design conditions (flow, temperature, pressure, and composition). These 
activities were done iteratively in close collaboration with LR and were critical to the assessment 
of different design scenarios with respect to potential configurations of the rich gas EOR pilot. 
Specifications for gas treatment equipment and compression were developed through the process-
modeling effort. These data, combined with operational data and design parameters from the 
components of the Stomping Horse complex, have been used to develop a process model to assess 
gas treatment requirements (NGL recovery, sulfur treatment) to support injection. Results of this 
activity are integrated into modeling and simulation work reported in Activity 4. 
 

Subactivity 3.2 – Examinations of Temporal Change in Gas and Fluid Compositions 
 
 Rich gas at the wellhead commonly exists as a mixture of methane (C1) with other HCs, 
including ethane (C2), propane (C3), butane (C4), pentane (C5), hexane, and higher (C6+) 
(Wocken and others, 2012). These gas compositions, as well as the produced fluid compositions, 
may change over time in both the tight oil reservoir and surface infrastructure environments. Those 
changes may affect reservoir and process facility performance. For instance, laboratory studies by 
Hawthorne and others (2017) indicate that changes in the ratio of methane to ethane in a rich gas 
mixture can significantly alter the MMP of the gas being used for EOR which, in turn, can affect 
the efficiency of the EOR operation. Very little data are currently available in the public domain 
regarding temporal changes in gas and fluid compositions on a reservoir- or gas plant-specific 
basis. 
 
 To address this data gap, produced fluids sampling and characterization have been conducted 
throughout the demonstration project to provide data necessary for project planning, development 
of the EOR scheme, establishing baseline conditions, and assessing EOR performance. Produced 
fluids, including crude oil, produced water, and associated gas, have been collected as a mixed 
fluid or discrete fluids from a separator periodically over the course of the project.  
 

Temporal Evaluation of Bakken Fluids 
 
 Three newly completed wells, two Middle Bakken (MB) and one Three Forks (TF) 
Formation, were monitored for a period of 26 months beginning at initial production (IP). Two of 
the wells, MB1 and TF1, originated from the same well pad and were completed independently in 
the Middle Bakken and Three Forks Formations, respectively. The third well, MB2, was completed 
in the Middle Bakken Formation and is located approximately 15 miles away. Samples from each 
well were collected weekly for the first month, then monthly for 6 months, and then approximately 
quarterly thereafter. Samples were collected from the separator/treater, and analyses included gas 
composition, water chemistry, and compositional comparisons of the crude oil (HC 
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fingerprinting). Results were evaluated for temporal trends and differences between the two 
completed formations. Cumulative and daily production statistics for each well were also 
evaluated. 
 
 Gas compositional trends for the first 26 months of production for all three wells show an 
increasing methane concentration and decreasing concentrations of the remaining constituents 
(i.e., ethane, propane, butanes, and pentanes). These trends illustrated in Figures 19a and 19b were 
similar regardless of the completed formation. Nitrogen and CO2 concentrations (not shown) also 
show a slight increasing trend, and sporadic helium occurrences were detected (approximately 
200–300 ppm). Gas composition from these wells will continue to be monitored for an additional  
1 to 2 years, and results are being used as preliminary data to support modeling produced gas 
compositional changes over time throughout the basin to better understand economic recovery 
potential. 
 
 Cumulative and daily oil production rates were very similar for both wells that originate 
from the same well pad (MB1 and TF1), as shown in Figure 20. The third well, MB2, had a slightly 
less steep production decline curve and, ultimately, an approximately 30% higher cumulative 
production total after 26 months. Produced water production rates and totals were also very similar 
for the two wells on the same pad, as shown in Figure 21, while a steeper decline curve and 
approximate 30% less cumulative total is observed for the MB2 well. The difference in production 
statistics for wells in the two locations is likely a result of geographic location and/or possibly 
completion practices used. It is not unusual for production rates and water cuts of wells to vary 
significantly across the Bakken play. 
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Figure 19a (top) and 19b (bottom). Gas compositional trends for both a Middle Bakken and 
Three Forks well. 
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Figure 20. Daily and cumulative oil production for all three wells. 
 
 
 Produced water compositions were analyzed for total dissolved solids (TDS), major and 
minor cations and anions, and various other elements, including lithium. The results from all three 
wells are fairly similar over 26 months of monitoring. The two wells on the same pad, MB1 and 
TF1, exhibit an increasing concentration of TDS from approximately 260,000–270,000 mg/L up 
to slightly over 300,000 mg/L over the first 2–3 months, possibly indicating the gradual recovery 
of flowback fluid and a return to more representative formation waters. TDS concentrations then 
moderately fluctuate, as illustrated in Figures 22a and 22b, for the next 10–12 months before  
MB1 has a modest decrease in TDS and TF1 has a slight increase. No drastic fluctuations in 
production rates or volumes seem to be a contributing factor; however, field personnel have 
indicated that freshwater additions were adjusted in this time period and may be responsible for 
the fluctuations. Minor constituents for each well, as shown in Figures 23a and 23b, remain 
relatively stable over the life of the well, except lithium and iron. Lithium exhibits a slight increase 
over the first 9 months and then begins a slight decline in both wells. Iron also increases over the 
first several months in each well and then begins to increase significantly during the last 9 months. 
The iron in MB1 eventually begins to decrease as observed over the last couple months; however, 
the same decreasing trend is not yet seen in TF1. Although well maintenance may have influenced 
the produced water composition; these wells will be monitored for several more months to 
determine if trends continue. 
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Figure 21. Daily and cumulative water production for all three wells. 
 
 
 Crude oil compositional comparisons were conducted using a newly developed HC 
fingerprinting method, with results shown in Figure 24. Star plots for samples from MB1 and  
TF1 wells were very similar, while the results from the MB2 well exhibited slight differences in a 
few areas of the plot. These differences between wells from two different areas in the Bakken are 
likely dependent on facies changes across the basin. These subtle differences in key areas of sample 
chromatograms indicate that additional modifications to analytical techniques may enable the 
method to distinguish crudes from the same formation in different geographical settings and also 
distinguish between oils from different facies of the formation.
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Figure 22a (top) and 24b (bottom). Produced water compositional trends for the MB1 well. 
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Figure 23a (top) and 25b (bottom). Produced water compositional trends for TF1 well. 
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Figure 24. Star plot derived from HC fingerprinting data for all three wells. 
 
 
 Crude samples from each well were also analyzed by an aromatic/aliphatic (A/A) ratio 
analysis GC method to determine if any differences in composition between the wells existed. The 
results were also compared to previous A/A work performed on HCs extracted from the Middle 
Bakken member and the Upper and Lower Bakken Shales (UBS and LBS) to see if temporal 
changes in crude oil contributions from the various lithofacies could be determined. Crude oil HCs 
recovered from the UBS and LBS rocks consistently have higher proportions of aromatic HCs 
compared to aliphatic HCs than are present in the adjacent Middle Bakken and Three Forks 
Formations. Therefore, an upward or downward trend can indicate either more or less contribution 
from the UBS or LBS. However, the overall relative difference in ratios varies significantly from 
well to well and area to area, so determining the actual contributing lithofacies of the produced 
oils from a well can only be accurately determined on wells with available core extraction data. 
The A/A determinations for each well were plotted against overall production of each well 
independently. Figure 25 shows the A/A ratios in relation to the gas-to-oil ratio (left set) and water 
cut (right set) as production proxies. The results indicate that the A/A ratios are very similar 
between the two wells on the same pad (MB1 and TF1), with ratios averaging just slightly less 
than 2.0. These ratios do not change or fluctuate over the entire monitoring period, indicating that 
the contributing lithofacies are likely not changing during the first 26 months that monitoring 
occurred. The MB2 well also shows a relatively stable ratio of just slightly over 3.0. This ratio is 
distinctly different than the other two wells and may represent a different contributing lithofacies 
(i.e., more contribution from the shales); however, this well is approximately 15 miles away and 
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Figure 25. Scatterplots showing GOR (red, left) and water cut (blue, right) as surrogates for 
production over time and the A/A ratio, total 3-rings/C18–C24, for the temporal oil samples 
collected up to April 2020 for the temporally evaluated wells. 

 
 
represents a different geographical area that may have a different relative A/A ratio. These wells 
will continue to be monitored to see if the A/A ratio indeed begins to deviate from the first 
26 months, suggesting a change in contributing lithofacies. 
 
 Temporal monitoring of three wells, two of which were paired on a single well pad in 
different formations and starting at initial production, offered a unique opportunity to evaluate 
Bakken and Three Forks fluid characteristics and trends from several wells. A summary of the key 
findings from this effort follows. 
 

Activity 3.0 – Summary of Key Findings 
 
• Gas compositional trends for the first 26 months of production for all three wells show an 

increasing methane concentration and decreasing concentrations of the remaining constituents 
(i.e., ethane, propane, butanes, and pentanes). These findings are similar to those observed in 
an emerging EERC research project to understand produced gas composition trends across the 
Bakken. 
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• Evaluation of produced water and crude oil production statistics and compositional analyses 
are very similar overall between all wells, with slight geographical differences indicating 
possible lithofacies change and/or well stimulation approach influences. Water chemistry 
analysis was successful in illustrating an increasing trend in the first several months, indicating 
a return to native formation fluids with only moderate fluctuations thereafter. 

 
• HC fingerprinting method results for samples from MB1 and TF1 wells were very similar, 

indicating a likely similar oil source. However, results from the MB2 well exhibited slight 
differences in a few areas of the plot. These differences between wells from two different areas 
in the Bakken are likely dependent on facies changes across the basin. 

 
• The results of A/A ratio analyses indicate that the A/A ratios are very similar between the two 

wells on the same pad (MB1 and TF1), with ratios averaging just slightly less than 2.0. These 
ratios do not change or fluctuate over the entire monitoring period, indicating that the 
contributing lithofacies are likely not changing during the first 26 months that monitoring 
occurred. The MB2 well also shows a relatively stable ratio of just slightly over 3.0. This ratio 
is distinctly different than the other two wells and may represent a different contributing 
lithofacies (i.e., more contribution from the shales); however, this well is approximately  
15 miles away and represents a different geographical area that may have a different relative 
A/A ratio. These results support the findings of similarities discovered using the HC 
fingerprinting method. 
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ACTIVITY 4.0 – ITERATIVE MODELING OF SURFACE AND SUBSURFACE EOR 
COMPONENTS 

 
 
INTRODUCTION 
 
 Geologic modeling and simulation are integral parts of EOR pilot planning, operation, 
reservoir surveillance, and interpretation of results. As part of the research program, the EERC 
worked closely with LR to develop geologic models and conduct simulations to support the 
Stomping Horse EOR pilot. Horizontal wells in the Stomping Horse Complex are intensely 
hydraulically fractured, creating complex flow paths dominated by the fractures created in these 
wells, which also connect to each other either directly or indirectly through natural fractures. 
Because of the strong permeability contrast between these fractures and the matrix, as well as the 
pressure interference and fluid communication between wells, accurate simulation of dynamic 
multiphase fluid flow in the DSU becomes a very challenging task. A series of modeling and 
simulation activities were conducted in this study, aimed at effectively modeling and simulating 
the production/EOR processes to understand recovery mechanisms and potential performance. 
 

Subactivity 4.1 – Modeling of Surface EOR Components 
 
 The rich gas EOR demonstration is a dynamic process with interactive feedback between 
the injected EOR fluid and the resulting produced fluids. The complexity of these processes 
warrants a dynamic, compositional process simulator, allowing researchers to predict the behavior 
of produced fluids in response to EOR injections and the impact these produced fluids will have 
on EOR fluid availability and production equipment, such as artificial lift, separators, pumps, 
pipelines, and tanks.  
 
 The EERC built a computational process model of LR’s production equipment to simulate 
the effect EOR operations and associated changes in produced fluid rates and properties would 
have on equipment design and operations. An iterative approach between process modeling and 
reservoir simulation is anticipated, allowing output from reservoir simulation to provide input to 
production equipment performance models and vice versa. 
 
 The Leon and Gohrick surface facilities were modeled to assess whether production 
conditions altered by rich gas EOR injection activities might negatively affect or exceed design 
specifications of production equipment. The surface facilities modeled comprised primarily 
piping, phase separators, and associated process equipment, as shown in Figure 26.  
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Figure 26. Leon–Gohrick DSU surface facility process flow. 
 
 
 Based on piping and instrumentation diagrams, simplified models of Leon and Gohrick 
surface facilities were developed that included major equipment and pipe runs. These simplified 
models, along with related operating conditions and produced fluid (oil, gas, and water) property 
data, were input to a steady-state process simulator to generate predictions of equipment 
performance.  
 
 Overall, the facility process simulation work indicated that existing facility capacity would 
be adequate to accommodate any realistic production rate resulting from the planned rich gas EOR 
project design conditions. Historical peak conditions and potential production limitations are 
shown in Figure 27. Field tests of rich gas EOR in the Leon–Gohrick DSU showed that the 
reservoir-to-surface simulation procedure developed in the EERC met the requirements of EOR 
tests in the field.  
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Figure 27. Gohrick facility constraints and historical peak conditions. 
 
 

Subactivity 4.2 – Modeling of Subsurface EOR Components 
 

Methodology for Reservoir Modeling 
 
 The methodology presented in this study mainly focuses on developing geologic and 
simulation models at different scales for the Leon and Gohrick wells. These models include a 
geologic model and two simulation models: a multiwell single-fracture-stage model and a DSU 
model with embedded discrete fractures. The goal was to investigate flow behavior in tight 
reservoirs to predict gas injection EOR performance by simulating different gas injection 
scenarios. A variety of well logs and rock–fluid data sets were used to characterize the formation 
in the study area. A database with fundamental reservoir properties, including porosity, 
permeability, pore throat size, and mineral composition, etc., for the Bakken and Three Forks 
Formations was also used to support the modeling activities. Two gridding approaches, a gridding-
based planar fracture model and an embedded discrete fracture model (EDFM), were used to 
construct the fracture matrix grid blocks in the models. 
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Geologic Model Development  
 
 A Bakken/Three Forks model was created for a DSU-sized area (approx. 2 mi × 1 mi) in 
northwestern North Dakota on the western flank of the Nesson Anticline. Well tops and seismic 
data were used to correlate formation structure throughout the model area. The Lodgepole, 
Bakken, Three Forks, and Birdbear Formations were divided into several zones within the model. 
Targets of interest, the Bakken and Three Forks Formations (Figure 28), were further divided 
according to nomenclature used by NDGS (LeFever, 2007). Interpreted well logs were upscaled 
into the gridded 3D volume and distributed. Each modeled zone, as shown in Figure 29, was 
populated with geophysical properties (porosity, permeability, etc.) representative of each 
lithofacies, estimated from core measurements and geophysical logs originating within the DSU 
and the surrounding region.  
 
 

 
 

Figure 28. Well logs showing Bakken and Three Forks Formations. 
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Figure 29. Southwestern view of modeled volume. Each color represents a modeled zone, 
25× vertical exaggeration. 

 
 
 Additionally, a discrete fracture network (DFN) was created for the modeled area. A 
previously collected and processed seismic volume was used for the generation of the DFN. After 
the seismic volume was converted from time-depth to elevation-depth, a volume encapsulating the 
desired target space (Lodgepole to Birdbear) was clipped to help save computing time as well as 
to help the employed algorithm focus on local fractures. The clipped volume then was submitted 
to a preconditioning workflow to help limit non-fault-related noise on fault attributes within the 
data. Structural smoothing, dip deviation, variance (edge), and chaos attributes were all considered 
when the clipped seismic volume was preconditioned. Schlumberger’s “ant tracking” algorithm 
from its Petrel modeling software was used to detect fractures from the preconditioned seismic 
volume. Filtering out any unwanted fault dip angles and outliers was necessary during this step 
because of noise that preconditioning could not mitigate. Multiple iterations of the algorithm were 
employed to further accentuate suspected fractures in the modeled volume, culminating in a new 
seismic attribute which essentially contains detected fractures. Aperture and permeability 
attributes were then edited manually before upscaling the detected fractures into the gridded 3D 
volume. These values are typically gathered from measured core, image logs, or thin sections but 
were not readily available from collected core; instead, values collected within the region were 
used. 
 

Equation of State (EOS) Model 
 
 Compositional reservoir simulation requires an EOS model, which was created to replicate 
the data from pressure, volume, temperature (PVT) tests in order to represent the fluid properties 
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during the simulation. PVT data parameters that were matched included bubble point pressure, 
differential liberation, constant composition expansion (CCE), separator GOR, and formation 
volume factor (FVF). To match those PVT data, the reservoir fluid sample from Gohrick 5TFH 
was characterized using a model with a total of nine fluid components. Individual lighter gas 
components were separated, and the heavier oil components were lumped into four 
pseudocomponents in order to improve simulation efficiency. Defining the gas components as 
individual components allows evaluation of different combinations of injection gas composition. 
The simulated injection gas composition was based on the project’s proposed injection plan and is 
shown in Table 4.  
 
 

Table 4. Proposed Injection Composition 
CO2 N2 C1 C2 C3 IC4–NC5 C6–C10 C11–C20 C21–C36 
1% 3% 62% 19% 9% 6% 0% 0% 0% 

 
 

Development of Simulation Models 
 
 Oil production from the low-permeability Bakken and Three Forks Formations mainly relies 
on fractures for fluid flow from the tight but oil-rich matrix to production wells. The key factors 
in unconventional oil and gas reservoir simulation include fracture–matrix flow and fracture–
matrix interactions (Jin and others, 2017b, c; Xu and others, 2017). Depending on the well and 
fracture settings, the complexity level of simulation models can be described as shown in  
Figure 30. The simple model is shown on the left. In this case, the fracture is perpendicular to the 
wellbore that was widely used in earlier simulation of unconventional reservoirs. This setting is 
convenient to set up in the model but is not representative for the case in this study. The 
nonorthogonal hydraulic fracture setting, shown in the middle, is more representative of the actual 
fracture profile in Leon and Gohrick wells; however, it increases the simulation time and numerical 
difficulties and is less convenient to set up in the model. When adding the natural fracture networks 
in the system, as shown on the right, it makes the simulation model very difficult to run with a 
multiple-well pattern. 
 
 

 
 

Figure 30. Complexity level of simulation models. 
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Multiwell Single-Fracture-Stage Modeling 
 
 To address the challenges for multiple-well-pattern simulation models of the Bakken, a 
single-stage simulation model consisting of multiple wells but only one hydraulic fracture stage 
from each well was developed based on the geologic model to consider the interference effects 
between wells (Figure 31). This approach was chosen in close consultation with LR reservoir 
engineers. The purpose of this modeling effort was to provide LR engineers with an order-of-
magnitude understanding of expected injectivity and fluid behavior in the reservoir that would 
support the design and operation of the pilot (e.g., proper sizing of surface infrastructure, including 
compression). The dual-porosity (Warren and Root, 1963) and multiple interacting continua 
(MINC) (Cai and others, 2015; Pruess and Narasimhan, 1985; Pruess, 1992) methods were tested. 
Both methods allow each simulation block to have up to two porosity systems in an attempt to 
solve the interblock flows between fracture–matrix systems. However, the models with those 
systems would not be able to execute properly in the compositional simulator because of the 
complexity, the extremely low matrix permeability in shale, and interblock matrix-to-fracture flow 
challenges in those systems. Therefore, a grid-based approach for multiple hydraulic fractures was 
created. Using this approach requires generating a reasonably fine grid representation of the 
fracture using a planar hydraulic fracture model to represent the corresponding number of clusters 
in each fracture stage. In this approach, it is possible to accurately model the non-Darcy response 
if it is present in the fracture. The hydraulic fracture orientation is nonorthogonal to the wellbore 
direction, based on the measured geomechanical properties of the reservoir. Utilizing this single-
stage model would mimic the fluid flow in every fracture at each single stage and the fracture 
connections/interferences of each well in the same producing unit. This design also allows a 
reasonable simulation time, assuming each single stage of fractures has the same properties and 
performs uniformly along the wellbore. Hydraulic fracture half-length was set at the length that 
would result in the fracture connections from offset wells, as this is one of the impactful parameters 
that were under investigation. These results could then be upscaled accordingly based on the total 
number of fracture stages in the well. 
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(a) 

 

 
(b) 

 
Figure 31. Illustrations of single-stage simulation model: a) top view of DSU sector model 
showing area of single-stage model, highlighted in pink; b) top view of single-stage model; 
and c) cross-sectional view of single-stage model (continued). 
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(c) 

 
Figure 31 (continued). Illustrations of single-stage simulation model: a) top view of DSU 
sector model showing area of single-stage model, highlighted in pink; b) top view of single-
stage model; and c) cross-sectional view of single-stage model. 

 
 

History Match  
 
 The single-stage model consists of seven wells in total: five Gohrick wells and two offset 
wells—one from the Leon well pad on the west and another one from North Dakota State well pad 
located immediately to the east of the Gohrick wellpad. The history match attempt was made based 
on daily operational data provided by LR and using averaged fluids production based on the 
number of stages for each well. History match efforts suggested that simulated water production 
in the first few months could not get a good match, an issue likely related to the hydraulic fracture 
cleanup period. Nevertheless, the overall fluid rate match was good for selected wells prior to the 
pilot test, e.g., Well 28441, Gohrick 5MBH (Figure 32, solid line). Although there was no 
measured and recorded bottomhole pressure (BHP) for that producing period, it was believed that 
the bottomhole flowing pressure would be below 1000 psi, based on operator insight. It was found 
that to reduce the simulated BHP response to below 1000 psi by using matrix permeability 
reduction, the gas rate match was compromised (Figure 32, dotted line), although oil and water 
rate matches were intact. BHP reduction became a continuing challenge while honoring fluid 
production rates. A possible reason for this limitation is that the model averages production for 
each stage and neglects the geologic heterogeneity along the wellbore. It also neglects the fact that 
practical fracture performance can be different for each stage from heel to toe. Although limitations 
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Figure 32. History match of Gohrick 5MBH fluid rates and BHP. Dotted lines show model 
results from lower permeability scenario, resulting in lower pressure response. 

 
 
exist, the model served its purpose in guiding the design of the Stomping Horse pilot infrastructure 
and providing insight into how gas injection EOR operations could improve existing well 
performance. 
 

EOR Forecasting 
 
 During the EOR evaluation, a wide variety of different injection cycles, injection volumes, 
pressures, and injection fluid compositions were evaluated. A detailed discussion of the simulation 
parameters, assumptions, and approaches is beyond the scope of this report. The EOR scenarios 
described and discussed below were selected to serve as illustrative examples that predict how 
different operational parameters may affect EOR operations in a Bakken reservoir.  
 
 Injection/production scenario tests of 1 and 3 months suggest that to inject gas at 1 MMscfd 
for 1 month would not result in significant oil recovery improvement compared to the case that 
continues using primary depletion production. Injection rate constraints were evaluated by testing 
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1 and 3 MMscfd for each well for 3 months before returning the wells to production. It was found 
that, with the 1-MMscfd injection rate, there is no significant improvement in production compared 
to depletion. If injection at 3 MMscfd is used for 30 years, an incremental recovery of 4%  
(Figure 33) to 26% (Figure 34) is calculated. The difference between these two outcomes is 
dictated by the well producing BHP constraint assumption. If the initial BHP is low, around  
500 psi, injection of 3 MMscfd for 3 months would not be able to pressurize the formation enough 
to observe a significant EOR effect. In the other case, when the simulated BHPs for each well 
range from 1200 to 1400 psi, injecting 3 MMscfd is able to better pressurize the reservoir and 
create a 26% incremental recovery. It is noteworthy that the 1200- to 1400-psi BHP case does not 
consider the potential for reservoir blowdown to 500 psi near the end of project life, which would 
further improve recovery. 
 
 Injecting gas using a WHP (wellhead pressure) constraint of 1500 psi was also evaluated. 
Simulations showed that a 59%–63% oil recovery increment can be observed after 30 years of 
operation, and the estimated daily gas injection rate ranges between 19 and 30 MMscfd. Again, 
the difference in the result is due to the assumed producing BHP. The 500-psi BHP constraint 
results in a higher injection rate (Table 5). However, the higher injection rate results in less 
recovery. Again, the 1200–1400-psi BHP case does not consider the potential for reservoir 
blowdown to 500 psi near the end of project life, which would further improve recovery. 

 
 Different injection gas compositions were simulated to evaluate the potential effect of ethane 
and propane enrichment on incremental oil production performance. During those tests, the wells 
were constrained by an injection rate of 3 MMscfd for 3 months at each injection period and the  
 
 

 
 

Figure 33. Gohrick pad oil recovery increment with 3-month injection cycle for each well at 
constant 3-MMscfd injection rate and BHP constraint of 500 psi. Modeling predicts EOR 
operations under these conditions yield 4% incremental recovery.  
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Figure 34. Gohrick pad oil recovery increment with 3-month injection cycle for each well at 
constant 3-MMscfd injection rate, using simulation estimated BHP of 1200–1400 psi. 
Modeling predicts EOR operations under these conditions yield 26% incremental recovery. 

 
 
Table 5. Summary of Simulation Results with Different Injection Conditions 

Injection Condition  WHP 1500 psi WHP 1500 psi 
Surface Rate 3 

MMscfd 
Surface Rate 3 

MMscfd 
Producing BHP Constraint 1200–1400 psi 500 psi 1200–1400 psi 500 psi 
Expected Injection Rate Up to  

19 MMscfd 
Up to  

30 MMscfd 
3 MMscfd 3 MMscfd 

Incremental Recovery above 
Depletion 

63% 59% 26% 4% 

 
 
producing BHP constraint was kept constant for each well. Gas was injected into one well at a 
time while other wells continued producing. The MMP for each composition was calculated 
through the tuned EOS model, and it was found that enriching the ethane and propane composition 
in the injected gas would result in lower MMPs. Simulations suggested that increasing propane 
20% while reducing methane 20% could boost the production increment from ~4% to ~10%. 
Eliminating the 3% nitrogen from the gas stream would also improve performance, but the 
improvement was small. 
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Conclusions of the Stomping Horse Modeling Activities 
 
 The BPS in the Stomping Horse area was carefully characterized, and a geologic model, a 
tuned EOS model, and simulation models were developed to investigate different scenarios 
involved in the rich gas injection EOR process at the Stomping Horse Complex. Through the 
single-stage mechanistic model, simulation runs showed that gas can be injected into the tight, 
fractured Bakken Formation and gas injection has an incremental oil recovery in a 30-year 
production period when enough gas is injected. In addition, enriching the injection gas with ethane 
or propane would also improve the recovery factor. The gridding-based simplified hydraulic 
fracture description was convenient to set up, and the single-stage model could effectively simulate 
the primary depletion process and EOR process without numerical difficulties. However, this 
approach cannot be applied to the full DSU model because it will significantly increase the total 
number of grid blocks and require substantial local grid refinement for the fracture descriptions. 
Those critical challenges to the simulation process will cause slow running speed and numerical 
convergence failure because of pressure interference and fluid communication between fractures 
and wells.  
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ACTIVITY 5.0 – PILOT PERFORMANCE ASSESSMENT 
 
 

Location and Well Pattern 
 
 LR’s test site within the Stomping Horse complex, informally known as the Leon–Gohrick 
DSU, comprises Sections 8 and 17 of T.158N., R.95W. It has been fully developed with 11 wells, 
each with a nominal horizontal section of 10,000 ft, as shown in Figure 35. Six wells are completed 
in the Middle Bakken, and five are completed in the first bench, or upper part, of the Three Forks 
Formation. The first two wells, one into the Bakken and one into the Three Forks, were drilled and 
completed from the Leon-North well pad at the northern edge of the DSU prior to acquisition of 
the property by LR. Nine wells were drilled and completed by LR from two well pads constructed 
at the southern edge of the DSU. The Leon-South pad hosts two Bakken and two Three Forks 
wells, and the Gohrick pad supports three Bakken and two Three Forks wells. Figures 36 and 37 
further illustrate the well pattern in cross-sectional and 3D views. LR presented its Case No. 26035 
before NDIC on September 21, 2017, requesting approval to use the wells of the Leon–Gohrick 
DSU for injection in execution of the EOR pilot test. The project was approved as Order 28449 by 
NDIC on October 24, 2017. Equipment for the pilot injection test was installed with the intent of 
being able to direct gas to any well on either of the two southerly well pads. A stipulation of the 
permit was that only gas produced from wells within the Leon–Gohrick DSU could be used for 
the injection tests. Injection operations commenced on July 17, 2018. 
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Figure 35. Leon–Gohrick DSU well pattern. 
 
 

 
 

Figure 36. Leon–Gohrick DSU east–west cross section (not to scale). Average distance 
between two adjacent wells is ~400 ft. Average distance between two wells in the same 
formation is ~800 ft. 
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Figure 37. 3D illustration of well lateral layout of DSU (looking south). Note: The Leon 
1MBH is absent from this image. 

 
 

Hydraulic Fracturing 
 

 Wells drilled in the DSU by LR have benefitted from LR’s advanced approach to hydraulic 
fracturing (Pearson and others, 2013, DW Energy, 2016; Lolon and others, 2016; Weddle and 
others, 2017; Bommer and others, 2017), which ensures the wells are effectively stimulated. LR 
has used real-time offset data collection methods during fracturing operations to demonstrate 
fracture network connectivity between wells completed in the Bakken and between wells 
completed in the Bakken and Three Forks. The wells have been completed using cemented liners, 
then plug and perf hydraulic fracturing methodology, with the number of stages ranging from 27 
to 50 and eight to 15 perforation clusters per stage. Slickwater fracture treatments were typically 
performed at rates of 80 barrels per minute (bpm), with placement of 4 million to 6 million lb of 
proppant. 
 
 The effectiveness of the fracture treatments ensured good production performance. 
However, in the context of injecting rich gas as an EOR fluid, the apparent high degree of 
connectivity between wells was an early cause for concern with respect to building reservoir 
pressure, maintaining injection conformance, and minimizing fluid breakthrough. 
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Jet Pumps 
 
 After completion, wells were turned to natural flow for cleanup and an initial production 
period. After the period of natural flow, the wells were put on artificial lift using a jet pump system. 
Jet pumps make use of a downhole venturi nozzle arrangement to provide additional liquid lifting 
capability. A power transmission fluid (lease crude) is pumped from the surface, down the tubing, 
and through the venturi. Well production enters on the downstream, low-pressure side of the 
venturi and mixes with the power fluid before rising to the surface up the tubing/casing annulus. 
All fluids are run through the surface separation system, with a fraction of the oil recirculated as 
the power fluid. 
 
 For the Leon–Gohrick DSU, the jet pump system was designed for well production rates of 
350–2000 barrels of fluid per day (bfpd). The jet pump system offers the benefits of using a 
minimum of moving parts, minimizes well workovers and downhole costs, and is tolerant of 
produced solids. However, larger fluid volumes must be processed through the separation system, 
and metering of fluid volumes is more complex. The accurate metering of fluid volumes becomes 
more important during execution of the pilot test. Over the course of a well’s operational lifetime, 
and as a well’s total fluid production rate falls below the jet pump operating range, the system is 
replaced by conventional rod pumping equipment. 
 

Compression 
 

 Compression arrangements was one of the more challenging aspects for the pilot test. An 
ambitious project development schedule and the relatively short lifetime of the pilot test led LR to 
first arrange a short-term rental of two moderate-capability compressors while higher-pressure 
options continued to be investigated. Low- to medium-pressure compressors of this type are 
relatively available and are commonly used for gas lift operations. They can be procured from 
existing inventory with relative ease in a timely manner. LR’s rental compressors, pictured in 
Figure 38, each had a maximum discharge pressure of 1400 psi and a rate of 1.4 MMscfd.  
 
 High-pressure, large-capacity compressors tend to be custom-built to specific requirements. 
Compressors operating above 4000 bhp (brake horsepower) or requiring pressure ratings of 
5000 psi or above require 12–24-month lead time. LR was able to avoid such a long lead time by 
procuring a refurbished compressor with a maximum discharge pressure of 4200 psi at a rate of  
3 MMscfd, pictured in Figure 39. Operating conditions for both compression solutions are 
summarized in Table 6. 
 
 Compression of rich gas will always require special attention to avoid condensation of NGLs 
and compressor damage. The combination of gas composition, pressure, and temperature must be 
evaluated to maintain gas phase throughout the compressor. Liquid recovery was not intended with 
either compressor package. The compressors were operated slightly warmer than usual in an 
attempt to keep as much of the richer gas components in the injection stream as possible. Also, 
actual compression pressure was not very high (<1500 psig), so NGL knockout was low, based on 
numerical modeling efforts. During operation, there was likely some liquid accumulation in the 
compressor knockout pots, but there are no available data.  
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Figure 38. Rental compression units. 
 
 

 
 

Figure 39. Refurbished high-pressure compressor. 
 
 

Table 6. Maximum Operating Conditions During Compressor Operations 

File 
No. Well Name 

Max. 
Rate, 
Mscfd 

Max. 
Inj. 

WHP, 
psi 

Max. 
Inj. 

BHP, 
psi 

Days of 
Injection 

Cumulative 
Mscf  

30620 Leon 3TF 1143 1267 1916 20 10,822 Rental 
compressor 

30619 Leon 2MB 874 1248 NA 19 13,775 Rental 
compressor 

28441 Gohrick 
5MB 

2221 607 802 36 41,724 Refurbished 
compressor 

28439 Gohrick 
4MB 

1961 1117 1885 65 74,561 Refurbished 
compressor 

28442 Gohrick 
6TF 

2008 996 1431 15 17,410 Refurbished 
compressor 
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Field Pilot Execution 
 
 The Stomping Horse pilot testing began on July 2, 2018, with the initiation of field data 
collection. An extensive data collection and reservoir surveillance program at the site was carried 
out over the course of the pilot testing activities, including monitoring of oil, gas, and water rates; 
daily gas sampling from four nearby wellbores to be used for GC to identify changes in 
composition; BHP monitoring in six wellbores; and a tracer study. 
 
 Injection operations commenced on July 17, 2018. Injection proceeded sequentially through 
five wells, using six injection periods, until injection operations ended on May 30, 2019. A total 
of 160 MMscf was injected during that time, with periods of operational shutdown between 
injection periods. Figure 40 shows the progress of injection over time. Figure 41 indicates the 
relative well positions and sequence of injection, with the quantity of gas injected at each well. 
 
 

 
 

Figure 40. Leon–Gohrick injection pilot test profile. Smaller compressors were used for 
injection during summer 2018. Use of the larger compressor started in fall 2018. Total of  
160 MMcf of gas was injected in five wells during six different injection periods.  

 
 

 
 

Figure 41. Cross section of well pattern with injection well sequence numbered 1 through 5 
and quantities of injected gas (not to scale). 
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Injection Rates and Pressures; Production Well Responses 
 
 Daily production or injection data were collected for all 11 wells in the DSU. The specific 
data generated by these tests are considered to be proprietary and confidential by LR, and those 
data sets are not included in this report. However, trends and relationships observed in those data 
can be discussed in general terms. Some selected data on BHP relative to cumulative gas injection 
for the five injection wells are provided in Figure 42. Generally, BHP increase was modest for 
wells during their injection periods and none achieved sustained pressure above MMP. The Leon 
wells were found to be easier to pressure up than the Gohrick wells, and pressure buildup was 
easier to attain in the Three Forks wells than in the Bakken wells. The data also indicated two 
stages of pressure lifting: fracture filling and produced volume filling, with each type of filling 
displaying different slopes. Pressure rapidly fell back to preinjection level after injection stopped. 
Offset wells frequently saw a very rapid response; gas tracer breakthrough was observed within 
48 hours, often followed by an increase in GOR. Offset producing wells were typically shut in 
after observed gas breakthrough. After injection, wells returned to production experienced a brief 
transient period of production increase (flush production).  
 
 Detailed analysis of the tracer data to estimate fluid flow rates and volumes between wells 
within the Leon–Gohrick DSU were complicated by the fact that the jet pumps use oil from the 
Leon–Gohrick DSU as power transmission fluid. However, the tracers yielded information about 
injection containment within the target reservoir by serving as a unique means of monitoring for 
any migration of injected gas outside of the Leon–Gohrick DSU. Analyses for the tracers in wells 
outside of the Leon–Gohrick DSU showed only a minor concentration of tracer in one gas sample 
from the westernmost well of the North Dakota State DSU, which is located immediately to the 
east of the Leon–Gohrick DSU. In this sense, the tracer study provided evidence that the injected 
rich gas was effectively contained within the target reservoir.  
 
 

 
 
Figure 42. Relationships between BHP and cumulative gas injection for the five injection wells. 
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Interpretations from the Pilot Testing  
 
 The intent of the pilot test was to inject produced gas to locally increase reservoir pressure 
to miscible conditions which, in turn, would swell the oil and reduce viscosity so that larger 
quantities of oil could be produced when the well was returned to production and injection rotates 
to the next well. Although some degree of pressure buildup in the reservoir was achieved, with 
some wells gaining and maintaining over 1000 psi of BHP buildup, miscibility pressure between 
injection gas and oil in the fracture or matrix systems was not reached. At the start of pilot 
operations, BHP for producing wells, measured near the base of the well’s vertical section, was 
variable but in the vicinity of 500 psi. Flowing pressure at the perforations along the horizontal 
section is not known, but the average distance from the pressure gauge to the wellbore–reservoir 
interface is approximately 5000 ft. Therefore, average sandface pressure along the horizontal 
wellbore would be higher than 500 psi. Similarly, pressure in the induced fracture network will be 
higher than the sandface pressure. The pressure drop across the fracture–matrix block interface is 
substantial but cannot be precisely measured. Measured BHP data collected during the test are 
invaluable as they provide new knowledge of the subsurface, but caution is advised when 
projecting those data to make estimates of average reservoir pressure. These differences may be at 
the heart of the observed simulation challenge to model the producing well/fracture system with a 
flowing BHP of ~500 psi and still maintain a gas production history match. 
  
 Data collected in 2015 as part of an LR proprietary study of fracture stage pressure 
communication at the Leon–Gohrick DSU and provided to EERC by LR showed clear pressure 
communication between individual hydraulic fracture stages in a new well and existing offset 
wells. Those data show that a variable degree of pressure communication was observed for nearly 
all fracture stages. During depletion, this implies that each fracture stage has a pathway to 
contribute, more or less, to the well’s production. However, this also means that during injection, 
after significant depletion, the injection gas is more or less diverted by only a few fracture stages 
with the best communication and lowest pressure path to the offset producers. It is unknown how 
many fracture stages dominate reservoir flow in this way, their location along the horizontal well 
path, or how much variation to this behavior exists from one well to the next. The response of the 
Leon–Gohrick pilot test with frequent and fast gas breakthrough between wells is consistent with 
this description.  
 
 Therefore, to create a different outcome in future EOR attempts in the Bakken, it is 
imperative that pressure is maximized and pressure gradients are minimized in the fracture system 
to allow injected gas to more evenly penetrate as much of the fracture network as possible and, 
under favorable operations, to penetrate as much of the reservoir matrix as possible. Consideration 
should be given to choke back or temporarily shut in offset producers to minimize gas 
breakthrough and allow reservoir pressure to rise above MMP. 
 
 Although a high degree of communication between wells in the pilot DSU area was 
demonstrated, there was only minimal indication of communication between the pilot DSU and 
neighboring drilling units. Only minor amounts of gas tracer were observed in Well ND-State-
10TFH immediately east of the pilot area. Wells in the DSU to the north of the pilot area were 
monitored for interference effects, but no effects were reported from that operator. On the west 
side of the pilot, three DSU wells were operating outside of the most westerly injector,  
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Leon 2MBH. There was no observed interference in the next DSU to the west, which is operated 
by LR. Thus containment of the test to the pilot area was very good. Loss of containment was a 
concern during the design and regulatory approval phases of the project. Several reasons likely 
contributed to this outcome. No wells along the DSU boundary were used for injection, the 
quantity of injected gas was small compared to the size of the test area and limited general pressure 
buildup was observed, the test DSU was at an advanced state of depletion, and reservoir pressure 
may have been lower than that of surrounding drilling units, ensuring net fluid flow into the pilot 
area rather than out from it. Successful containment of the test within the designated DSU was an 
important achievement of the pilot test.  
 

Lessons Learned for Future EOR Pilots in the Bakken 
 
 While it was difficult to definitively discern an increase in oil production at the Leon–
Gohrick DSU as a result of the rich gas injection activities, a suite of valuable knowledge and 
insight was gained from the rich gas pilot injection activities at Stomping Horse. Lessons learned 
from the tests that may be readily applied to future EOR pilots in the Bakken include the following:  
 

• The ability to inject gas into Bakken and Three Forks reservoirs and build pressure has 
been demonstrated, and injectivity is not a constraint on operations. 
 

• Gas supply is a key factor in the successful outcome of pilot scale demonstrations in the 
BPS. Stomping Horse activities were impacted by limited natural gas supply. 

 
• Gas breakthrough, inconsistent offset well production, and limited gas supply hinder 

rapid pressure buildup. An adequate supply of working fluid is essential. 
 
• With respect to compression, considerable time and care are needed in the design and 

procurement of compressor solutions for rich gas injection, especially for discharge 
pressure above 4000 psi. The lead time to acquire larger compression systems needs to 
be considered when planning for an EOR pilot.  

 
• Detailed pre- and posttest data on reservoir conditions and fluids production are essential 

for test and offset wells. A detailed understanding of the completions of the wells is also 
necessary for valid test result interpretations. 

 
• EOR operations should be started before reservoir pressure becomes too depleted, ideally 

when reservoir pressure is still relatively close to MMP. 
 
• Laboratory-based data on the effectiveness of potential working fluid compositions on 

MMP and the ability of working fluid compositions to mobilize oil from Bakken rocks 
over a range of expected reservoir conditions provided insight on designing operational 
parameters for the pilot tests. 

 
• Primarily because of fracture connectivity and complex PVT behavior, numerical 

simulation is computationally heavy and places challenges on the modeling of large-scale 
DSUs to determine optimal strategies. These challenges need to be considered and 
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accounted for when conducting the design phase of an EOR pilot test. The use of 
emerging modeling techniques, such as embedded discrete fracture network (EDFN) 
modeling, may be a means of improving simulation models for unconventional tight 
reservoirs.  

 
• Multiple data sets and data types complicate rapid analysis and formation of insights 

about main mechanistic drivers occurring in the subsurface during a pilot. Real-time data 
would enable a framework to better monitor and enhance pilot analysis. 

 
• Real-time data coupled with BDA and ML would enable a framework to better monitor 

reservoir response and enhance pilot analysis. 
 

• Learnings from the Stomping Horse pilot were incorporated into a joint industry-/state-
funded field pilot initiated in 2021 at the East Nesson Field located in Williams County, 
North Dakota. A fundamental focus of the pilot was to ensure adequate gas supply. The 
East Nesson pilot is separate from the activities that are the focus of this report. 
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ACTIVITY 6.0 – ADVANCED RESERVOIR CHARACTERIZATION FOR RICH GAS 
EOR 

 
 
 One of the objectives of Subtask 3.1 is to improve rich gas injection conformance and sweep 
efficiency, thereby maximizing the contact time of the injected fluid with the unswept matrix and 
improving the effectiveness of EOR. Understanding the mechanism for fluid flow in tight 
unconventional, hydraulically fractured reservoirs like the Bakken requires knowledge of 
petrographic and petrophysical rock characteristics, including wettability, relative permeability, 
and fracture distribution. Literature suggests that thermal maturity of shale may affect reservoir 
characteristics such as wettability, relative permeability, and natural fracture distribution (Li and 
others, 2016; Ojha and others, 2017; Sorensen and others, 2014). Literature also suggests that rock 
mineralogy strongly influences geomechanical properties such as brittleness which, in turn, can 
theoretically be used to predict the occurrence of fractures along a horizontal wellbore; however, 
detailed studies of this potential correlation in the Bakken are lacking (Kias and others, 2015; 
Nicksiar and Martin, 2013). All of these types of reservoir characterization data are elusive and 
generally site-specific, leading to uncertainty in estimates of wettability, relative permeability, and 
fracture network distribution used for modeling and simulation work. Results of Subactivties 6.1, 
Wettability and Relative Permeability Studies, and 6.2, Cuttings Characterization for 
Geomechanical Properties, are summarized below. 
 

Subactivity 6.1 – Wettability and Relative Permeability Studies  
 

Introduction 
 
 Efforts conducted under Subactivity 6.1 have applied advanced laboratory-based 
characterization techniques to determine wettability and relative permeability of Bakken rocks 
from areas of different thermal maturity in the North Dakota portion of the Williston Basin. 
Understanding the mechanism for fluid flow in tight unconventional reservoirs, which is essential 
for predicting rich gas EOR in the Bakken, requires knowledge of petrographic and petrophysical 
rock characteristics, including wettability and relative permeability. Petrographic characteristics 
include mineralogy, grain-to-grain relationships, and pore space within the bulk volume of a 
reservoir interval. The wettability of reservoir rocks is a controlling factor in the effective 
mobilization of in-place fluids. These parameters are important in tight unconventional resource 
development in that incremental recovery will be achieved through drainage of incrementally 
smaller fluid-saturated pores. Because matrix permeability is low in unconventional reservoirs, 
high capillary pressure is necessary to mobilize incremental oil. To understand the potential 
capillary pressure constraints, specifically in the presence of rich gas blends, direct measurements 
of interfacial tension (IFT), or the adhesion ability of one fluid in the presence of another, and 
contact angle are necessary to understand how the rich gas components can affect wettability 
which, in turn, will affect oil mobilization. To broaden the applicability of the results, 
determination of the relative permeability of oil to CO2 and rich gas blends in Middle Bakken 
rocks have been conducted on samples representing different areas of Bakken productivity. These 
data are currently unavailable for site-specific reservoir parameters and will allow for 
improvements to predictive simulations of rich gas EOR performance across the Bakken play. 
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Method on the Measurement of IFT and Contact Angle 
 
 In this study, the pendant drop method was applied to measure the IFT of a liquid–liquid or 
liquid–gas system. In the pendant drop method, the drop is created from a needle (capillary tube) 
in a bulk phase (liquid or gas) inside a PVT cell. For the wettablity measurement, the contact angle 
method was employed to determine the angle between the surface of the liquid of the outline of 
the contact surface. 
 
 The commercially available system used in this study is designed to measure both IFT 
between two phases and contact angle between liquid and solid phase under high temperature and 
high pressure. The key components of the machine include IFT cell (viewable environmental 
chamber), metering pump (apply to work with accumulator to generate droplet), transfer vessel 
(storage of test fluids, such as gas and liquid), camera system with light source, PC, and software 
(capture the drop image, data collection, and processing). 
 
 Figure 43 illustrates the schematic of the experimental setup of the system. The IFT between 
two immiscible fluids is measured by introducing a droplet of the fluid with heavier density into a 
volume filled with the other phase (surrounding phase) with lower density; once the desired 
conditions of pressure and temperature are achieved, the camera captures the droplet shape image 
to determine the IFT using Equation 1, where ∆P is the density difference between the phases 
(g/mL), g is the local gravitational contant (cm/s2), d is the maximum horizontal diameter of the 
unmagnified pendant drop (cm), and B is a shape parameter calculated from drop dimensions. The 
drop shape parameters are illustrated in Figure 44. 
 
 𝜎𝜎 = ∆𝜌𝜌𝜌𝜌𝑑𝑑𝑒𝑒2

𝐵𝐵
 [Eq. 1]  

 
 

 
 

Figure 43. Schematic of the experimental setup. 
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Figure 44. Experimental workflow for IFT and contact angle measurements. 
 
 
 For contact angle (wettability) evaluation, the rock sample is loaded into the view cell, the 
chamber is filled with the lower density surrounding phase, and then a droplet of the fluid with 
higher density is introduced onto the surface of the rock. When the test pressure and temperature 
come to equilibrium, the camera captures an image of the shape of the bubble, and the angle that 
forms between the droplet edge and the rock surface is measured to determine the wettability state 
of the system.  
 

Determination of Relative Permeability 
 

 Relative permeability is a measurement of flow rates and differential pressure of specific 
fluids undergoing two-phase flow. While single-phase permeability is a relatively simple 
measurement of flow under operational conditions, two-phase flow presents a complex 
relationship dependent on saturation, wettability, surface tension, and force. Results of tests 
describe the ratio of flow of two fluids relative to the permeability of the sample at 100% saturated 
flow. The resulting curve of relative permeability against saturation is required for flow 
simulations but is also indicative of injectivity, identifies reducible fluid saturations, and estimates 
changes in wettability in the presence of differing fluids.  

 
 For this study, capillary pressure data were used to calculate a theoretical set of CO2, rich 
gas mixtures, and rich gas components relative permeability curves. The Brooks–Corey method 
based on capillary pressure, contact angle, interfacial tension, and the pore-size distribution of each 
sample was used as the theoretical model for calculation. The curves were developed as a means 
of comparing the ability for different fluid pairs to affect wettability for the differing lithologies of 
the Middle Bakken. 
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Results – IFT and Contact Angle 
 
 Figure 44 presents the experimental workflow and the different fluid combinations used in 
the determination of interfactial tension and contact angle. All experiments were performed at a 
temperature of 250°F, considered “near reservoir” condition. The IFT of three brine solutions with 
different salinities and DI (deionized) water was measured in the presence of Bakken oil, CO2, 
propane, and rich gas mixture (methane:ethane:propane – 7:2:1) under four pressures of 1000, 
3000, 5000, and 7000 psi, respectively (Table 7). Figure 45 shows the results of the study. As 
shown, the IFT for each fluid pair is influenced by both water quality and pressure. In general, the 
results show that as TDS increases, the interfacial tension of each fluid pair increases. The effect 
of pressure shows that the oil/brine and propane/brine systems have increasing IFT with increasing 
pressure. The CO2/brine and rich gas/brine systems each decrease with increasing pressure. This 
is an indicator of the potential for influencing wettability within reservoir systems.  
 
 Contact angle (CA) was determined for a total of five rock samples selected from different 
wells to represent the Middle Bakken siltstone member (Table 8). Rock samples were chosen from 
areas of the North Dakota portion of the Williston Basin representing varying production potential, 
likely attributed to thermal maturation of the overlying and underlying organic-rich shales. In 
general, the maturity and expulsion of HCs decreases to the north. Figure 46 shows the distribution 
of sampling throughout North Dakota. Samples chosen are from a siltstone interval of the Bakken 
because it is commonly targeted as the placement for horizontal lateral wells and commonly 
contains the largest grain sizes within the formation. Similar to IFT experiments, the CA of a brine 
droplet was measured while submersed in different surrounding phases which include Bakken oil, 
CO2, propane, and rich gas, respectively. For each fluid combination, the CA was measured under 
2000, 4000, and 6000 psi, respectively. Table 9 presents the CA experimental test matrix.  
Figure 47 shows the expected changes in wettability based on the drop shape developed on a solid 
surface. Reservoir systems with strong oil wettability typically have a strong bond between the 
grain surface and the oil present in the reservoir. In situ water will reside in the interior of the pore 
space. The opposite is true for strongly water-wet systems. Production from oil-wet systems suffers 
from higher water production for this reason and typically requires the injection of fluids to alter 
this wettabililty and release the bonding. Figure 48 shows the results of the CA studies in the 
context of the mineraology for each sample. The trends observed for CA consistently show that 
the oil/brine system has the highest oil wetting characteristics and CO2 is always the lowest, or 
most water-wet. There is a common trend observed with the contact angle and mineralogy in that 
each of the four samples shows a strong oil-wetting characteristic with oil/brine and propane/brine 
systems and the sample with a dominant calcite mineralogy shows propane deviating toward a 
water-wetting character. In each of the tests, pressure is shown to decrease the observed contact 
angle. Both rich gas and propane show strong water wetting characteristics, implying that, if 
injected for EOR, the wettability of the HC/reservoir rock system may be altered and lead to 
enhanced production over time. 
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Table 7. Test Matrix for Determination of IFT 
Gas Phase Surrounding Liquid Phase Test Conditions 

Rich Gas 
(C1:C2:C3 = 7:2:1) 

DI water and three brine 
samples 

Constant temperature of 250°F 
Pressure: 1000, 3000, 5000, 7000 psi 

Propane DI water and three brine 
samples 

Constant temperature of 250°F 
Pressure: 1000, 3000, 5000, 7000 psi 

CO2 DI water and three brine 
samples 

Constant temperature of 250°F 
Pressure: 1000, 3000, 5000, 7000 psi 
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Figure 45. Results of IFT testing using multiple fluid pairs in the presence of different brine 
salinities. 
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Table 8. Samples Selected for Use in Contact  
Angle Studies 
Sample 
ID 

NDIC 
Well No. Depth, ft Lithofacies 

118943 24123 11,072.7 MB3 
120829 27366 10,685.1 MB3 
122814 22388 10,656.2 MB3 
122838 18829 6794.6 MB3 
127240 34086 10,815 MB3 

 
 

 
 
Figure 46. Distribution of Bakken samples evaluated for changes in wettability.  
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Table 9. Design of Contact Angle Measurement  

Solid Phase Drop Phase 
Surrounding 

Phase Test Conditions 

Five Bakken Rock Samples 
from Different Wells 

DI water and 
three brine 

samples 

Bakken oil 
Constant temperature 

of 250°F 
Pressures: 2000, 4000, 

6000 psi 

Rich gas 

Propane 

CO2 
 
 

 
 

Figure 47. Changes in CA and their impact on surface wettability (modified based on 
Moghadam and Salehi, 2019).  
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Figure 48. Results of CA testing in the presence of multiple fluid pairs. These tests were 
performed at 250°C and 243,000-ppm TDS. Mineralogy is shown on the right. 

 
 
 
 



 

71 

Results – Relative Permeability 
 
 As noted previously, capillary pressure data sets were used to calculate a series of relative 
permeability curves. The Brooks–Corey correlation relies on CA and IFT for converting the data 
from the laboratory-based mercury/air system to one specific to the fluid pairs of interest. When 
relative permeability curves are interpreted, the migration of the crossover point indicates the 
potential for changes in wettability (Figure 49). If the crossover is observed to move from the 50% 
mark toward the 100% mark, the system is expected to become increasingly water-wet. If the curve 
moves in the opposite direction, toward the 0% saturation, the system is believed to become more 
oil-wet. (Mahmud and others, 2019). The alteration of wettability has implications for oil mobility 
in that the force required to keep the oil tightly bound to the surface of the pore linings (IFT) is 
being relieved. Table 10 shows the data that informed the curves shown in Figure 50. As shown in 
the curves, the oil/brine relative permeability crossover is the furthest left and the rich gas/brine to 
the right. This suggests that, within the Bakken, the potential exists for improving wettability 
through the injection of the alternative fluids, namely, CO2, propane, or rich gas blends. 

 
 

 
 

Figure 49. Example of the change in wettability observed in the relative permeability curve 
(Mahmud and others, 2019). 
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Table 10. IFT and CAs Used in the Determination of  
Relative Permeability  
System IFT CA 
CO2/Brine 33 38.5 
Oil/Brine 28.7 134 
Propane/Brine 43.9 129.9 
Rich Gas/Brine 42.9 72.8 
CO2/Brine 33 55.6 
Oil/Brine 28.7 126.8 
Propane/Brine 43.9 125.2 
Rich Gas/Brine 42.9 77.3 
CO2/Brine 32.96 50.24 
Oil/Brine 28.65 133.43 
Propane/Brine 43.89 132.47 
Rich Gas/Brine 42.89 79.9 
CO2/Brine 32.96 34.46 
Oil/Brine 28.65 138.78 
Propane/Brine 43.89 124.88 
Rich Gas/Brine 42.89 76.18 
CO2/Brine 32.96 52.38 
Oil/Brine 28.65 126.9 
Propane/Brine 43.89 102.99 
Rich Gas/Brine 42.89 74.68 
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Figure 50. Relative permeability curves based on capillary pressure for four Bakken samples 
representing varying thermal maturity areas of the Bakken. 
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Conclusions 
 
 Work performed in this activity developed multiple elusive data sets pertaining to IFT and 
CA for fluids that have the potential to alter wettability in unconventional reservoir rocks. Data 
sets were created at reservoir conditions at multiple pressures and using multiple brine salinities. 
Oil/brine and propane/brine pairs showed the highest IFT compared to CO2/brine and rich 
gas/brine systems. CO2 was observed to have the lowest IFT of the pairs tested. A similar trend 
was observed for the newly generated CA data. Oil/brine and propane/brine showed the strongest 
oil wettability characteristics, with values consistently over 120°, with one exception. The sample 
containing calcite as the dominant mineral was determined to have very close to a mixed 
wettability character. This demonstrates that mineralogy can be taken into account when 
considering specific fluids for alteration of wettability through EOR. In other words, there may be 
multiple solutions for unconventional oil systems containing a complex clastic/carbonate lithology 
such as the Bakken. Additional observations for contact angle were that the effect of pressure were 
most notable in the CO2/brine and rich gas/brine systems with wettability moving more toward the 
strongly water-wet system. This is consistent with the observations in MMP studies and rock 
extractions performed as part of Subtask 3.1 and reported in Section 2 of this report. Finally, 
relative permeability curves were created using capillary pressure data sets and the newly 
generated IFT and contact angle data. Interpretation of the crossover point on the curves 
demonstrated that wettability can be altered with the fluids tested. Further work will need to be 
performed to quantify the magnitude of this change. 
 

Subactivity 6.2 – Cuttings Characterization for Geomechanical Properties  
 

Introduction 
 
 Booming in late 2010s, the shale oil development in the Bakken Formation in the Williston 
Basin, one of the largest unconventional resources for both the United States and the world, 
benefited from innovative technologies, e.g., horizontal drilling and multiphase hydraulic 
fracturing (Hughes, 2013; Donnelly, 2014; Gold, 2014). Although a wide and relatively thin 
formation, the broad area of 158,000 square kilometers crossing parts of North Dakota, Montana, 
Saskatchewan, and Manitoba demonstrates a promising fossil energy production future (LeFever 
and Helms, 2006; Tran and others, 2011). The Middle Bakken Formation is the target member to 
implement successful hydraulic fracturing, rather than the Upper or Lower Bakken Formations 
(Zeng and Jiang, 2009). In this context, the term brittleness index (BI) is commonly used to 
describe the inclination of the formation rock subjected to hydraulic fluid injection and fracture 
propagation (Herwanger and others, 2015; Zhang and others, 2016; Feng and others, 2020). Some 
previous studies investigated a BI-relevant calculation and application in HC-rich basins. Harris 
and others (2011) studied the geomechanical properties of Woodford Shale in the Permian Basin 
and identified the brittle end member, by which the associated stratigraphic variation was 
displayed. Yang and others (2013) conducted triaxial experiments on core plug samples from shale 
reservoirs of Barnett, Haynesville, Fort St. John, and Eagle Ford to compare the BI results among 
them. Pei and others (2014) measured the geomechanical properties of the Middle Bakken 
Formation and determined a brittle/ductile region based on correlation plotting between Young’s 
modulus and Poisson’s ratio. Mustafa and others (2019) performed thin-section petrography, 
powder x-ray diffraction (XRD), logging data, and BI analysis whereby three lithofacies were 
identified in the lower Silurian Qusaiba Shale in Saudi Arabia.
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 Consisting of gray interbed and carbonate-rich siltstones and sandstones, the Middle Bakken 
Member is generally more brittle; however, results from evaluating and quantifying the BI within 
the member, specifically along the horizontal wellbore, are inconsistent and ambiguous (Novak 
and Egenhoff, 2019; Paris and Stewart, 2020). This is because of two reasons. First is the versatile 
range of BI definitions proposed and used in academia and industry, where no recognized well 
standard exists. More details will be explained in the Method section. Second is that different 
subsurface data sources, including core measurement in the laboratory, well logging, and seismic, 
caused the different BI ranges, which cannot be compared effectively. The most reliable BI 
determination method is geomechanical testing on core plugs; however, it typically requires intact 
core plugs and a long analysis time. Other data types, logging and seismic, cover a large area in 
the formation but lack the high resolution. Therefore, this study proposed the emerging technique 
for estimating BI based on drill cutting sample mineralogy. The mineralogy of a sample can be 
determined directly through XRD or indirectly using x-ray fluorescence (XRF) to measure the 
elemental composition of a sample from which mineralogy can be inferred. Both of these 
techniques require only drill cuttings (versus core plugs) for analysis, which is highly 
advantageous because core is very rarely available for the horizontal portion of a well, whereas 
drill cuttings are prevalent throughout the entire lateral length. Geomechanical testing can be 
conducted on multiple Bakken samples followed by mineralogical analysis using XRD and XRF. 
This will allow for comparison of the mineralogically predicted BI with that determined by 
geomechanical testing. Wherever possible, existing geomechanical and XRD data for Bakken 
samples will be used to supplement the data set. This comparison will allow for statistical 
evaluation and uncertainty determination of the different approaches to calculate the BI using 
mineralogy for Bakken reservoir samples. 
 
 This project developed a workflow (Figure 51) to calculate the BI from the elemental 
composition of well cutting samples. XRF, XRD, and geomechanical tests of cuttings and core 
plug samples were performed to generate a data set for the modeling. The modeling and calculation 
consisted of two major steps: predicting mineral composition from elemental composition and 
calculating BI from mineral composition. Two methods, a normative calculation method and a ML 
method (neural network [NN] algorithm), are compared in the first step. Both methods compared 
the accuracy and discrepancy in the XRD data. The second step employed the mineralogy-based 
brittleness calculation method to directly estimate the BI. Geomechanical tests were applied on 
four new samples to validate the results.  
 
 

 
 

Figure 51. Workflow of BI calculation from well cuttings.
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Methods 
 

Normative Calculation Method  
 
 Unlike igneous rocks that follow a reasonably predictable pattern attributed to magma 
chemistry, sedimentary rocks are subjected to various depositional paleoenvironments, where 
diagenesis caused mineralogical alteration, resulting in substantial uncertainty when mineral 
composition is predicted from bulk geochemical data (Morad and others, 2000; Johnson and 
others, 2016). Specifically, sedimentary rocks contain minerals that have different origins but 
possess similar elemental components, which increases prediction difficulty (Tucker, 2001). 
Application of the normative calculation method to fine-grained, clay-bearing rocks provided a 
reasonable solution of calculating the mineralogy phases based on the elemental composition 
(Kackstaetter, 2014). Incorporating the model analytical procedures and statistical evaluation of 
empirical relationships is the core algorithm of this method, although essentially a mathematical 
approach. To achieve legitimate estimation, it demands tallying the balance of carbon dioxide 
distributed in multiple mineral phases.  
 

In this study, the normative calculation method was revised and customized for the 
lithofacies and mineralogy of Middle Bakken samples (Kurtoglu and others, 2013; Jin and others, 
2016). Some mineral phases, including kaolinite, gypsum, apatite, and hematite, were eliminated 
because of their absence in the target formation, whereas the clay classification remains in the 
pattern database of the algorithm because of the variation and uncertainty of the clay minerals. 
Therefore, the determinative minerals recognized in the XRD are quartz, potassium feldspar, 
plagioclase feldspar, rutile, pyrite, calcite, dolomite, ferrodolomite or ankerite, and clay minerals 
that include illite, chlorite, sericite, etc. The assumption of this method lies in the idealized 
chemical composition of each of the individual minerals, which is the premise of calculating the 
minerals made up of complex oxides, especially clays (Table 11). The determination of the 
idealized oxide formulas of minerals was also supported by the previous studies on Middle Bakken 
formations (Yarbrough and others, 2019; Sonnenberg, 2020; Milliken and others, 2021). Among 
all minerals, major phases have more precise and straightforward chemical formulas, while the 
clays appear more complicated, with clay minerals sharing many of the same elements in their 
chemical formulas. Using the empirical chemical formula as the basis, the clay minerals are 
regarded as the combination of multiple oxides, where the summative molecular weight of allotted 
mole fractions of these respective oxides agrees with the accepted average molecular weight of the 
mineral (Kackstaetter, 2014). Stepwise procedures of the calculation were implemented in the 
spreadsheet program from the normative calculation method. Thus it is suggested that the 
algorithm should be examined and customized for each study field where the paleoenvironment 
and its associated mineralogy vary. 
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Table 11. Idealized Chemical Compositions of Minerals in This Study 
Mineral Name Chemical Compositions 
Quartz SiO2 
K-Feldspar 3SiO2 – 0.5Al2O3 – 0.5K2O 
Plagioclase Feldspar (albite) Na2O – Al2O3 – 0.5K2O 
Pyrite FeS2 
Rutle TiO2 
Calcite CaO – CO2 
Dolomite CaO – MgO – 2CO2 
Ferrodolomite/Ankerite CaO – 0.5Fe2O3 – 2CO2 
Illite 3.7SiO2 – 0.7Al2O3 – 0.1Fe2O3 – 0.3MgO – 0.3K2O – 2.7H2O 

 
 

Neural Network Algorithm 
 
 NN algorithms were developed to comprehend the underlying relationship between the input 
and output of data sets as a way to mimic human brain operations (Mohaghegh, 1995; Li and 
others, 2018; Mlella and others, 2020). Consisting of layers of interconnected nodes, NNs are 
essentially the lineup of mathematical functions in a particular architecture that solves the 
modeling of predicting output from input (Rahmanifard and Plaksina, 2019; Wood, 2020; Yoon, 
2020) (Figure 51). In this study, a NN algorithm was utilized as an alternative approach to predict 
the mineral composition from the elemental composition (Figure 52). These results are then 
compared to those from a normative calculation approach. The data are split into two groups: 80% 
for training and 20% for testing. Five hidden layers were configured in this study’s NN, and the 
input and output dimensions were 15 and 7, which represent 15 elements and 7 mineral groups. 
Note the mineral types are grouped in the NN calculation after trial and error and optimization of 
the prediction performance. Specifically, the calcite, dolomite, and ferrodolomite are grouped into 
carbonate minerals, and all clay minerals including illite, muscovite, chlorite, kaolinite, and 
smectite are grouped into a single clay mineral type. Therefore, the seven output dimensions 
become quartz, carbonate, K-feldspar, Na/Ca-feldspar (plagioclase feldspar), pyrite, rutile, and 
clay.  
 
 

 
 

Figure 52. Schematic diagram of basic NN architecture. X means the elemental composition in 
this study, and Y represents mineral composition. 
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BI Definition and Calculation 
 
 A number of the definitions of the BI were proposed and have been controversial regarding 
different application areas and situations (Rickman and others, 2008; Jin and others, 2014; Liu and 
Sun, 2015; Xu and Sonnenberg, 2016; Zhang and others, 2016; Feng and others, 2020; Kang and 
others, 2020). These BI definitions can be derived from different data sources, ranging from XRF 
and XRD on chip samples, core measurement, and wireline logs (Xu and Sonnenberg, 2016). 
Generally, the calculations of the BI can be divided into two types: mineralogy-based and elastic 
properties-based (Perez Altamar and Marfurt, 2014).  
 
 For a mineralogy-based BI, the concept assumes brittle minerals, which typically refer to 
quartz, feldspar, mica, calcite, and dolomite, contribute to the brittleness of rocks, while ductile 
materials, clay minerals, and organic matter reduce the brittleness. Below is the most commonly 
used equation (Xu and Sonnenberg, 2016), which was employed in this study:  
 
  𝐵𝐵1 =  𝑄𝑄𝑄𝑄+𝐶𝐶𝐶𝐶+𝐷𝐷𝐷𝐷𝐷𝐷+𝐹𝐹𝐹𝐹𝐹𝐹+𝑃𝑃𝑃𝑃

𝑄𝑄𝑄𝑄+𝐶𝐶𝐶𝐶+𝐷𝐷𝐷𝐷𝐷𝐷+𝐹𝐹𝐹𝐹𝐹𝐹+𝑃𝑃𝑃𝑃+𝐶𝐶𝐶𝐶𝐶𝐶+𝑇𝑇𝑇𝑇𝑇𝑇
 [Eq. 2] 

 
 However, the limitation of using minerology is that brittleness is not solely determined by 
mineral composition. Thus this approach neglects the effect of density, microstructure, and 
porosity. Other parameters, for instance, grain-size distribution, cementation, and confining 
pressure, are not considered either. The other calculation approach to BI is based on two important 
elastic properties: Young’s modulus and Poisson’s ratio, which can be acquired from laboratory 
geomechanical tests or well logging. The most commonly used approach in evaluating shale 
formation fracturing ability is the following (Grieser and Bray, 2007):  
 
  𝐸𝐸𝑛𝑛 = 𝐸𝐸−𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
× 10  [Eq. 3] 

 
  𝜈𝜈𝑛𝑛 = 𝜈𝜈−𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚

𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚−𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚
× 100 [Eq. 4] 

 
  𝐵𝐵𝐵𝐵 = 𝐸𝐸𝑛𝑛+𝜈𝜈𝑛𝑛

2
 [Eq. 5] 

 
 The adoption of lab-tested data is believed to be the most reliable way to obtain the 
geomechanical properties; however, neither core plug mechanical tests nor loggings are efficient 
or generally available prior to hydraulic fracturing (Zoback, 2010). Therefore, investigating the BI 
based on the mineralogy approach still provides an alternative method that is rapid and feasible.  
 

Results and Validation 
 

Inferred Mineral Composition by Normative Calculation Method 
 
 Inferred mineral composition calculated by the normative method was compared with the 
measured mineral composition from XRD results (Figure 53). The absolute difference of each 
mineral with measured values was averaged in each sample. The result shows that 37 out of  
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Figure 53. Absolute difference between inferred mineral composition and XRD results. The 
value of every sample is the average of all minerals. 

 
 

58 samples (about 64% samples) had the absolute difference of less than 4.61% and 57 samples 
(98% samples) had the absolute difference of less than 8.7%. These data provide acceptable 
evidence that the predictions agree well with the measured mineral composition. Further, the 
absolute differences in every mineral type were calculated by averaging all the sample data sets, 
with results plotted in Figure 54. The illite, chlorite, kaolinite, smectite, and mica were grouped 
into a clay category. This grouping does not impact the brittleness evaluation because all clay 
minerals have a very similar low elastic modulus compared to other brittle minerals, i.e., quartz, 
dolomite, and calcite. Figure 54 shows that by averaging all sample results, quartz and feldspar 
have less than 5% difference between the mineral prediction and XRD results. The carbonate 
minerals, dolomite, calcite, and ankerite, present a higher difference between the mineral 
prediction and XRD results ranging from 6% to 9%. Pyrite and rutile demonstrate the least absolute 
difference at less than 1%. The prediction error of the clay mineral group is slightly above 4%. 
Since XRD provides a semiquantitative mineral composition, less than 10% of the absolute 
difference is admissible for reporting (Moore and Reynolds, 1997). Therefore, validated by XRD 
results, it is acceptable of the prediction performance to use the normative calculation method on 
the Middle Bakken samples.  
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Figure 54. Absolute difference between inferred mineral composition and XRD results in terms 
of each mineral type. The value of each mineral is the average of all samples. 

 
 

Inferred Mineral Composition by Neural Network Algorithm 
 
 The accuracy of predicted mineral composition by the ML method (NN algorithm 
specifically) is 83.33%. The mean absolute error (MAE) of seven mineral groups by ML method 
is plotted in Figure 55, which includes two data sets, all data, and testing data. It shows that quartz 
has the largest MAE compared with other mineral groups, up to 8%. The carbonate mineral group 
has around 3% uncertainty in both all data and testing data, while potassium feldspar and 
plagioclase feldspar present a large discrepancy, up to 3%, of the discrepancies between all data 
and testing data. Pyrite and rutile have about 4% and 0.3% of MAE, respectively, regardless of the 
data set difference. A great discrepancy occurs in the clay mineral group between the all-data set 
and the testing data set, which is about 5.5% on all data and 0.3% on testing data. This indicates 
the ML method did not capture the perfect relationship between element composition with clay 
minerals, and the testing data set just happens to be the simplest correlation. ML results on all data 
and testing data demonstrate a relatively consistent performance on other minerals, which are 
brittle components. The uncertainty is because of the elemental commonalities in different 
minerals (Si, Al, K, Ca).  
 
 In addition to the modeling on previously available data sets, four new samples from the 
Middle Bakken Formation were cored and tested by XRF, XRD, and geomechanical experiments 
to provide validation data points. Figure 56 shows validation of the ML prediction from XRF with 
the XRD results. The ML model established by the training and testing is used to infer the mineral 
composition from elemental composition. The validation showed the discrepancy varied in 
different samples and in different mineral groups. The ML-predicted quartz fractions of four 
samples were all less than those from XRD measurements. The MB3 lithofacies had the largest 
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Figure 55. MAE of ML prediction performance. 
 
 

 
 

Figure 56. Validation on ML prediction using XRD results of four new Middle Bakken samples. 
 
 
gap of nearly 30%, and others demonstrated a difference around 10%. The carbonate mineral group 
showed a higher predicted fraction than XRD results did. The prediction of feldspar and heavy 
minerals coincided well with XRD data. The disagreement on the clay mineral group was mostly 
less than 5%, which is acceptable to using semiquantitative mineral identification with XRD. 
Overall, the validation proved the ML model was reliable and can provide an acceptable prediction 
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with rapid data acquisition. It is also notable that the ML model is dynamic and can keep evolving 
as it gains more data sets in the training process. 
 

BI Estimation 
 
 Based on the minerology-based BI calculation method, the BI was calculated on the  
58 samples. The left box chart of Figure 57 shows the BI statistics of all samples, where the cross 
depicts the mean value of the data range and the box lines represent the quartile range, 25%–75%. 
The average BI is 0.65, and the quartile range is 0.55–0.76. The right plot of Figure 57 shows four 
BI data curves based on the mineralogy BI method from previous studies of the Middle Bakken 
Formation. The light blue box that overlaps the curves is the current study result, which is generally 
higher than three studies (Jarvie and others, 2007; Wang and Gale, 2009; Jin and others, 2014) and 
lower than the result by Xu and Sonnenberg (2016). This comparison suggests the BI estimation 
method in this study is reasonable and reliable as it falls between the results of previous studies. 
Note that the unit of BI in this study is dimensionless because of its percentage. Previous studies 
also gave the BI without unit, but in the range of 0%–100%. The current study did not plot the BI 
data set correlated with depths because of the random permutation by the ML training process.  
 
 

 
 
Figure 57. Box chart of predicted BI and well log interpreted BI from previous studies. All 
studies are based on the Middle Bakken Formation. 
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 The aforementioned four samples were also tested in a triaxial stress condition and measured 
for static and dynamic elastic properties: Young’s modulus and Poisson’s ratio. Table 12 shows 
the basic information of the four Middle Bakken samples, including depths, test confining 
pressure, axial pressure, and bulk density. Dynamic Young’s modulus and Poisson’s ratio were 
calculated from acoustic measurement. The maximum and minimum elastic properties and 
porosity of Middle Bakken samples can be obtained from a previous EERC project (Hawthorne 
and others, 2013). The elastic property-based BI calculation method was applied to generate the 
BI range of 0.6–0.75 for these samples, which was consistent with the minerology-based BI 
quartile range, 0.55–0.76. 
 
 
Table 12. Dynamic Elastic Parameters of Four Middle Bakken Samples and 
Corresponding BI 

Sample 
Number Depth, ft 

Confining 
Pressure, 

psi 

Axial 
Pressure, 

psi 

Bulk 
Density, 

g/cm3 

Young’s 
Modulus, 
×106 ps) 

Poisson’s 
Ratio 

Brittleness 
Index 

130123-
3A 

10810.61
–

10811.06 
3900 

3900 2.548 6.73 0.151 0.715 

16,000 2.548 7.33 0.189 0.658 

130124-
4A 

10814.53
–

10815.03 
3900 

3900 2.636 8.80 0.214 0.656 

21,000 2.636 10.25 0.262 0.605 

130125-
5A 

10826.04
–

10826.60 
3900 

3900 2.514 7.03 0.162 0.703 

18,000 2.514 7.37 0.197 0.643 

130126-
6A 

10839.53
–

10840.03 
3900 

3900 2.512 6.94 0.142 0.740 

18,000 2.512 7.47 0.182 0.677 

 
 

Discussion and Conclusion 
 
 This activity developed an efficient and effective geomechanical evaluation method that 
estimated the BI directly from elemental composition of well cutting samples acquired from the 
Middle Bakken Formation. Two steps were involved, from elemental composition to mineralogy 
composition and from mineralogy composition to BI. The first step used and compared two 
different methods. The results by the normative calculation method showed 98% of samples have 
less than 8.7% absolute difference when compared with XRD mineral composition. The ML 
method presented an accuracy of 83.33%, and the MAE of ML prediction performance was less 
than 10% on average with all mineral groups. Besides, the normative calculation method requires 
repetitive spreadsheet semiauto computation, while the ML method saves time by batch-
processing on a trained model. Therefore, the ML method was much more efficient and preferred 
because of the fast prediction and potential to evolve owing to increasingly large data sets. The BI 
calculation also compared two methods: mineralogy-based and elastic properties-based. With the 
predicted mineral composition in the last step, the mineralogy-based BI method was applied and 
calculated on all 58 samples, which generated the quartile range as 0.55–0.76. When compared 
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with four previous studies on the Middle Bakken, the range was reasonable and reliable. To 
validate the prediction, four new core plug samples from the MB2, MB3, and MB4 facies were 
acquired. Using the acoustic measurement results, dynamic elastic properties, Young’s modulus 
and Poisson’s ratio, were obtained and calculated to the BI by the elastic properties-based BI 
method. The BI range of 0.6–0.75 was consistent with the mineralogy-based BI approach. The 
method proposed in this study can be widely used to establish the BI of unconventional formations 
by utilizing XRF tests on drill cutting samples and forgoing multiple other test methods with core 
plugs. This approach only requires the XRF measurements of drill cuttings, which is highly 
advantageous as XRF is a low-cost, reliable, and fast method, and cuttings are widely available 
through a whole lateral interval. A timely and efficient evaluation of geomechanical information 
significantly contributes to the design of effective well stimulation and the prediction of a fracture 
network induced by hydraulic fracturing and is especially useful if conventional geomechanical 
tests that require core samples cannot be conducted. 
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ACTIVITY 7.0 – MODELING CONFORMANCE TREATMENTS AND EOR 
STRATEGIES 

 
 
INTRODUCTION: BACKGROUND AND OBJECTIVES 
 
 Evaluation of previous pilot tests in the Bakken and the injection tests conducted at Stomping 
Horse between July 2018 and June 2019 has shown that oil recovery improvement was minimal 
when the reservoir pressure could not be boosted quickly by gas injection (Sorensen and Hamling, 
2016; Pospisil and others, 2020). Very early breakthrough time and poor well conformance have 
been identified as plausible causes contributing to a lack of incremental oil production from the 
first generation of the Bakken injection pilot tests (Hoffman and Evans, 2016; Thakur, 2019). 
Because hydraulically induced and natural fracture networks heavily influence primary recovery, 
fractures are thought to be the main contributors for rapid injector–producer well communication. 
Strong well communication is expected to be more striking for multistage completions, which have 
been observed in the major U.S. unconventional basins, including Bakken, Eagle Ford, 
Haynesville, and Wolfcamp, etc. (Marongiu-Porcu and others, 2015; Sharma and Manchanda, 
2015; Sani and others, 2015; Cao and others, 2017; Lindsay and others, 2018; Krishnamurthy and 
others, 2019; Scherz and others, 2019; Liu and others, 2020a). Field studies of infill drilling in the 
Bakken suggested that fracture geometry control technologies need to be applied to prevent direct 
well interference in order to improve the production performance (Vidma and others, 2019). 
Fiallos and others (2019) extended the investigation of well interference from primary depletion 
to gas EOR operations in the Eagle Ford. They found that interference (i.e., conformance issues) 
between wells should be carefully controlled to improve the EOR performance. Therefore, if EOR 
technologies are going to be successful to recover a fraction of the billions of barrels of HCs left 
behind with primary production recovery, diagnosis of premature gas breakthrough and 
application of conformance treatments specifically designed for hydraulically fractured wells need 
to be mastered. Systematic modeling and simulation efforts were performed by the EERC to 
develop effective conformance control and EOR strategies in the Bakken with the following two 
subactivities. 
 

Subactivity 7.1 – Conformance Treatment 
 
 Lindsay and others (2016, 2018) evaluated the impact of well interference on production 
performance in the major unconventional plays, and they concluded that interferences between 
wells should be avoided in many locations, even in the primary depletion operations. The existence 
of well interference has become a critical issue for EOR operations in unconventional reservoirs, 
especially for EOR utilizing gas injection (Thakur, 2019). Since gas flows faster than oil and water 
in the reservoir because of its higher mobility, gas could not sweep the desired reservoir volume, 
and pressure could not be built up to the required level. Therefore, the lack of gas containment 
needs to be thoroughly understood, and conformance control strategies need to be developed to 
solve this critical challenge for effective gas EOR in fractured unconventional reservoirs (Fiallos 
and others, 2019; Haghshenas and Qanbari, 2020; Katiyar and others, 2021). The following tasks 
were performed in this subactivity:  

 



 

86 

1. Select two representative sites with single and multiple DSUs from the core oil-producing 
counties in the Bakken. Demonstrate well interference effects between wells. 
 

2. Develop multiple-well, multiple-fracture simulation models using the EDFM approach, 
and tune the models with actual field data. 

 
3. Test the models by mimicking the well interference behavior as observed in the field. 

This ensures the models can capture the fluid communication between wells so that the 
models can be used to develop conformance control and EOR strategies.  

 
Site Selection and Well Interference Identification  

 
Single DSU Site in Dunn County 

 
 Two sites in the core oil-producing areas were selected to study the well interference, EOR 
performance with different gas injection operations, and conformance control strategies. The first 
site is a single DSU located in Dunn County, North Dakota. This DSU has seven wells, including 
three wells completed in the Middle Bakken and four wells completed in the Three Forks, as shown 
in Figure 58. Wells TF2, MB2, TF3, and MB3 are parent wells, which were stimulated and brought 
to production in/before 2015. Wells TF1, MB1, and TF4 are child wells, which were stimulated 
and brought to production in/after 2018. The essential well data for the DSU can be found in  
Table 13. 
 
 

 
 

Figure 58. Distribution of wells in the DSU located in Dunn County, North Dakota. 
 
 
Table 13. Essential Parameters for Wells in the DSU Located in Dunn County, North 
Dakota 

No. 
Well 
Name 

Completed 
Formation/Unit 

Well 
Type 

Well 
Lateral 

Length, ft 
Well 

Depth, ft 
Fracture 

Stages 
Production 
Start Time 

1 TF1 Three Forks Child 10,011 11,084 40 2018 
2 MB1 Middle Bakken Child 9784 10,541 40 2018 
3 TF2 Three Forks Parent 9977 11,064 45 2015 
4 MB2 Middle Bakken Parent 8879 11,006 30 2015 
5 TF3 Three Forks Parent 9074 11,045 19 2009 
6 MB3 Middle Bakken Parent 9684 11,007 40 2015 
7 TF4 Three Forks Child 15,391 11,092 60 2019 
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 Well TF2 has been put on production from the Three Forks Formation since the middle of 
2015. Adjacent neighboring well, MB1, was drilled, stimulated, and brought to production from 
the MB Unit in early 2018. Oil production in Well TF2 was positively impacted when Well MB1 
was stimulated, as shown in Figure 59a, indicating communication between the MB Unit and TF 
Formation. Well MB3 has also been put on production since the middle of 2015. Adjacent 
neighboring well, TF4, was drilled, stimulated, and brought online from Three Forks in early 2019. 
Oil production in Well MB3 was positively impacted when Well TF4 was stimulated, as shown in 
Figure 59b. Since all wells were hydraulically fractured with a large volume of water in this DSU, 
the water cut in Wells TF2 and MB3 was also increased significantly, as shown in Figure 60a and 
b, respectively, when the neighboring wells were stimulated. The spikes of oil production rate and 
water cut indicated that the MB Unit and TF Formation are in hydraulic communication at this 
site. The well interference effect was also observed in other nearby DSUs, indicating that this 
effect is common in the area of interest. The significant increase of water cut observed in these 
DSUs indicates that conformance (e.g., gas crossflow between wells) would be a critical problem 
when gas EOR is applied to these sites.  
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Figure 59. Illustration of well interference effect observed in wells completed in the MB 
Unit and the TF Formation based on analysis of oil production rate. The oil production 
spikes in the red circles are caused by interference from neighboring MB or TF wells, 
indicating hydraulic communication between MB and TF. The zero points mean the wells 
were shut in, and there was no production on these dates.
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Figure 60. Illustration of well interference effect observed in wells completed in the MB 
Unit and the TF Formation based on analysis of water cut. The water cut spikes in the red 
circles are caused by interference from neighboring MB or TF wells, indicating hydraulic 
communication between MB and TF. The zero points mean the wells were shut in and 
there was no production on these dates. The data showed that the water cut could not 
return to the 20% level it was at before the new wells were stimulated. 
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Multiple DSU Site in Williams County  
 

 The second site with multiple DSUs is located in Williams County, North Dakota. This site 
has 16 wells, including eight wells completed in the MB and eight wells completed in the TF, as 
shown in Figure 61. The fundamental well and completion data for this site can be found in  
Table 14. Wells 2TFH, 3MBH, and 11MBH were stimulated and brought to production in 2013. 
Wells 4MBH, 5TFH, and 5MBH were stimulated and brought to production in 2014. Wells 6TFH, 
6MBH, 10TFH, 11TFH, 12MBH, and 12TFH were stimulated and brought to production in 2015. 
Wells 1TFH, 1MBH, 2MBH, and 3TFH were stimulated and brought to production in 2016. 
Analysis of the water cut behavior in parent wells clearly showed that well interference exists in 
these DSUs, as shown in Figure 62. Similar to the DSU in Dunn County, the MB Unit and TF 
Formation are also hydraulically connected in these DSUs. Therefore, these two sites were used 
to develop conformance control and EOR strategies in the Bakken.  

 
 

 
 

Figure 61. Distribution of wells in the DSUs located in Williams County, North Dakota. 
 
 

Table 14. Essential Parameters for Wells in the DSUs Located in Williams County, 
North Dakota 

No. Well Name 
Completed 

Formation/Unit 
Well 
Type 

Well 
Length, ft 

Well Depth, 
ft 

Fracture 
Stages 

Production Start 
Time 

1 1TFH Three Forks Child 9729 9684 35 2016 
2 1MBH Middle Bakken Child 9564 9591 35 2016 
3 2TFH Three Forks Parent 9741 9676 33 2013 
4 2MBH Middle Bakken Child 9792 9589 35 2016 
5 3MBH Middle Bakken Parent 9538 9585 33 2013 
6 3TFH Three Forks Child 9763 9679 35 2016 
7 4MBH Middle Bakken Parent 9566 9599 50 2014 
8 5TFH Three Forks Parent 9529 9701 50 2014 
9 5MBH Middle Bakken Parent 9617 9587 50 2014 
10 6TFH Three Forks Child 9773 9674 50 2015 
11 6MBH Middle Bakken Child 9719 9575 50 2015 
12 10TFH Three Forks Child 9501 9664 35 2015 
13 11MBH Middle Bakken Parent 9922 9547 35 2013 
14 11TFH Three Forks Child 9573 9658 35 2015 
15 12MBH Middle Bakken Child 9547 9561 35 2015 
16 12TFH Three Forks Child 9469 9647 35 2015 
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Figure 62. Illustration of well interference effect observed in the DSUs located in Williams 
County based on analysis of water cut. The water cut spikes in the red circles are caused by 
interference from neighboring MB or TF wells, indicating hydraulic communication between 
MB and TF.  

 
 

Development of Reservoir Simulation Models  
 
 Because well interference was observed in both sites, two multiple-well, multiple-fracture 
reservoir simulation models were developed to investigate the conformance issues and EOR 
performance in this study. The models were designed to be able to evaluate the response of oil 
production to gas injection in single wells, as well as to simulate hydraulic communication between 
formations and production/injection interference between wells in the EOR process. The multiple-
well setting enabled the simulation models to represent the actual reservoir situation more 
reasonably than a single-well model. Systematic modeling and simulation activities, including data 
collection, reservoir modeling, EOS regression, fracture modeling, history matching, conformance 
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treatment, EOR strategy development, and sensitivity analysis, were conducted in this study to 
investigate the feasibility of conformance control and EOR improvement in the target sites.  

 
 Data from over 100 wells in Dunn and Williams Counties were collected from the NDIC 
database to characterize the reservoirs in the two selected sites. A database with fundamental 
reservoir properties, including porosity, permeability, pore throat size, and mineral composition, 
etc., for the Bakken and Three Forks Formations, was also used to support the modeling activities 
(Sorensen and others, 2014, 2018; Jin and others, 2017b, c; Pospisil and others, 2020).  

 
 Formation structures throughout the modeling areas were correlated with well logs and core 
measurements collected from the wells (and their neighboring wells) from the two sites. The 
overall geologic structures of the two sites are identical; both include the Lodgepole, Bakken, and 
Three Forks Formations. These formations were divided into several zones in the models 
according to the nomenclature used by NDGS (Nesheim, 2019). Based on the geologic modeling 
method described by Pospisil and others (2020), two fit-for-purpose reservoir models were 
developed for the sites.  

 
EOS Regression 

 
 An EOS regressed from PVT data is an essential component needed to characterize the fluid 
properties in the reservoir. PVT parameters measured from a variety of tests, including saturation 
pressure, separator test, constant composition expansion, and differential liberation, were matched 
to mimic the fluid behavior. The EOS enables the simulation model to reproduce and predict the 
fluid dynamics in the production process since both pressure and volume of the oil and gas change 
constantly after production starts. Rich gas used for EOR usually has different components such 
as methane (C1), ethane (C2), and propane (C3), etc., in the gas stream. When the gas is injected 
into the reservoir, these components will interact with oil based on their physical and chemical 
properties; i.e., the gas components perform differently from each other in the reservoir. A site-
specific EOS is usually required to capture the gas–oil interaction in a particular reservoir.  
 
 Two EOSs with a different number of components were regressed from PVT data collected 
from the Dunn and Williams sites (Table 15). The first one was developed for the Dunn site with 
eight components, and the second one was developed for the Williams site with ten  
components. The number of components in each EOS was optimized to maximize the simulation 
efficiency based on site-specific PVT data. Both EOS models defined the gas components (N2, C1, 
C2, and C3) individually, allowing the evaluation of different combinations of injection gas 
composition in the EOR process. Results showed that both EOSs matched the experimental data 
satisfactorily in Table 15. Figure 63 shows an example of a good match for the GOR and relative 
oil volume in the two sites.  
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Table 15. Components in the EOS Models for the Dunn and Williams  
Sites  

Component  
EOS 

Dunn Site  Williams Site  
1 N2 CO2 
2 CH4 N2 
3 C2H6 CH4 
4 C3H8 C2H6 
5 IC4 to NC4 C3H8 
6 IC5 to C12 IC4 to NC4 
7 C13 to C19 IC5 to C7 
8 C20 to C30 C8 to C12 
9  C13 to C19 
10  C20 to C30 

 
 

 
 

Figure 63. Example of EOS regression results for the PVT data from the two sites: a) Dunn site 
and b) Williams site.  
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Fracture Modeling with EDFM 
 

Being able to predict the fluid distribution in the subsurface is paramount for advancing EOR 
strategies. Particularly, appropriate modeling of fracture geometries and uncertainties plays a 
critical role in the estimation of sweep efficiency and incremental oil recovery. However, the 
presence of fracture networks poses many challenges to traditional simulation methods. 
Conventional dual porosity and dual permeability methods lack accuracy because of the simple 
assumption of orthogonal fracture networks with cubic matrix blocks (Warren and Root, 1963; Yu 
and others, 2014; Xu and others, 2017). Local grid refinement and unstructured grid methods are 
also used frequently to simulate complex fracture geometries; however, their computation can be 
time-consuming because of the large number of grids and complicated gridding structure involved 
in the models (Conlin and others, 1990; Choi and others, 1997; Mirzaei and Cipolla, 2012; Jin and 
others, 2017a, 2019). 

 
 More recently, the EDFM technique has been developed to solve the challenges in fracture 
simulation. EDFM allows modeling complex fractures while keeping the computational efficiency 
of the dual-continuum models (Moinfar and others, 2014; Yan and others, 2016). The method 
integrates fracture cells with a nonneighboring connection (NNC) approach and three-dimensional 
(3D) modeling of slanted and nonplanar fractures into a regular grid system, as shown in  
Figure 64. The NNC settings enable structure grids to describe fractures in the model so that a 
traditional reservoir simulator like CMG’s software package can be used to run a simulation model 
with complex fracture settings efficiently (Xu, 2015; Xu and others, 2017). High flexibility is 
another unique advantage of the EDFM approach: if a new fracture segment is added to the 
physical domain, a nonneighboring new fracture cell will be added to the computational domain 
accordingly to calculate fluid flow inside fractures or between fractures and the rock matrix. This 
feature makes it convenient to simulate complex fractures and fluid flow in the EOR process. A 
few cases have been reported to simulate both pressure depletion and gas EOR operations in 
unconventional reservoirs employing the EDFM approach (Moinfar and others, 2014; Yu and 
others, 2014, 2020; Yan and others, 2016; Fiallos and others, 2019). Therefore, the EDFM 
approach was selected to simulate the complex fracture geometries in the Bakken.  
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Figure 64. Explanation of physical and computational domains of EDFM and connections 
between wellbore, fractures, and matrix (Xu and others, 2017). 

 
 

Reservoir Simulation Model for the Single DSU Site  
 
 Using the geologic/reservoir properties, EOS, and EDFM method, a compositional reservoir 
simulation model with main hydraulic fractures was developed for the Dunn site employing 
CMG’s GEM. Seven wells were included in the simulation model. Because of the large number 
of fracture stages along the wellbore of each well, 25% of the fracture stages for each well were 
included in the models for an efficient simulation, as illustrated in Figure 65. For example, Well 
TF1 has 40 fracture stages and a lateral length of 10,011 ft in the actual field, so the model cut 
2503 ft and ten fracture stages out of the well for simulation. The basic well and fracturing settings 
for the wells are shown in Table 16.  
 
 The length (in the X direction), width (in the Y direction), and height (in the Z direction) of 
the simulation model are 4000, 3250, and 206 ft, respectively. The model was divided into five 
formations with a total of 17 layers, including the Lodgepole (LP), Upper Bakken (UB), MB, 
Lower Bakken (LB), and TF Formations. The thickness of the LP, UB, MB, LB, and TF are 40, 
18, 40, 18, and 90 ft, respectively. An additional 16 grids in the X direction were added to the 
EDFM for fracture calculation based on the algorithm described above. The additional grids were 
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Figure 65. Schematic of fracture distribution in the simulation model for the Dunn site. 
 
 
used for flow calculation only, and they did not change the material balance in the model. History 
match was conducted to reproduce the production data in the field. Figure 66 shows the matching 
results for Well MB2; other wells have similar matches. The results indicate that the model was 
able to capture the production behavior of the wells to a reasonable degree.  
 
 

Table 16. Basic Well and Fracturing Data for the Simulated Wells 
in the Dunn Site 
Site Well Name Well Length, ft Fracture Stages 

Dunn 

TF1 2503 10 
MB1 2446 10 
TF2 2494 11 
MB2 2220 8 
TF3 2269 5 
MB3 2421 10 
TF4 3848 15 
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Figure 66. History match results for Well MB2: a) liquid rate, b) oil rate, c) gas rate, and  
d) water rate. 

 
 

Reservoir Simulation Model for the Multiple DSU Site  
 

Following the same methodology used for the Dunn site, a reservoir model with both 
hydraulic and natural fractures was built for the Williams site, where 16 wells were included in 
multiple DSUs. Since the simulation of 16 wells with over 630 hydraulic fracture stages requires 
high computational efforts, ca. 10% of the fracture stages for each well were included in the model. 
For example, Well 1TFH has 35 fracture stages and a lateral length of 9729 ft in the actual field; 
the model included four fracture stages and 973 ft of the wellbore length for this well. Figure 67 
shows the well and fracture distribution in the simulation model for the Williams site. The basic 
well and fracturing data for the simulated wells are shown in Table 17. The properties of natural 
fractures such as permeability and aperture, etc., were adjusted in the history-matching process.  
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Figure 67. Schematic of fracture distribution in the simulation model for the Williams site. 
 
 

Table 17. Basic Well and Fracturing Data for the Simulated Wells  
in the Williams Site  
Site Well Name Well Length, ft Fracture Stages 

Williams 

1TFH 973 4 
1MBH 956 4 
2TFH 974 4 
2MBH 979 4 
3MBH 954 4 
3TFH 976 4 
4MBH 957 5 
5TFH 953 5 
5MBH 962 5 
6TFH 977 5 
6MBH 972 5 
10TFH 950 4 
11MBH 992 4 
11TFH 957 4 
12MBH 955 4 
12TFH 947 4 

 
 

The width (in the X direction), length (in the Y direction), and height (in the Z direction) of 
the model are 8000, 1000, and 840 ft, respectively. The model contains five geologic units with 
22 layers, including LP, UB, MB, LB, and TF Formations. The thickness of the LP, UB, MB, LB, 
and TF are 350, 10, 60, 30, 40, 350 ft, respectively. An additional four grids in the X direction 
were added via EDFM to calculate fluid flow for fracture–fracture and fracture–matrix 
connections. The calculation did not affect the material balance of the model. History matching 
was performed to match the field production data.  
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Figures 68 and 69 illustrate example history-matching results for Wells 2TFH and 3MBH, 
respectively; other wells have similar matches. The results demonstrate that the simulation model 
can capture the flow dynamics for this site satisfactorily. 

 
 

 
 

Figure 68. History match results for Well 2TFH: a) liquid rate, b) oil rate, c) gas rate, and  
d) water rate. 
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Figure 69. History match results for Well 3MBH: a) liquid rate, b) oil rate, c) gas rate, and  
d) water rate.  

 
 

Simulation of Conformance Challenges  
 
Usually, a large volume (20 thousand – 120 thousand bbl) of water is required in the 

hydraulic fracturing process to stimulate a well by creating multiple fracture stages in the Bakken. 
Such a large volume of injected water will cause a water cut increase or spike in one or more 
neighboring wells if the wells are connected, because the high injection pressure will force the 
injection water flowing from the injector to its neighboring well(s). Figures 60 and 62 clearly 
showed that water cut in parent wells was increased when a neighboring child well was stimulated. 
Therefore, water injection was used in this study to test the fluid communication between wells in 
both sites.  

 
Parent wells are more likely to be used for EOR operations because of their longer production 

time and lower production rates, so four parent wells were selected in the two sites to test whether 
they have well interference with their adjacent offset wells and also whether the models can capture 
the fluid communication between the main oil-producing units, i.e., MB and TF. Table 18 shows 
the well interference design for the two sites. Wells MB2 and TF2 were selected in the Dunn site. 
Water was injected in these two wells separately, and water cut in the adjacent offset wells was 
monitored to observe the interference effects. For instance, water cut in Well TF2 was monitored 
when water was injected in Well MB2, and water cut in Well MB1 was monitored when water 
was injected in Well TF2, respectively, as shown in Figure 70a. The same method was applied to 
the Williams site: Wells 5TFH and 11MBH were selected as testing wells for water injection, and 
water cut in Wells 4MBH and 10TFH was closely monitored, as shown in Figure 70b. 
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Table 18. Well Interference Test Design in the Dunn and Williams Sites  

Site 
Test 
No. 

Injection 
Well 

Injection 
Fluid 

Monitoring 
Well 

Monitoring 
Parameter 

Dunn 1 MB2 Water TF2  Water cut 
2 TF2 Water MB1  Water cut 

Williams 3 5TFH Water 4MBH  Water cut 
4 11MBH Water 10TFH  Water cut 

 
 

 
 

Figure 70. Location of wells used for interference test in a) Dunn site and b) Williams site. 
 
 
 In the first test, water was injected through well MB2 at a rate of 4000 bpd until reaching 
the maximum BHP of 7500 psi at the Dunn site, as shown in Figure 71, which illustrates that water 
injection can effectively lift the well BHP in the injection well. All other wells remained open for 
production in the injection process. Therefore, water cut in adjacent offset wells should increase if 
the model can capture the well interference effect as well as the hydraulic communication between 
the MB Unit and the TF Formation. Figure 72 shows the water cut behavior in Well TF2 when 
water was injected in Well MB2; a water cut curve for pressure depletion scenario was also added 
to the figure for comparison. Results clearly demonstrated the interference between the wells and 
the oil-producing zones because the injected water can easily flow from Well MB2 to Well TF2. 
In the second test, water was injected through Well TF2 using the same injection constraints as in 
the first test. Figure 73 shows that Wells MB1 and TF2 were also very well connected based on 
the smooth water cut increase in Well MB1 after water was injected in Well TF2.  
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Figure 71. Comparison of BHP during normal pressure depletion and water injection 
processes in Well MB2 at the Dunn site.  

 
 

 
 
Figure 72. Water cut behavior in Well TF2 when water was injected in Well MB2 at the Dunn 
site. The black curve was the water cut under a pressure depletion scenario; it was added for 
comparison.  
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Figure 73. Water cut behavior in Well MB1 when water was injected in Well TF2 in the Dunn 
site. The black curve was the water cut under a pressure depletion scenario; it was added for 
comparison. 

 
 
 The same methodology was applied to the third and fourth tests to identify whether the model 
can capture the well interference effect and fluid communication between the MB Unit and the TF 
Formation in the Williams site. Water was injected through Well 5TFH at a rate of 4000 bpd until 
reaching the maximum bottomhole pressure of 6000 psi at the Williams site, as shown in  
Figure 74.  

 
 Compared to the pressure response in Well MB2 (Figure 71) at the Dunn site, the pressure 
increases slower in Well 5TFH because of the longer production history and lower initial reservoir 
pressure at the Williams site. The water cut response in the adjacent offset Well 4MBH is shown 
in Figure 75, which illustrates a strong fluid communication between these wells. The injected 
water may completely fill Well 4MBH in 2 months, with continuous injection in 5TFH. The well 
interference effect was demonstrated similarly in the fourth test, which employed Well 11MBH to 
inject water. Water will soon fill up the entire monitoring well after breakthrough because of the 
high fracture conductivity between wells. Once water breaks through to a producer, a pathway is 
established for the injected water to flow from the injector to the producer. Since the injected water 
is much easier to flow through the fractures than oil flows from the tight matrix to the fractures, 
the flow paths between the neighboring injector and producer will be soon filled with the injected 
water and make oil production difficult if water injection continues. Figures 75 and 76 demonstrate 
this observation clearly; i.e., water cut in the monitored producers reaches 100% within 2 months 
of water injection. Since gas has much higher mobility than water in the reservoir, the gas 
breakthrough will be earlier than that of water when the same injection pressure is applied in the 
EOR process; in other words, the well interference effect will be stronger when gas injection is 
used for EOR.  
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Figure 74. Comparison of BHP during normal pressure depletion and water injection 
processes in Well 5TFH at the Williams site. 

 
 
 These tests showed that both models can capture the well interference effects in the Bakken. 
Although there is a shale formation (LB) between the MB and TF, these two pay zones may be 
connected for fluid flow when two or more neighboring wells are drilled and hydraulically 
fractured in these two zones: the LB shale may no longer act as a barrier between them. Therefore, 
conformance control needs to be considered for wells in both MB and TF in the gas injection 
process no matter whether the gas injector is located in the MB or TF.  
 
 

 
 

Figure 75. Water cut increases in Well 4MBH when water was injected in Well 5TFH at the 
Williams site.  
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Figure 76. Water cut increases in Well 10TFH when water was injected in Well 11MBH at the 
Williams site.  
 
 

Subactivity 7.2 – Alternative EOR Strategies Integrated with Conformance Control  
 
 An evaluation of the Bakken rich gas EOR test at the Stomping Horse complex, combined 
with an examination of results from previous rich gas injection tests in the Bakken and Eagle Ford, 
suggests that including water injection as a component of a Bakken EOR scheme may be beneficial 
to managing conformance. Water injection was also used to prevent strong well interference 
effects (frac hits) during hydraulic fracturing operations in unconventional reservoirs (Esquivel 
and Blasingame, 2017; Bommer and Bayne, 2018; Vidma and others, 2019). However, the current 
permit from the North Dakota Department of Mineral Resources for the injection test specifically 
precludes the injection of water as part of the Liberty pilot test at Stomping Horse. This subactivity 
used the EDFM models developed in Subactivity 7.1 to conduct a detailed dynamic simulation of 
alternative rich gas injection scenarios that include the injection of water. The simulation predicted 
the effects that water injection may have on conformance control in future EOR efforts at different 
areas of the Bakken.  
 
 Examination of past Bakken EOR test results also suggests that injection operations may 
influence reservoir behavior beyond the boundaries of a DSU (Hoffman and Evans, 2016; 
Sorensen and Hamling, 2016). In addition to modeling alternative EOR schemes that include water 
injection, the EERC also conducted simulation activities to examine the potential impact that the 
scale of a project may have on conformance and sweep efficiency (i.e., a multiwell huff ‘n’ puff 
[HnP] operation conducted over a domain comprising multiple DSUs). Therefore, the following 
activities were conducted in this subactivity:  

 
1. EOR performance without conformance control: different rich gas injection scenarios 

were simulated to obtain the baseline EOR results considering well interference effect 
(without conformance control) in the Dunn site. 
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2. Conformance control with water injection: conformance control strategies using water 
injection were specifically designed for hydraulically fractured wells to improve EOR 
performance in the Bakken. The strategies were applied to the rich gas EOR cases studied 
in the Dunn site. 

 
3. Upscaling the alternative EOR strategies: the newly developed rich gas EOR strategies 

with conformance control were upscaled from a single-well HnP operation to a multiple-
well HnP operation in a domain comprising multiple DSUs in the Williams site.  

 
EOR Performance Considering Well Interference in the Dunn Site 

 
 First, a series of simulation cases were designed to study the rich gas EOR performance in 
the Dunn site where Well MB2 was used as an HnP well for EOR operations. Sensitivity analysis 
was performed to identify the most important factor for the EOR pilot test. Based on the previous 
and ongoing pilot tests in the Bakken and Eagle Ford unconventional plays, key operational 
parameters, including injection rate, injection time, soaking time, and production time, etc., were 
considered in the simulation study, as shown in Table 19. The reason for selecting Well MB2 for 
HnP operation is that Wells TF2, MB2, TF3, and MB3 are parent wells completed on/before 2015. 
The production rates of these wells are relatively low so that they were considered more suitable 
for EOR operations. The newer wells in this DSU could be deferred for EOR operations because 
of their high current production rates. Wells TF2 and MB3 are close to the newly completed wells, 
so gas injection could impact production in these high-rate wells. Well TF3 might be depleted 
more than other wells because of its longer production history and fewer fracture stages. Well 
MB2 is in the middle of the DSU with a moderate oil production rate, so this well was selected to 
conduct the detailed EOR prediction and sensitivity study.  
 
 

Table 19. Operational Parameters Considered in the EOR Sensitivity Study  
Parameter Value 
Injection Rate, MMscfd  2~45 
HnP Well  MB2 
EOR Operational Time, years  2 
Injection Time, days/cycle  15, 30, 60 
Soaking Time, days/cycle  0, 7, 14 
Production Time, days/cycle  30, 60, 90 
Injection Gas Composition (C1:C2:C3)  60:25:15 
Maximum Injection Pressure (BHP), psi  7500 
Minimum Production Pressure (BHP), psi  100 

 
 
 The detailed results are presented and analyzed in Subactivity 8.1. An example is presented 
here to illustrate the EOR performance considering the well interference effect with the following 
parameters:  
 

• HnP well: MB2  
• EOR operational time: 2 years  
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• Injection rate: 3 MMscfd  
• Injection time: 30 days/cycle  
• Soaking time: 7 days/cycle  
• Production time: 60 days/cycle  
• Maximum injection pressure constraint: 7500 psi  
• Minimum production pressure constraint: 100 psi  

 
 Figure 77 shows the BHP of the HnP well (MB2) and its adjacent offset wells (TF2 and TF3) 
in the first year of EOR operations. The measured MMP between the oil and injection gas in this 
site is between 2200 and 2300 psi. Because of the high initial reservoir pressure (~8100 psi), 
relatively short production history, and well-managed production schedule, the reservoir was not 
fully depleted to a low-pressure level before the EOR operation. Therefore, the BHP in the HnP 
well increased effectively with gas injection; however, the BHP also decreased rapidly in the HnP 
well during the soaking period when the injected gas flowed into the depleted volume around the 
well. Since Wells TF2 and TF3 are hydraulically connected with the injector, the BHP in these 
two offset wells also increased above MMP in the injection and soaking cycles. As a result, 
miscible EOR was reached in the EOR operations when rich gas was injected at 3 MMscfd.  
 
 The production pressure was set at 100 psi to maximize the oil production rate so that the 
lost oil production during the injection and soaking cycles could be made up in the oil production 
cycle. Figure 78 shows the oil production performance in the HnP well and its adjacent offset wells 
through the entire EOR process. The higher oil production rate in Well TF2 indicates a gas-
flooding effect in the EOR operations; i.e., the injected gas drove oil from the fractures to the well 
when there was mobile oil in the fractures. A similar oil response was observed in previous gas 
EOR pilots in the Bakken and Eagle Ford reservoirs (Nagarajan and others, 2020; Litvak and 
others, 2020). Another possible reason is that TF2 has more fracture stages than MB2 and TF3 (45 
vs. 30 and 19); therefore, TF2 might have a larger stimulated reservoir volume (SRV) around the 
well for EOR. The oil production performance in these wells indicates that a larger SRV could 
yield better EOR performance in the miscible EOR process.  
 
 

 
 

Figure 77. BHP behavior in the HnP well (MB2) and its adjacent offset wells (TF2 and TF3) 
in the first year of EOR operation when rich gas was injected at 3 MMscfd. 
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Figure 78. Oil production performance in the HnP well (MB2) and its adjacent offset wells 
(TF2 and TF3) through the entire EOR process.  

 
 
 Figure 78 also indicates that the EOR effect in the wells becomes weak after the first several 
injection–production cycles. When the reservoir pressure is high enough to support oil production 
by primary depletion operations with a moderate production rate, EOR without a long-lasting 
effect may not be the best choice. Figure 79 shows the comparison of cumulative oil production 
between a normal pressure depletion and rich gas EOR with a 3-MMscfd injection rate. Results 
showed that rich gas EOR with a 3-MMscfd gas injection could not produce more oil than the 
pressure depletion operation since the incremental oil in the production cycle could not offset the 
lost production in the injection and soaking cycles.  
 
 Further analyses of Figures 78 and 79 indicate that rich gas EOR may outperform the 
pressure depletion in cumulative oil production if the high oil production cycles can be maintained 
for a longer time. The Eagle Ford pilots showed that a high gas injection rate is beneficial to 
maintain a high oil production rate in the EOR process. However, compared to the Eagle Ford 
pilots, gas availability is one of the most critical challenges for EOR operations in the Bakken. 
 
 

 
 

Figure 79. Comparison of cumulative oil production of Well MB2 with pressure depletion 
and gas EOR (3-MMscf/d injection rate) operations.  
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 There are few large gas storage facilities available near most of the production pads in the 
Bakken; as a result, continuous injection of rich gas at a high rate becomes difficult in the EOR 
process because of an inadequate gas supply. Therefore, another case with a moderate injection 
rate of 6 MMscfd was simulated to verify the assumption. In the meantime, an additional case with 
a 1-MMscfd gas injection rate was also simulated to have a more detailed comparison between the 
cases, so that the effect of gas injection on EOR performance can be evaluated more thoroughly. 
Figure 80 illustrates that a higher BHP could be reached when increasing the gas injection rate, 
which then yields higher oil production rates and more cumulative oil production, as shown in 
Figures 81 and 82, respectively.  
 
 

 
 

Figure 80. BHP behavior in the HnP well (MB2) with different gas injection rates. 
 
 

 
 
Figure 81. Oil production performance in the HnP well (MB2) with different gas injection rates. 
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Figure 82. Comparison of oil production performance between pressure depletion and gas 
injection EOR with different injection rates.  

 
 

EOR Performance with Conformance Control in the Dunn Site  
 
 Figures 80 and 81 illustrate that there is a strong correlation between the well BHP and oil 
production rate in the rich gas EOR well. Therefore, a direct method to improve the EOR 
performance is to increase the BHP by using higher gas injection rates with the same injection gas 
composition. Figure 82 demonstrates the effect of the gas injection rate on EOR performance when 
no conformance control was applied to confine the injected gas around the HnP well. Considering 
the gas availability in the Bakken, it is necessary to develop alternative EOR strategies to improve 
the oil production performance without increasing the gas injection rate significantly. Since BHP 
is a function of the confined gas quantity around the HnP well, the BHP may increase to a higher 
level if the injected gas can be kept within a certain volume around the injector in the injection and 
soaking cycles.  
 

Conformance Control with Water Injection  
 
 Figure 82 shows that the oil production performance of pressure depletion and rich gas EOR 
with a 3-MMscf/d injection rate was similar; thus this EOR case was selected as a base case for a 
conformance control study. Figure 79 shows that the maximum reachable BHP of the HnP well 
was around 4400 psi in the injection cycle when rich gas was injected at 3 MMscfd without any 
conformance control operations. In the meantime, the maximum BHP of the two offset wells, TF2 
and TF3, was 3650 and 3300 psi, respectively. The injected gas could easily flow from the injector 
to these two offset wells because of the pressure difference and high fracture conductivity between 
these wells. Therefore, a BHP higher than 4400 psi in TF2 and TF3 is required to prevent the 
injected gas flowing from the HnP well to these two offset wells in the EOR process. One way to 
achieve this is to inject water in the two adjacent offset wells with controlled pressure as illustrated 
in Figure 83, where Well MB2 was used for gas EOR with HnP operations and Wells TF2 and 
TF3 were used to inject water in the injection and soaking cycles of Well MB2 so that the gas 
injected through this well could be confined in a certain volume around the well without flowing 
to Wells TF2 and TF3.  
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Figure 83. Schematic of gas and water injectors distribution for conformance control in the 
EOR process at the Dunn site.  

 
 

 Two cases were designed to investigate the effect of water injection in offset wells on 
pressure behavior in the HnP well where the gas injection rate was fixed at 3 MMscfd. The first 
case used a constant-pressure water injection of 4500 psi in Wells TF2 and TF3 during the injection 
and soaking cycles. The second case used 6000-psi water injection in the same two wells to make 
sure that no gas flowed to them in the EOR process. Figure 84 shows the comparison of the BHP 
behavior in the HnP well with and without conformance control. It is clear that water injection in 
the offset wells can improve the BHP in the EOR well effectively. Compared to the maximum 
BHP of 4400 psi without conformance control, the maximum BHP in the EOR well could reach 
4850 and 5400 psi when water was injected at 4500 and 6000 psi, respectively, in the offset wells. 
Such a pressure increase led to an effective EOR improvement as illustrated in Figure 85. Around 
5.5% more oil could be produced from the HnP wells in 2 years of EOR operations when gas was 
injected at only 3 MMscfd with 6000 psi of water injection in the offset wells. This rate is 
significantly lower than the reported gas injection rates of 14–25 MMscfd in the Eagle Ford pilots.  
 

Conformance Control with Surfactant Injection  
 

 Oil resides in both matrix and fractures in unconventional reservoirs. Oil in hydraulic 
fractures is relatively easy to produce since the fracture permeability and the pressure difference 
between reservoir and wellbore is high enough for oil to flow through the fractures. The situation 
is different for oil in the matrix where a high-pressure difference is required for oil to flow through 
the tiny pores in the production process. Reservoir pressure continues to drop with production in 
the pressure depletion stage, especially in the near-fracture and near-wellbore regions. The 
pressure difference may soon become too low to support the high oil production rate in the pressure 
depletion operations. As a result, the production rate decreases rapidly in the first several years of 
production. The depleted volume in the reservoir needs to be recharged so that oil can continue 
flowing through the matrix and the well can regain oil production. Therefore, oil residing in the 
tight matrix is the main target for EOR in the Bakken (Jin and others, 2017b, c).  
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Figure 84. Comparison of BHP behavior in the HnP well (MB2) when the gas injection rate is 
3 MMscfd with and without conformance control by water injection in the adjacent offset 
wells. 

 
 

 
 

Figure 85. Comparison of oil production performance between pressure depletion and gas 
EOR (at 3-MMscfd injection rate) with and without conformance control by water injection in 
the adjacent offset wells.  

 
 
 Figure 86 shows a typical pore-size distribution in the MB and TF measured by the high-
pressure mercury injection method. The figure indicates that most of the pore throats have a radius 
between 5 and 50 nm in the MB, while the values for the TF pores are a little larger, mainly, 
between 7.5 and 75 nm. Such a tiny pore size could generate high capillary pressure between fluid 
phases in the matrix based on Equation 6 (Alvarez and others, 2017; Jin and others, 2017c):  
 
   𝑃𝑃𝑐𝑐 = 0.29𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎

𝑟𝑟
  [Eq. 6] 

 
Where Pc is the capillary pressure, psi; σ is the IFT, dyne/cm; 𝜃𝜃 is the contact angle between two 
phases, degree; and r is the pore throat radius, µm.  
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Figure 86. Measurements of pore-size distribution using rocks collected from the MB and 
Upper TF. 

 
 
 IFTs of oil–water and rich gas–water were also measured considering a wide range of 
pressure and salinity conditions in the Bakken, as shown in Figure 87. All experiments were 
conducted with a representative reservoir temperature of 250°F. Based on the experimental 
measurements and Equation [Eq. 6, capillary pressure could create a high resistance for fluids 
flowing through the tight matrix. Since pore throat size is an intrinsic rock property, which is 
difficult to change in the production operations, the IFT and/or CA needs to be reduced for a lower 
capillary resistance in the EOR process.  
 
 Laboratory experiments showed that surfactant can effectively reduce the oil–water CA and 
IFT in the Bakken (Alvarez and others, 2017; Kazempour and others, 2018). Figure 88 
demonstrates the effect of different surfactants on reducing the oil–water CA in the Bakken as 
reported by Alvarez and others (2017). Kazempour and others (2018) reported that surfactant 
injection boosted oil production effectively in an EOR pilot in the Bakken. Following the method 
reported by Kazempour and others (2018), a simplified surfactant injection setting was applied to 
the model used for conformance control with water injection, as shown in Figure 82. The BHP and 
EOR performance of rich gas injection combined with conformance control by surfactant injection 
are shown in Figures 89 and 90, respectively. Results showed that up to 9.2% more oil could be 
produced from the HnP wells in 2 years of EOR operations when gas was injected at only  
3 MMscfd with 6000 psi of surfactant injection in the offset wells. Obviously, surfactant is more 
effective than water for EOR improvement when used as an injection agent for conformance 
control in the Bakken.  
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Figure 87. IFT between a) oil and water and b) rich gas and water in the Bakken reservoir 
considering a wide range of pressure and salinity conditions (temperature at 250°F).  

 
 

 
 

Figure 88. Effect of different surfactants on reducing oil–water CA in the Bakken. 
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Figure 89. Comparison of BHP behavior in the HnP well (MB2) when the gas injection rate is 
3 MMscfd with and without conformance control by surfactant injection in the adjacent offset 
wells.  

 
 

 
 

Figure 90. Comparison of oil production performance between pressure depletion and gas EOR 
(at a 3-MMscfd injection rate) with and without conformance control by surfactant injection in 
the adjacent offset wells.  

 
 

EOR Performance in Multiple DSUs with Conformance Control in the Williams Site  
 
 The single DSU case in the Dunn site showed that the EOR performance in the HnP well 
can be improved by either increasing the gas injection rate or confining the injected gas within a 
certain volume around the gas injector by conformance control. BHP is one of the key factors that 
impact the EOR results. No matter which method is applied to improve EOR performance, the 
BHP must be lifted for gas to penetrate the tight matrix deeper so that the gas can contact more oil 
and extract it out of the tiny pores. It should be noted that the reservoir in the Dunn site has not 
been depleted completely since the child wells were put on production in or after 2018, as shown 
in Table 13. Parent wells are located in the middle of the site, as shown in Figure 58, so that the 
injected gas is relatively easy to control as the reservoir pressure is higher on the two sides of the 
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DSU. However, the production situation in the Williams site is more complex, as indicated in 
Table 14. Figure 61 shows that parent and child wells were distributed alternately across the DSUs 
in the site. Previous EOR tests in this site showed that single-well HnP operations with low rich 
gas injection rates (0.2–2.2 MMscfd) were difficult to improve oil production significantly because 
the reservoir was depleted to very low pressure. A considerable volume of gas is needed to fill up 
the depleted reservoir volume before the BHP can be lifted to a level for an effective EOR. Also, 
the pressure response to gas injection varied from well to well during the pilot test (Pospisil and 
others, 2020). 

 
 Simulation tests and IFT analysis showed that although water injection can be used to 
confine the injected gas within the desired reservoir volume, the injected water will also block oil 
flow around the water injector. Therefore, the EOR and conformance control strategies need to be 
carefully designed for utilizing the wells reasonably to improve the oil production performance.  

 
 Since the wells were completed in different years and have been producing for 5–8 years, 
the HnP performance for each well was different. Two wells with their adjacent offset wells were 
selected to demonstrate the different EOR responses to gas and water injection operations. Well 
5MBH was completed in the middle of the site with 50 fracture stages in 2014, and Well 12MBH 
was completed close to the east boundary of the site with 35 fracture stages in 2015. Five 
operational scenarios were tested: pressure depletion; normal rich gas HnP EOR; and rich gas HnP 
EOR with conformance control by water injection at 2000, 4000, and 6000 psi in the offset wells. 
Gas was injected at 10 MMscfd for 60 days in the injection cycle, and then the well was switched 
to a production cycle for 30 days. Figure 91 shows the comparison of oil responses to different 
operational conditions in the two wells. Figure 91a shows that normal HnP EOR without 
conformance control could not improve the oil production performance in Well 5MBH as the 
injected gas migrated to offset wells quickly. However, the EOR results became better when 
conformance control was applied to confine the gas around the well. The oil production 
performance of EOR became better than that of pressure depletion when the water injection 
pressure reached 4000 psi in the offset wells. Oil production behavior was different in Well 
12MBH, as shown in Figure 91b. Normal HnP EOR yielded better oil production than the pressure 
depletion operation. The EOR results became even better when higher-pressure water injection 
was used for conformance control. One reason is that Well 12MBH is close to the boundary, so 
pressure was easier to build up around the well.  

 
 Although high-pressure water injection in the offset wells can improve EOR performance in 
the HnP well, it can also reduce the oil production in the wells that were used for water injection, 
as shown in Figure 92. The figure shows that the more water was injected through a well, the less 
oil could be produced in this well. This response fits the oil–water multiple-phase flow theory very 
well; i.e., water blocks the oil flow path in the tight matrix because of the high capillary pressure 
caused by the large oil–water IFT and tiny pore throat size. Therefore, the EOR strategies in a site 
with multiple DSUs need to be carefully designed in order to balance the production gain and loss 
between different wells. A series of simulations were performed to improve the overall EOR 
performance in the Williams site. Different combinations of operational parameters, including 
injection rate, injection time, soaking time, production time, water injection wells, water injection 
pressure, injector and producer numbers, etc., were tested to observe the EOR response in multiple 
DSUs.  
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Figure 91. Comparison of oil production performance in gas EOR wells a) 5MBH and  
b) 12MBH. The wells were operated by pressure depletion and gas EOR (at 10-MMscfd gas 
injection rate) with and without conformance control by water injection in the adjacent offset 
wells. 
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Figure 92. Comparison of oil production performance in conformance control wells a) 5TFH 
and b) 11TFH. The wells were used to inject water in the cases with conformance control 
operations. They were regular producers with pressure depletion only when no conformance 
control was used.  

 
 
 After testing numerous operational combinations were tested, the design in Figure 93 was 
adopted to upscale the alternative EOR strategies with conformance control from a single DSU to 
multiple DSUs. The corresponding designing parameters are shown in Table 20. Four types of 
wells were set up in the design: HnP wells for gas injection and oil production, water injection 
wells for conformance control, producers with high oil production rates which were kept open all 
the time, and producers next to the HnP wells that were only open during the production cycle of 
the HnP wells. Figure 94 illustrates the comparison of oil production performance with different 
operational strategies. Results showed that the best EOR effect was not yielded by the case with 
the most gas injection volume; i.e., every well was used for gas HnP EOR. A reasonable 
arrangement of production strategy could yield 7.44% of incremental oil production in 2 years of 
operation. Further optimization of the EOR strategies could yield more incremental oil production.
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Figure 93. Schematic of producer and injector distribution for rich gas EOR with 
conformance control in multiple DSUs at the Williams site. 

 
 
Table 20. Parameters for Rich Gas EOR with Conformance Control in the Williams Site 
Parameter Value 

Gas HnP Wells 2TFH, 3MBH, 4MBH, 6TFH, 10TFH, 11MBH, 
12MBH 

Water Injection Wells 2MBH, 11TFH 

Wells with Pressure Depletion Only  1TFH, 1MBH, 3TFH, 5TFH, 5MBH, 6MBH, 
12TFH 

Gas Injection Rate 10 MMscfd for each well 
Injection Time 30 days/cycle  
Soaking Time 0 days/cycle  
Production Time 60 days/cycle  
Injection Gas Composition (C1:C2:C3) 7:2:1 
Maximum Gas Injection Pressure 
Constraint 7500 psi  

Maximum Water Injection Pressure  4000 psi 
Minimum Production Pressure  300 psi  
EOR Operational Time 2 years  
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Figure 94. Comparison of oil production performance with different operational strategies in 
the Williams site with multiple DSUs.  

 
 

Conclusions  
 
 A systematic simulation study was conducted in this activity to investigate the gas EOR 
strategies in the Bakken Formation. The conformance issue caused by well interference was 
thoroughly studied based on field observations. Two sites with clear well interference effects were 
selected for detailed analyses of crossflow between wells in different areas. A highly efficient 
fracture modeling method, EDFM, was employed to develop two multiple-well, multiple-fracture 
models. These models captured the well interference and conformance issues in the Bakken 
effectively and thus made it possible to investigate the complex flow behavior between wells in 
the EOR processes. Alternative EOR and conformance control strategies were developed to 
improve the oil production performance in both single-well and multiple DSUs. Results showed 
the following:  
 

• A large volume of gas needs to be injected into the reservoir in order to lift the BHP and 
yield meaningful EOR response. 

 
• The EOR response in each well could be different even though the wells are located in the 

same DSU. Many factors, including completion time and formation, number of fractures, 
offset wells, and production history, etc., could impact the EOR results. 

 
• Water injection can be used for conformance control in the Bakken because of its 

relatively low mobility compared to gas. 
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• Water injection could also block oil flow around the wells used for conformance control 
because of the high IFT between oil and water as well as the tiny pore throat size in the 
tight matrix. 

 
• Not all of the wells are suitable for EOR operations in the Bakken, so gas and water 

injectors need to be carefully selected for EOR design. EOR performance can be 
improved considerably by optimizing the EOR strategies. 

 
• Surfactant is more effective than water for improving gas EOR performance when used 

as a conformance control agent.  
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ACTIVITY 8.0 – MACHINE LEARNING AND BIG DATA ANALYTICS FOR 
UNCONVENTIONAL EOR STRATEGIES 

 
 
 Two of the objectives of Subtask 3.1 are to optimize future commercial-scale tight oil EOR 
design and operations and to establish the effectiveness of monitoring techniques for reservoir 
surveillance and injection conformance modeling. Activity 8.0, comprising two subactivities, 
applied ML and BDA methods to facilitate progress for both of the following objectives. The 
following provides a summary of the activities. 
 

Subactivity 8.1 – Virtual Learning 
 

Introduction 
 
 An evaluation of modeling and simulation results from rich gas injection tests in the Bakken 
and Eagle Ford suggested that adding a water injection component to the EOR reservoir 
management strategy may be an effective method for reducing breakthrough time. Furthermore, 
the results of laboratory studies suggested that beginning EOR operations earlier in the lifetime of 
a DSU, when reservoir pressures are not significantly below MMP, may improve the economics 
of EOR and lead to higher ultimate recovery values. Other factors, such as the number of wells 
within the DSU, injection time (sometimes called the “huff period” or the days of gas injection), 
soak time (the days between the huff period and the “puff period”), production time (sometimes 
called the puff period or the days of gas production after the soaking time), and cycle time (sum 
of the injection time, soak time, and production time), likely all contribute to the overall 
performance of a DSU in response to rich gas injection. Subactivity 8.1 used virtual learning 
methods to investigate model simulations of alternative rich gas injection scenarios to quantify the 
effect of the aforementioned factors that potentially contribute to DSU incremental production of 
oil, gas, and water (hereafter “oil, gas, or water production”). The technical approach for 
Subactivity 8.1 comprises the generation of reservoir simulations followed by the application of 
applied statistical and ML methods to the reservoir simulation outputs to quantify the effects of 
different factors on oil, gas, and water production and to identify optimal configurations of the 
different inputs. A summary of findings are provided below. 
 

Geologic Model and Reservoir Simulation 
 
 The geologic model (geomodel) and reservoir simulations examined as part of  
Subactivity 8.1 were previously described under Activity 7. The geomodel addressed a reference 
DSU comprising seven wells, with three wells completed in the MB Formation (MB1, MB2, and 
MB3) and four wells completed in the TF Formation (TF1, TF2, TF3, and TF4) (Figure 95). Two 
alternative DSU configurations that were geomodeled are also shown in Figure 95 and include 
both five- and six-well configurations. The reservoir simulations used different combinations of 
wells and operating parameters to generate sets of outputs for the data analysis. Subactivity 8.1 
included two sets of reservoir simulation cases for the reference seven-well DSU: Set 1 and Set 2. 
These sets were used to evaluate different components of DSU development and operation, as 
described below. 
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Figure 95. Illustration of the DSU models identifying the MB and TF wellbores included in 
each model and the wells that were used for rich gas injection (red outline) or production 
(green outline). The blue dashed boxes indicate wells used for water injection during gas and 
water injection scenarios, as described in the text. 

 
 

Simulation Case Matrices – Set 1 Simulations: DSU Development 
 
 The Set 1 simulations evaluated the effect of three potential DSU development factors based 
on oil, gas, and water production: 1) well count, 2) EOR development schedule, and 3) injectate. 
Using the well configurations shown in Figure 95, three levels of EOR development timeline were 
considered: early (BHP 500 psi below the MMP), middle (oil rate less than 100 stock tank barrels 
per day [stbd], and late (oil rate less than 50 stbd). Lastly, the injectate factor had two levels: gas-
only injection or gas and water injection. This yielded a test matrix comprising 18 individual cases, 
as described in Table 21.  
 
 In recognition of the fact that it is impracticable to simulate all possible combinations of 
wells, gas injectors, water injectors, and operating conditions for a seven-well DSU, the 18 
individual cases in the Set 1 case matrix were defined to balance the number of simulations against 
computational limitations and produce a data set that could provide insights into the relative effects 
of well count; EOR development strategy; and EOR injectate on oil, gas, and water production as 
well as inform subsequent simulations for simulation case matrix Set 2. 
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Table 21. Set 1 Reservoir Simulation Case Matrix  
Referencing the Well Counts Shown in Figure 94 
Case ID DSU Well Count EOR Timeline Injectate 
1 5 Early Gas 
2 6 Early Gas 
3 7 Early Gas 
4 5 Early Gas + water 
5 6 Early Gas + water 
6 7 Early Gas + water 
7 5 Middle Gas 
8 6 Middle Gas 
9 7 Middle Gas 
10 5 Middle Gas + water 
11 6 Middle Gas + water 
12 7 Middle Gas + water 
13 5 Late Gas 
14 6 Late Gas 
15 7 Late Gas 
16 5 Late Gas + water 
17 6 Late Gas + water 
18 7 Late Gas + water 

 
 

Simulation Case Matrices – Set 2 Simulations – DSU Operation 
 
 The Set 2 simulations evaluated the reference seven-well DSU, the early EOR development 
timeline (BHP 500 psi below the MMP), and gas-only injection (i.e., no water injection wells) with 
a focus on the effect of four potential operational factors on oil, gas, and water production:  
1) injection rate, 2) injection time, 3) soak time, and 4) production time. The sum of injection time, 
soak time, and production time yields the cycle time. A total of 267 cases were evaluated. As was 
the case with the Set 1 simulations, the Set 2 case matrix was selected to balance the number of 
simulations against computational limitations and produce a data set that effectively sampled the 
operational parameter space (i.e., the range of combinations of the operational factors) and 
provided inputs to ML-based approaches for evaluating the results. Table 22 provides descriptive 
statistics for the 267 simulations. 
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Table 22. Descriptive Statistics for Set 2 Reservoir Simulation Case Matrix. All 267 cases 
used the full seven-well DSU, the early EOR development timeline, and gas-only injection 
(min = minimum, P25 = 25th percentile, std. dev. = standard deviation, P75 = 75th 
percentile, and max = maximum). 

Variable Min P25 Median Mean 
Std. 
Dev. P75 Max 

Gas Injection Rate (MMscfd) 3 9 11 12.9 6.4 16 35 
Injection Time (days) 10 26 33 37.0 15.2 48 90 
Soak Time (days) 0 6 12 11.3 5.9 16 21 
Production Time (days) 21 42 60 60.2 19.6 78 96 
Cycle Time (days) 45 87 110 108.4 26.8 127 207 
DSU Incremental Oil (Mbbl) 211 226 229 229.8 6.3 233 245 
DSU Incremental Gas (Bcf) 1.0 1.3 1.4 1.5 0.3 1.6 2.4 
DSU Incremental Water (Mbbl) 372 448 473 471.3 33.4 495 546 

 
 

Target Variables 
 
 The target variables (response variables) were DSU incremental oil, water, and gas 
production at the end of the 2-year EOR period (i.e., the sum of oil, water, and gas production 
across all wells over the 2-year EOR period). The oil, water, and gas production were natural log-
transformed for all data analysis methods to make the target variables closer to a normal 
distribution.1 
 
 The configuration of DSU development that resulted in the greatest oil production was 
associated with commensurately greater water and gas production, which are potentially negative 
outcomes that affect the overall DSU performance. Therefore, the oil and water production were 
translated into net revenue to provide a multiobjective target variable that rewarded oil production 
and penalized water production. For this assessment, gas production was not included in the net 
revenue calculations, since gas production can be a source of revenue only if the infrastructure 
exists to gather and sell the produced gas and/or the produced gas represents a source of recycled 
injectate for the rich gas EOR; alternatively, it could result in a financial loss if the produced gas 
must be vented/flared or forces the shut-in of one or more production wells. Therefore, as a 
simplifying assumption, gas production was omitted from the current analysis. However, 
supplemental calculations were done to assess the volumes of recycled gas (produced gas) for each 
case. 
 
 The net revenue calculations evaluated conditions that weighted the relative value of oil and 
water production differently. For the regression modeling, the first case assumed $60/stb oil price 
and $3/bbl water disposal cost ($60oil_$3wtr), and the second case assumed $50/stb oil price and 

 
1 The nonlinearity of the relationship between oil, water, and gas production as a function of the DSU development or 
operational variables was obvious from exploratory plots and indicated that some type of transformation should be 
applied to attempt to linearize the relation and minimize heteroscedasticity before continuing. A good transformation 
would be one in which we exponentiate oil, water, and gas production with an exponent less than 1. The most common 
transformation for data with this nonlinear pattern is the logarithm transformation. In this work, the natural log of oil, 
water, and gas production was used to linearize the relation (Helsel and others, 2020). 
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$4/bbl water disposal cost. Therefore, while the first scenario weighted the cost of water disposal 
at 5% of the revenue from oil production (3 ÷ 60 = 5%), the second scenario weighted the cost of 
water disposal at 8% of the revenue from oil production (4 ÷ 50 = 8%). The disposal cost for 
produced water was adapted from Glazewski and others (2020), which estimated that produced 
water transport and disposal costs were generally $2/bbl to $4/bbl of produced water. Additional 
values were also used to evaluate the sensitivity of the net revenue variable to oil price and water 
disposal cost. The net revenue calculations were done using the nominal value (i.e., the current 
monetary value) and did not adjust for the effects of inflation since the EOR period of the study 
was only 2 years. 
 
 Therefore, the primary target variables for the data analysis methods were 1) oil, gas, and 
water production; 2) Net Revenue One ($60oil_$3wtr); and 3) Net Revenue Two ($50oil_$4wtr). 
 

Data Analysis 
 
 The data analysis for the case matrices used two complementary approaches: 
 

1. Linear regression to draw inferences about the effects of each DSU development or 
operational factor on DSU performance (oil, gas, and water production). 
 

2. ML-based approaches to create predictive models and explore DSU performance with the 
goal of identifying optimal parameter configurations (i.e., optimal values of injection rate, 
injection time, soak time, and production time). 

 
Linear Regression for Statistical Inference 

 
 Linear regression was used for statistical inference about the effects of each parameter on 
DSU performance. While the linear models provide a practical starting point for analyzing the 
simulation cases, several of the predictor–response relationships in Set 2 did not conform to the 
underlying assumptions of linear regression; therefore, alternative methods were used to assess  
Set 2 (see “Machine Learning Methods for Predictive Modeling”).2 
 
 For Set 1, each of the features was treated as a factor variable (categorical variable) in the 
regression. Therefore, no transformations of the features were necessary for Set 1. For example, 
well count, EOR development timeline, and injectate remained as presented Table 21. The base 
case regression model was established as a five-well DSU with an early EOR development 
timeline and gas-only injection, and the Set 1 regression models quantified the change in 
performance from baseline as a function changing the factors, e.g., going from five to six to seven 
wells. 
 
 For Set 2, the features were numeric and, therefore, scaled by subtracting the mean and 
dividing by two standard deviations (z-score approach). Dividing by two standard deviations 
means that a one-unit change in the scaled predictor corresponds to a change from one standard 

 
2 Underlying assumptions of linear regression: a) model form is correct: y is linearly related to x; b) variance of the 
residuals is constant (homoscedastic) and does not depend on x or on anything else, such as time; c) the residuals are 
independent of x; and d) the residuals are normally distributed (Helsel and others, 2020). 
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deviation below the mean to one standard deviation above the mean (Gelman and Hill, 2007). For 
example, the scaled input for “injection time” was calculated as: 

 
z. inj. time = [inj.time−mean(inj.time)]

[2×stdev(inj.time)]
 [Eq. 7] 

Where: 
z.inj.time = the standardized value of injection time 

  mean(inj.time) = the average of injection time 
stdev(inj.time) = the standard deviation of injection time 

 
 In addition to placing the features onto the same scale with mean zero and ±2 standard 
deviations, scaling the input variables makes the base case model output easier to interpret, as the 
base case represents estimated DSU performance when all inputs are at their mean value.3 
Diagnostic plots were used to assess the fitted regression models. The diagnostic plots included 
assessments of the normality of the regression residuals and crossplots of the residuals versus their 
fitted values and the order of the data. The diagnostic plots were used to evaluate whether potential 
trends in the residuals would confound inferences drawn from the fitted regression models. 
 

Machine Learning Methods for Predictive Modeling 
 
 ML-based methods were used to evaluate Set 2 and extend the statistical inference developed 
from the linear regression modeling. The technical approach for the ML-based approaches 
included four steps: 1) train and test ML-based predictive models using the 267 cases from Set 2; 
2) create a new full operational matrix covering all possible combinations of the input variables 
based on the range (minimum to maximum values) of the four input parameters across the  
267 cases: injection rate, injection time, soak time, and production time; 3) apply the developed 
predictive models from No. 1 to the full operational matrix from No. 2 to predict DSU performance 
over all possible combinations of input variables; and 4) visualize and analyze the results of the 
predictive model outputs from No. 3 to identify optimal configurations of the input parameters. 
 
 The workflow for fitting ML models included two preprocessing steps: 1) the features were 
standardized using the z-score approach (Equation 7) and 2) the 267 cases were randomly split 
into training and testing data sets by 0.8:0.2 (i.e., 80% of the cases were used to train the models, 
and 20% of the cases were used to test the models). The training data set was used to develop the 
ML model, and the model performance was evaluated using the test data set. Model performance 
can largely depend on how the data are split between training and test sets, such that different data 
splits may lead to models with different test set performances. To overcome the issue of 
improper/imbalanced data set splitting, a k-fold cross validation approach was used. Cross 
validation is a resampling procedure used to evaluate a model by omitting a portion of the training 
data set used to train the model and later using this sample for testing/validating. The term “k-fold” 

 
3 Linear regression was implemented in Minitab 19 Statistical Software (2020). The regression models started with a 
“full model” of all features and their interactions. Model selection was done using forward- and backward-selection 
to minimize the Bayesian information criterion (BIC) (sometimes referred to as the “Schwarz information criterion”). 
The BIC scores the models on how well they fit the data (goodness-of-fit) but also penalizes the score for the number 
of parameters used in the model. The combination of goodness-of-fit and parameter penalty means that BIC helps 
identify the most parsimonious model, i.e., the simplest model that provides a good fit to the data (Akaike, 1973; 
Schwarz, 1978; McElreath, 2016). 
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cross validation refers to splitting the data set into a k number of sections/folds, where each fold is 
used as a testing set at some point. The k is predefined, and by convention, k = 5 is used in this 
project for model development (Zhang, 2012). 
 
 Four models were used for the ML-based predictive modeling including 1) linear regression, 
2) support vector machine regression (SVM), 3) random forest (RF), and 4) extreme gradient 
boosting (XGBoost). Additional details for each model are provided in Appendix A. 
 

Full Operational Matrix 
 
 A full operational matrix was created covering all combinations of operation conditions from 
the Set 2 simulations. The levels (number of discrete values) for the four operational parameters 
are injection rate (32 levels), injection time (80 levels), soak time (21 levels), and production time 
(75 levels). Therefore, the resulting size of the full operational matrix is 4,032,000 (32 × 80 × 21 
× 75). Developing and executing over 4 million unique reservoir simulations would be 
computationally infeasible, which highlights the benefit of using a set of simulations to train ML-
based predictive models and then utilizing the ML-based predictive models for subsequent 
evaluations. The full operational matrix was used to generate predictions across all 4,032,000 
combinations, which were then used to create contour plots to provide insights about optimal 
parameter configurations for maximizing DSU performance. 
 

Global Sensitivity Analysis 
 
 Sensitivity analysis was performed to estimate the uncertainty of the modeling output 
because of the uncertainty of the inputs (Salciccioli and others, 2016). The Sobol method is a 
powerful variance-based sensitivity analysis that quantifies the input and output uncertainties as 
probability distributions and decomposes the output variance into parts attributable to input 
variables and combinations of variables. Therefore, the sensitivity of the output to an input 
parameter is measured by the amount of variance in the output caused by that input (Sobol, 1993; 
2001). The Sobol sensitivity indices include the following: 
 

1. First-order indices: measure the contribution to the output variance attributable to a single 
input parameter. 
 

2. Second-order indices: measure the contribution to the output variance attributable to the 
interaction of two input parameters. 

 
3. Total-effect indices: sum of indices from any order that measures the contribution of the 

output variance caused by a single input parameter. 
 

 The sum of the total-effect indices equals to 1, and the sum of any order of sensitivity indices 
equals to 1. Therefore, the first-order, second-order, and total-effect indices show the fractional 
contribution of each input parameter (or interaction term) to the total variance in the target variable. 
Detailed descriptions and mathematical background of the Sobol method can be found in Sobol 
(1993, 2001) and Pappenberger and others (2008). The Python package SALIb was used to 
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perform the Sobol method sensitivity analysis (Herman and Usher, 2017). The procedures to 
perform the Sobol method sensitivity analysis using the SALIb package were: 
 

1) Define the model inputs and create sampling bounds (ranges) of the four operational 
parameters. 

 
2) Generate parameter sets using the Sobol sequence based on the sampling bounds. In this 

study, 1000 parameter sets were generated from the Sobol sequence. The cross-sampling 
scheme creates 1000*(4 + 1) = 5000 total model runs. 
 

3) Run the parameter sets through the ML predictive model (i.e., linear regression, SVM, 
RF, or XGBoost). In this study, the SVM models were used for the Sobol sensitivity 
analysis. 

 
4) Calculate the Sobol sensitivity indices. 
 
5) Visualize and interpret the sensitivity analysis results. 

 
Results – Linear Regression 

 
Set 1 Simulations 

 
 Diagnostic plots for the Set 1 regression models are provided in Appendix A. These 
diagnostic plots show that the Set 1 linear regression models are reasonable—the residuals follow 
a normal distribution, and there are no visible trends in the residuals; therefore, inferences drawn 
from these models are valid interpretations of the Set 1 simulation case matrix. 
 

DSU Incremental Oil Production 
 
 Figure 96 summarizes the fitted regression model for oil production. The exponentiation of 
the constant term in the fitted regression model, exp(Coef), represents the expected value for the 
Set 1 base case: a five-well DSU with an early EOR development timeline and gas-only injection, 
which is exp(11.864) = 142,059 bbl. 
 
 The exponentiation of the additional factors (expressed as exp(Coef) – 1) in the regression 
summary represents the estimated percentage effect of going from the base case to the stated factor 
condition. For example, increasing from the base case five-well DSU to the six- or seven-well 
DSU configurations is expected to increase oil production by +24.2% or +59.2%, respectively. 
Similarly, delaying the start of the rich gas EOR from the base case early scenario to the middle 
or late scenario is expected to decrease oil production by −26.6% or −47.6%, respectively. Lastly, 
switching from the base case injectate of gas-only injection to gas and water injection would be 
expected to decrease oil production by −25.1%. The bars in the far-right column of Figure 96 
provide a visual summary of the sign (blue is a positive effect, and red is a negative effect) and 
magnitude (the bar length is proportional to the effect size) of the factor in switching from the base 
case to the stated factor condition, i.e., the relative importance of each factor on oil production. 
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Figure 96. Summary of the fitted regression model output for Set 1 for the target variable: 
DSU incremental oil production (bbl). Coef = coefficient, SE Coef = standard error of the 
coefficient, T-Value = the t-statistics of the coefficient, P-Value = the p-value of the 
student’s t-distribution for the coefficient, and exp(Coef) = exponentiation of the Coef for the 
constant term and (exp(Coef) – 1) for the additional factors. 

 
 
 The interaction terms in Figure 96 (i.e., 6: gas+water, 7: gas+water, Middle: gas+water, and 
Late: gas+water) are better described using factorial plots. Figure 97 shows factorial plots for both 
the main effects (top) and the interactions (bottom) for the fitted regression model for oil 
production. Analogous to the bars in the regression coefficient summary, the factorial plots show 
large main effects on oil production associated with going from five to six to seven wells on the 
DSU (left panel), early to middle to late EOR development timeline (middle panel), and gas-only 
injection to gas and water injection (right panel). The interaction plots show how the relationship 
between one categorical factor and a continuous response depends on the value of the second 
categorical factor. For example, the lower left-hand panel in the interaction plots shows how both 
well count (five, six, or seven wells) and injectate (gas-only or gas and water) relate to oil 
production. For the five-well, gas-only injectate scenario, the average oil production is  
103,300 bbl, which increases to 164,500 for the seven-well case. These outcomes are greater than 
the main effect plot, which starts at 87,200 bbl for the five-well case and increases to 145,400 bbl 
for the seven-well case. Conversely, the five-well, gas and water injectate scenario average oil 
production is 73,600 bbl and increases to 128,500 bbl for the seven-well case. Therefore, the 
interaction between the DSU well count and injectate creates a different expected value, and the 
interaction plots help elucidate these relationships. The fitted regression model did not include an 
interaction term for (DSU well count × EOR development timeline) because this term was not 
significant, and the BIC selection dropped the term from the final model, which is why the upper 
left-hand panel in the interaction plot is blank. 
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Figure 97. Factorial plots for main effects (top) and interactions (bottom) for DSU well count, 
EOR development timeline, and injectate from the fitted regression model for Set 1 for the 
target variable: DSU incremental oil production (bbl). 

 
 

DSU Incremental Water Production 
 
 Figure 98 summarizes the fitted regression model for water production. The expected DSU 
incremental water production for the Set 1 base case is 209,966 bbl. Increasing from the base case 
five-well DSU to the six- or seven-well DSU configurations is expected to increase water 
production by +15.3% and +47.2%, respectively. Similarly, delaying the start of the rich gas EOR 
from the base case early scenario to the middle or late scenario is expected to decrease water 
production by −24.4% and −48.7%, respectively. Lastly, as would be anticipated, switching from 
the base case injectate of gas-only injection to gas and water injection has an enormous effect on 
water production and would be expected to increase water production by +282.5%. 
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Figure 98. Regression output summary for Set 1 for the target variable: DSU incremental 
water production (bbl). Coef = coefficient, SE Coef = standard error of the coefficient, T-
Value = the t-statistics of the coefficient, P-Value = the p-value of the student’s t-distribution 
for the coefficient, and exp(Coef) = exponentiation of the Coef for the constant term and 
(exp(Coef) – 1) for the additional factors. 

 
 
 Figure 99 shows factorial plots for both the main effects (top) and the interactions (bottom) 
for the fitted regression model. The factorial plots show relatively small main effects on water 
production associated with going from five to six to seven wells on the DSU (left panel) and early 
to middle to late EOR development timeline (middle panel). However, going from gas-only 
injection to gas and water injection (right panel) results in a significant increase in water 
production, which is to be expected. The interaction plots also show that changing the injectate 
from gas-only to gas and water provides the largest effect on water production, as the other factors 
do not affect water production nearly as much. 
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Figure 99. Factorial plots for main effects (top) and interactions (bottom) for DSU well count, 
EOR development timeline, and injectate from the fitted regression model for Set 1 for the 
target variable: DSU incremental water production (bbl). 

 
 

DSU Incremental Gas Production 
 
 Figure 100 summarizes the fitted regression models for gas production. The expected gas 
production for the Set 1 base case is 835 MMscf. Increasing from the base case five-well DSU to 
the six- or seven-well DSU configurations is expected to increase gas production by +81.2% and 
+165.3%, respectively. The other factors have a significantly smaller effect on gas production. For 
example, delaying the start of the rich gas EOR from the base case early scenario to the middle or 
late scenario is expected to decrease gas production by −2.8% and −7.5%, respectively. Lastly, 
switching from the base case injectate of gas-only injection to gas and water injection would be 
expected to decrease gas production by −8.7%. 
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Figure 100. Regression output summary for Set 1 for the target variable: DSU incremental 
gas production (MMscf). Coef = coefficient, SE Coef = standard error of the coefficient, T-
Value = the t-statistics of the coefficient, P-Value = the p-value of the student’s t-distribution 
for the coefficient, and exp(Coef) = exponentiation of the Coef for the constant term and 
(exp(Coef) – 1) for the additional factors. 

 
 
 Figure 101 shows factorial plots for both the main effects (top) and the interactions (bottom) 
for the fitted regression model. The factorial plots show large main effects on gas production 
associated with going from five to six to seven wells on the DSU (left panel). However, going 
from early to middle to late EOR development timeline (middle panel) or from gas-only injection 
to gas and water injection (right panel) results in a small decrease in gas production. 
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Figure 101. Factorial plots for main effects (top) and interactions (bottom) for DSU well count, 
EOR development timeline, and injectate from the fitted regression model for Set 1 for the 
target variable: DSU incremental gas production (MMscf). 

 
 

DSU Incremental Net Revenue 
 
 For the two net revenue scenarios, $60/bbl oil price and $3/bbl water disposal cost 
($60oil_$3wtr) or $50/bbl oil price and $4/bbl water disposal cost ($50oil_$4wtr), the latter 
resulted in a negative outcome for two cases. The logarithm of a negative number is undefined; 
therefore, both net revenue scenarios were modeled using a normal distribution and were not 
natural log-transformed prior to fitting the regression models. Consequently, interpretation of the 
coefficients is slightly different from the preceding models that used a natural log-transformed oil, 
water, or gas production as the response variable. 
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 Figure 102 shows the fitted regression models for the two net revenue scenarios. The patterns 
in the regression coefficients are similar; however, the net revenue estimates differ because of the 
higher penalty for the cost of produced water transport and disposal for $50oil_$4wtr as compared 
to $60oil_$3wtr. For example, the expected value for the base case is $7.86 million (MM) dollars 
for the $60oil_$3wtr case and $6.22MM for the $50oil_$4wtr case, illustrating the effect of the 
higher penalty for the cost of produced water transport and disposal ($1.64MM in additional costs 
over 2 years). 
 
 The patterns for the different factors are like those for oil production, since the higher oil 
price relative to the cost of produced water transport and disposal means that oil production largely 
drives the net revenue result. Increasing from the base case five-well DSU to the six- or seven-
well DSU configurations is expected to increase net revenue by +26.1% and +61.4%, respectively, 
for $60oil_3wtr and only slightly less for $50oil_$4wtr: +21.2% and +49.5%, respectively. The 
EOR development time has a large effect on net revenue, as delaying the start of the rich gas EOR 
from the base case early scenario to the middle or late scenario is expected to decrease net revenue 
by −26.5% and −47.3%, respectively, for $60oil_$3wtr and by −21.0% and −37.3%, respectively, 
for $50oil_$4wtr. Lastly, the EOR injectate also has a large effect on net revenue, as switching 
from the base case injectate of gas-only injection to gas and water injection would be expected to 
decrease $60oil_$3wtr by −49.2% and $50oil_4$wtr by −52.1%. 
 
 

 
 

Figure 102. Regression output summary for Set 1 for the target variable: DSU Net Revenue 
at $60oil_$3wtr ($MM, left) and DSU Net Revenue at $50oil_$4wtr ($MM, right). Coef 
= coefficient, SE Coef = standard error of the coefficient, P-Value = the p-value of the 
student’s t-distribution for the coefficient, and Effect = the percentage change from the base 
case. 
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 Figure 103 shows factorial plots for both the main effects (top) and the interactions (bottom) 
for the fitted regression model. The main effects plots show the large effects of well count, EOR 
development time, and EOR injectate for both net revenue scenarios. The interaction plots show 
slightly different slopes for the different factors, highlighting the interactions among factors. For 
example, the early EOR development timeline accelerates revenues from oil production, leading 
to a steeper slope than the late EOR development timeline as the DSU well count increases from 
five to six to seven wells. 
 
 

 
 
Figure 103. Factorial plots for main effects (top) and interactions (bottom) for DSU well 
count, EOR development timeline, and injectate from the fitted regression model for Set 1 for 
the target variable: $60oil_$3wtr ($MM, left) and $50oil_$4wtr ($MM, right). 

 
 

Set 2 Simulations 
 
 The results of the Set 1 simulations showed that a seven-well DSU with an early EOR 
development timeline and gas-only injection performs best for both oil production and net revenue. 
Therefore, the Set 2 simulations all used a seven-well DSU with an early EOR development 
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timeline and gas-only injection for all simulations and instead varied four operational factors: 
injection rate, injection time, soak time, and production time. 
 
 Diagnostic plots for the Set 2 regression models are provided in Appendix A. These 
diagnostic plots show that some of the Set 2 linear regression models demonstrate deviations from 
the underlying assumptions of linear regression—some of the residuals are outliers and do not 
follow a normal distribution, and cases with injection rates greater than 20 MMscf show slightly 
larger residuals than cases with lower injection rates. Therefore, inferences drawn from these linear 
regression models beyond the mean ±1 standard deviation should be made with caution, and the 
ML-based methods in Section 4 are used to supplement the linear regression interpretations. 
 

DSU Incremental Oil Production 
 
 Figure 104 summarizes the fitted regression model for oil production. Like the preceding 
figures for Set 1, the bars in the rightmost column provide a visual summary of the sign (blue is a 
positive effect, and red is a negative effect) and magnitude (the bar length is proportional to the 
effect size) of the operational variable, i.e., the relative importance of each variable on oil 
production. Unlike the Set 1 regression models, which used factor (categorical) variables in the 
models, the Set 2 regression models used scaled numeric variables of injection rate, injection time, 
soak time, and production time. In Figure 104, the prefix “z” denotes the scaled variable using the 
formula shown in Equation 7. Therefore, the column “exp(Coef)” for the scaled variables shows 
the percentage change in DSU incremental oil production given a one-unit change in the scaled 
variable, i.e., a change from one standard deviation below the mean to one standard deviation 
above. 
 
 

 
 
Figure 104. Summary of the fitted regression model output for Set 2 for the target variable: 
DSU incremental oil production (Mbbl). Coef = coefficient, SE Coef = standard error of the 
coefficient, T-Value = the t-statistics of the coefficient, P-Value = the p-value of the student’s 
t-distribution for the coefficient, and exp(Coef) = exponentiation of the Coef for the constant 
term and (exp(Coef) – 1) for the additional variables. 

 
 
 The exponentiation of the constant term in the fitted regression model, exp(Coef), represents 
the expected value for the Set 2 base case: a seven-well DSU with an early EOR development 
timeline and gas-only injection, which is exp(5.437) = 230 Mbbl. The exponentiation of the 
additional factors (expressed as exp(Coef) – 1) in the regression summary represents the estimated 
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effect of a one-unit change in the operational variable. For example, the largest effect is for 
injection rate, and going from one standard deviation below the mean (6.5 MMscfd) to one 
standard deviation above the mean (19 MMscfd) is expected to increase oil production by +4.3% 
(from 230 Mbbl to 240 Mbbl). Soak time has the next largest effect, and going from one standard 
deviation below the mean (5 days) to one standard deviation above the mean (17 days) is expected 
to decrease oil production by −2.1%. The other effect sizes for main effects are relatively small, 
with a −1.4% effect for injection time (going from 22 to 52 days) and +1.3% effect for production 
time (going from 41 days to 80 days). 
 
 The effect sizes for interactions are also relatively small (≤1%); however, the interactions 
between (injection rate × injection time), (injection rate × soak time), (injection rate × production 
time), and (soak time × production time) are all statistically significant (p-value ≤0.05). 
 
 Figure 105 shows factorial plots for both the main effects (top) and the interactions (bottom) 
for the fitted regression model for oil production. Analogous to the bars in the regression 
coefficient summary, the factorial plots show large positive main effects on oil production 
associated with higher injection rates, relatively small negative effects of longer injection and soak 
time, and relatively small positive effects of longer production time. The interaction plots show 
how the relationship between one variable and a continuous response depends on the value of the 
variable. For example, the upper left-hand panel in the interaction plots shows how the increase in 
oil production with higher injection rate varies (different slope) depending on the interaction 
between (injection rate × injection time). The fitted regression model did not include an interaction 
term for (injection time × soak time) or (injection time × production time) because these terms 
were not significant, and the BIC selection dropped the terms from the final model, which is why 
the middle panels in the interaction plot are blank. 
 

DSU Incremental Water Production 
 
 Figure 106 summarizes the fitted regression model for water production. The exponentiation 
of the constant term in the fitted regression model, exp(Coef), represents the expected value for 
the Set 2 base case: a seven-well DSU with an early EOR development timeline and gas-only 
injection, which is exp(5.437) = 469 Mbbl. The exponentiation of the additional factors (expressed 
as exp(Coef) – 1) in the regression summary represents the estimated effect of a one-unit change 
in the operational variable. For example, the largest effect is for injection time, and going from 
one standard deviation below the mean (22 days) to one standard deviation above the mean  
(52 days) is expected to decrease water production by −9.8% (from 469 to 423 Mbbl). Production 
time has the next largest effect, and going from one standard deviation below the mean (41 days) 
to one standard deviation above the mean (80 days) is expected to increase water production by 
+7.6%. The other effect sizes for main effects are relatively small, with a −3.5% effect for injection 
rate (going from 6.5 to 19 MMscfd) and −3.4% effect for soak time (going from 5 days to 17 days). 
 
 The effect sizes for interactions are also relatively small (≤2.1%); however, the interactions 
between (injection rate × injection time), (injection time × soak time), and (injection time × 
production time) are all statistically significant (p-value ≤0.05).



 

140 

 
 
Figure 105. Factorial plots for main effects (top) and interactions (bottom) for injection rate, 
injection time, soak time, and production time from the fitted regression model for Set 2 for the 
target variable: DSU incremental oil production (Mbbl). 
 
 

 
 
Figure 106. Summary of the fitted regression model output for Set 2 for the target variable: 
DSU incremental water production (Mbbl). Coef = coefficient, SE Coef = standard error of 
the coefficient, T-Value = the t-statistics of the coefficient, P-Value = the p-value of the 
student’s t-distribution for the coefficient, and exp(Coef) = exponentiation of the Coef for the 
constant term and (exp(Coef) – 1) for the additional variables.
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 Figure 107 shows factorial plots for both the main effects (top) and the interactions (bottom) 
for the fitted regression model for water production. Analogous to the bars in the regression 
coefficient summary, the factorial plots show large negative main effects on water production 
associated with longer injection time, relatively small negative effects of higher injection rate and 
longer soak time, and modest positive effects of longer production time. The interaction plots show 
how the relationship between one variable and a continuous response depends on the value of the 
variable. For example, the uppermost middle panel in the interaction plots shows how the decrease 
in water production with higher injection time varies (different slope) depending on the interaction 
between (injection time × soak time). The fitted regression model did not include an interaction 
term for (injection rate × soak time), (injection rate × production time), or (soak time × production 
time) because these terms were not significant, and the BIC selection dropped the terms from the 
final model, which is why those panels in the interaction plot are blank. 
 

DSU Incremental Gas Production 
 
 Figure 108 summarizes the fitted regression model for gas production. The exponentiation 
of the constant term in the fitted regression model, exp(Coef), represents the expected value for 
the Set 2 base case: a seven-well DSU with an early EOR development timeline and gas-only 
injection, which is exp(5.437) = 1443 MMscf. The exponentiation of the additional factors 
(expressed as exp(Coef) – 1) in the regression summary represents the estimated effect of a one-
unit change in the operational variable. For example, the largest effect was for injection rate, and 
going from one standard deviation below the mean (6.5 MMscfd) to one standard deviation above 
the mean (19 MMscfd) is expected to increase gas production by +33.2% (from 1443 MMscf to 
1922 Mbbl). Injection time, soak time, and production time had lower and similar effect sizes, with 
a positive effect of +7.7%, negative effect of −7.9%, and negative effect of −7.7%, respectively. 
 
 The effect sizes for interactions were larger than the interactions for oil or water production, 
with a negative effect of −5.8% for (injection time × soak time) and positive +6.7% for (soak time 
× production time).
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Figure 107. Factorial plots for main effects (top) and interactions (bottom) for injection rate, 
injection time, soak time, and production time from the fitted regression model for Set 2 for 
the target variable: DSU incremental water production (Mbbl). 

 
 

 
 
Figure 108. Summary of the fitted regression model output for Set 2 for the target variable: 
DSU incremental gas production (MMscf). Coef = coefficient, SE Coef = standard error of 
the coefficient, T-Value = the t-statistics of the coefficient, P-Value = the p-value of the 
student’s t-distribution for the coefficient, and exp(Coef) = exponentiation of the Coef for the 
constant term and (exp(Coef) – 1) for the additional variables.
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 Figure 109 shows factorial plots for both the main effects (top) and the interactions (bottom) 
for the fitted regression model for gas production. Analogous to the bars in the regression 
coefficient summary, the factorial plots show large positive main effects on water production 
associated with higher injection rate, relatively modest positive effects of longer injection time, 
and modest negative effects of longer soak and production time. The interaction plots show how 
the relationship between one variable and a continuous response depends on the value of the 
variable. For example, the upper left-hand panel in the interaction plots shows how the increase in 
gas production with higher injection time varies (different slope) depending on the interaction 
between (injection time × soak time). The fitted regression model did not include an interaction 
term for (injection time × production time) because this term was not significant, and the BIC 
selection dropped the term from the final model, which is why that panel in the interaction plot is 
blank. 
 

DSU Incremental Net Revenue 
 
 Figure 110 shows the fitted regression models for the two net revenue scenarios: $60/bbl oil 
price and $3/bbl water disposal cost ($60oil_$3wtr) or $50/bbl oil price and $4/bbl water disposal 
cost ($50oil_$4wtr). The patterns in the regression coefficients are similar; however, the net 
revenue estimates differ because of the higher penalty for the cost of produced water transport and 
disposal for $50oil_$4wtr as compared to $60oil_$3wtr. For example, the expected value for the 
base case is exp(2.476) = $11.9MM for the $60oil_$3wtr case and exp(2.262) = $9.6MM for the 
$50oil_$4wtr case, illustrating the effect of the higher penalty for the cost of produced water 
transport and disposal ($2.3MM in additional costs over 2 years). 
 
 The patterns for the different factors are like those for oil production, since the higher oil 
price relative to the cost of produced water transport and disposal means that oil production largely 
drives the net revenue result. Increasing the injection rate by a one-unit change is expected to 
increase net revenue by +5.6% and +5.9%, respectively, for $60oil_3wtr and $50oil_$4wtr 
scenarios. Soak time had the next largest effect, and a one-unit change is expected to decrease oil 
production by −1.9% and −1.8%, respectively, for $60oil_3wtr and $50oil_$4wtr scenarios. The 
other effect sizes for main effects were relatively small, with a 0.0% and 0.4% effect for injection 
time and a 0.3% and 0.1% effect for production time. 
 
 The effect sizes for interactions were also relatively small (≤1.4%), and only the interactions 
between (injection rate × injection time), (injection rate × soak time), and (soak time × production 
time) had p-values ≤0.05.
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Figure 109. Factorial plots for main effects (top) and interactions (bottom) for injection rate, 
injection time, soak time, and production time from the fitted regression model for Set 2 for the 
target variable: DSU incremental gas production (MMscf). 
 
 

 
 
Figure 110. Summary of the fitted regression model output for Set 2 for the target variable: 
DSU Net Revenue at $60oil_$3wtr ($MM, left) and DSU Net Revenue at $50oil_$4wtr 
($MM, right). Coef = coefficient, SE Coef = standard error of the coefficient, T-Value = the 
t-statistics of the coefficient, P-Value = the p-value of the student’s t-distribution for the 
coefficient, and exp(Coef) = exponentiation of the Coef for the constant term and  
(exp(Coef) – 1) for the additional variables.
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 Figure 111 shows factorial plots for both the main effects (top) and the interactions (bottom) 
for the fitted regression model for oil production. Analogous to the bars in the regression 
coefficient summary, the factorial plots show large positive main effects on net revenue associated 
with higher injection rates, relatively small positive effects of longer injection and production time, 
and relatively moderate negative effects of longer soak time. The interaction plots show how the 
relationship between one variable and a continuous response depends on the value of the variable. 
For example, the upper left-hand panel in the interaction plots shows how the increase in net 
revenue with a higher injection rate varies (different slope) depending on the interaction between 
(injection rate × injection time). The fitted regression model did not include an interaction term 
for (injection time × production time) because this term was not significant, and the BIC selection 
dropped the term from the final model, which is why the bottom middle panel in the interaction 
plots are blank. 
 

Linear Regression Summary 
 
 The Set 1 and Set 2 linear regression models showed the following: 
 

• Among the Set 1 simulations for i) five-, six-, and seven-well DSU configurations;  
ii) early, middle, and late EOR development timelines; and iii) gas-only or gas and water 
injection the seven-well DSU with early EOR development timeline and gas-only 
injection had the best oil production and net revenue. 

 
• In the Set 1 simulation, i) increasing the well count from five to seven wells significantly 

increased oil production, ii) delaying the start of the EOR development significantly 
reduced oil production, and iii) switching from gas-only to gas and water injection 
significantly reduced oil production. 

 
• Among the Set 2 simulations of a seven-well DSU, early EOR development timeline, 

gas-only injection, and the operational variables tested (injection rate, injection time soak 
time, and production time), the variable with the greatest effect on oil production was the 
injection rate. However, higher injection rates were also associated with significantly 
greater gas production. 

 
• For the Set 2 simulations, injection time, soak time, and production time had a relatively 

small effect on oil production (<2.1% effect over a one-unit change in the variables). 
Longer injection time had a negative effect on water production (i.e., longer injection 
time equated with lower water production) and longer production time had a positive 
effect on water production (i.e., longer production time equated with greater water 
production). Conversely, longer injection time had a positive effect on gas production 
(i.e., longer injection time equated with higher gas production) and longer soak and 
production times had a negative effect on gas production (i.e., longer soak and production 
times equated with lower gas production). 

 
• For the Set 2 simulations, the operational variables injection rate, injection time, soak 

time, and production time showed significant interactions (second-order effects) and  
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Figure 111. Factorial plots for main effects (top) and interactions (bottom) for injection rate, 
injection time, soak time, and production time from the fitted regression model for Set 2 for the 
target variable: $60oil_$3wtr ($MM, left) and $50oil_$4wtr ($MM, right). 

 
 

some of the higher injection rate cases did not conform to the underlying assumption of 
linear regression, which together point toward nonlinear effects between the operational 
variables and the target variables of oil, gas, and water production that would be better 
modeled using alternative methods like those presented in Section 4 (see Section 4: 
Results – Machine Learning). 

 
Results – Machine Learning 

 
 ML-based methods were used to evaluate the Set 2 simulations and extend the statistical 
inferences developed from the linear regression modeling. The ML results are presented in three 
parts: i) exploratory data analysis of correlations among the four operational parameters (injection 
rate, injection time, soak time, and production time) and the three DSU incremental production 
metrics (oil, gas, and water); ii) fitting predictive models to the training and test data sets and the 
identification of the best-performing models, and iii) full operational matrix predictive modeling 
to examine all combinations of operational parameters, develop optimization contours, and 
compute global sensitivity metrics across the simulations.  
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Exploratory Analysis 
 
 Figure 112 shows pairwise plots of the three DSU production metrics and four EOR 
operational parameters. The histograms of the variables are shown on the diagonal. The density 
distributions of the paired variables are presented to the left and below the histograms, and the 
scatterplots of the paired variables, along with the Pearson correlation coefficients on top of these 
plots, are presented to the right and above the histograms. 
 
 The production metrics (oil, gas, and water) are moderately correlated. For example, oil 
production is positively correlated with gas production (correlation coefficient r: 0.73) and water 
production (r: 0.22), and gas production is negatively correlated with water production (r: −0.48). 
The moderate correlations among the production metrics indicate that the optimum operational 
conditions are different for different production metrics. For example, the optimum combination 
of operational parameters for maximizing oil production may not yield maximized gas and/or 
water production and vice versa. 
 
 Other observations of correlations of the production metrics and operational parameters are 
as follows (Figure 112): 
 

• Both oil production and gas production are positively correlated with injection rate  
(r: 0.77 and 0.85, respectively), but water production is not correlated with injection rate 
(r: −0.27). 
 

• Oil and water production are negatively correlated with injection time (r: −0.44 and 
−0.72, respectively), while gas production is not correlated with injection time (r: 0.05). 

 
• Oil and water production are moderately negatively correlated with soak time (r: −0.39 

and −0.36), while gas production is not correlated with soak time (r: −0.18).  
 

• Lastly, production time is not correlated with oil production (r: 0.05) but slightly 
negatively correlated with gas production (r: −0.40) and positively correlated with water 
production (r: 0.54). 

 
 These correlations among the production metrics and the operational parameters suggest that 
the relationship of production and operations is not linear. However, the high correlation between 
oil and gas production and injection rate suggests that injection rate is likely to be the most 
important factor for predicting oil and gas production. 

 
Predictive Model Performance – Training and Testing Data Sets 

 
 Separate predictive models using each of the four ML algorithms were developed for oil 
production, water production, gas production, and net revenue. The individual modeling 
performance is evaluated based on the model performance on both training and test sets. Since the 
model development and evaluation process is the same for oil production, water production, and 
net revenue, only the oil production models are presented in detail in this report. The remaining 
models are included in the optimization results (see Contour Plots).  
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Figure 112. Pairwise plots of the three DSU production metrics (oil [Mbbl], gas [MMcf] and 
water [Mbbl]) and four EOR operational parameters (injection rate [Mcfd], injection time [d], 
soaking time [d], and production time [d]). The histograms of the variables are shown on the 
diagonal. The density distributions of the paired variables are presented to the left and below 
the histograms, and the scatterplots of the paired variables, along with the Pearson correlation 
coefficients on top of these plots, are presented to the right and above the histograms.  

 
 

 Results from fitting the four ML algorithms to the training set show that linear regression, 
SVM, RF, and XGBoost all provide excellent predictive performance of oil production, with r2 
values of 0.932, 0.984, 0.992, and 1.00 Mbbl, and RMSE (root mean square error) values of 2.21, 
1.09, 0.78, and 0.14 Mbbl, respectively (Figure 113). The model hyperparameters were fit to the 
training set and then evaluated on the test set. All four models performed well on the test set, with 
r2 values of 0.915, 0.982, 0.969, and 0.965 Mbbl and RMSE values of 2.84, 1.32, 1.90, and  
1.93 Mbbl, respectively, for linear regression, SVM, RF, and XGBoost (Figure 114). 
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Figure 113. Crossplots of observed (simulated using CMG GEM) (x-axis) and predicted 
(using the fitted ML algorithm) DSU incremental oil production (Mbbl) from four ML 
algorithms fitted to the training set. The dashed diagonal line represents the 1:1 line between 
the observed and predicted values. The r2 and RMSE values are presented for each model. 
The unit for the RMSE value is Mbbl. 
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Figure 114. Crossplots of observed (simulated using CMG GEM) (x-axis) and predicted 
(using the fitted ML algorithm) DSU incremental oil production (Mbbl) from four ML 
algorithms fitted to the training data set, and then evaluated on the test set. The dashed 
diagonal line represents the 1:1 line between the observed and predicted values. The r2 and 
RMSE values are presented for each model. The unit for the RMSE value is Mbbl. 

 
 
 All models performed well in predicting oil production. However, linear regression was the 
weakest among the four models, with both the lowest r2 in the test set (0.915) and highest RMSE 
in the test set (2.838). While XGBoost had the best performance for predicting oil in the training 
data set (r2 = 1.000 and RMSE = 0.143), the model performance significantly decreased for the 
test set (r2 = 0.965 and RMSE = 1.934), which suggest overfitting of the XGBoost algorithm. The 
RF algorithm provided more consistent predictions in both training and test data sets; however, 
there was also evidence of slight overfitting. The SVM model was the overall best-performing 
algorithm for both the training and test sets. Similar results for the training and test sets were 
observed for the other target variables of water production, gas production, and net revenue  
(Table 23, Figure 115). 
 

Variable Importance 
 
 Figure 116 shows the relative importance of the four operational parameters in predicting 
oil production from the four models. The variable importance plots for all models show that 
injection rate is the most important variable. Depending on the model, injection time, soak time, 
and production time had different relative importance. 
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Table 23. Performance on the Training and Test Sets for Each of the Four 
Algorithms for the Target Variables of Oil, Water, and Gas Production and  
Net Revenue 

Target Model 
r2 RMSE 

Training Test Training Test 

DSU Oil Production 

Linear regression 0.932 0.915 2.210 2.838 
SVM 0.984 0.962 1.090 1.316 
RF 0.992 0.969 0.779 1.898 

XGBoost 1.000 0.965 0.143 1.934 

DSU Water Production 

Linear regression 0.935 0.887 0.023 0.064 
SVM 0.991 0.986 0.009 0.023 
RF 0.994 0.941 0.007 0.045 

XGBoost 1.000 0.961 0.002 0.037 

DSU Gas Production 

Linear regression 0.975 0.960 0.030 0.018 
SVM 0.991 0.984 0.017 0.012 
RF 0.969 0.982 0.030 0.012 

XGBoost 0.975 0.999 0.028 0.003 

DSU Net Revenue 

Linear regression 0.935 0.886 0.023 0.063 
SVM 0.974 0.974 0.015 0.030 
RF 0.994 0.943 0.007 0.043 

XGBoost 0.999 0.948 0.002 0.042 
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Figure 115. Bar charts showing the r2 values between training and test sets for each of the four 
ML models (linear regression, SVM, RF, and XGBoost) for predicting DSU oil, water, gas 
production, and net revenue. 
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Figure 116. Variable importance diagram for the four ML models (linear regression, SVM, RF, 
and XGBoost) for predicting oil production. 

 
 

Full Operational Matrix Results 
 
 Figure 117 shows histograms of the predicted oil production for all 4,032,000 cases for each 
of the four predictive models. Oil production predictions from the four models are different. The 
histograms of predictions from the linear regression and SVM models more closely follow a 
normal distribution, while the histogram of predictions from the RF and XGBoost predictions do 
not follow a normal distribution and instead appear bimodal. However, the average predicted value 
across all models is relatively similar, with 230, 231, 231, and 237 Mbbl for the linear regression, 
SVM, RF, and XGBoost models, respectively. 
 
 Figure 118 shows the correlation matrix between the four operational variables and the four 
predictive models, which provides insights into which variables drive the predictions in each 
model. As previously described with the variable importance plots, the correlation matrix shows 
that injection rate is the dominant predictive variable, with Pearson correlation coefficients ranging 
from 0.82 to 0.88 across the four models. The remaining operational variables have similar 
correlation coefficients; however, there are differences in how each model utilizes injection time, 
soak time, and/or production time. For example, the linear regression model places the greatest 
emphasis on soak time (r = −0.42), while the RF model places little emphasis on production time 
(r = 0.082). 
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Figure 117.Predicted DSU incremental oil production (Mbbl) based on the predictive models 
built using four ML algorithms: linear regression, SVM, RF, and XGBoost. 

 
 

 
 

Figure 118. Correlation matrix plot of the full operational matrix and the predicted oil 
production from each of the four predictive models: linear regression, SVM, RF, and 
XGBoost. The numbers in each grid cell are the Pearson correlation coefficients, which are 
plotted using a color ramp from −1.00 (perfect negative correlation – red) to +1.00 (perfect 
positive correlation – green). 
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Contour Plots 
 

DSU Incremental Oil Production 
 
 In each of the predictive models, four independent parameters are used to predict DSU 
incremental oil production: injection rate, injection time, soak time, and production time. To 
visualize the relationships of these four parameters with the predicted oil production across the full 
operational matrix, contour plots were created to visualize relationships between combinations of 
two parameters and DSU incremental oil production. For the contour plots, the y-axes are always 
injection rate and the x-axes are injection time, soak time, or production time. The z-axis (color 
ramp contour) is the predicted oil production and shows a color ramp from the minimum  
(210 Mbbl) to maximum (248 Mbbl) values. Figure 119 shows the oil production contour plots for 
each of the four predictive models and three combinations of input parameters: injection rate vs. 
injection time (top row), injection rate vs. soak time (middle row), and injection rate vs. production 
time (bottom row). 
 
 

 
 

Figure 119. Contour plots of predicted DSU incremental oil production for three combinations 
of input parameters: injection rate (MMscfd) vs. injection time (days) (top row), injection rate 
vs. soak time (days) (middle row), and injection rate vs. production time (days) (bottom row) 
for each of the four ML algorithms.  
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 The four predictive models show similar contour trends; however, the linear regression 
model does not capture the nonlinear behavior between operational parameters and oil production, 
as shown by the straight lines in each contour plot. The SVM, RF, and XGBoost contour plots are 
very similar, with the RF and XGBoost models having more granular predictions across the full 
operational matrix. The following interpretations are based on the SVM contour plot (second 
column in Figure 119): 
 

• Injection rate: Regardless of injection, soak, or production time, higher injection rates 
correspond to higher oil production, as the oil production color ramp trends from red 
(minimum) to green (maximum) going vertically along the y-axis from low to high 
injection rate. However, the curvature of the oil production contour lines shows 
interactions between injection rate and the other operational parameters. 

 
• Injection time (top SVM panel): At higher injection rates above 20 MMscfd, oil 

production is best when injection time is between approximately 30 and 80 days, with 
maxima near 60 days. However, lower injection rates less than 20 MMscfd perform worse 
when injection time increases, with the lowest oil production associated with the longest 
injection time (red region of the lower right-hand corner of the panel). 

 
• Soak time (middle SVM panel): Oil production shows a nearly linear relationship 

between the combination of soak time and injection rate, with the greatest oil production 
occurring at the highest injection rate and shortest soak time (upper left-hand corner of 
the panel) and the lowest oil production occurring at the lowest injection rate and longest 
soak time (lower right-hand corner of the panel). 

 
• Production time (bottom SVM panel): At higher injection rates above 20 MMscfd, oil 

production is nearly invariant to production time, with shallow slopes to the contour lines. 
However, lower injection rates less than 20 MMscfd follow the opposite trend of soak 
time and perform better when production time increases. 

 
 Based on these relationships, the optimal operating regions for maximizing oil production, 
regardless of water and gas production, are higher injection rate, moderate injection time, short 
soak time, and moderate production time. 
 
 To avoid the interactions of multiple variables for the prediction of oil production, a second 
set of predictions was created by using subsets of the full operational matrix and fixing the 
production time at its median value (60 days) and the soak time at either its 25th percentile value 
(5 days) or its maximum value (20 days). The optimization contour plots of oil production based 
on the subset data are presented in Figure 120. Once again, the linear regression model does not 
capture the nonlinear behavior between operational parameters and oil production, as shown by 
the straight lines in each contour plot. The SVM, RF, and XGBoost contour plots are, again, very 
similar, with the RF and XGBoost models having more granular predictions. As shown in the 
contour subsets, higher oil production could be achieved via higher injection rates, while longer 
injection time does not necessarily correspond to higher oil production, especially when the 
injection rate is less than approximately 20 MMscfd.
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Figure 120. Contour plots of predicted DSU incremental oil production for each of the four ML 
algorithms, showing injection rate on the y-axis (MMscfd), production time fixed at the median 
value (60 days), and soak time fixed at either 5 days (top row) or 20 days (bottom row). 
 
 

DSU Incremental Water Production 
 
 Figure 121 shows the correlation matrix between the four operational variables and the four 
predictive models for water production, which provides insights into which variables drive the 
predictions in each model. The correlation matrix shows that injection time is the dominant 
predictive variable, with Pearson correlation coefficients ranging from −0.72 to −0.78. The 
remaining operational variables have similar correlation coefficients (−0.15 to +0.56) and each 
model weights injection time, soak time, and/or production time similarly. 
 
 Figure 122 shows the water production contour plots for each of the four predictive models 
and three combinations of input parameters: injection rate vs. injection time (top row), injection 
rate vs. soak time (middle row), and injection rate vs. production time (bottom row). The four 
predictive models show similar contour trends; however, the linear regression and SVM models 
show smooth trends while the RF and XGBoost models show more granular predictions across the 
full operational matrix. The following interpretations are based on the SVM contour plot (second 
column in Figure 122):  
 

• Injection rate: Water production shows a diagonal trend with injection rate, either 
decreasing from lower left to upper right or vice versa, illustrating an interaction between 
injection rate and injection, soak, or production time. 

 
• Injection time (top SVM panel): Injection time is inversely related to water production, 

with the greatest water production occurring with the shortest injection times (less than 
20 days) and the lowest water production occurring with the longest injection times 
(greater than 60 days). There is also an interaction with injection rate, as lower injection 
rates correspond to greater water production (lower left-hand corner) and higher injection 
rates correspond to lower water production (upper right-hand corner).



 

158 

 
 

Figure 121. Correlation matrix plot of the full operational matrix and the predicted water 
production from each of the four predictive models: linear regression, SVM, RF, and XGBoost. 
The numbers in each grid cell are the Pearson correlation coefficients, which are plotted using 
a color ramp from −1.00 (perfect negative correlation – red) to +1.00 (perfect positive 
correlation – green). 

 
 

• Soak time (middle SVM panel): Like injection time, soak time is inversely related to 
water production and more strongly interacts with injection rate, with the greatest water 
production occurring at the lowest injection rate and shortest soak time (lower left-hand 
corner) and the lowest water production occurring at the highest injection rate and longest 
soak time (upper right-hand corner). 
 

• Production time (bottom SVM panel): Production time and injection rate also interact, 
and the relationship between water production and injection rate/production time is the 
opposite trend from injection and soak time, with the greatest water production occurring 
at the lowest injection rate and longest production time (lower right-hand corner) and the 
lowest water production occurring at the highest injection rate and shortest production 
time (upper left-hand corner). 

 
 Based on these relationships, the optimal operating regions for minimizing water 
production, regardless of oil and gas production, are higher injection rate, longer injection time 
and soak time, and shorter production time. 
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Figure 122. Contour plots of predicted DSU incremental water production for each of the four 
ML algorithms and three combinations of input parameters: injection rate (MMscfd) vs. injection 
time (days) (top row), injection rate vs. soak time (days) (middle row), and injection rate vs. 
production time (days) (bottom row). 
 
 

DSU Incremental Gas Production 
 
 As described in the introduction, the overall goal of the project is to determine the feasibility 
of reinjecting captured rich gas (produced gas) into a Bakken reservoir for EOR. As shown in the 
preceding section, regardless of injection, soak, or production time, higher injection rates 
correspond to higher oil production. However, higher injection rates are also associated with higher 
produced gas. The total gas injected comprises both purchased gas (new gas brought to the oil 
field) and recycled gas (produced gas that is collected on-site from production wells, separated, 
processed, and reinjected into the reservoir) (Equation 8): 
 
 Total Gas Injection (MMscf) =  Purchased Gas (MMscf) + Recycled Gas (MMscf) [Eq. 8] 
 
 More detailed simulations and analysis on the behavior of recycled and purchased gas will 
be presented in Subactivity 8.2 – Real-Time Forecasting, Visualization, and Control. This report 
focuses on DSU incremental gas production (produced or recycled gas). 
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 Figure 123 shows the correlation matrix between the four operational variables and the four 
predictive models for gas production, which provides insights into which variables drive the 
predictions in each model. The correlation matrix shows that injection rate is the dominant 
predictive variable, with Pearson correlation coefficients ranging from +0.86 to +0.93. The linear 
regression, SVM, and RF models have similar correlation coefficients for the remaining 
operational variables; however, the XGBoost model uses smaller weights for injection time and 
soak time. 
 
 Figure 124 shows the gas production contour plots for each of the four predictive models 
and three combinations of input parameters: injection rate vs. injection time (top row), injection 
rate vs. soak time (middle row), and injection rate vs. production time (bottom row). The four 
predictive models show similar contour trends; however, the linear regression and SVM models 
show smooth trends while the RF and XGBoost models show more granular predictions across the 
full operational matrix. The following interpretations are based on the SVM contour plot (second 
column in Figure 124): 
 

• Injection rate: Higher injection rates correspond to higher gas production in all contour 
plots, as the recycled gas production color ramp trends from red (minimum) to green 
(maximum) going vertically along the y-axis from low to high injection rate. However, 
the curvature of the recycled gas production contour lines shows interactions between 
injection rate and the other operational parameters. 

 
• Injection time (top SVM panel): At higher injection rates above 20 MMscfd, higher gas 

production occurs at injection times of approximately 40–80 days. However, at lower 
injection rates less than 10 MMscfd, gas production decreases with longer injection time, 
with the minimum gas production near 60 days (red region of the bottom right-hand 
portion of the panel). 

 
• Soak time (middle SVM panel): At higher injection rates above 20 MMscfd, there is a 

negative relationship between soak time and gas production, with the greatest gas 
production occurring at the higher injection rate and shortest soak time (upper left-hand 
corner of the panel). However, at lower injection rates less than 10 MMscfd, this negative 
relationship declines, and gas production is predominantly driven by injection rate, 
independent of soak time. 

 
• Production time (bottom SVM panel): The patterns between gas production and 

production time are like those for gas production and soak time. At higher injection rates 
above 20 MMscfd, there is a negative relationship between production time and gas 
production, with the greatest gas production occurring at the higher injection rate and 
shortest production time (upper left-hand corner of the panel). However, at lower 
injection rates less than 10 MMscfd, gas production is predominantly driven by injection 
rate, independent of production time. 

 
 Based on these relationships, the optimal operating regions for maximizing gas production, 
regardless of oil and water production, were higher injection rate, longer injection time, shorter 
soak time, and shorter production time. However, maximizing gas production may not always be 
an operational goal.
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Figure 123. Correlation matrix plot of the full operational matrix and the predicted gas 
production from each of the four predictive models: linear regression, SVM, RF, and XGBoost. 
The numbers in each grid cell are the Pearson correlation coefficients, which are plotted using 
a color ramp from −1.00 (perfect negative correlation – red) to +1.00 (perfect positive 
correlation – green). 

 
 

 
 

Figure 124. Contour plots of predicted DSU incremental gas production for each of the four 
ML algorithms three combinations of input parameters: injection rate (MMscfd) vs. injection 
time (days) (top row), injection rate vs. soak time (days) (middle row), and injection rate vs. 
production time (days) (bottom row). 
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DSU Incremental Net Revenue 
 
 For the optimization visualizations, the net revenue calculations evaluated several cases that 
weighted the relative value of oil and water production differently, which expands upon the two 
cases used for the regression models. A base case of $60/stb oil and $4/bbl water was explored 
along with five additional cases: (Case 1) $40/stb oil and $4/bbl water, (Case 2) $40/stb oil and 
$2/bbl water, (Case 3) $50/stb oil and $4/bbl water, (Case 4) $50/stb oil and $2/bbl water, and 
(Case 5) $60/stb oil and $2/bbl water. 
 
 Figure 125 shows each of the additional net revenue cases (y-axis) compared to the base case 
net revenue outcome (x-axis). As shown in the figure, net revenue is mainly driven by oil 
production and less influenced by water production because the monetary reward (revenue) is 
much larger for oil production than the penalty for water production (cost). For example, Case 5 
has the greatest net revenue because it has both the highest oil price ($60/stb oil) and lowest water 
cost ($2/bbl water). The next highest case is the base case, which has the highest oil price ($60/stb 
oil) but highest water cost ($4/bbl water). The other cases with lower oil prices have significantly 
lower net revenue, regardless of the water cost. Consequently, contour plots for net revenue closely 
track oil production. 
 
 

 
 
Figure 125. Comparison of five cases for calculating net revenue (y-axis, $MM) against the base 
case of $60/stb oil and $/bbl water (x-axis, $MM). See legend for case definitions. 
 
 
 Figure 126 shows the net revenue contour plots for each of the four predictive models and 
three combinations of input parameters: injection rate vs. injection time (top row), injection rate 
vs. soak time (middle row), and injection rate vs. production time (bottom row). Like the preceding 
plots for oil, water, and gas production, the four predictive models for net revenue show similar 
contour trends. The following interpretations are based on the SVM contour plot (second column 
in Figure 126):
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Figure 126. Contour plots of predicted DSU net revenue (base case: $60/stb oil and $4/bbl 
water) for each of the four ML algorithms and three combinations of input parameters: 
injection rate (MMscfd) vs. injection time (days) (top row), injection rate vs. soak time (days) 
(middle row), and injection rate vs. production time (days) (bottom row). 

 
 

• Injection rate: Regardless of injection, soak, or production time, higher injection rates 
correspond to higher net revenue, as the net revenue color ramp trends from red 
(minimum) to green (maximum) going vertically along the y-axis from low to high 
injection rate. However, the curvature of the net revenue contour lines shows interactions 
between injection rate and the other operational parameters. 

 
• Injection time (top SVM panel): At higher injection rates above 20 MMscfd, net 

revenue is best when injection time is between approximately 40 and 80 days, with 
maxima near 70 days. However, lower injection rates less than 20 MMscfd perform worse 
when injection time increases, with the lowest oil production associated with the longest 
injection time (red region of the lower right-hand corner of the panel). 

 
• Soak time (middle SVM panel): Net revenue shows a nearly linear relationship between 

the combination of soak time and injection rate, with the greatest net revenue occurring 
at the highest injection rate and shortest soak time (upper left-hand corner of the panel) 
and the lowest net revenue occurring at the lowest injection rate and longest soak time 
(lower right-hand corner of the panel). 

 
• Production time (bottom SVM panel): At injection rates between 15 and 25 MMscfd, 

net revenue is nearly invariant to production time, with shallow slopes to the contour lines 
(nearly horizontal). However, higher injection rates greater than 25 MMscfd show greater 
net revenue at lower injection times, and conversely, at lower injection rates less than  
15 MMscfd, longer injection times are associated with greater net revenue.
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 The optimal operation regions for maximizing net revenue essentially mirrors oil 
production, since the higher oil price estimates ($40 to $60/stb oil) relative to the cost of produced 
water transport and disposal ($2 to $4/bbl water) means that oil production largely drives the net 
revenue result. 
 

Sobol Sensitivity Indices 
 
 Figure 127 shows the total-effect, first-order, and second-order Sobol sensitivity indices for 
predicting oil production using the SVM algorithm. The y-axes show the fractional contribution of 
each operational variable to the output variance. For the Set 2 simulations and SVM predictive 
model, the total-effect indices are essentially equivalent to the first-order indices, as the second-
order indices, other than perhaps (injection rate × injection time) and (injection rate × production 
time), do not significantly contribute to the oil production variance (less than 2% of the total 
variance). Like the preceding variable importance plots and correlation matrices, injection rate is 
the most important variable for predicting oil production. For example, 75% of the first-order 
indices are attributable to injection rate, and the next highest first-order index is soak time (10%). 
The first-order indices for injection and production time are both less than 5%. 
 
 

 
 
Figure 127. Sobol sensitivity indices for the SVM model for predicting DSU incremental oil 
production. The horizontal line represents sensitivity index = 0.05, which is a conventional 
threshold to determine the importance of a parameter. 
 
 

ML Summary 
 
 The Set 2 ML models showed the following: 
 

• All of the models performed well in predicting oil production. However, linear regression 
was the weakest among the four models, with both the lowest r2 and highest RMSE. While 
XGBoost had the best performance for the training data set, the model performance 
decreased for the test data set, which suggests mild overfitting of the XGBoost algorithm. 
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The RF algorithm provided more consistent predictions in both training and test data sets; 
however, there was also evidence of slight overfitting. SVM was the overall best-
performing algorithm for both the training and test sets. Similar results were achieved for 
the other target variables of water production, gas production, and net revenue. 

 
• The variable importance plots, correlation matrices, and Sobol sensitivity indices showed 

similar results and clearly showed that injection rate is the most important operational 
variable for predicting oil production among injection rate, injection time, soak time, and 
production time. For example, 75% of the first-order indices were attributable to injection 
rate, and the next highest first-order index was soak time (10%). The first-order indices 
for injection and production time were both less than 5%. 

 
 The optimal operating regions for various performance metrics are as follows: 

 
• Maximizing oil production, regardless of water and gas production: higher injection rate, 

moderate injection time, short soak time, and moderate production time. 
 
• Minimizing water production, regardless of oil and gas production: higher injection rate, 

longer injection time and soak time, and shorter production time. 
 
• Maximizing gas production, regardless of oil and water production: higher injection rate, 

longer injection time, shorter soak time, and shorter production time; however, 
maximizing gas production may not always be an operational goal. 

 
• Maximizing net revenue: mirrors oil production, since the higher oil price estimates ($40 

to $60/stb oil) relative to the cost of produced water transport and disposal ($2 to $4/bbl 
water) means that oil production largely drove the net revenue result. 

 
 The different contours for oil, water, and gas production illustrate that the optimal operating 
envelope for injection rate, injection time, soak time, and production time depend upon the site-
specific objectives and constraints of the project. For example, if the rich gas supplies limit the 
maximum injection rate to <5 MMscfd and the infrastructure to recycle produced gas is limited, 
so, therefore, gas production must be minimized, then the optimal operating region is an injection 
time between 40 and 80 days, soak time between 5 and 20 days, and production time between  
40 and 80 days (i.e., cycle times from 85 to 180 days). However, if the rich gas supply is abundant 
and on-site recycling facilities can accommodate large gas volumes, then the optimal operating 
region for maximizing oil production is an injection time between 40 and 80 days, soak time less 
than 7 days, and production time between 30 and 50 days (i.e., cycle times from 77 to 137 days). 
Therefore, the contour plots shown in Figures 119, 122, 124, and 126 provide response surfaces: 
estimates of how oil, water, and gas production will respond to the operating variables. However, 
the “optimal” configuration of operational variables is a multiobjective optimization problem 
specific to the site-specific project constraints. 
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Summary and Conclusions 
 
 The Subactivity 8.1 work demonstrated how to integrate physics-based reservoir simulations 
for an unconventional reservoir with statistics and ML to investigate sets of rich gas injection 
scenarios used to quantify the effect of DSU development and operational factors on DSU 
production of oil, gas, and water. The workflows developed for the Set 1 and Set 2 simulations 
and analyses provide a template for future virtual-learning work. The process relies on commercial 
modeling and simulation outputs combined with open-sourced ML techniques in R. The workflow 
may be expanded to include sets of DSUs (as opposed to a single DSU) and to include additional 
variables beyond those included in the current study. 
 

Subactivity 8.2.1 – Real-Time Visualization, Forecasting, and Control 
 

Introduction 
 
 To support DOE NETL’s goal to enhance resource production in the Bakken, the EERC is 
currently conducting a project as part of the EERC–DOE Joint Cooperative Agreement  
Subtask 3.1 entitled “Bakken Rich Gas Enhanced Oil Recovery Project.” The overall goal of the 
project is to determine the feasibility of reinjecting captured rich gas (produced gas) into a Bakken 
reservoir for EOR. The focus of this section is on one component of the broader EERC effort: 
Subactivity 8.2.1 – Real-Time Visualization, Forecasting, and Control. 
 
 The goal of Subactivity 8.2.1 is to explore real-time visualization, forecasting, and control 
methods (RTVFC) for improved reservoir surveillance during rich gas EOR. In this context, the 
definition of these terms are as follows: 
 

• “Visualization” refers to time-series plots of reservoir surveillance data or analytics 
(reexpressions of the data that provide better insights than the raw measurement) that can 
inform the EOR site operator of downhole conditions (e.g., gas breakthrough from the 
injection well[s] to the offset production well[s]) that could affect the performance of the 
EOR project.  

 
• “Forecasting” refers to predictive modeling for the purpose of rapidly generating a 

prediction about future performance that the EOR site operator can compare against the 
observed performance. 

 
• “Control” methods refer to operational changes that the EOR site operator can enact (e.g., 

changing gas-injection rates) to affect the observed performance and potentially improve 
the EOR outcome.  

 
 The integration of these three pieces—visualizing reservoir surveillance data in real-time, 
rapidly forecasting reservoir performance, and deploying operational changes to affect EOR 
performance—constitute RTFVC. 
 
 Subactivity 8.2.1 started with a detailed review of reservoir surveillance data generated over 
the course of previous Bakken EOR pilot tests (small-scale gas-injection EOR projects) that used 
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rich gas, carbon dioxide, surfactant, water, or combinations of these fluids. These historical 
operational data were used to screen candidate RTVFC methods, which were then applied to an 
extensive set of reservoir simulation outputs of a reference gas EOR project to evaluate gas 
breakthrough at offset production wells. 
 
 The remainder of this report summarizes the pilot test screening process, the reservoir 
simulation outputs for the reference rich gas EOR project, and the results of applying RTVFC 
methods to the simulated outputs. 
 

Pilot Test Screening 
 
 The EERC project team compiled a database comprising publicly available Bakken EOR 
pilot test data (M12: “Pilot Test Database Complete” [3/31/2020]), which were used to screen 
candidate RTVFC methods. Table 24 summarizes each pilot test in that database showing the pilot 
test name, injectate (water, surfactant, CO2, propane, or rich gas), state and county (if available), 
and operator/reporter. 
 
 
Table 24. Summary of Bakken EOR Pilot Tests Used to Screen Candidate RTVFC 
Methods.4 

Case 
No. Injectate 

Operational 
Method 

Pilot 
Start 
Year 

State/ 
County 

Operator/ 
Reporter 

1 Water HnP 1994 ND/McKenzie Meridian 
2 Water HnP 2012 ND/Mountrail EOG 
3 Water Flooding  2014 MT/(county 

N/A) 
Montana Tech 

4 Surfactant HnP 2015 ND/(county 
N/A) 

Nalco 
Champion 

5 CO2 HnP 2008 ND/Mountrail EOG 
6 CO2 HnP 2009 MT/(county 

N/A) 
Continental 

7 CO2 Flooding/injectivity 2014 ND/Mountrail Whiting 
8 CO2 Injectivity 2017 ND/Dunn XTO 
9 Propane Flooding  2017 ND/Mountrail Hess 
10 Rich gas Flooding  2014 ND/Mountrail EOG 
11 Rich gas HnP 2018 ND/Williams Liberty 

 
4 Notes: “HnP” refers to a cyclic EOR operational method comprising injection time (sometimes called the “huff 
period” or the days of gas injection), soak time (the days between the “huff period” and the “puff period”), production 
time (sometimes called the puff period or the days of gas production after the soaking time), and cycle time (sum of 
the injection time, soak time, and production time). “Flooding” refers to EOR water (or gas) flooding where water (or 
gas) is injected into the oil reservoir to increase output when extracting oil, especially in reservoirs where production 
rates have declined over time. “Injectivity” (water or gas) is defined as the rate of water (or gas) injection over the 
pressure differential between the injector and the producer (or the formation). The parameter is used to evaluate how 
easily a fluid can be injected through an injector and the ability of a formation to accept external fluid. An injectivity 
test can be performed before large-scale flooding operations to optimize the flooding design. Finally, “Flooding/ 
Injectivity” refers to an EOR that had both flooding and injectivity, as defined above. 
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 While many different technologies have been developed and applied to monitor the EOR 
process in conventional reservoirs (Michael and others, 2010; Zhang and others, 2014; Alfi and 
others, 2015; Zaluski and others, 2016; Jervis and others, 2018; Mur and others, 2020; Jin and 
others, 2021), comparatively fewer technologies were used in the historical Bakken EOR pilot 
tests to monitor the injection and production behavior (Hoffman and Evans, 2016; Kazempour and 
others, 2018; Sorensen and others, 2018; Nagarajan and others, 2020; Pospisil and others, 2020). 
As shown in Table 25, most of the Bakken EOR pilot studies included monthly production and/or 
injection rate (oil, gas, and water volumes) and well logs, and a few had daily production/injection 
rates (five of 11 cases, 45%) and downhole pressure measurements (three of 11 cases, 27%). A 
handful of the historical pilot studies included gas composition monitoring (three of 11 cases, 27%) 
or tracer testing (two of 11 cases, 18%). Therefore, the screening of candidate RTVFC methods 
was constrained by data availability, so the pilot test screening evaluated the best methods given 
the available reservoir surveillance data. 
 

Figure 128 shows that 64% (seven of 11) of the Bakken EOR pilot tests employed gas 
injection (propane, rich gas, or CO2). Two successful cases (Case Nos. 8 and 9 in Tables 24 and 
25) were reported using propane and CO2 injection in the Bakken (Sorensen and others, 2018; 
Nagarajan and others, 2020). Although water could be injected into the reservoir through fractures, 
the EOR performance by water injection was not encouraging, likely because it is extremely 
difficult for water to penetrate the Bakken matrix and recover oil from the formation in a short 
timespan because of the tiny pore throats and the high IFT between oil and water, as reported in 
Activity 7. Since IFT between gas and oil reduces with pressure, gas more easily penetrates the 
oil-bearing Bakken matrix and extracts oil out of the rock under high-pressure reservoir conditions 
when given enough contact time (weeks to months). Therefore, these physical constraints suggest 
that it is advisable to use gas as an injectate instead of water, assuming no surfactant is added to 
the injection water. However, if properly executed, then a surfactant can reduce the IFT between 
oil and water and increase oil production by potentially changing the wettability of rock from oil-
wet to water-wet. For example, Kazempour and others (2018) reported on a pilot test where high-
pressure surfactant injection effectively boosted the oil production (Case No. 4 in Tables 24 and 
25). However, the relatively high cost and the high-salinity and high-temperature reservoir 
environment in the Bakken create challenges for broadly applying surfactant EOR with currently 
available technologies. 
 
 Although a few encouraging EOR cases using a gas injectate (hereafter, “gas EOR”) were 
reported, most of the Bakken pilot tests did not show a clear incremental oil response to these EOR 
processes. Premature gas breakthrough and poor conformance control have been identified as two 
of the most critical factors for these underperforming gas EOR tests (Hoffman and Evans, 2016; 
Sorensen and Hamling, 2016; Pospisil and others, 2020). This lack of performance is attributed to 
the fact that gas EOR relies on gas–oil interactions in the reservoir where high pressure is required 
to make the interactions happen at a reasonable rate. An uncontrolled gas crossflow between the 
injector and offset wells interferes with the rate and extent of the pressure buildup and leads to an 
unsuccessful EOR test. Therefore, effective detection of gas breakthrough to the offset wells 
becomes important for gas EOR monitoring. 
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Table 25. Summary of Available Data for the Previous Bakken EOR Pilot Tests 
Case 
No. Injectate Routine Data  

Monitoring Methods/Data 
Reported Data Source  

1 Water MPIR,* well logs   NDIC 
2 Water MPIR, well logs   NDIC 
3 Water MPIR Daily injection rate NDIC, Hoffman and 

Evans (2016)  
4 Surfactant MPIR   Kazempour and others 

(2018)  
5 CO2 MPIR, well logs  NDIC  
6 CO2 MPIR  Hoffman and Evans 

(2016)  
7 CO2 MPIR, well logs Daily injection rate, surface 

injection pressure, gas 
composition 

NDIC  

8 CO2 MPIR, well logs Daily injection rate, bottomhole 
injection pressure, oil 

composition  

NDIC, Sorensen and 
others (2018)  

9 Propane MPIR, well logs Daily production/injection rates, 
bottomhole injection pressure, 
gas composition, tracer testing  

NDIC, Nagarajan and 
others (2020)  

10 Rich gas MPIR, well logs  NDIC  
11 Rich gas MPIR, well logs Daily production/injection rates, 

bottomhole injection pressure, 
gas composition, tracer testing  

NDIC, Pospisil and 
others (2020)  

* MP(I)R – monthly production (and injection) rates.  
 
 

 
 

Figure 128. Percentage of Bakken EOR pilot tests by EOR injectate types (total of  
11 EOR pilot tests—see Table 24). 
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 A variety of monitoring technologies have been used to detect fluid breakthrough behavior 
in conventional reservoirs when water-flooding or gas-flooding operations are implemented 
(Michael and others, 2010; Zhang and others, 2014; Alfi and others, 2015; Jervis and others, 2018; 
Zaluski and others, 2016). For example, pulsed-neutron logs and seismic surveys are frequently 
used to detect whether gas has entered a producer well or passed a certain location in a CO2 
flooding process (Zaluski and others, 2016; Jin and others, 2021). However, such methods usually 
require days to weeks to interpret the measured data; i.e., these methods do not produce “near-real-
time” data/information. In addition, EOR implemented in conventional reservoirs typically utilize 
vertical wells arranged in flood patterns, as opposed to unconventional Bakken reservoir 
development, which utilizes long horizontal wells (laterals) with 10,000 feet or more of completed 
lateral. Using conventional production logs is challenging to evaluate the flow behavior in long 
horizontal wells with several to tens of fracture stages (Hoffman and Evans, 2016). The complex 
completion methods for unconventional reservoirs, like the Bakken, combined with reservoir 
heterogeneity make regular production data (oil/gas/water rates) too noisy to accurately detect gas 
breakthrough. 
 
 Figure 129 illustrates the distribution of the gas injector and its offset producers in the 
propane EOR pilot test (Case No. 9, Table 24) conducted in the Bakken in 2017. A vertical well 
“C3_Inj” was used to inject propane, and oil/gas/water production rates were monitored at the 
offset producer wells, M1–M6, which were connected to horizontal laterals of different lengths. 
Well M1 was the closest producer to the propane injector (0.3 miles [1584 ft]). A total of  
19.88 MMscf propane was intermittently injected into the C3_Inj from May 2017 to August 2018. 
The injection rate varied from month to month, as shown in Figure 130.  
 
 

 
 

Figure 129. Schematic of the gas injector (C3_Inj) and offset producer wells (M1–M6) and 
horizontal laterals in the Hess propane EOR pilot test (Case No. 9). 
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Figure 130. Monthly gas injection rate in the Hess propane EOR pilot test (Case No. 9). 
 
 
 Figure 131 shows the available daily fluid production rates (gas, oil, and water) for M1 and 
the propane injection rate in C3-Inj for the Hess propane EOR pilot test (Case No. 9). As shown 
in the figure, the fluid production rates do not provide sufficient information to determine if and/or 
when the injected propane breakthrough occurred in the offset production well, M1. In contrast, 
compositional measurements of gas stream produced from M1 provided robust signals for gas 
breakthrough diagnosis. The propane concentration (in mole percentage) in the produced gas 
stream from a normal Bakken producer is usually below 20 mol% based on many PVT reports 
collected from the Bakken. This concentration can be relatively stable for a long time during the 
normal production process. Accordingly, a propane concentration in the produced gas stream of 
an offset well that is significantly higher than 20 mol% could be a clear signal of propane 
breakthrough. Figure 132 demonstrates how the propane concentration changed in the produced 
gas stream of M1 during the monitoring period. The data showed that the propane concentration 
exceeded 93 mol% on October 10, 2017, which clearly indicated that the injected propane had 
breakthrough to the M1 as most of the produced gas was propane. Since 19.88 MMscf propane 
was injected into the formation near M1, the propane production from this well could last for 
months after injection operations cease. Therefore, propane concentration was selected as one of 
the monitoring parameters for gas breakthrough detection in this study. 
 
 As noted above, the screening of candidate RTVFC methods was constrained by the 
availability of reservoir surveillance data of the pilot tests. Therefore, the historical data sets of the 
Bakken EOR pilot tests were supplemented with an extensive set of reservoir simulations to permit 
the evaluation of gas breakthrough at offset production wells, as described in the next section. 
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Figure 131. The daily fluid production rate and propane injection rate in M1 and C3_Inj, 
respectively, for the Hess propane EOR pilot test (Case No. 9): A, gas; B, oil; and C, water. 
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Figure 132. Monitoring of propane concentration in the gas stream produced from M1 (mole 
%, left y-axis) and the propane injection rate in C3_Inj (right y-axis) for the Hess propane 
EOR pilot test (Case No. 9). 

 
 

Geologic Model and Reservoir Simulation 
 

Geologic Model of the 7-Well DSU 
 
 The geologic model (geomodel) and reservoir simulation approaches used for  
Subactivity 8.2 were previously described under Activity 7. The single DSU model for the Dunn 
site was adopted for the RTVFC study in Subactivity 8.2. The detailed geologic properties of the 
model can be found in Subactivity 7.1. 
 
 The geomodel included seven wells (three wells completed in the MB Formation (MB1, 
MB2, and MB3) and four wells completed in the TF Formation (TF1, TF2, TF3, and TF4) arranged 
in a “wine rack” geometric configuration (Figure 133). The geomodel was used to simulate gas 
injection at MB2 (outlined in red in Figure 133) and the resultant responses in the Offset Wells 
MB1, MB3, and TF1–TF4 (outlined in green in Figure 133). 
 
 The reservoir simulations (utilizing the model described on page 86, “Reservoir Simulation 
Model for the Single DSU Site”) evaluated scenarios with all wells open (i.e., Offset Wells MB1, 
MB3, TF1, TF2, TF3, and TF4 open) and scenarios with the exterior offset wells closed (i.e., 
Offset Wells MB1, MB3, TF1, and TF4 shut-in and Offset Wells TF2 and TF3 open [producing]), 
as denoted by the dashed and solid outlines in Figure 133. The yellow arrows in Figure 133 
illustrate potential gas breakthrough from the injection well (MB2) to the offset production wells. 
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Figure 133. Illustration of the 7-well DSU model identifying the MB and TF wellbores and the 
wells that were used for rich gas injection (MB2 – red outline) or production (MB1, MB3, TF1 
to TF4, green outline), as described in the text. Dashed outlines refer to the “Open” scenarios 
that included Wells TF2 and TF3 as well as MB1, MB2, TF1, and TF4, while solid outlines refer 
to the “Closed” scenarios that shut in the four dash-outlined wells. 
 
 

Reservoir Simulation 
 
 A high-efficient fracture simulation method—EDFM—was used to set up complex fractures 
in the simulation model. Hydraulic fractures were distributed along the wellbore based on the 
fracturing data. Some of the fractures were connected in the model based on the history match of 
the production data collected for each well. The well interference effects were captured after 
carefully tuning the reservoir and fracture properties. The detailed reservoir and fracture 
calibration process can also be found in Subactivity 7.1 of the main report. The EDFM-integrated 
simulation model can mimic the crossflow between wells when gas injection is used for EOR.  
 
 One of the objectives for Subactivity 8.2 is to rapidly detect gas breakthrough during the gas 
EOR process. As summarized in the preceding section, the results of the pilot test screening 
showed that propane concentration (i.e., gas composition) can be used to detect gas breakthrough 
behavior more effectively than fluid production rates (oil, gas, or water). Based on the same logic, 
if another pure gas like methane or ethane is injected for EOR operations, then its concentration 
could also be used for gas breakthrough detection. Therefore, the gas components were set up 
individually in the EOS so that pure-component gas injection scenarios could be simulated for 
methane (C1), ethane (C2), and propane (C3). 
 
 Produced gas from the Bakken is usually relatively enriched in ethane and propane (i.e., 
ethane and propane constitute 30–40 mol% of the produced gas). As shown in Table 24, the 
produced (or rich) gas has also been used as an injectate for EOR operations. Although methane 
in the rich gas leads to a higher MMP, therefore requiring higher injection pressure for gas EOR 
purposes, reinjecting the produced gas without separation of the methane component reduces the 
EOR operational costs. However, if the composition of injection gas is like that of the produced 
gas from an offset well, then it may no longer be possible to detect the gas breakthrough by 
monitoring the concentration change of an individual gas component. In other words, the produced 
gas from gas breakthrough would be chemically indistinguishable from the produced gas without 
gas breakthrough. 
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 Tracer testing has been used in the oil and gas industry for many years with a range of 
applications, including evaluation of reservoir heterogeneity, determination of connectivity 
between wells/fractures, identification of thief zones (as well as flow barriers) in a reservoir, and 
estimation of sweep efficiency (Kumar and Sharma, 2018; Tayyib and others, 2019; Al-Qasim and 
others, 2019, 2020). The fast evolution of tracer technologies has made tracer testing an important 
monitoring and surveillance method for field practices, including various EOR operations (Sharma 
and others, 2014; Sanni and others, 2017). A variety of tracers have been developed in the past 
decades, and different tracers can be used to rapidly identify and characterize the movement of 
gas, oil, or water, depending on the project requirements (Huseby and others, 2010; Yuncong and 
others, 2014; Sanni and others, 2017; Al Abbad and others, 2019; Nagarajan and others, 2020; 
Chen and others, 2021).  
 
 In unconventional reservoirs, a short tracer breakthrough time observed in an offset well 
may indicate that the well is connected to the injector through fractures. For example, the tracer 
tests in the Liberty rich gas pilot test (Case No. 11) showed that the wells were highly 
interconnected through fractures in the reservoir (Pospisil and others, 2020). Therefore, tracer tests 
were included in the reservoir simulations for rich gas EOR to evaluate how the addition of a tracer 
gas would improve RTVFC as compared to rich gas or single-component gas injection without a 
tracer. Based on the rich gas composition (60 mol% of methane, 25 mol% of ethane, and 15 mol% 
of propane) simulated in this study, three tracers were attached to three individual gas components, 
as shown in Table 26: Tracers TRC-C1, TRC-C2, and TRC-C3 were attached to methane, ethane, 
and propane, respectively. Both pure propane and rich gas (with tracers) EOR scenarios were 
simulated using CMG’s GEM V2020. 
 
 

Table 26. Composition of the EOS for Gas Breakthrough and EOR Simulations5 

No. Component 
Tracer 

Attached  No. Component Tracer Attached 
1 N2 N/A  5 IC4 to NC4 N/A 
2 CH4 TRC-C1  6 IC5 to C12 N/A 
3 C2H6 TRC-C2  7 C13 to C19 N/A 
4 C3H8 TRC-C3  8 C20 to C30 N/A 

 
 
 Subactivity 8.2 included two sets of reservoir simulation cases for the seven-well DSU:  
1) propane (C3) injection and 2) rich gas injection with a tracer (hereafter “tracer injection”). These 
sets were used to evaluate gas breakthrough from the gas injection well (MB2) to the offset 
production wells (MB1, MB3, and TF1-4) under different operating conditions, as described 
below. 
 

Propane Injection 
 
 Table 27 shows the simulation case matrix for the propane injection scenarios, which 
injected at well MB2 and utilized varying injection rates from 0.5 to 18 million standard cubic feet  
 

 
5 “IC” refers to isoalkanes with C equal to the carbon-number. “NC” refers to normal alkanes. “C” with no “I” or “N” 
prefix refers to either iso- or normal alkanes within the specific carbon-number range. 
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Table 27. Propane Injection Reservoir Simulation Case Matrix for the 28  
Simulations. The 28 runs were executed with Offset Wells MB1, MB3, TF1,  
and TF4 closed (shut-in) and again with the wells open (producing), for a total of  
56 simulations. 
Simulation Case Number Inj. Rate (MMscfd) Max Inj. BHP (psi) 
1 0.5 1500 
2 0.5 3000 
3 0.5 5500 
4 0.5 7500 
5 1.5 1500 
6 1.5 3000 
7 1.5 5500 
8 1.5 7500 
9 3 1500 
10 3 3000 
11 3 5500 
12 3 7500 
13 6 1500 
14 6 3000 
15 6 5500 
16 6 7500 
17 8 1500 
18 8 3000 
19 8 5500 
20 8 7500 
21 10 1500 
22 10 3000 
23 10 5500 
24 10 7500 
25 18 1500 
26 18 3000 
27 18 5500 
28 18 7500 

 
 
per day (MMscfd) and varying maximum injection BHP from 1500 to 7500 psi across 28 runs. 
The rate and pressure settings were designed to cover representative operational ranges for the 
unconventional Bakken reservoir. The 28 runs were executed with Offset Wells MB1, MB3, TF1, 
and TF4 closed (shut-in) during the injection and soaking stages and again with the wells open 
(producing), for a total of 56 runs for the propane injection. The minimum production BHP  
(100 psi), injection time (30 days), soaking time (7 days), and production time (60 days) (cycle 
time of 97 days) were held constant across all 56 runs. The injection–soaking–production cycles 
through 2 years of prediction can be found in Table 28. 
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Table 28. Injection–Soaking–Production Cycles in the HnP Process  
Date 
(MM/DD/YY) 

Cycle  
1 2 3 4 5 6 7 8 

Injection Start 01/01/20 04/07/20 07/13/20 10/18/20 01/23/21 04/30/21 08/05/21 11/10/21 
Injection End 01/30/20 05/06/20 08/11/20 11/16/20 02/21/21 05/29/21 09/03/21 12/09/21 
Soaking Start 01/31/20 05/07/20 08/12/20 11/17/20 02/22/21 05/30/21 09/04/21 12/10/21 
Soaking End 02/06/20 05/13/20 08/18/20 11/23/20 02/28/21 06/05/21 09/10/21 12/16/21 
Production 
Start 02/07/20 05/14/20 08/19/20 11/24/20 03/01/21 06/06/21 09/11/21 12/17/21 
Production 
End  04/06/20 07/12/20 10/17/20 01/22/21 04/29/21 08/04/21 11/09/21 12/31/21 
 
 
 The wells were operated differently in the offset well open and closed scenarios. For cases 
with offset wells open, Wells MB1, MB3, TF1, TF2, TF3, and TF4 were open all the time 
(producing), and only Well MB2 changed its status with cycles, as shown in Table 29. For cases 
with offset wells closed, Wells TF1, MB1, MB3, and TF4 were closed all the time (shut-in), and 
other wells changed their status with HnP stages, as shown in Table 30.  
 
 
Table 29. Change of Well Status for MB2 in Different HnP Stages When All of the Offset 
Wells MB1, MB3, TF1, TF2, TF3, and TF4 Were Kept Open (producing) 

Stage  
Cycle 1 As an Example Well Status 

Date (MM/DD/YY) Open Closed 
Injection 01/01/20 to 01/30/20 MB2 (injecting)  

Soaking 01/31/20 to 02/06/20  MB2 
Producing 02/07/20 to 04/06/20 MB2  

 
 
Table 30. Change of Well Status for MB2, TF2, and TF3 in Different HnP Stages When 
External Offset Wells MB1, MB2, TF1, TF2, TF3, and TF4 Were Closed (shut-in) 

Stage  
Cycle 1 As an Example Well Status 

Date (MM/DD/YY) Open Closed 
Injection 01/01/20 to 01/30/20 MB2 (injecting) TF2, TF3 
Soaking 01/31/20 to 02/06/20  TF2, MB2, TF3 
Producing 02/07/20 to 04/06/20 TF2, MB2, TF3  

 
 

Tracer Injection  
 
 The simulation case matrix for the tracer injection scenarios also injected at Well MB2 and 
utilized the same varying injection rates (0.5 to 18 MMscfd) and varying maximum injection BHP 
(1500 to 7500 psi) as the propane injection runs. Like the propane injection runs, the 28 tracer 
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injection runs were executed with Offset Wells MB1, MB3, TF1, and TF4 closed (shut-in) in the 
injection and soaking stages and again with the wells open (producing), for a total of 56 runs. As 
with the propane injection run, for the tracer injection runs, the minimum production BHP  
(100 psi), injection time (30 days), soaking time (7 days), and production time (60 days) were held 
constant across all 56 runs. 
 
 The propane injection runs (28 closed + 28 open = 56 total) and tracer injection runs  
(28 closed + 28 open = 56 total) provided a total of 112 simulations for the RTVFC inputs. 
 

Data Extraction and Preprocessing 
 

Data Extraction 
 
 The reservoir simulation output data for each of the 112 cases were stored in .sr3 file format 
(i.e., 112 separate .sr3 files). Traditionally, the user opens each .sr3 file with CMG software, 
manually selects wells and parameters, and exports the data to an Excel (.xlxs) or text (.txt) file for 
subsequent visualization or data analysis in a third-party software. However, the traditional data 
extraction approach is inefficient and potentially error-prone when dealing with many cases, 
because 1) manually opening and exporting many .sr3 files is labor-intensive and 2) errors can be 
introduced during the manual data extraction process. To overcome these limitations, a 
semiautomated approach was developed for the data extraction that included the following steps: 
 

1 Create a result file (i.e., .rwd file) that stores output parameters for each reservoir 
simulation .sr3 file. The .rwd files were created using customized Python code to reduce 
manual work and human error. 

 
2 Extract the data from the .rwd files using CMG software. This process required opening 

the .rwd file in the “Result Report” tool in the CMG software and using a customized 
query to extract the data from the .rwd file to a .csv file. 

 
3 Compile the exported .csv files into a structured tabular data set using a customized 

Python script. 
 
 The Step 1 and Step 3 steps were automated via Python scripts, and Step 2 required minimum 
human assistance. This data extraction workflow permits more expansive integration of physics-
based reservoir simulation results with data visualization and machine learning and is a significant 
improvement over the traditional approach—i.e., faster and more accurate. 
 

Data Preprocessing 
 
 The reservoir simulation data included both primary production and EOR. The data were 
filtered to the range of January 1, 2020 (injection start date for the first cycle), to December 31, 
2021 (production end date for the last cycle, Cycle 8), to limit the visualizations to the 2-year EOR 
period. The primary production was subtracted from the EOR production to yield the incremental 
production attributable to EOR. 
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 The output data from the reservoir simulations had irregular time steps to the scale of minutes 
because of different convergence criteria within the numerical simulator for each case. To simplify 
the visualization and forecasting, the data were aggregated to the scale of days by calculating the 
daily maximum value. A standardized daily database was created from January 1, 2020, to 
December 31, 2021, and the reservoir simulation daily data were mapped to this standard daily 
timeline. Days with no reservoir simulation output were treated as missing values. 
 
 After aggregating the 112 reservoir simulations and mapping these to a standardized daily 
timeline, a minimum treatment of the data was performed to remove outliers by visual  
inspection—plotting the time-series data and removing erroneously low or high values. The 
resultant aggregated and cleaned database provided the inputs to the real-time visualization. 
 

Real-Time Visualization and Forecasting 
 
 As previously discussed, “visualization” in RTVFC refers to time-series plots of reservoir 
surveillance data or analytics (reexpressions of the data that provide better insights than the raw 
measurement) that can inform the EOR site operator of downhole conditions (e.g., gas 
breakthrough from the injection well[s] to the offset production well[s]) that could affect the 
performance of the EOR project. In this proof of concept, the real-time visualization allows the 
user to display the simulation results for selected EOR operating parameters and target variables. 
The visualization process is meant to emulate “real-time” data that are consistent with similar 
processes that the EERC has used on other gas injection projects. For example, a typical field 
project for rich gas EOR might include the following sequence of steps: 1) acquisition of injection 
rates, production rates, and well BHPs whenever new data are available, which provides the 
foundation of real-time visualization; 2) data preprocessing to deal with missing and outlier values; 
3) compilation of the various data sets into a coherent structured data format based on well 
identifiers, operating scheme, and acquisition timestamp; 4) appending of new data to the existing 
data set; and 5) creating visualizations and/or updating visualizations based on the updated data 
set. 
 
 For the purposes of this proof-of-concept study, the process was started with the data already 
acquired, transferred, aggregated, and cleaned, and the full 2-year EOR outputs were used in the 
visualizations. However, the process may be adapted to “real-time” and can upload and plot the 
data at whatever acquisition frequency the field operator would like to implement (e.g., hourly, 
daily, weekly, etc.). 
 
 The EOR operating parameters for the reservoir simulations included external offset well 
status (MB1, MB3, TF1, and TF4 closed or open), injectate (rich gas or propane), injection rate 
(0.5, 1.5, 3.0, 6.0, 8.0, 10, or 18 MMscfd), and injection pressure (1500, 3000, 5500, or 7500 psi). 
The target variables for visualization included the following measurements at each of the seven 
wells (MB1, MB2 [injection well], MB3, TF1, TF2, TF3, and TF4): production (oil, gas, and water 
production rates and cumulative production), BHP, and tracer (rich gas or propane) production 
rate and cumulative production. 
 
 An online dashboard was created using R-shiny (Chang and others, 2021), where users can 
interactively customize the display. The website address of the dashboard is https://eerc-ai-
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team.shinyapps.io/EORWellPerformance/. The online dashboard was developed by creating 1) a 
server that provides the backbone of the visualizations and 2) a user interface (UI) where pages 
show different time-series visualizations of the well performance based on a set of user-defined 
selections. 
 

Server Creation 
 

Interactive Data Set 
 
 The aggregated and cleaned data set of the 112 reservoir simulations described in Section 4 
was imported into the R-shiny server. To ensure responsive selection of wells and target variables, 
the data were arranged in “long” format, where the variables from the same group were arranged 
in the same column. For example, for the variable “well,” data associated with the seven wells 
were arranged vertically instead of horizontally. The benefit of long-format data is that the data 
can be subset interactively. For example, the users can subset data by selecting Wells “MB2” out 
of the seven wells. 
 

Interactive Visualization 
 
 The interactive function of the input data was accomplished by controllers in R-shiny, which 
allow the users to query and extract data from the server. Controllers were created via 
“CheckboxInput” and/or “RadioButtons” for discrete variables and “SliderInput” for continuous 
variables. 
 
 The time-series plots of the well performance variables were created using the R package, 
ggplot (R Core Team, 2021; Wickham, 2016). The “grid_wrap” function was used so that the data 
from different wells could be visualized vertically and interactively. 
 

User Interface 
 
 The UI has four pages: 1) Welcome, 2) Tracer Injection, 3) Propane Injection, and  
4) Prediction. Detailed descriptions of the four pages are provided below. 
 

Welcome Page 
 
 The Welcome page provides a high-level introduction to the project and instructions about 
how to use the dashboard (Figure 134). 
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Figure 134. General layout of the UI showing the Welcome page. 
 
 

Tracer Injection Page 
 
 The Tracer Injection page shows the results of the EOR well performance with rich gas 
injection with tracers. The four controllers on top of this page allow the users to customize 
visualizations of the simulation results for all combinations of the simulation case matrix. The four 
controllers are: 
 

1. Injection Rate: The injection rate controller is a radio button controller where the users 
can select one of the seven values (0.5, 1.5, 3.0, 6.0, 8.0, 10, or 18 MMscfd). The default 
value is set at 0.5 MMscfd. 

 
2. Injection Well BHP: The injection well BHP controller is a radio button controller where 

the users can select one value from the four pressure levels (1500, 3000, 5500, or  
7500 psi). The default value is set at 1500 psi. 

 
3. Offset: The offset controller is a checkbox controller where the user can select one or 

two of the values (open or closed), which selects whether the status of the external offset 
wells (MB1, MB3, TF1, and TF4) is either open or closed. The default value is set as 
closed. However, if the users uncheck both values, then the value will still be set as closed 
to avoid generating an empty data set. 

 
4. Select Wells: The select wells controller is a checkbox controller where the user can 

select one or multiple wells. The default value is set as “MB2” (the injection well). 
However, if the user unchecks all wells, then the value will set as the default well of 
“MB2” to avoid generating an empty data set. 
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 In the upper right-hand corner of the page is a button labeled “Submit.” After the user has 
made the controller selections, the user must click the Submit button for the visualization tool to 
launch a new set of plots. 
 
 Figure 135 shows the default rich gas (Tracer) page for a gas injection rate of 0.5 MMscfd, 
closed offset production wells, and 1500-psi injection well BHP. 
 
 

 
 

Figure 135. Tracer Injection page of the UI showing the rich gas EOR reservoir simulation 
results for injection Well MB2 and the oil, water, and gas production rates. 

 
 
 Below the controllers, four tabs navigate the user to one of four pages showing different 
plots for the four target variables: BHP, tracer (methane), cumulative production, and production 
rate. The default tab is “Production Rate.” On each tab, the four controllers allow the user to modify 
the injection rate, injection pressure, offset, and select wells to create customized plots. 

 
1. BHP: The BHP tab contains plots of the simulated well BHPs in psi. 
 
2. Tracer (methane): The Tracer (methane) tab produces two columns of plots: one for the 

simulated methane tracer molar rate (K gmol/day) and one for simulated cumulative 
methane tracer production (K gmol). As previously described, two sets of reservoir 
simulations were run, one using propane (C3) and one using rich gas with a tracer (tracer 
injection). The term “tracer” in this context refers to the “TRC-C1” tracer attached to 
methane, as described in Table 26. 

 
3. Cumulative Production: The Cumulative Production tab shows the simulated 

cumulative production for oil, water, and gas during the rich gas EOR process. The plots 
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are separated into three columns for oil (left column), water (middle column), and gas 
(right column). 

 
4. Production Rate: The Production Rate tab shows three columns of plots presenting the 

oil, water, and gas production rates. Users can use the radius controllers (injection rate 
and injection pressure) to switch to different levels of injection rate and pressure. Users 
can use the checkbox controllers to visualize different scenarios of production rates. If 
the users check the “Open” box in the offset controller, a dashed black line representing 
the “Open” offset scenario will be shown in the plots. Users can use the “Select Wells” 
controller to add more wells to the three column plots. Plots within the same column share 
the same scales in both axes. 

 
 Example plots for the BHP, Tracer (methane), Cumulative Production, and Production Rate 
are shown in Figures 136 through 139, respectively, for a gas injection rate of 18 MMscfd, closed 
offset production wells, and 7500-psi injection well BHP, for Wells MB2 (injection well), TF2, 
and TF3. 
 
 

 
 

Figure 136. Tracer Injection page of the UI showing the BHP tab for Wells MB2, TF2, and 
TF3 for the given conditions of gas injection rate of 18 MMscfd, closed external offset 
production wells (MB1, MB3, TF1, and TF4), and 7500-psi injection well BHP.
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Figure 137. Tracer Injection page of the UI showing the Tracer (methane) tab for Wells MB2, 
TF2, and TF3 for the given conditions of gas injection rate of 18 MMscfd, closed external 
offset production wells (MB1, MB3, TF1, and TF4), and 7500-psi injection well BHP. 

 
 

 
 

Figure 138. Tracer Injection page of the UI showing the Cumulative Production tab for Wells 
MB2, TF2, and TF3 for the given conditions of gas injection rate of 18 MMscfd, closed 
external offset production wells (MB1, MB3, TF1, and TF4), and 7500-psi injection well 
BHP.
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Figure 139. Tracer Injection page of the UI showing the Production Rate tab for Wells MB2, 
TF2, and TF3 for the given conditions of gas injection rate of 18 MMscfd, closed external 
offset production wells (MB1, MB3, TF1, and TF4), and 7500-psi injection well BHP. 

 
 

Propane Injection Page 
 
 The Propane Injection page is identical to the Tracer Injection page but instead shows the 
results of the well EOR performance with propane injection. Instead of a Tracer (methane) tab, 
there is a Tracer (propane) tab to reflect propane injection. The term “tracer” in this context refers 
to the propane (C3) component of the produced gas. Instead of plotting the molar concentration of 
the tracer, the Tracer (propane) page shows the gas mole fraction of propane, defined as (propane/ 
[methane + ethane + propane]), which is, therefore, a fraction bound between 0 and 1. 
 
 Figure 140 shows an example of the Tracer (propane) tab for a gas injection rate of  
18 MMscfd; external offset production wells (MB1, MB3, TF1, and TF4); and 7500-psi injection 
well BHP for Wells MB2 (injection well), TF2, and TF3. The figure illustrates gas breakthrough 
from the injection well (MB2) to the Offset Wells TF2 and TF3, where it grows progressively 
larger with each successive HnP cycle. 
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Figure 140. Propane Injection page of the UI showing the Tracer (propane) tab for Wells 
MB2, TF2, and TF3 for the given conditions of gas injection rate of 18 MMscfd, closed 
external offset production wells (MB1, MB3, TF1, and TF4), and 7500-psi injection well 
BHP. 

 
 

Prediction Page 
 
 As discussed earlier, the term “forecasting” in “RTVFC” refers to predictive modeling – the 
rapid generation of a prediction about future performance that the EOR site operator can compare 
against the observed performance. The Prediction page shows visualization of forecasted results 
from ML-based predictive models that were trained on the reservoir simulations. The created ML 
models were uploaded to the R-Shiny server and deployed to make predictions of different rich 
gas EOR scenarios. 
 

ML Model Development 
 
 For this proof of concept, XGBoost was used as the algorithm for predictive modeling; 
however, this could be replaced with a variety of other ML algorithms (e.g., RF, SVM, or NN). 
XGBoost is a boosting ensemble learning algorithm that integrates predictions of “weak” tree 
models to achieve a strong tree model via a sequential process (Chen and Guestrin, 2016). The 
simplified XGBoost algorithm works by building a sequential list of decision trees, and in each 
successive round, the decision tree uses the residuals from the prior decision tree as the target 
variable. The loss function, or the errors between the predicted and actual values, are minimized 
using a gradient descent approach to estimate the coefficients within the XGBoost model. There 
are seven hyperparameters to tune, and the optimal values were tuned by k-fold cross validation 
(Table 31).
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Table 31. Hyperparameters of the XGBoost Algorithm 
Parameter Description 
nrounds Maximum number of iterations 
max_depth Maximum depth of the tree 
gamma Regularization coefficient 
min_child_weight Minimum number of instances required in a child node 
eta Learning rate 
subsample Number of samples supplied to a tree 
colsample_bytree Number of features (variables) supplied to a tree 

 
 
 The predictor variables were identical to the controllers used in the visualizations:  
1) injection rate (0.5, 1.5, 3.0, 6.0, 8.0, 10, or 18 MMscfd), 2) injection well BHP (1500, 3000, 
5500, or 7500 psi), and 3) offset well status (open or closed). In addition to these three EOR 
parameters, the timestamp was also used as an input variable since time is highly correlated with 
the EOR performance. 
 
 The target variables were oil, water, and gas production rates and cumulative production for 
the seven wells and two different injectates (rich gas with tracer or propane). Therefore, the total 
number of target variables was 3 (oil, water, and gas) × 1 (production rate) × 7 (seven wells) × 2 
(two injectates) = 42. The cumulative production data were calculated from the production rate 
data, which will lead to the final number of target variables as 84. 
 
 The input data and the 42 target variables (production rate variables) were compiled and 
used as the data to develop the ML models. The compiled data were randomly divided into training 
and testing sets by the ratio of 0.8:0.2 (i.e., 80% of the compiled data were randomly placed into 
the training set and the remaining 20% were placed into the test set). The training set was used to 
train the XGBoost model, and the testing set was used to evaluate the performance of the model. 
The modeling performance was evaluated using r2 and relative root mean square error (RRMSE), 
where a model with high r2 and low RRMSE values was considered as a good performing model. 
The RRMSE is defined as the value of the root mean square error divided by the mean value of 
that variable. 
 
 Corresponding to the target variables, 84 XGBoost models were developed. The average (± 
standard deviation) values of R2 values for both training and test sets for models with rich gas 
injection were 0.996 (±0.008) and 0.984 (±0.025), respectively, and for models with propane 
injection were 0.997 (±0.004) and 0.985 (±0.02), respectively. The average (± standard deviation) 
values of RRMSE values for both training and test sets for models with rich gas injection were 
0.04 (±0.08) and 0.08 (±0.16), respectively, and for models with propane injection were 0.03 
(±0.04) and 0.05 (±0.07), respectively.  
 
 Figure 141 shows the r2 and RRMSE performance results for all of the 42 models in the 
training and test sets for the models with EOR injection by rich gas or propane. Approximately 
60% of the models had r2 values greater than 0.9, and roughly 85% of the models had RRMSE 
values less than 0.1 for both training and test sets. These performance indicators showed that most 
of the models performed well for both the training and test sets. Therefore, for the current study, 
all the models were accepted for predictive modeling purposes.
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Figure 141. Quantile plots of the modeling performance evaluated by r2 and RRMSE values 
for the training and test sets of EOR rich gas or propane injection. 

 
 
 In this proof of concept, the training and testing data for the predictive modeling were the 
same data as the simulations used for the real-time visualizations. However, this need not be the 
case. The real-time visualizations are designed to display data acquired in the field and saved to 
the R-Shiny server—these data can be any data type acquired at various frequencies (e.g., hourly, 
daily, weekly, etc.). The simulations were used as an example. In contrast, the workflow for 
developing the predictive models requires reservoir simulations that explore the parameter space 
of the EOR operating controls. Therefore, prior to initiating the rich gas EOR, a set of reservoir 
simulations would be required that identifies the EOR operating controls and their expected ranges, 
generates the reservoir simulation outputs, and then trains and tests ML-based models using the 
model development strategy summarized here. 
 

ML Model Deployment 
 
 Once the XGBoost models were developed, they were saved to a local drive and deployed 
to the R-Shiny server. The fitted XGBoost models allow the user to create forecasts of the target 
variables based on their user-defined selections of the predictor variables (injection rate, injection 
well BHP, and offset well status). These forecasts allow the operator to compare the observed data 
(visualization) against the forecasted data (prediction) to evaluate whether to continue operating 
the EOR project as is or to make one or more adjustments. 
 
 The controllers in the Prediction page allow the user to customize the EOR scenario. Once 
the EOR scenario is selected, the set of input variables will be created, and then the XGBoost 
model will be used to create the forecast. For this proof of concept, the predictions show the full 
2-year EOR period (January 1, 2021 – December 31, 2022). The input data set, therefore, contains  
731 rows of time (ranging from Day 1 to Day 731) and repeating data of the EOR operational 
variables (injection rate, injection well BHP, and offset well status). The user selections of the 
input data are then entered into the developed 42 XGBoost models to make time-series predictions 
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of the 84 target variables (42 production rate variables and 42 derived cumulative production 
variables). 
 
 Like the Submit button on the Tracer Injection and Propane Injection pages, in the upper 
right-hand corner of the Prediction page is a button labeled “Prediction.” After the user has made 
the controller selections, the user must click the Prediction button for the tool to deploy the ML 
models and create predictions. 
 
 Figure 142 shows two examples of the Prediction page for cumulative oil, water, and gas 
production for Wells TF2 and TF3 with tracer injection, open and closed offset wells, and two 
different sets of user inputs: (top) 18-MMscfd injection rate and 7500-psi injection well maximum 
BHP and (bottom) 9.1-MMscfd injection rate and 3750-psi injection well maximum BHP. In the 
first scenario with greater injection rate and BHP, the prediction for Well TF2 estimates ~45 Mbbl 
in cumulative oil production, ~100 Mbbl in cumulative water production, and ~250 MMscf 
(closed) or ~350 MMscf (open) in cumulative gas production. However, in the second scenario 
with half the injection rate and BHP, the prediction for Well TF2 estimates ~40 Mbbl in cumulative 
oil production, ~100 Mbbl in cumulative water production, and ~175 MMscf in cumulative gas 
production. This rapid prediction informs the operator that the marginal gain in oil production from 
the higher injection rate and BHP scenario (roughly 5 Mbbl greater cumulative oil production over 
the 2-year EOR period) is associated with significantly greater gas production (roughly  
75- to 175-MMscf greater cumulative gas production for the closed and open scenarios, 
respectively). Consequently, the operator may decide to reduce the injection rate if the EOR 
operation does not want excess gas production. In addition, plotting the open and closed offset 
scenarios shows that oil and water production are largely invariant to external offset well status, 
whereas gas production is more sensitive and Well TF2 produces more gas when the Offset Wells 
MB1, MB3, TF1, and TF4 are open. 
 
 The Prediction page allows the operator to explore many combinations of injection rate, 
offset well status, and injection well maximum BHP and to compare those outcomes against the 
observed data to determine when and if EOR operational changes are required. 
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Figure 142. Prediction page of the UI showing results of the XGBoost predictions of 
cumulative oil, water, and gas production for Wells TF2 and TF3 for rich gas injection 
with tracer, open and closed offset wells, and two different sets of user inputs: (top) 
18-MMscfd injection rate and 7500-psi injection well maximum BHP and (bottom) 
9.1-MMscfd injection rate and 3750-psi injection well maximum BHP. 
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Real-Time Control 
 
 As previously discussed, Control methods in RTVFC refer to operational changes that the 
EOR site operator can enact (e.g., changing gas injection rates) to affect the observed performance 
and potentially improve the EOR outcome. The integration of visualizing reservoir surveillance 
data in real-time, rapidly forecasting reservoir performance, and deploying operational changes to 
affect EOR performance constitute RTVFC. The real-time visualizations are designed to show 
field data for well BHP, tracer or propane breakthrough, production rate, and cumulative 
production. The real-time forecasting is designed to predict future well performance based on EOR 
operational controls. In this proof-of-concept study, the EOR operational controls include injection 
rate, injection well BHP, and offset status (open or closed), as these factors are significantly related 
to rich gas EOR performance. Comparative assessments between the real-time visualization (what 
is occurring in the field) and forecasting (what is predicted to occur given a set of EOR operational 
controls) provide a means for real-time control. 
 

Summary and Conclusions 
 
 The goal of Subactivity 8.2.1 was to explore RTVFC for improved reservoir surveillance 
during rich gas EOR. A large set of synthetic reservoir simulations were created to generate well 
responses (oil, gas, and water production, well BHP, and tracer or propane breakthrough) for a set 
of EOR operating parameters that included offset well status (open or closed), injectate (rich gas 
or propane), injection rate (0.5, 1.5, 3.0, 6.0, 8.0, 10, or 18 MMscfd), and injection well BHP 
(1500, 3000, 5500, or 7500 psi). A UI was developed to provide real-time visualization designed 
to be consistent with similar processes that the EERC has used on other gas injection projects. ML-
based models using the XGBoost algorithm were developed to provide rapid forecasting of well 
performance given a set of user-defined EOR operating parameters. These predictive models allow 
the user to modify the offset well status, injection rate, injection well BHP, and rapidly forecast 
future production performance. The combination of real-time visualization tools with real-time 
forecasting tools provides a framework for real-time control—operational changes that the EOR 
site operator can enact (e.g., changing gas injection rates) to affect the observed performance and 
potentially improve the EOR outcome. 
 

Subactivity 8.2.2 – Embedded Discrete Fracture Modeling–Artificial Intelligence–
Automatic History Matching (EDFM–AI–AHM) Testing 

 
Introduction 

 
 The modeling and simulation efforts in Activities 7 and 8 showed that history matching was 
one of the most time-consuming tasks because of the uncertainties in fracture parameters. 
Recently, an innovative method and software named EDFM–AI–AHM was developed to assist the 
history-matching process by tuning fracture and matrix parameters automatically based on a set of 
input ranges provided by the reservoir engineer (Sim Tech, LLC, 2021). The method utilizes NN-
based proxy models by sampling stochastic reservoir model realizations and updating the proxy 
models using Markov Chain Monte Carlo (MCMC) methods (Carpenter, 2018; Dachanuwattana 
and others, 2018a, b; Eltahan and others, 2019, 2020; Tripoppoom and others, 2019). The approach 
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has been applied to several field cases (Du and others, 2017; Liu and others, 2020b; Tripoppoom 
and others, 2020a, b). 
 
 The EDFM–AI–AHM software was tested in Activity 8 to compare two reservoir simulation 
models and their forecasted EOR performance: one using manually tuned fracture parameters and 
one using EDFM–AI–AHM-tuned fracture parameters. The results from this proof-of-concept 
evaluation of EDFM–AI–AHM will inform future work for reservoir simulation of EOR 
performance in the BPS and the integration of physics-based reservoir simulations with AI and 
ML. 
 

Methods 
 

AHM Workflow 
 
 Figure 143 illustrates the general workflow employed in the AHM process (Tripoppoom and 
others, 2019). The first step was to screen and identify uncertain parameters to include in the AHM. 
For this proof-of-concept, EDFM–AI–AHM was used to estimate four uncertain fracture 
parameters: height (ft), half-length (ft), conductivity (mD-ft), and initial water saturation (Sw), 
which have been shown to significantly affect the history matching for unconventional reservoirs. 
Initial cases that covered the input ranges of the uncertain parameters were generated by Latin 
hypercube sampling (LHS) and simulated via the reservoir simulator and EDFM. In the first 
iteration, the inputs and results of the initial simulation cases were extracted to train an initial set 
of NNs. Next, the NN-MCMC algorithm was run to perform history matching automatically and 
select acceptable history-matching solutions. The simulation inputs and results obtained were then 
used to retrain the NN in the second iteration. The workflow would stop if no significant 
improvement were detected in the latest iteration (Stopping Criteria); otherwise, the workflow 
would continue until the maximum number of iterations were reached. 
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Figure 143. AHM workflow (modified from Tripoppoom and others, 2019). 
 
 

EDFM–AI–AHM Implementation 
 

Fracture Parameter Ranges 
 
 EDFM–AI–AHM was used to tune the fracture parameters of four wells (MB2, MB3, TF2, 
and TF3) in the seven-well DSU model that was previously described in Subactivity 8.2  
(Figure 144). The other three wells were omitted from the reservoir simulations to reduce the 
computational burden for this proof-of-concept testing of EDFM–AI–AHM. Table 32 shows the 
initial ranges (minimum and maximum values) for each of the four uncertain fracture parameters, 
which were input into EDFM–AI–AHM by the reservoir engineer. 
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Figure 144. Illustration of the seven-well DSU model identifying the MB and TF wellbores and 
the well that was used for rich gas injection (MB2 – red outline) or production (green outlines), 
as described in the text. For this application, Wells MB1, TF1, and TF4 were removed from the 
seven-well DSU model to reduce the computational burden for this proof-of-concept testing of 
EDFM–AI–AHM (yellow Xs). 
 
 

Table 32. Uncertain Fracture Parameters and Initial Ranges  
(minimum and maximum) Used for the EDFM–AI–AHM Simulations  
for Wells MB2, MB3, TF2, and TF3 
Uncertain Parameters Unit Min. Value Max. Value 
Fracture Height ft 100 150 
Fracture Half-Length ft 300 420 
Fracture Conductivity mD-ft 10 30 
Initial Fracture Water Saturation Fraction 0.3 0.7 

 
 

Global Objective Function 
 
 The response variables (parameters) were historical oil, water, and gas production data, 
which were used to define a global objective function (GOF) as: 
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[Eq. 9] 

 
Where 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 is the normalized local error, defined as: 
 

 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 =
𝑋𝑋𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑖𝑖𝑖𝑖,ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑋𝑋𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚
 

 
[Eq. 10] 

 
Where i and j are the indices for data points and response parameters, respectively; m and 
n are the indices for the number of responsive parameters and data points, respectively; and 
𝑋𝑋𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑋𝑋𝑖𝑖𝑖𝑖,ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑤𝑤𝑖𝑖𝑖𝑖 are the modeling data, historical data, and weight of data at 
index i of response parameter j, respectively. 
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 The Equation 10 definition of GOF allows one global value to represent multiple local errors 
(Tripoppoom and others, 2019). 
 

Neural Networks 
 
 NNs were employed to train proxy models to predict response parameters. In general, NNs 
consist of input, hidden, and output layers, as shown in Figure 145. The input layer consists of all 
the original input parameters (e.g., x1, x2, x3, and x4 in Figure 145). The four uncertain parameters 
listed in Table 32 (fracture height, fracture half-length, fracture conductivity, and fracture water 
saturation) were used as input layers of the NN to predict the response parameters at different dates 
for the four selected wells (MB2, MB3, TF2, and TF3); thus the total number of input layers was 
16 (i.e., four uncertain parameters × four wells). The output layer includes the final predictions 
from the NN model. There were three response parameters (oil, water, and gas production) for 
each of the four wells (MB2, MB3, TF2, and TF3); thus the total number of output layers was 12 
(i.e., three responses × four wells). The “learning” of the NN occurs in the hidden layer (or layers), 
which captures the relationships between inputs and outputs. 
 
 The NN-MCMC is a multiple-proxy-based algorithm for AHM. While the conventional 
MCMC algorithm can quantify uncertainty and obtain multiple history-matching solutions, the 
algorithm is time-consuming when performed together with a reservoir simulator. The proxy-
based MCMC algorithm improves the efficiency of MCMC by replacing a simulation run with a 
single proxy model. The multiple proxy-based MCMC further accelerates the proxy-based MCMC 
by using multiple proxy models to mitigate the nonlinearity in the history matching. NNs were 
utilized to generate proxy models for the multiple-proxy-based MCMC algorithm to perform the 
AHM (Tripoppoom and others, 2020a, b). 
 
 

 
 
Figure 145. Representation of a simple feedforward NN showing input, hidden, and output 
layers (Boehmke and Greenwell, 2020). 
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Results 
 

Initial Simulation Cases 
 
 Forty initial simulation cases were generated via LHS. Figure 146 shows the simulation 
results for the 40 initial simulation cases for Well TF3 oil, gas, and water rates. In each panel, the 
colored lines show the simulation results, and the hollow circles show the historical production 
data (History). As shown in the figures, the simulation results provided coverage of the production 
history for oil, water, and gas rates. While a few cases had similar production trends compared to 
the historical data, most of the cases presented significant deviation from the production history. 
The inputs and results of these 40 cases for all the match points were used to train the initial NN, 
then the NN-MCMC algorithm was used to perform the AHM. 
 
 

 
 

Figure 146. Simulation results for the 40 initial simulation cases for Well TF3 a) oil rate,  
b) gas rate, and c) water rate. The colored lines in each panel show the simulation results, and 
the hollow circles show the historical production data (History). 

 
 

NN-MCMC and AHM 
 
 Twenty solutions were generated by the NN-MCMC algorithm during each iteration and 
were verified via the reservoir simulation with EDFM. The maximum number of iterations was set 
to six to provide a reasonable balance between computational burden and reservoir simulation 
solutions. The AHM workflow ran through all six iterations (i.e., did not achieve the stopping 
criteria) and generated an additional 120 cases. Therefore, with the 40 initial simulation cases, the 
AHM workflow generated 160 cases in total for the history-matching process. After screening the 
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solutions by setting error constraints for the response parameters for each well, 120 solutions with 
global errors smaller than the error constraints were selected to compare with the historical data. 
The solutions that met the error constraints are presented in Figure 147 and show that the history-
matching quality (agreement between the historical and simulated production data) was 
significantly improved as compared to the results of the initial 40 simulation cases. The best 
solution was defined as the case with the lowest GOF. Plots in Figure 148a–c show the history-
matching results of the best solution for oil, gas, and water production rates, respectively. 

 
 

 
 
Figure 147. Simulation results of the 120 history-matching solutions with global errors 
smaller than the error constraints for Well TF3 a) oil rate, b) gas rate, and c) water rate. 
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Figure 148. Simulation results of the best solution for Well TF3 a) oil rate, b) gas rate, and  
c) water rate. 

 
 

Fracture Parameter Distributions 
 
 The prior and posterior distribution of uncertain parameters for the 120 solutions with global 
errors smaller than the error constraints for Well TF3 are shown in Figure 149. The prior 
distributions are assumed to be a uniform distribution (informationless) between the minimum and 
maximum value (gray bars in Figure 149). The posterior distributions suggest that fracture height, 
fracture half-length, and fracture conductivity could vary greatly and indicate that there are many 
combinations of these three fracture parameters within the specified ranges that yield similar 
history-matching results (Figure 149a–c). In contrast, the posterior distribution shows a narrow 
range of the fracture initial water saturation that provided acceptable history-matching solutions 
(approximately 0.40 to 0.45) (Figure 149d). This means that the change of initial fracture water 
saturation caused a larger impact on the history-matching results than other three fracture 
parameters. The red vertical line in Figure 149 shows the best result across all four fracture 
parameters, or the final history-matching result. 
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Figure 149. Prior and posterior distribution of the four uncertain fracture parameters from the 
120 solutions with global errors smaller than the error constraints for Well TF3: a) fracture 
height, b) fracture half-length, c) fracture conductivity, and d) fracture initial water saturation. 
The ECDF (empirical cumulative distribution function) shows the cumulative probability and 
identifies the 10th percentile (P10); 50th percentile (P50), or median; and 90th percentile (P90) 
estimates.
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 Figure 150 shows a parallel coordinate plot of the four uncertain fraction parameters for all 
160 simulation cases of Well TF3, showing the 40 non-history-matching solutions (Non-HM Sol), 
120 history-matching solutions (HM Sol), and the best solution (Best). This figure again shows 
the nonunique nature of the inverse solutions for fracture height, fracture half-length, and fracture 
conductivity (i.e., many combinations of these three parameters within the specified ranges yield 
similar history-matching results) and that only a small range of initial fracture water saturations 
could generate acceptable history-matching solutions. 
 
 

 
 

Figure 150. Parallel coordinate plot of the four uncertain fraction parameters (hf = fracture 
height, xf = fracture half-length, fc = fracture conductivity, and fsw = fracture initial water 
saturation) for all 160 simulation cases of well TF3, showing the 40 non-history-matching 
solutions (Non-HM Sol), 120 history-matching solutions (HM Sol), and the best solution 
(Best). 

 
 

Comparing EOR Performance 
 
 Figure 151 compares the manual and automatic history-matching results for the cumulative 
oil production of the well group including Wells MB2, MB3, TF2, and TF3. The model tuned by 
EDFM–AI–AHM provided a more accurate oil production result: a closer simulated result to the 
historical production data.  
 
 To test the sensitivity of the simulated EOR performance to the fracture parameters, a 
simulation matrix with ten cases (as shown in Table 33 was designed to vary the gas injection rate, 
injection time, soaking time, production time, and injectate, and these were used to generate 
simulations using the manually tuned and EDFM–AI–AHM-tuned simulation models. The 
simulation results in Figure 152 show that the EOR performance could be quite different between 
the two models even though the same HnP operational parameters were used. Stated differently, 
the interactions between the four fracture parameters and the EOR operational parameters can yield 
a pronounced difference in the simulated EOR performance. A more detailed comparison in  
Figure 153 shows that the percentage difference between the manually tuned and EDFM–AI–
AHM-tuned simulation models could vary between 7% and 21%, depending on the injectate and 
operational settings for EOR.
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Figure 151. Comparison of manually tuned and EDFM–AI–AHM-tuned history-matching 
results for the cumulative oil production of the well group of Wells MB2, MB3, TF2, and TF3. 

 
 
Table 33. Simulation Case Matrix Used for EOR Predictive Results Comparison 
Case 
No. Injectate 

Inj. Rate, 
MMscf/d 

Inj. Time, 
day 

Soaking Time, 
day 

Prod. Time, 
day 

1 Rich gas 3 30 7 60 
2 Rich gas 6 30 7 60 
3 Rich gas 4 60 7 60 
4 Rich gas 6 20 0 60 
5 Rich gas 6 30 0 60 
6 Rich gas 6 20 7 60 
7 Rich gas 6 20 0 90 
8 Rich gas 6 20 0 30 
9 Propane 3 30 7 60 
10 Propane 6 30 7 60 
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Figure 152. Comparison of EOR predictive results for the well group (MB2, MB3, TF2, and 
TF3) using the manually tuned and EDFM–AI–AHM-tuned reservoir simulation models. 
 
 

 
 

Figure 153. Percentage difference between EOR predictive results for the well group (MB2, 
MB3, TF2, and TF3) using the manually tuned and EDFM–AI–AHM-tuned reservoir 
simulation models. 

 
 

Subtask 8.2 Summary 
 
 This work provided a proof-of-concept testing of the EDFM–AI–AHM software to compare 
two reservoir simulation models and their forecasted EOR performance: one using manually tuned 
fracture parameters and one using EDFM–AI–AHM-tuned fracture parameters. Four uncertain 
fracture parameters: height (ft), half-length (ft), conductivity (mD-ft), and initial water saturation 
(Sw), which have been shown to significantly affect the history matching for unconventional 
reservoirs, were the focus of the history matching. 
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 The results showed that the EDFM–AI–AHM solution provided more accurate results than 
the manually tuned solution. In addition, the AHM workflow and automated NN routines in the 
EDFM–AI–AHM software greatly accelerated the history-matching process over the more labor- 
and time-intensive manual history-matching process. Lastly, the AHM workflow included with 
EDFM–AI–AHM provided deeper insights about the fracture parameter distributions and the 
potential interactions between the fracture parameters and the EOR operational parameters of 
injection rate, injection time, soak time, and production time. 
 
 The modeling and simulation efforts in Activities 7 and 8 showed that history matching was 
one of the most time-consuming tasks because of the uncertainties in fracture parameters. The 
results from this proof-of-concept evaluation show that using EDFM–AI–AHM will significantly 
improve future work for reservoir simulation of EOR performance in the BPS by accelerating the 
history-matching process and providing more accurate solutions and, therefore, more accurate 
production forecasts. 
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SUBTASK 3.1 – BAKKEN RICH GAS EOR RESEARCH EFFORTS: OVERALL 
OBSERVATIONS AND CONCLUSIONS 

 
 
OBSERVATIONS 
 
 The laboratory-, modeling-, and field-based activities conducted by the EERC over the 
course of Subtask 3.1 yielded valuable insight regarding the potential for using rich gas injection 
as a means of EOR in the BPS. Key observations from the project include the following: 
 

• MMP was not achieved in the reservoir during the pilot test. Achieving MMP in a 
reservoir at an advanced state of depletion requires considerable quantities of injection 
gas or, perhaps, the use of water injection as a means of pressurization prior to gas 
injection.  
 

• Reservoir surveillance and monitoring data demonstrate the injected gas can be controlled 
and contained within the DSU. 

 
• Injection fluid composition has a large impact on reservoir oil MMP and enriching 

produced gas with additional ethane and/or propane before injection will favorably alter 
reservoir response. The lower MMP achievable with enriched gas would also allow for 
using less injection gas for initial repressuring of the reservoir and continuation of 
injection operations at lower pressure. 

 
• Injection of rich gas (ca. 70/20/10 methane/ethane/propane) produced from the BPS can 

achieve MMP at pressures that are similar to the pressures required by CO2, 
approximately 2420 psi. Methane requires very high pressures to achieve MMP:  
4200 psi. Ethane requires approximately 1350 psi to reach MMP and propane about  
550 psi to achieve MMP. 

 
• Adding NGLs like ethane and propane to produced gas is an efficient way to lower MMP 

if excess NGLs are available.  
 

• At pressures above MMP, phase partitioning occurs between the thousands of complex 
HC components in crude oil and the injected gas. The HC composition of both the 
injectant-dominated phase and the bulk crude oil phase is continually changing with 
pressure and temperature. The oil-rich phase has higher molecular weights, viscosities, 
and densities (lower API gravities) after exposure to all tested injection fluids, but 
propane shows the least negative changes, since it vaporizes the broadest spectrum of 
liquid HC components. 

 
• Results of HC extraction experiments from core specimens are consistent with the 

miscible-phase sampling experiments, as would be expected based on the concentration 
gradient/diffusion extraction mechanism that appears to be a major factor controlling rock 
extractions. 
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• At 5000 psi, produced gas does nearly as well as propane at extracting the bulk of HCs 
from core samples. However, even at 5000 psi, methane can only slowly extract heavier 
HCs. 
 

• The traditional fracture system model used for simulation can replicate the depletion and 
evaluate the EOR mechanisms using a small-scale model, but it encounters numerical 
challenges in the gas injection simulation at larger scale and has difficulties handling 
strong interference effects between wells. 

 
 
CONCLUSIONS 
 
 The results and lessons learned from the Stomping Horse rich gas EOR pilot activities 
indicate that developing an effective, economical EOR approach for the Bakken will require more 
field tests. Robust reservoir characterization and understanding of the behavior of the injected fluid 
in the reservoir are necessary to create realistic geomodels and conduct valid dynamic simulations 
of potential EOR scenarios. This knowledge is essential to designing the operational parameters 
of injectivity tests and interpreting the results.  
 
 There is great reason to be optimistic about the future of EOR in tight oil formations such as 
the Bakken. The results of EERC laboratory studies suggest significant potential for high rates of 
oil mobilization using both CO2 and produced field gas injection under the right conditions. The 
results of the lab studies, combined with rigorous statistical analysis of well production data and 
associated modeling efforts, confirm the notion that fluid mobility within the reservoir is controlled 
by fractures. As more knowledge is gained about the nature and distribution of fracture networks 
in the Bakken, the industry will be in a better position to predict and, ultimately, influence fluid 
mobility. New field tests are necessary to develop a more complete understanding of those 
conditions. Improvements in modeling software specifically designed to address challenges 
inherent in unconventional tight reservoirs, combined with the application of machine learning and 
artificial intelligence to reservoir surveillance data processing and interpretation, will streamline 
the design and execution of future EOR pilots. Thoughtful and creatively engineered field tests 
within a well-characterized geologic setting will yield the fundamental knowledge needed to take 
Bakken oil production to the next level.  
 
 
MILESTONES 
 
 The completed milestone table can be found in Table 34. 
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Table 34. Milestones 

Milestone Title/ 
Description 

Planned 
Completion 

Date 

Actual 
Completion 

Date 
Verification 

Methods Comments 
M1 – Conduct Project 
Kickoff Meeting with 
DOE Personnel to 
Review Project 
Priorities and 
Directions 

1/31/2018 12/14/2017 An initial list of key 
priorities will be 

generated. 

 

M2 – Complete Initial 
Assessment of Test 
Site Rich Gas Quality 
and Quantity 

10/31/2017 10/15/2017 A summary of rich 
gas quality and 

quantity from the LR 
facility will be 
included in the 

quarterly report. 

 

M3 – Finalize Fluids 
Sampling Collection 
and Analysis Plan 

10/31/2017 10/15/2017 The plan will be 
included in the 

quarterly report. 

 

M4 – Complete Initial 
Reservoir Geocellular 
Model 

11/30/2017 10/31/2017 A summary of initial 
geocellular modeling 
of the reservoir will 
be included in the 
quarterly report. 

 

M5 – Complete Rich 
Gas in Shale 
Permeability Studies 

5/31/2020 5/31/2020 A summary of the 
studies will be 
included in the 

quarterly report. 

 

M6 – Complete 
Minimum Miscibility 
Pressure and Rock 
Extraction Studies 

4/30/2019 4/30/2019 Reported in the 
quarterly report. 

 

M7 – Complete 
Temporal Changes in 
Gas and Fluid 
Composition Studies 

7/31/2019 7/30/2019 Reported in the 
quarterly report. 

 

M8 – Samples for 
Wettability and 
Relative Permeability 
Testing Collected 

12/31/2019 12/15/2019 Reported in the 
quarterly report. 

 

M9 – Samples for 
Brittleness Testing 
Collected 

12/31/2019 12/15/2019 Reported in the 
quarterly report. 

 

M10 – Initial EDFM 
Model Complete 

3/31/2020 3/31/2020 Reported in the 
quarterly report. 

 

Continued . . . 
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Table 34. Milestones (continued) 

Milestone Title/ 
Description 

Planned 
Completion 

Date 

Actual 
Completion 

Date 
Verification 

Methods Comments 
M11 – Reservoir 
Characterization and 
Performance 
Database Complete 

3/31/2020 3/31/2020 Reported in the 
quarterly report. 

 

M12 – Pilot Test 
Database Complete 

3/31/2020 3/31/2020 Reported in the 
quarterly report. 

 

M13 – Initial Large-
Scale Model 
Complete 

6/30/2020 6/30/2020 Reported in the 
quarterly report. 

 

M14 – XRD–XRF 
Calibration 
Complete 

9/30/2020 9/30/2020 Reporting in the 
quarterly report. 

 

M15 – Initiate 
Virtual Learning-
Based Modeling 

9/30/2020 9/30/2020 Reported in the 
quarterly report. 

 

M16 –Wettability 
and Relative 
Permeability Studies 
Complete 

8/31/2021 8/31/2021 Reported in the 
quarterly report. 

 

M17 – Brittleness 
Studies Complete 

8/31/2021 8/31/2021 Reported in the 
quarterly report. 

 

M18 – Conformance 
Treatment Modeling 
Studies Complete 

10/31/2021  Reported in the 
quarterly report. 

 

M19 – Large-Scale 
EOR Modeling 
Studies Complete 

10/31/2021  Reported in the 
quarterly report. 

 

M20 – Virtual 
Learning Method 
Development 
Studies Complete 

11/30/2021 6/21/2021 Reported in the 
quarterly report. 

 

M21 – RTVFC 
Method 
Development 
Studies Complete 

11/30/2021 6/21/2021 Reported in the 
quarterly report. 
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A-1 

DIAGNOSTIC PLOTS FOR LINEAR REGRESSION MODELS 
 
 
 Appendix A provides diagnostic plots for the fitted Set 1 and Set 2 linear regression models. 
Each figure has the same four-panel layout. 
 
 The upper left-hand panel provides a normal probability plot (Chambers and others, 1983), 
which is a graphical technique for assessing whether the residuals from the fitted regression model 
are approximately normally distributed. The residuals are plotted against a theoretical normal 
distribution such that the points should form an approximate straight line (red diagonal line in each 
panel). Departures from this straight line indicate departures from normality. 
 
 The lower left-hand panel provides a histogram of the residuals from the fitted regression 
model. Like the normal probability plot, the histogram should reflect an approximately normal 
distribution, with greater frequency at zero and symmetrical bars to the left and right of zero. 
 
 The upper right-hand panel shows the residuals from the fitted regression model versus the 
fitted (predicted) value of the response variable. Plots of the residuals versus predicted values will 
allow for visual inspection of homoscedasticity (the variability in the residuals does not vary over 
the range of predicted values) and bias (the residual values generally plot equally above and below 
zero). For ideal regression model behavior, this plot should show a horizontal cloud of data rather 
than a pattern that has curvature, and the variability of that cloud of data should not substantially 
change as one scans from left to right across the graph (Helsel and others, 2020). 
 
 Finally, the lower right-hand panel shows the residuals from the fitted regression model 
versus the order of the observations. Like the preceding plot, for ideal regression model behavior, 
this plot should show a horizontal cloud of data rather than a pattern that has curvature, and the 
variability of that cloud of data should not substantially change as one scans from left to right 
across the graph (Helsel and others, 2020). 
 
 The remainder of this appendix provides subsections for each regression model and the four-
panel regression diagnostic plot. 
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A.1 ET 1 LINEAR REGRESSION MODELS 
 

A.1.1 DSU Incremental Oil Production 
 
 

 
 

Figure A-1. Diagnostic plots for the Set 1 fitted linear regression model for DSU 
incremental oil production. 
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A.1.2 DSU Incremental Water Production 
 
 

 
 

Figure A-2. Diagnostic plots for the Set 1 fitted linear regression model for DSU 
incremental water production. 
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 A.1.3 DSU Incremental Gas Production 
 
 

 
 

Figure A-3. Diagnostic plots for the Set 1 fitted linear regression model for DSU 
incremental gas production. 
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 A.1.4 DSU Incremental Net Revenue – $60/stb Oil and $3/bbl Water 
 
 

 
 

Figure A-4. Diagnostic plots for the Set 1 fitted linear regression model for DSU 
incremental net revenue assuming $60/stb oil price and $3/bbl water cost. 
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 A.1.5 DSU Incremental Net Revenue – $50/stb Oil and $4/bbl Water 
 
 

 
 

Figure A-5. Diagnostic plots for the Set 1 fitted linear regression model for DSU 
incremental net revenue assuming $50/stb oil price and $4/bbl water cost. 
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A.2 SET 2 LINEAR REGRESSION MODELS 
 
 A.2.1 DSU Incremental Oil Production 
 
 

 
 

Figure A-6. Diagnostic plots for the Set 2 fitted linear regression model for DSU 
incremental oil production. 
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 A.2.2 DSU Incremental Water Production 
 
 

 
 

Figure A-7. Diagnostic plots for the Set 2 fitted linear regression model for DSU 
incremental water production. 

  



 

A-9 

 A.2.3 DSU Incremental Gas Production 
 
 

 
 

Figure A-8. Diagnostic plots for the Set 2 fitted linear regression model for DSU 
incremental gas production. 
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 A.2.4 DSU Incremental Net Revenue – $60/stb Oil and $3/bbl Water 
 
 

 
 

Figure A-9. Diagnostic plots for the Set 2 fitted linear regression model for DSU 
incremental net revenue assuming $60/stb oil price and $3/bbl water cost. 
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 A.2.5 DSU Incremental Net Revenue – $50/stb Oil and $4/bbl Water 
 
 

 
 

Figure A-10. Diagnostic plots for the Set 2 fitted linear regression model for DSU 
incremental net revenue assuming $50/stb oil price and $4/bbl water cost. 
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