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Abstract	
 
Small shells, ca. 2mm in diameter, made from Poly(a-methylstyrene) (PAMS) are used as 

mandrels in the production of glow-discharge polymerization (GPD) capsules located at the center 
of inertial confinement fusion experiments. The visual inspection process of microscope images 
of these shell mandrels, including detection of micron-sized defects on the shell surface as well as 
the handling and sorting, is a very labor intensive, repetitive, and highly subjective process, which 
stands to benefit greatly from automation.  

As part of an effort to decrease the number of labor-hours spent in capsule handling, inspection 
and metrology, the development of robotic systems was presented in earlier publications [1]. The 
current work expands the automated image acquisition systems developed previously, and adds 
the use of convolutional neural networks (CNN) to select capsules best suited for use in the 
downstream production process. Through the use of these machine learning algorithms, the 
selection process becomes robust, repeatable, and operator independent. As an added benefit the 
system developed as part of this work is able to provide defect statistics on entire shell batches and 
feed this information upstream to the production team.  
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1	 Introduction		
 
A decade ago, engineers and designers started developing concepts for the design of 

cryogenic targets to be shot the National Ignition Facility. While considering manufacturability, 
these targets were very specialized one-of-a-kind designs [2], hand crafted and shot at a rate of a 
one or two per week. Since then, the target designs were organized into target platforms [3,4] 
with common design features and exchangeable components to allow for batch-production of 
components and subassemblies to keep up with the call for more frequent shots on the NIF [5].  

General Atomics, as a supplier for target components and subassemblies is constantly 
challenged to upgrade the production processes and metrology recipes to help keep up with 
target demand, which has increased ~5 fold within the last 10 years. The required increase in 
productivity is achieved in part through the development of automated systems [1]. 

Modern production facilities across the board, from consumer goods, electronics to 
automotive and medical device industries are adapting computer controlled robotic arms, 
machine vision, image recognition and machine learning algorithms in their processes to increase 
facility throughput, reduce man-hours spent on a task and to provide consistent and operator –
independent results. This gives the developer in a rather small scale operation such as component 



manufacturing for NIF targets a vast and rich pool of already developed robotic tools and 
numeric algorithms that can be applied to small-batch production volumes. Compared to most 
industries mentioned above, the batch size required to keep up with the demand of NIF targets 
(~400 shots per year in the most recent years) is rather small, challenging the economics of the 
somewhat costly development automated systems. 

The current production processes in place to produce target components were examined to 
identify candidates, in which a modest investment in automation would yield significant cost 
benefit. Typically, we are looking for processes, in which rather large quantities of similar parts 
need to be handled, inspected, assembled or otherwise treated.  

A small capsule (~2mm diameter) is located at the center of most NIF inertial confinement 
fusion (ICF) experiments. During the experiment energy is deposited on the capsule surface, 
either through direct engagement of laser beams onto the surface or through indirect exposure of 
the shell to an X-ray bath inside a hohlraum. The goal is to compress the sphere to fusion 
relevant temperatures, densities, and pressures.  

Due to the basic physics of laser driven inertial confinement fusion, this capsule requires 
manufacturing and inspection to meet nanometer-scale out-of-roundness and surface roughness 
specifications as well as being virtually defect-free. There are three most commonly used capsule 
wall materials, also called the ablators as the material is getting ablated outwards during laser 
irradiation on the target, ultimately providing the propulsion force compressing the capsule. The 
production process of two out of these three ablator materials, namely Glow-Discharge-Polymer 
(GDP) and Beryllium starts by selecting PAMS mandrels, onto which the GPD and Beryllium is 
deposited. These mandrels have similar specifications for surface defects and shape tolerance as 
the final product since they determine the quality of the inner surface of the shell and solely 
dictate the roundness of the final product.  

The effects of the PAMS mandrel surface imperfections on the quality of the final shells, 
whether it be GDP or Beryllium, were identified early on as potential show-stoppers of this 
production process [5, 6] and for laser-driven implosion research overall. With the typical yield 
of production-worthy PAMS mandels being in the single digit %-age points for a production run 
start to finish, we found the sorting, selecting and handling of these mandrels to be process that 
would hugely benefit from the application of an automated system. A process was developed in 
which a robotic arm handles the shells, machine vision algorithms image the shell surface and 
machine learning algorithms trained on past production data evaluate the production-worthiness 
of the shells. The focus of this paper is the application of the image acquisition and machine 
learning algorithms.  

 

2	 Motivation	
 
About 6 years ago, General Atomics started deploying the first automated systems to help 

streamline the capsule inspection process [1]. Increasing the systems’ throughput while 
decreasing the operator involvement promised to deliver better shells since more units can be 
analyzed at the same labor cost, allowing to pick the best shells from a bigger pool. However, 
there was still an operator involved in rating the quality of the shell, leading to some level of 
inconsistency in the final determination.  

 



 
Figure 1: Automated stages, robot arms and image processing systems were first introduced into the capsule 

production process in 2013. (Left) The AZ-100 Microscope can image a shell and produce two images showing the 
capsule surface of the upper and lower hemispheres in less than one minute. Up to 300 shells can be imaged in one 
batch. (Right) The automated sphere mapper consists of a robotic arm to load and unload shells to a rotating spindle 
chuck, which presents the capsule to an Atomic Force Microscope (AFM) to measure shell Out-of-Roundness. 
Batch sizes of up to 30 can processed in fully automated fashion in ~4 hours.  

 
The work presented in this paper builds on the lessons learned from the development and 

operation of the systems mentioned above. Methods were evaluated to remove the operator from 
the loop by having a computer decide whether a shell passes the optical surface inspection. In 
addition, it was recognized that data on the failure modes of a shell is a helpful mechanism to 
provide feedback to the PAMS production process upstream. Specifically, knowing the 
frequency and type of certain features on the shell surface or shell failure mechanisms as they 
appear in a whole batch would provide valuable insights into the effect certain production control 
parameters might have on the overall yield of a batch. Collecting this data manually would be 
prohibitively expensive.  

Currently, up to ~650 shell mandrels are inspected each week both optically for surface 
defects as well as through an AFM for Out-of-Roundness. With the automated AZ-100 
microscope and the auto-AFM in place, this results in 8-12 man hours of labor. Most of this time 
is spent loading shells into inspection grids and picking out high quality shells for further 
processing, as well as the analysis of the images from the AZ-100 microscope. In this process 
step, the goal is to pick 24 PAMS shells per week that meet the quality specifications for defect 
and shape for a mandrel. These 24 shells go into a GDP coater and are further processed into 
GDP shells. Roughly two out of that batch meet the criteria to be built into Capsule Filltube 
Assemblies (CFTA). From these numbers, it is clear that the automation of shell inspection and 
handling only yields a high rate of return when applied to the capsule mandrels. Further 
downstream in the process, the production numbers are too low to justify the development cost 
of automated systems.   

 

3	 Methodology	
 
The different steps of the capsule inspection process are shown in figure 2. The top image 

shows the laboratory hardware setup, while the bottom shows are cartoon of the inspection 
process. There are three inspection stations that the shells are passed through, each of which 
inspects the shells based on different criteria. The AZ-100 inspection microscope is shown in 
figure 1. The first station (top left) consists of a 6-axis robotic arm mounted to an optical table. 
The shells, usually delivered and stored in glass vials, each containing 1000s of shells, are 



poured into a tray. The robot arm is programmed to pick each shell individually from the tray 
and to present it to an inspection camera on the table. Since the depth of field of the camera is 
less than the radius of the shell, multiple images are acquired and stitched together into a 
“flattened” 2-D image of one hemisphere of the shell. The shell is rotated by 120 degrees twice 
and thus imaged from three different angles.  

These three images are fed into a first automated classification algorithm trained to recognize 
individual defects on the shell surface through a machine learning algorithm. The details of this 
step are outlined in section 4. If defects of a certain type appear the shell is removed from the 
production line, otherwise it is placed into a tray for further processing.   

 
Figure 2: A photograph of the shell inspection line is shown on the top. Below is a schematic of the different 

inspection stations, each of which eliminates shells from the production line based on different criteria.  
 
The robot cell described above delivers a tray of up to 300 shells, which are free from defects 

such as cracks and star cracks, but might still contain a large number of vacuoles or other 
defects, which do not automatically disqualify the shell from being used in production.  

As part of the second step, each shell in the tray is imaged using a Nikon AZ-100 
microscope. The resulting images are processed through a second machine learning algorithm, 
which is trained to look at the shell as a whole and determines whether the total number of 
otherwise acceptable surface defects renders the shell as unusable. The details of this algorithms 
are described in section 5.   

In the following step, the robot cell mentioned at the beginning of the section is used to move 
the high quality shells into smaller grids, each of which contains up to 30 shells.  

These trays of 30 shells are transferred to the auto-AFM, which loads the shells onto an AFM 
for Out-of-Roundness inspection as described in [1]. As a final step, an operator reviews the data 
from the Auto-AFM, and has the opportunity to review the surface data for only those shells that 
pass all three inspection steps. As a result, the operator is liberated from the tedious task of 
handling and inspecting shells individually, and is now only tasked with handling shells in trays 



and grids, which are much easier to handle. In the following sections, the machine learning 
algorithms for the selection of shells is presented.  

 

4	 Inspection	#1:	Defect	Recognition	
 
Over the past two decades, members of the General Atomics shell production team have been 

manually inspecting shells, analyzing their quality and trying to set standards for minimum 
quality requirements. When attempting to set pass/ fail criteria, it was recognized that there is a 
wide variety of defect types, some of which are believed to have a greater impact on the final 
shell quality than others. Being able to distinguish between different failure types and recording 
statistics on an entire batch would provide a huge benefit in the study of how different 
production parameters might affect the quality of the batch as a whole, see fig 3 for examples.  

 
Figure 3: Different defect types are observed during the capsule surface inspection. The challenge was to 

develop an image recognition algorithm to detect and identify the defect types and report batch statistics.  
 
We explored the capabilities of state-of-the-art machine learning algorithms. The problem of 

this type can be generalized as a “Region-based Convolutional Neural Network” R-CNN type 
problem, in which several objects within the same image frame are to be identified. This is a 
very common problem found in, among others, self-driving vehicle technology, and out-of-the-
box solutions are available in all common mathematics libraries [7].  

Several attempts to use algorithms from the MatLab [8] package to train a network to first 
recognize the regions of interest within an image and then classify the object inside the region of 
interest did not deliver satisfactory results. High background noise levels were observed in the 
images. Inconsistent contrasts in the feature edges added to the problem, along with 
inhomogeneous backlighting of the shell. Lastly, some features, such as water spots, appear in 
clusters, whereas vacuoles and point defects should be considered isolated defects, even if 
multiple instances of the same defect are observed in close proximity to each other.  

Typically, an R-CNN type algorithm consists of two separate deep learning networks, one to 
find regions of interest (ROI), and one to identify the object.  

We separated the two problems, and developed an NI LabView / Vision [9] image processing 
algorithm to identify regions of interest, crop it out and save it as an image of its own. This 
algorithm detects areas in the image that sand out from the background and searches the 
surrounding area of the shell surface to determine the extent of the feature or cluster of features. 
This process worked much more reliably than the deep-learning based ROI-finders in the R-
CNN networks. Furthermore, the parameters of the ROI-search routine could be manually 
adjusted, such as to ignore or include faint features by setting the background noise threshold 
level, whereas the details of a deep-learning-based algorithm are much harder to adjust.  



We imaged ~1000 shells and ran them through the ROI-finder, which lead to a library of 
~15000 defects. These were manually sorted into five separate bins (see figure 3) to start 
building a labelled data set to train a deep-learning algorithm. Once a labelled dataset was 
assembled, a number of different deep learning networks were tested.  

Due to the limited size of the training data set available and the large effort involved in 
developing a new type of deep learning architecture, the capabilities of existing deep learning 
algorithms were explored first. A number of network architectures can be found online, trained 
to recognize a large number of every-day objects. Since these defect types are not part of any 
library, the concept of transfer learning is applied.  

This approach in itself is not novel, but the application of using a pre-trained network and use 
transfer learning to fine-tune the algorithm’s capability to detect shell defects provides some 
interesting results and applications.   

We used the libraries of pre-trained networks available for the Matlab platform. These pre-
trained networks, such as Alexnet, VGG16, VGG19, GoogleNet, etc. are trained using 
substantial computing power on millions of images as part of the ImageNet database and the 
associated challenge [10]. The resulting network accuracy is the state-of-the-art in image 
recognition for 1000 categories of everyday objects (e.g. cats, dogs, etc). Through the transfer-
learning process, these networks can be re-trained to fulfill very specific and customized image 
recognition tasks such as the identification of defects in a capsule image. Only small 
modifications to the network structures are required and they can be re-trained on high end 
desktop machines within a few hours to reach satisfactory accuracy.  

 We found that for our case, the VGG19 network worked the best in accurately determining 
the defect types. For this purpose, the images are re-sized to fit into the required input size for the 
VGG19 networks (226 by 226 pixels). In a typical training run, an accuracy of >95 % was 
achieved, with the biggest confusion coming from the “point defect” vs. “vacuole”, which at 
times are hard to distinguish visually as well.  

 In its current state, the system acquires 3 images of the capsule. As a second step, a list of 
defects and their location within the image is produced, and finally the type of each defect is 
determined using a VGG19 network trained on the manually sorted data. This produces a list of 
defects for each shell, including the location and the type of defect observed.  

 

 
Figure 4: Three example images of three different shells are shown with their defects classified. The number 

next to the classification is the %-age certainty to which the machine learning algorithm is certain to have assigned 
the correct classification.  

 



In a preliminary pilot run, we gathered the defect statistics for 10 batches of shells, each 
containing 100 shells. We counted the number of defects of each type as they occurred in each 
batch. Clearly, there is a significant variance in the occurrence of the different defect types. It 
will take a lot more data to draw meaningful conclusions as to which process parameter in the 
production of the PAMS shell might affect the frequency of which defect type, but the tools are 
developed to collect the data efficiently. It is also worth noting that the number of “Point 
defects” in the graph below is scaled as “instances/shell”, while “Water Spots” and “Vacuoles” 
are scaled as “10 instances/ shell”, and “Crack”, “Star Cracks” and “Good shells” are instances 
per batch or 1 instance / shell. Overall there is a scaling factor of up to 100 applied to fit the data 
on the same plot.  

 

 
Figure 5: Defect statistics data was collected on ten batches of 100 shells each. For this particular trial, the 

ultimate determination of usable / not usable shell was done manually according to the previously established 
process. Clearly, the number of defects found by this algorithm tracks inversely with the number of good shells 
found in the batch.  

 
We noticed that the occurrence of a single or even a dozen point defects or vacuoles does not 

automatically classify a shell as bad. However, shells with the defect type “crack” and “star 
crack” should be removed from the production line as they are definitely unusable.  

We decided that we needed a second classification algorithm to analyze the shells based on 
the overall number and severity of features other than “cracks” and “star cracks” apparent on the 
shell surface.  

 
   

5	 Inspection	#2:	Shell	Classification		
 



The high contrast images taken by the robotic inspection station described previously show a 
large number of point defects and vacuoles in the shell surface. However, historical knowledge 
tells us that shells with these defects, if they are not too great in number or size, can be used in 
production. Attempts to set a criterion for size and number based on the algorithm described 
above did not yield satisfactory results when compared to the shells manually selected for 
production. The high contrast images created by that system are very useful to identify shells 
with star cracks and crack-type defects, which are sometimes undiscernible in the images taken 
with the AZ-100 microscope. In return, however, the AZ-100 microscope inspection has been 
part of the manual inspection process since it was first introduced in 2013, and was for years the 
only optical inspection step.  

As a result, we have a wealth of images taken on the AZ-100 system since 2013. In this 
section, we describe how the historical information gathered on the AZ-100 inspection system 
was used to make predictions of the capsule quality of future capsules, when imaged on the same 
system.  

The shell images of past production runs were available along with information as to whether 
a specific shell was used for production. This information can be gathered to serve as a label to 
classify the shell image data into “good” and “bad” shells. We were able to assemble a data set 
containing ~5000 shells, consistently imaged and manually classified by an operator within a one 
year time frame. Shells selected outside of this time window were classified using slightly 
different selection criteria. Within the last year, however, the shell selection criteria are 
considered stable.   

 

 
Figure 6: Schematic depiction of the labelled data set with some example images for “good” vs. “bad” shells.  

 
In difference to the defect classification algorithms described above, we are now looking for 

a deep-learning algorithm, which will take the information of the entire capsule image and make 
a final determination as to whether this shell is usable or not. To some extent, this is much more 
similar to the way an operator determines the quality of the shell, by looking both at the shell 
surface as a whole as well as individual defects. The expectation is that deep learning algorithms 
can be trained to consider information on individual defects (small scale) and frequency thereof 
as well as presence of other defects (larger scale) using different layers of the algorithms.  

In principle, image recognition of objects (e.g. cats vs. dogs) works in a similar way in that 
certain small features need to be considered and weighted against the frequency of occurrence of 
these features and the location in the image overall.  



Similar to the approach applied to determine the defect classification described above, we 
looked for a pre-trained network from the Matlab database that would be best suited to determine 
the production-worthiness of a shell based on training over the past production data by applying 
transfer learning.  

 

 
Table 1: Different pre-trained networks were fine-tuned through transfer learning using the same training set 

and tested against the same validation set. In total, 206 shells (103 “good” and “103” bad ones) were used in a 
validation set. The second and third columns show the total number of correctly classified shells and the percentage. 
The accuracy of the models to predict each class is shown in columns 4 and 5 (“bad”) and 6 and 7 (“good”). It is 
worth noting that some networks are more accurate in one class over the other.    

 
 At the first look, the overall accuracy of these networks seems rather low at ~85 %, 

considering that we are looking at a two-class type of problem. One reason for this, however, can 
be found in the way the training data set is assembled. The classification of each shell is done 
through an operator’s judgement as to whether the shells are believed to be of sufficient quality 
to move on to production or not. On the other hand, the quality of the shells would be better 
judged on a wider range, say a scale from 1-10. So, while the quality of the shell should really be 
graded on a sliding scale, the operator is forced to make a binary decision, which inevitably 
poses challenges in the “gray area”.  

In an attempt to test for this, a randomly assembled validation set was presented to an 
operator a second time. We found that the operator was only able to re-classify the shells with an 
accuracy of 75%. All of the networks tested as part of this study performed better than that, 
indicating that this process suffers from significant ambiguity and operator dependability.  

Visual inspection of the images for which the algorithm misclassified a shell showed that 
most shells in that category could be judged either “good” or “bad”, further strengthening the 
case that these algorithms are very likely not going to hugely impact the downstream production 
yield, while they carry the potential to relieve the operator from sifting through 1000’s of images 
per month looking at shell surfaces.  

The VGG19 network was selected for our production system due to its high accuracy in 
finding “good” shells. There might be a higher yield loss as shells that might have been good 
enough for production are thrown out; however, in this particular application it is considered 
more important to not let “bad” shells be moved into the downstream production as opposed to 
throwing a “potentially useable” shell out. This algorithm has been applied to the PAMS 



selection process starting in early 2019, and so far no significant drop in downstream yield was 
reported.  

 
 

6	 Summary		
 

Several techniques were combined in this body of work to automate the handling and 
selection of PAMS mandrels for the production of high quality capsules used at the center of NIF 
ICF experiments.   

Two separate sets of images are taken of each capsule using different lighting conditions and 
camera systems. Through the application of image processing routines, images are acquired, 
stitched together and assembled into a data set.  

One algorithm detects regions of interest within these images and determines the occurrence 
and frequency of different defect types. The other one analyzes images of the capsules as a 
whole to automatically determine the capsule quality based on the overall “appearance” of the 
shells. 

By combining both complimentary algorithms, the system shows a 91% accuracy compared 
to the manual selection process with an estimated 10-20% drop in yield. This drop in yield is 
considered an acceptable price to pay to completely remove the operator from the selection 
process. With these systems in place, we expect to get more consistent, operator independent 
results. Combined with the increased throughput, the goal is to deliver shells at an increased 
overall quality level as larger and large batches of shells can be sifted through in search of the 
best shells. As an added benefit, the system is able to deliver quantitative statistical data on the 
defects observed in each batch.  
 



 
Figure 8: The culling station (left) is developed to load the tray with shells and to look for individual defects on 

the shell surface. In the secondary inspection an AZ-100 Microscope is used to look at the entire surface area of the 
shell to determine whether an accumulation of smaller defects disqualifies the shell from being used in production.  

 
In addition to the automated data generation and shell selection, a robot arm was introduced 

to handle these fragile shells to load them into production batches. These previously manual pick 
and place operations of shells were labor intensive and repetitive in nature.  

Systems like these could be developed for upstream and downstream inspection of shells 
(e.g. PAMS shells before they are dried) or GDP or Beryllium shells after they are coated and the 
mandrels are burnt out. The application of machine learning algorithms in the detections of 
features in the inspection of components might find other applications in the fusion technology 
field.  

 

References	
 
1L. C. CARLSON, H. HUANG, N. ALEXANDER, J. BOUSQUET, M. FARRELL, A. 

NIKROO, “Automation in Target Fabrication” Fusion Science and Technology, 70:2, 274-287, 
(2016)  

 
2J. KLINGMANN et al., “Design and Fabrication of a Novel Cryogenic Laser-Driven 

Ignition Target” Presentation to the European Society of Precision Engineering, (2007).  
 
3E. DZENITIS et al., “Target Production for the First NIF Cryogenic Experiments,” 

presented at 19th Target Fabrication Specialists’ Mtg., Orlando, Florida, February 21–26, 2010. 
 



4J. KROLL et al., “Design of a Cryogenic Target for Indirect Drive Ignition Experiments on 
NIF,” presented at 19th Target Fabrication Specialists’ Mtg., Orlando, Florida, February 21– 26, 
2010 

 
5M.TAGAKI, R.COOK, et al., “Decreasing Out-of-Round in Poly-Alpha-Methylstyrene 

Mandrels by increasing Interfacial Tension” Fusion Technology, 38, 46, (2000)  
 
6A. NIKROO, et al., “Coating and Mandrel Effects on Fabrication of Glow Discharge NIF 

Scal Indirect Drive Capsules” Fusion Technology, 41:3, (2002)  
 
7J.ESPINOSA, S.VELASTIN, “Vehicle Detection Using Alex Net and Faster R-CNN Deep 

Learning Models: A Comparative Study”, Advances in Visual Informatics, vol. 10645, (2017)  

8LabView and Vision are products distributed by National Instruments (2018)  
 
9Matlab and various tool boxes are products developed and distributed by MathWorks (2018)  
 
10Image-net.org 
 

 
 
Declaration:  Work supported by General Atomics IR&D and by LLNL under Contract DE-

AC52-07NA27344. LLNL-ABS-767246 


