

Structural Analysis of $K_4Fe(CN)_6 \cdot 3H_2O$, $K_3Fe(CN)_6$ and Prussian Blue

To cite this article: Azzam N. Mansour *et al* 2021 *ECS J. Solid State Sci. Technol.* **10** 103002

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © .

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by-nc-nd/3.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

Structural Analysis of K₃Fe(CN)₆·3H₂O, K₃Fe(CN)₆ and Prussian Blue

Journal:	<i>ECS Journal of Solid State Science and Technology</i>
Manuscript ID	JSS-101691.R1
Manuscript Type:	Research Paper
Date Submitted by the Author:	08-Sep-2021
Complete List of Authors:	Mansour, Azzam; Naval Surface Warfare Center Carderock Division, Code 635; Ko, Jonathan; Naval Surface Warfare Center Carderock Division Waller, Gordon; Naval Surface Warfare Center Carderock Division, Expeditionary and Developmental Energy Martin, Curtis; NSWC Carderock Division zhang, chen; University of Miami qiao, xiaoyao; University of Miami wnag, yuchen; University of Miami zhou, Xiangyang; University of Miami - Coral Gables Campus, Mechanical and aerospace engineering Balasubramanian, Mahalingam ; Oak Ridge National Laboratory,
Keywords:	Prussian blue, metal hexacyanoferrate, XPS, XAS, XRD, oxidation state, atomic structure

SCHOLARONE™
Manuscripts

Structural Analysis of $K_3Fe(CN)_6 \cdot 3H_2O$, $K_3Fe(CN)_6$ and Prussian Blue

Azzam N. Mansour,^{1,*^z} Jonathan K. Ko,¹ Gordon H. Waller,¹ Curtis A. Martin,¹ Chen Zhang,² Xiaoyao Qiao,² Yuchen Wang,² Xiangyang Zhou,² and Mahalingam Balasubramanian³

¹NSWCCD, West Bethesda, Maryland 20817, USA

²Department of Mechanical and Aerospace Engineering, University of Miami
Coral Gables, Florida 33124, USA

³Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, USA

*Electrochemical Society Member.

^zE-mail: azzam.mansour@navy.mil

Abstract

XRD and XAS were used to characterize the bulk structure, while XPS was used to characterize the surface structure, of commercially obtained nominally $K_4Fe(CN)_6 \cdot 3H_2O$, $K_3Fe(CN)_6$ and our synthesized Prussian Blue (PB) material. $K_4Fe(CN)_6 \cdot 3H_2O$ was found to

1
2
3 consist of a fully hydrated phase, which crystallizes in the monoclinic form and a less hydrated or
4 anhydrous phase which crystallizes in the orthorhombic form. $K_3Fe(CN)_6$ was found to consist of
5 the well-established orthorhombic form rather than the monoclinic form. The structure of our
6 synthesized Prussian Blue (PB) was found to be consistent with that reported for
7 $(KOH)_{0.7}Fe(III)_{1.33}Fe(II)(CN)_6 \cdot 4.0H_2O$ which crystallizes in the cubic form. XPS and XAS
8 confirmed the presence of ferrous Fe(II) at the surface and bulk levels in $K_4Fe(CN)_6 \cdot xH_2O$.
9 However, XPS revealed the presence of Fe(II) (~30%) and Fe(III) (~70%) in the surface region of
10 $K_3Fe(CN)_6$ while XAS confirmed the presence of mostly Fe(III) at the bulk level. Both XPS and
11 XANES confirmed the presence of Fe(II) and Fe(III) in the surface and bulk regions of PB. This
12 *ex situ* XAS study will be used to support the analysis of an *in situ* XAS data collected on a PB
13 containing supercapacitor to understand the mechanistic origin of pseudocapacitance in these
14 devices.

33 Introduction

34
35 In recent years, many researchers have increased focus toward the development of hybrid
36 supercapacitors, which are based on combining electrical double-layer capacitor (EDLC) materials
37 and battery materials in the same device. One common approach is that of combining battery-type
38 electrodes such as the graphite electrode with EDLC electrode such as the activated carbon
39 electrode to form a hybrid supercapacitor, commonly referred to as the lithium-ion capacitor
40 (LIC).^{1,2,3,4} In another approach, Zhou et al.^{5,6} proposed a new SC concept, namely, the mediator
41 supercapacitor, where the electrodes are composed of activated carbon and a mediator. A mediator
42 is a material that undergoes fast and reversible redox reactions. Many redox couples can be
43 employed as mediators to enhance the performance of solid-state supercapacitors. In previous
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 studies, NaI/I₂ and K₄Fe(CN)₆/K₃Fe(CN)₆ were used as mediators and have been shown to be
4 effective in enhancing both ion transport in the electrolyte and electron transfer at the
5 electrode/electrolyte interface.^{7,8}
6
7

8 Prussian blue (PB), Fe(III)₄[Fe(II)(CN)₆]₃·15H₂O, and its analogues are promising redox
9 active materials for batteries and supercapacitors due to their open frame work structure, which
10 can accommodate the insertion and removal of ions over a wide range of ionic radii.⁹ In 1936, the
11 first structural hypothesis of PB was proposed by Keggin,¹⁰ and the detailed crystal structures of
12 K₄Fe(CN)₆·3H₂O, K₃Fe(CN)₆, and PB were reported by Willans et al.¹¹ in 2009, Figgis et al.¹² in
13 1978 and Buser et al.¹³ in 1977, respectively. Based on room temperature XRD derived structures,
14 K₄Fe(CN)₆·3H₂O crystallizes in the monoclinic lattice with space group *C2/c* and consists of low-
15 spin Fe(II), which is coordinated with six carbon atoms at an average Fe(II)-C distance of 1.92 Å.
16 K₃Fe(CN)₆ crystallizes in the orthorhombic lattice with space group *Pnca* and the monoclinic
17 lattice with space group *P21/c* with low-spin Fe(III), which is also coordinated with six carbon
18 atoms but at an average Fe(III)-C distance of 1.94 Å. Based on these results, the Fe(III)-C distance
19 in K₃Fe(CN)₆ is greater than that of Fe(II)-C distance in K₄Fe(CN)₆·3H₂O by about +0.02 Å, which
20 is in contrast to the -0.06 Å one would expect based on the covalent or ionic radii of octahedrally
21 coordinated Fe.¹⁴ PB crystallizes in the cubic lattice with space group *Pm3m* and consists of 43%
22 low-spin Fe(II) at an average Fe(II)-C distance of 1.92 Å, which is similar to that observed in
23 K₄Fe(CN)₆·3H₂O. However, the remaining 57% of high-spin Fe(III) is coordinated with 4.5
24 nitrogen atoms at an average distance of 2.03 Å and 1.5 oxygen atoms at an average Fe(III)-O
25 distance of 2.14 Å. PB analogues have archetypal hexacyanometalate framework structures and
26 can be described by the general formula A_xM_y[Fe(CN)₆]_z·nH₂O, where A is an alkali metal ion, M
27 is a transition metal other than Fe, and *x*, *y*, *z*, and *n* are the stoichiometric values of various
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 components.^{15,16} Furthermore, the materials framework can hold significant amount of adsorbed
4 and structurally bound water. During the charge and discharge process, alkali ions such as lithium,
5 sodium or potassium can reversibly inserted/removed into/from the materials' framework
6 structure. The size of channels in the crystal connecting vacancy sites can easily accommodate the
7 size of alkali ions such as the electrochemical insertion/removal process only cause a minimal
8 strain in the lattice.¹⁷ Therefore, compared to other redox materials, PB and Prussian blue
9 analogues (PBAs) have their unique advantages in practical applications, such as high cyclability
10 with chemical and structural stability.
11
12

13 In this paper, we describe the synthesis of PB and use X-ray diffraction (XRD), X-ray
14 photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy to characterize the
15 oxidation state and local structure of Fe in PB and two of its commercially obtained analogues,
16 namely, $K_4Fe(CN)_6 \cdot 3H_2O$ and $K_3Fe(CN)_6$. The gained insight from this *ex situ* study will be used
17 to guide the analysis of the *in situ* XAS of mediators' enhanced solid-state supercapacitors and
18 understand the mechanistic origin of pseudocapacitance in these devices, which will be described
19 in another article.¹⁸
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40 Experimental

41 Materials Synthesis:

42 Potassium ferrocyanide trihydrate ($K_4Fe(CN)_6 \cdot 3H_2O$) and potassium ferricyanide
43 ($K_3Fe(CN)_6$) materials in powder form were commercially obtained from Sigma-Aldrich with
44 chemical purity of 98.5-102% and $\geq 99\%$, respectively. According to the manufacturer, a reason
45 to have the purity greater than 100% for the former compound can be based on the water of
46 hydration. If the substance was exposed to a dry environment for several hours, a small amount of
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 the water of hydration could be lost, resulting in a mass-normalized calculation to have a higher
4 purity. In the scenarios where the value is greater than 100 % the material is simply treated as
5 being 100 % pure.
6
7

8
9 Our PB in powder form was synthesized using the following procedure. A mass of 1.62 g
10 of Fe(III) chloride (FeCl₃) (100%, EMD) were dissolved in 100 mL deionized water while
11 magnetically stirring at room temperature to prepare Solution 1. Then, a mass of 4.22 g
12 K₄Fe(CN)₆•3H₂O were dissolved in 100 mL deionized water while magnetically stirring at room
13 temperature to prepare Solution 2. These two solutions were then added dropwise into 100 mL
14 deionized water while magnetically stirring at room temperature. Precipitates formed immediately
15 and the suspensions were magnetically stirred for another 2 hours. Then, the precipitates were
16 centrifuged at 6500 rpm, washed with deionized water three times, and dried in nitrogen-filled
17 glovebox at 50°C for 1 day. The raw product was ground in a mortar with a pestle and stored in a
18 nitrogen-filled glovebox.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

XRD MEASUREMENTS

36
37 The crystalline structure and phase purity of the material was examined by powder X-ray
38 diffraction (XRD). The XRD data were collected using the Bruker D8 Advance diffractometer
39 with Cu K α X-rays ($\lambda = 1.5404 \text{ \AA}$).
40
41
42
43
44
45
46

47 Energy Dispersive X-ray Spectroscopy (EDXS)

48

49 EDXS spectra were collected using energy dispersive analysis of X-rays (EDAX) Apollo
50 40 SDD detector integrated within a Hitachi SU6600 Scanning Electron Microscopy (SEM)
51 analysis was conducted. The PB powder was mounted using conductive tape onto strips of Ni
52
53
54
55
56
57
58
59

1
2
3 metal for analysis. The powder was not coated with a conductive film prior to analysis. A typical
4 analysis utilized an accelerating voltage of 15 kV at a working distance of 15 mm. EDXS analysis
5 was conducted in three regions under a magnification of 5000x and the average composition was
6 given.
7
8
9
10
11
12
13
14

15 XPS Measurements and Analysis

16

17 The samples were stored in the glovebox, mounted on double-sided tape and transferred to
18 the XPS analysis chamber without exposure to ambient conditions to protect the chemical integrity
19 of the material using specially designed sample transfer chamber. The XPS spectra were collected
20 using the Physical Electronics VersaProbe II Scanning XPS Microprobe equipped with
21 monochromatic Al K α (1486 eV) X-ray source operated at 15 kV and 50 W while the analysis
22 chamber pressure was below 2×10^{-8} Torr. A 200-micron focused X-ray beam was rastered over
23 the analyzed region of 200 microns by 1000 microns to minimize sample damage by the X-rays.
24 The samples were mounted on double-sided insulating tape for XPS analysis. Low-resolution
25 survey spectra were collected to identify the elements present in the surface region. First, a ~12
26 minute survey scan was collected, which identified C, N, O, K and Fe to be present in the surface
27 region in agreement with nominal stoichiometry. Since, it is well established in the literature that
28 photoreduction may occur in this class of materials when Fe(III) is present,¹⁹ three sets of
29 multiplexes of the identified elements were acquired. The first and third sets of multiplexes were
30 acquired with a total acquisition time of 5.9 minutes (1 cycle) while the second set was acquired
31 with an acquisition time of 59 minutes (10 cycles) to monitor the extent of photoreduction, if any,
32 in our samples. All spectra were collected at an electron emission angle of 45°. A dual low energy
33 electron beam (~1 eV) and low energy Ar ions (~ 15 eV) were used to offset sample charging.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Final adjustment to the binding energy scale is usually made by calibrating the C 1s line for hydrocarbon with its known binding energy at 284.8 eV. However, in our case, due to overlap of the hydrocarbon and carbon from the cyanide group, the C 1s line was not ideal to calibrate the binding energy scale. Instead, in this study, the binding energy scale was calibrated relative to the literature reported binding energy of the N 1s line for the cyanide group, as its value in this class of material falls within a narrow range near 398.0 eV.²⁰ The N1s binding energies for $K_3Fe(CN)_6$ and $K_4Fe(CN)_6$ were reported to be 398.1 and 398.0 eV,^{21,22} respectively, and a value of 397.8 eV was reported for $K_4Fe(CN)_6$ in another study²³. The concentrations of various elements were determined using the integrated areas under each component and the sensitivity factors provided by the Manufacturer of our VersaProbe II Scanning XPS Microprobe for the C 1s, N 1s, O 1s, K 2p, and Fe 2p3/2 regions. Deconvolution of multiple chemistries for each line was performed using the manufacturer provided MutiPak Software version 9.6.0.15 employing a combined Gaussian-Lorentzian line shape and an iterated Shirley model for the background portion of the spectrum.

XAS Measurements and Analysis

For the XAS measurements, the $K_4Fe(CN)_6 \cdot 3H_2O$, $K_3Fe(CN)_6$ and PB powder materials were ground into fine particles and sifted through a 20-micron size mesh to select particles with less than 20-micron diameter in order to minimize the particle-size effect distortions on EXAFS amplitudes.²⁴ Then, few milligrams of the sifted powder were then diluted with about 70 milligrams of inert boron nitride (BN) and pressed into self-supporting pellets. Based on the measured XAFS spectra, the Fe K-edge absorption jump for the Fe/BN pellets for all samples were in the range 1.0-1.1, which is below the recommended maximum value of 1.5 required to minimize the thickness/loading distortion effects on EXAFS amplitudes.²⁵ Another set of activated carbon

1
2
3 electrodes loaded with $K_4Fe(CN)_6 \cdot 3H_2O$ and $K_3Fe(CN)_6$ with an edge jump of 0.41 and 0.45,
4 respectively, were also prepared and analyzed in the pristine state. These electrodes are suitable
5 for building mediator enhanced supercapacitors and are used to examine the electrode synthesis
6 procedure on the stability of the mediators. The loading in these electrodes was intentionally kept
7 low in order for the total absorption above the Fe K-edge by the electrochemical cell during the in
8 situ characterization not to exceed 2.6. The results of a pristine electrode with PB along with in
9 situ characterization in a supercapacitor are included in a forthcoming article.¹⁸ The XAS
10 measurements were carried out on beamline 20-BM of Argonne's Advanced Photon Source in the
11 transmission mode at room temperature. The incident beam was monochromated using a Si (111)
12 fixed-exit, double-crystal monochromator. Harmonic rejection was accomplished using Rh-coated
13 mirror. Additional harmonic rejection was implemented by detuning the crystals to reduce the
14 incident X-ray intensity by 15%. The incident and transmitted X-ray intensities were monitored
15 with ionization chambers under continuous nitrogen flow. A 4-micron thick iron foil placed
16 between the second and third ionization chambers was used to calibrate the monochromator energy
17 scale. The energy scale was calibrated with respect to the first inflection point energy of the Fe
18 foil, which was assigned a value of 7110.8 eV.²⁶ The spectra were collected over the energy range
19 6961-8342 eV in steps of 5 eV, 0.5 eV and 0.05 \AA^{-1} in the pre-edge region (6961-6991 eV), in the
20 XANES region (6991-7151 eV) and the EXAFS region (7151-8342), respectively. The integration
21 times were set to 0.5 seconds in the pre-edge and XANES regions but it varied in the EXAFS
22 region with respect to the wave number and spanned the range of 0.5 to 2.83 seconds. Analyses of
23 the XAS data were carried out using the IFEFFIT suite of programs.^{27,28}

54 Results and Discussion

55
56
57
58
59
60

1
2
3
4
XRD

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
The commercially obtained $K_4Fe(CN)_6 \cdot 3H_2O$ was found to consist of a major phase and a minor phase. The major phase is consistent with that reported in PDF 04-015-5402 for a material with the same composition, which crystallizes in the monoclinic lattice with space group $C2/c$.²⁹ The monoclinic lattice parameters for this phase are listed as $a = 9.395 \text{ \AA}$, $b: 16.86 \text{ \AA}$, $c: 9.413 \text{ \AA}$ and $\beta: 90.05^\circ$. The minor phase is consistent with that reported in PDF 00-032-0801 for the less hydrated or anhydrous form $K_4Fe(CN)_6$ prepared by heating reagent " $K_4Fe(CN)_6 \cdot H_2O$ " at 115°C for 3 weeks, which crystallizes in the orthorhombic lattice with space group $Bmmm$.³⁰ The orthorhombic lattice parameters for this phase are listed as $a = 14.010 \text{ \AA}$, $b = 21.027 \text{ \AA}$, $c: 4.175 \text{ \AA}$, $\alpha = \beta = \gamma = 90.00^\circ$. The orthorhombic phase likely represents a less hydrated or anhydrous form of $K_4Fe(CN)_6$. Hereafter, we will refer to this material as $K_4Fe(CN)_6 \cdot xH_2O$ where x is less than 3.

31
32
33
34
35
36
37
38
39
40
The commercially obtained $K_3Fe(CN)_6$ was found to consist of the well-established orthorhombic form with space group $Pnca$ reported in PDF 04-014-1249 with lattice parameters given as $a = 13.422$, $b = 10.396$ and $c = 8.381$.¹² None of the monoclinic forms reported in PDFs 04-014-1249¹², 00-022-0818³¹, or 04-012-8604³² provided adequate match to the measured XRD data.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Our synthesized PB material was found to consist of a single phase with structure consistent with that reported in PDF 04-016-2997 for a material with composition listed as $K_{0.525}Fe_{1.75}(CN)_{4.5}(OH)_{0.525}(H_2O)_{2.98}$ as shown in **Figure 1**.³³ The reported composition can also be written as $K_{2.1}Fe_4(III)Fe_3(II)(CN)_{18}(OH)_{2.1} \cdot 11.9H_2O$ or $(KOH)_{0.7}Fe_{4/3}(III)Fe(II)(CN)_6 \cdot 4.0H_2O$. The material crystallizes in the cubic lattice with space group $Fm\bar{3}m$. The cubic lattice parameters for this phase are given as $a = b = c = 10.178 \text{ \AA}$ and $\alpha = \beta = \gamma = 90.00^\circ$. Based on this

composition and ignoring hydrogen in order to accurately compare with composition based on XPS and EDXS analyses, which do not detect hydrogen, the K atomic % is estimated to be 3.55.

XPS:

The XPS spectra of the N 1s, C 1s/K 2p, Fe 2p and O 1s spectra for $K_4Fe(CN)_6 \cdot xH_2O$, $K_3Fe(CN)_6$, and PB are shown in **Figure 2** a, b, c, and d respectively. The atomic concentrations of various elements along with the K/Fe, N/Fe and O/Fe ratios are summarized in **Table 1**. In addition, the surface composition was also included after normalizing the N stoichiometry to 6 since it has the least degree of surface contamination relative to all other components as will be discussed later in the text. To some degree, the trends in the surface stoichiometry of the elements qualitatively follow those based of nominal bulk stoichiometry. The carbon stoichiometry of the surface differ the most from bulk stoichiometry since carbon is almost always present on most surfaces as a surface contamination in the form of carbon-oxygen functional groups. Considering the semi quantitative nature of XPS analysis, the N/Fe ratios for the three samples are in qualitative agreement with the values based on the nominal stoichiometry. The K/Fe ratios for the $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$ material are also qualitatively close to the values derived on the basis of their nominal stoichiometry. The variations between the ratios derived based on XPS results and those based on nominal stoichiometry may be related to some degree to a difference in the composition of the surface relative to that of the bulk region in each compound. In the case of PB, however, the XPS determined K content of 0.54 % is significantly lower than that derived based on XRD derived stoichiometry, which is 3.55 % as discussed above. Moreover, the K/Fe ratio based on XPS analysis of 0.042 is significantly lower than the value based on XRD derived stoichiometry, which is 0.3. It is also to be noted that the K/Fe ratio based on composition analysis

1
2
3 using energy dispersive spectroscopy (EDXS), which is a bulk sensitive tool, is 0.087. Thus, the
4 EDXS estimated K/Fe ratio is closer to the XPS determined ratio (0.042) than that estimated based
5 on XRD analysis (0.3). We believe that the K/Fe ratio estimated based on EDXS analysis is likely
6 closer to the actual value due to EDXS bulk sensitivity while the XPS estimated ratio represents
7 that of the surface region. The departure from the nominal composition based on XRD analysis is
8 because XRD is significantly more sensitive to the cubic lattice parameters of repeated units of
9 Fe(II)-C-N-Fe(III) rather than counter-ions such as K^+ , OH^- or water molecules residing within the
10 framework channels, especially if they associated with high degrees of disorder. Hereafter, we will
11 refer to the composition of our synthesized PB material as $(KOH)_xFe_{4/3}(III)Fe(II)(CN)_6 \cdot zH_2O$
12 where $x < 0.7$ and $z < 4.0$.
13
14

15 Oxygen was detectable in all samples including $K_3Fe(CN)_6$, which based on its nominal
16 stoichiometry it does not contain oxygen from H_2O . However, in addition to H_2O , the oxygen
17 signal can be related to the presence of carbon-oxygen functional groups as contaminants
18 commonly detected by XPS on surfaces of most materials. The lower O/Fe ratio for
19 $K_4Fe(CN)_6 \cdot xH_2O$ can be related at least in part, to the presence of the less hydrated or anhydrous
20 phase, which was confirmed based on XRD analysis. The O/Fe ratio for PB is also lower than the
21 value derived from the XRD derived stoichiometry (see Table I). In both cases, the O/Fe ratio
22 based on XPS analysis are lower relative to values derived based on nominal stoichiometry despite
23 the fact that some of the oxygen is present as contaminants in the form of carbon-oxygen functional
24 groups on the surface. The lower O/Fe ratio for both $K_4Fe(CN)_6 \cdot xH_2O$ and PB could be to some
25 extent because some of the water is loosely bound in the crystal and is removed under the ultrahigh
26 vacuum of the XPS analysis chamber. It is to be noted that the carbon concentrations are greater
27 than the nitrogen concentrations for all samples, which indicate that the main carbon peak includes
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 contributions from adventitious hydrocarbon in addition to the cyanide group. Furthermore, the C
4
5 1s region includes contributions at higher binding energies from surface contaminants in the form
6
7 of carbon-oxygen functional groups as will be discussed hereafter.
8
9

10 As mentioned and described in the experimental section, as part of chemical state analysis,
11 the spectra were deconvoluted into various components, which correspond to unique chemistries
12 and the results are summarized in In **Table II.**, we summarize the binding energy (BE), full-width-
13 at-half-maximum (FWHM), and the area percentages for each deconvoluted component of each
14 spectral region. The area percentages along with the composition results in Table were used to
15 calculate the atomic percentages (at. %) for each chemical specie, which are also summarized in
16 **Table II.** The carbon 1s region for $K_3Fe(CN)_6$ was adequately deconvoluted into two components.
17 The first one with binding energy ~ 285 eV is dominated by contributions from hydrocarbon and
18 the $C\equiv N$ group. The second one with binding energy ~ 286 eV is dominated by a contribution from
19 carbon singly bonded with oxygen (C-O) and possibly a contribution from carbon singly bonded
20 to nitrogen (C-N). The C 1s regions for $K_4Fe(CN)_6 \cdot xH_2O$ and PB were adequately deconvoluted
21 into three components. The origins of the first and second components are similar to those observed
22 for $K_3Fe(CN)_6$. However, the concentration of the second component for PB is significantly higher
23 than that observed for $K_4Fe(CN)_6 \cdot xH_2O$ or $K_3Fe(CN)_6$. The third component for both
24 $K_4Fe(CN)_6 \cdot xH_2O$ and PB with binding energy 288.4-288.8 eV can be related to the presence of
25 carbon-oxygen functional groups with a mixture of the carbonyl and the carboxylic groups.
26
27

28 The nitrogen 1s region is dominated by a single contribution from the cyanide group for
29 all samples with $K_3Fe(CN)_6$ displaying only this chemistry. However, the $K_4Fe(CN)_6 \cdot xH_2O$
30 sample also includes minor contributions from compounds containing NO and nitrate (NO_3) type
31 of chemistries. On the other hand, the PB sample includes smaller contributions from C-N and NO
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 type chemistries. The oxygen 1s region is dominated by a contribution with binding energy ~532.2-
4 532.7 eV for all samples, which can be related to structurally bonded H₂O but also contains small
5 contributions from the carbonyl group (C=O) and NO₃ in the case of the PB sample. The O1s
6 region for K₄Fe(CN)₆·xH₂O also displays a minor component with binding energy ~531.0 which
7 can be related to the presence of the hydroxyl group. The O 1s region for PB also includes a
8 contribution with binding energy ~533.5 eV, which can be related to the presence of C-O. The K
9 2p region displays a doublet (2p_{3/2} and 2p_{1/2}) for each unique K chemistry due to the spin-orbit
10 splitting of the atomic orbitals and a single doublet is displayed for all samples. To be noted, the
11 ratio of the K 2p_{3/2} to 2p_{1/2} areas is very close to the theoretical value of 2. The small variations in
12 the binding energy of the K 2p_{3/2} line among the samples are due to variations in the average degree
13 of covalency of the K bonding environment with higher binding energy being consistent with
14 higher degree of ionic character on a relative basis.

15
16
17 Results based on peak deconvolution analysis of the Fe 2p_{3/2} band for all samples are
18 shown in **Figure 3**. A combined Gaussian-Lorentzian line shape was sufficient to analyze the Fe
19 (II) and Fe(III) components and the satellite peaks associated with Fe (III) in the case of
20 K₄Fe(CN)₆·xH₂O or K₃Fe(CN)₆. However, an asymmetric line shape for the Fe(II) component in
21 PB provided a better fit (Figure 3d) versus the Gaussian-Lorentzian line shape fit (Figure 3c). As
22 mentioned in the experimental section three sets of multiplexes (fast, slow, and fast) were collected
23 on each sample to monitor the effect of photo reduction of Fe(III) to Fe(II) due to X-ray exposure.
24 The Fe 2p_{3/2} band for K₄Fe(CN)₆·xH₂O consists of one component with binding energy near 708.8
25 eV, which is consistent with values reported in the literature for Fe(II) of various metal
26 hexacyanoferrates, 708.3 eV,³⁴ 708.4-708.6 eV,³⁵ 708.5 eV,^{36,20} and 708.8 eV³⁷. Hence, in the
27 case of K₄Fe(CN)₆·xH₂O, photo reduction is not an issue since it contains only Fe(II). On the other
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 hand, the Fe2p_{3/2} signal for K₃Fe(CN)₆ consists of three components. The first with binding energy
4 near 708.4 eV is assigned to Fe (II) as is the case for K₄Fe(CN)₆·xH₂O. The second one with
5 binding energy near 710.0 eV is assigned to Fe(III), which is consistent with values reported in the
6 literature for Fe(III) in K₃Fe(CN)₆ (709.6 eV,²⁰ and 709.7 eV³⁴) and other metal hexacyanoferrates
7 (709.4-710.3 eV³⁵). Since the majority of Fe is present in the Fe (III) state, one could argue that
8 the Fe (II) component is due to photo reduction of Fe(III) in the material. However, based on the
9 three sets of multiplex spectra, the fraction of Fe(II) in the material was estimated to be 32, 31, and
10 29% based on the first, second, and third sets of spectra, respectively. Hence, since the fraction of
11 Fe(II) did not increase in the third set relative to the 1st set, it is less likely that photoreduction
12 occurred during the XPS data collection in this case. However, photoreduction cannot be ruled out
13 completely since the material was exposed to 10 minutes of X-ray exposure during the data
14 collection of the survey scan prior to the multiplex scans. Thus, taking into account the XRD and
15 XAFS results, the surface but not the bulk region of K₃Fe(CN)₆ contains Fe(II) in addition to
16 Fe(III). The third component with binding energy of 711.3 eV is due to a ligand-metal charge
17 transfer mechanism associated with Fe(III) referred to in the literature as satellite structure.³⁸ The
18 charge transfer mechanism is unique to Fe(III) because it requires partially filled t_{2g} states, which
19 are present only in low-spin Fe(III) but not low-spin Fe(II). For PB, 4 components were required
20 to adequately fit the Fe 2p_{3/2} region. The first two components were assigned to Fe(II) and Fe(III)
21 as described above. The third and fourth components were assigned to satellite structures due to
22 charge transfer mechanisms associated with Fe(III) and they could be related to satellites S1 and
23 S2 referenced by Nanba and Okada³⁸. It is to be noted that an asymmetric line shape was used to
24 model the Fe(II) component (Figure 3d), which yielded a 42.6% for the fraction of Fe(II) in the
25 sample, in agreement with the value derived based on XRD analysis of 42.9%.¹³ The need for the
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 asymmetric line shape to model the Fe(II) component in PB could be related to structural disorder
4 associated with the Fe(II) local coordination since 25% of the Fe(II) sites are vacant.
5
6

7 It is worth noting that the FWHM of the Fe(II) component in the three samples is quite
8 similar (~1.4 eV) owing to the similar local coordination geometry for which Fe(II) is coordinated
9 with six cyanide groups (C≡N) with similar local arrangements. However, the FWHM of Fe(III)
10 in $K_3Fe(CN)_6$ (~1.1 eV) is significantly smaller than that of Fe(III) in PB (~3.0 or 3.5 eV depending
11 on whether the Gaussian-Lorentzian or the asymmetric line shape was used to model the Fe(II)
12 component). These variations in FWHM can be related to differences in the ligand type bonding
13 in which Fe(III) in $K_3Fe(CN)_6$ is coordinated with six carbon atoms from the cyanide group while
14 Fe(III) in PB is coordinated with 4.5 nitrogen atoms from the cyanide group and 1.5 oxygen atoms
15 from H_2O . Furthermore, as mentioned earlier, Fe(III) in $K_3Fe(CN)_6$ and PB is present in the low-
16 spin and high-spin states, respectively, which can lead to broadening in the case of PB due to final
17 state effects.
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32 XAS 33 34

35 X-ray absorption spectroscopy (XAS) was used to explore the oxidation state and local
36 coordination geometry of Fe in $K_4Fe(CN)_6 \cdot xH_2O$, $K_3Fe(CN)_6$ and PB. As pointed out by many
37 researchers, XAS is uniquely suited to study the local atomic level structure of the central
38 absorbing atom in PB and its analogues.^{39,40,41,42,43,44,45} The XAS spectrum consists of the X-ray
39 absorption near edge (XANES) and the extended X-ray absorption fine structure (EXAFS) regions.
40 The XANES region probes the density of unoccupied electronic states and is sensitive to changes
41 in oxidation state, spin state and local symmetry such as tetrahedral vs. octahedral symmetry of
42 the central absorbing atom. In general, the XANES data shift to higher or lower energy upon
43 increase or decrease, respectively, in valency of the central absorbing atom. The EXAFS region
44

1
2
3 consists of the oscillatory portion above the XANES region, which is due to single and multiple
4 scattering contributions from neighboring atoms and provide information related to local structure
5 of the first few coordination spheres. Quantitative analysis of EXAFS spectra provide coordination
6 number, distance and the mean square relative disorder (thermal and static).
7
8

9
10 In **Figure 4**, we show a comparison of the XANES data (4a) and their derivative (4b), for
11 PB in contrast to those for $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$. The main intense feature near 7130
12 eV is due to dipole allowed transitions from the *1s* core states to the *4p* states above the Fermi
13 level followed by contributions from final state effects due to single and multiple scattering
14 processes. The edge energies at half of the edge step are 7124.7 and 7125.6 eV for
15 $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$, which corresponds to a shift of 0.9 eV. The shift is more clearly
16 prominent in the derivative of XANES data, which display a major peak indicative of Fe(II) near
17 7127.1 eV for $K_4Fe(CN)_6 \cdot xH_2O$ in agreement with the XPS results. However, the derivative of
18 XANES data for $K_3Fe(CN)_6$ display a double peak structure with peak energies at 7127.2 and
19 7128.1 eV. The first component energy is close to that of Fe(II) in $K_4Fe(CN)_6 \cdot xH_2O$ and, thus,
20 represent a contribution from Fe(II), which is again in agreement with XPS results. The second
21 component with energy at 7128.1 eV represent a contribution from Fe(III), which is also in
22 agreement with the XPS results. However, the observed rigid shift in the XANES and its derivative
23 for $K_3Fe(CN)_6$ relative to $K_4Fe(CN)_6 \cdot xH_2O$ and the roughly similar intensities indicate that the
24 majority of Fe in $K_3Fe(CN)_6$ is present as Fe(III). The rigid shift as measured by the zero-crossing
25 of the major intensity in the first derivative of XANES data is estimated 1.2 eV (7129.7-7128.5),
26 which is slightly greater than the 0.9 eV shift observed on the basis of the normalized XANES at
27 half the edge step as discussed above. In contrast, the XANES data for PB display combination of
28 features which are descriptive of Fe(II) and Fe(III). Furthermore, the first derivative of XANES
29

1
2
3 data also display a double peak structure with energies at 7127.1 and 7128.3 eV corresponding to
4 Fe(II) and Fe(III), respectively. However, the first derivative shift of PB relative to
5 K₄Fe(CN)₆·xH₂O is not as rigid as that observed in the case of K₃Fe(CN)₆. Specifically, the 1st
6 derivative of XANES data for PB overlap the 1st derivative of XANES data for K₄Fe(CN)₆·xH₂O
7 and K₃Fe(CN)₆. These observations are consistent with the bivalent state of Fe in PB as derived
8 based on XRD analysis¹³ which showed PB consists of 57% of high-spin Fe(III) and 43% of low-
9 spin Fe(II) and confirmed by an XAS study³⁹. The bivalent state of Fe is also consistent with our
10 XPS results, which we described earlier in the manuscript.
11
12

13 It is to be noted that the observed energy shift between Fe(II) and Fe(III) in this class of
14 materials as measured at half-height of about 0.9 eV is significantly less than the shifts observed
15 from other classes of materials such as oxides and phosphates. For example, the energy shifts at
16 half-height for Fe(III) relative to Fe(II) in FeO is about 4.4 eV in the case of amorphous FeOOH
17 and is 4.6 eV in the case of γ -Fe₂O₃.⁴⁶ These shifts for the Fe oxides based on the first major
18 inflection point energy are about 4.2 and 4.4 eV, respectively. Furthermore, the shift for Fe(III) in
19 FePO₄ (the charged product of LiFePO₄ in an electrochemical cell) relative to Fe(II) in LiFePO₄
20 is about 4.4 eV.⁴⁷ The significantly smaller energy shift between Fe(III) and Fe(II) in PB and its
21 analogues of about 0.9 eV relative to that observed in the case of traditional oxides is likely
22 responsible for the fast redox activity observed in this class of materials.
23
24

25 Further evidence of the oxidation states of Fe in K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆ is also
26 supported by the pre-edge region (Figure 4d). The pre-edge region accounts for transitions from
27 the *1s* core states to bound unoccupied electronic states with *3d* character. These transitions are
28 forbidden by dipole selection rules but are allowed by quadrupole selection rules and, hence, the
29 weak intensity of these transitions. Enhancements in the intensity of these transitions can occur
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 due to hybridization between the metal 3d and the ligand 2p orbitals and are significantly enhanced
4 in the case of tetrahedral symmetry. An alternate approach based on soft XAS at the Fe L_{3,2}-edges
5 has been demonstrated to provide unique characteristics of the electronic structure of Fe(II) and
6 Fe(III) in K₄Fe(CN)₆ and K₃Fe(CN)₆, respectively.⁴⁸ In this case with octahedral symmetry, the
7 transitions from the L-edges to the 3d states are allowed by dipole selection rules and the t_{2g} and
8 e_g contributions are prominent in the spectra. However, soft XAS investigations do not optimally
9 lend themselves to *in situ* studies during charge and discharge of electrochemical cells and analysis
10 of the electronic structure based on hard XAS investigations are warranted.
11
12

13 As pointed out in the literature,^{49,50} the pre-K-edge peak A₁ (~7112.9 eV) for
14 K₄Fe(CN)₆·xH₂O has been assigned to the transition from the 1s core states to the unoccupied e_g
15 states of low-spin Fe(II). The pre-edge peaks A₂ (~7110.2 eV) and A₃ (7113.4 eV) for K₃Fe(CN)₆
16 have been assigned to the transition from the 1s core states to the unoccupied t_{2g} and e_g bands,
17 respectively, of low-spin Fe(III). However, the A₃ component for K₃Fe(CN)₆ also contains a
18 contribution for the 1s core state to the e_g states of low-spin Fe(II) which is present in small amount
19 based on our XPS and XAS results. The intensities of the A₂ and A₃ peaks correlate qualitatively
20 with the number of unoccupied t_{2g} and e_g states of 1 and 4, respectively, for low-spin Fe(III) and
21 0 and 4, respectively, for low-spin Fe(II).
22

23 Based on XRD¹³ and EXAFS³⁹ analysis, PB consists of about 43% of low-spin Fe(II) and
24 57% of high-spin Fe(III). Since, PB contains a significant amount of high-spin Fe(III), its pre-edge
25 region includes contributions due to transitions from the 1s core states to the unoccupied states of
26 the t_{2g} and e_g bands, which we labeled as A₄ and A₅ with peak energies at 7113.4 and ~7116.5 eV
27 (Figure 4c). The peak energy of the A₅ component is not well defined and it represents the
28 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
29 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
30 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
31 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
32 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
33 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
34 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
35 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
36 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
37 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
38 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
39 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
40 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
41 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
42 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
43 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
44 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
45 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
46 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
47 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
48 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
49 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
50 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
51 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
52 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
53 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
54 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
55 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
56 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
57 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
58 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
59 maximum in the derivative of XANES data. Due to the significantly higher binding energy for the
60 maximum in the derivative of XANES data.

A₄ component relative to that of the A₂ component for K₃Fe(CN)₆, the presence of low-spin Fe(III) in PB can be ruled out. In analogy to assignments made for high-spin and low-spin Fe(III) and Fe (II) complexes for some model compounds,⁴⁹ the A₄ component for PB is assigned to transitions from the *1s* core states to the e_g band of low-spin Fe(II) and the t_{2g} band of high-spin Fe(III). On the other hand, the A₅ component is assigned to transitions from the *1s* core states to the e_g states of high-spin Fe(III). It is to be noted that the shoulder *C* accounts for the onset of dipole allowed transitions from the *1s* core states to unoccupied states with *4p* character associated with ligand metal charge transfer processes.

In

Figure 5, we show k²-weighted EXAFS spectra and the corresponding Fourier transforms (FTs) for K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆ and our synthesized PB. The wave number (k) was defined with respect to the inner potential assigned to the edge energy at half of the normalized edge step (i.e., 0.5). Clearly, the EXAFS spectra are of high signal to noise ratio and show a great deal of similarity in the spectra between K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆ indicating similar local coordination geometry in agreement with local coordination parameters based on XRD results. In the case of K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆, the FTs display prominent contributions in the 0.9-1.8 and 1.8-3.0 Å regions, which correspond to contributions from Fe-C and Fe-N shells as one would expect based on previously derived XRD structures. The strong contribution from the second shell of Fe-N is due to focused multiple scattering effects because of the linearity of the Fe-C-N coordination as has been reported in many previous efforts.^{40,41,42,43} The local coordination geometry of Fe(II) and Fe(III) in K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆, respectively, is essentially the same.

In the case of PB, the FT includes the sum of contributions from 43% Fe(II) and 57% Fe(III). The amplitude of the 0.9-3.0 Å region of the FT for PB is reduced relative to the amplitudes of FTs for $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$ due to overlapping contributions from Fe(II) and Fe(III) with slightly different coordination numbers and distances. The 0.9-2.0 Å region of the FT for PB includes contributions from Fe(II)-6C and Fe(III)-4.5N/1.5O. The Fe-O contribution is relevant only in the case of PB because water replaces the N atoms associated with the Fe(II) vacant sites. No Fe-O contributions are expected in the case of $K_4Fe(CN)_6 \cdot xH_2O$ or $K_3Fe(CN)_6$ Fourier transforms in the 1.0-3.0 Å range. On the other hand, the 2.0-3.0 Å region includes contributions from Fe(II)-6N and Fe(III)-4.5C as well as several multiple scattering contributions. Moreover, the 4.2-5.0 Å region includes contributions from Fe(II)-6Fe(III) and Fe(III)-4.5Fe (II) and its high intensity also is due to a superfocusing multiple scattering effect.

Quantitative analysis of the FTs of $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$ proceeded using the Artemis software package.^{27,28} The goal is to test how well XAFS determined coordination distances compare with those derived from the well-established XRD structural models, which include the monoclinic with space group *C2c* for $K_4Fe(CN)_6 \cdot 3H_2O$ ²⁹ and the orthorhombic with space group *Pnca* for $K_3Fe(CN)_6$ ¹². As mentioned earlier based on XRD analysis, our commercially obtained $K_3Fe(CN)_6$ consist of the orthorhombic form rather than the monoclinic form. In addition, XAFS analysis provides information about the mean-square relative displacement (σ^2) for each coordination sphere, which includes both thermal and static disorder. Using these structural models, the backscattering amplitudes and phase shifts for all single and multiple scattering contributions were calculated using the FEFF6 Code version within the Artemis software package^{27,28} and are used to simulate the fit data. The coordination numbers (N_XRD) and average distances (R_XRD) derived from these models are listed in Table III for comparison purposes with

1
2
3 the XAFS refined values. The 1-3 Å region of the FTs was fitted using the two single scattering
4 contributions from Fe-C and Fe-N along with all multiple scattering contributions that have the
5 same distance as that of the second shell of Fe-N. The FTs were generated with k -, k^2 -, k^3 -weighted
6 EXAFS spectra over the range of 3-13 Å⁻¹ with a hanning window of 1.0 Å⁻¹ and the three data
7 sets were fitted simultaneously. The coordination number for each shell was constrained to its
8 value derived from XRD, which is shown in Table III for only the single scattering contributions.
9
10 The XAFS determined distance was related to the average XRD distance for both shells through a
11 correction factor determined alpha according to the equation $R_{\text{XAFS}} = (\alpha + 1) * R_{\text{XRD}}$ where
12 alpha is used as a free global parameter during the fit procedure. The mean-square relative
13 displacements (σ^2) for the first and second shells also were used as free parameters during the fit
14 procedure. The mean-square relative displacement for all multiple scattering paths were
15 constrained to be equal to that of the second shell since they have the same distance. A global inner
16 potential correction parameter (E_0) was used as a free parameter to make the final adjustment to
17 the inner potential and the EXAFS background was optimized during the fit procedure. The many
18 body amplitude reduction factor, which is used to calibrate the amplitude of the theoretical data to
19 the experimental data was determined to be 0.81 ± 0.06 based on analysis of EXAFS data of a Fe
20 reference foil. To be noted, the number of free parameters was well below the number of
21 independent data points in each fit. The quality of each fit was measured by the value of the
22 R_{factor} , which represents the sum of the square of residuals between measured and model data
23 normalized to the magnitude of the measured data, which is also listed in Table III. A comparison
24 of the measured and fit data of the magnitude and the real part of the FTs are shown in Figure 6.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Clearly, the fit data using the structural models described above reproduce the majority of the structural features in the measured FTs. However, the quality of the fit data using the

orthorhombic (Pnca) for $K_3Fe(CN)_6$ is superior to that of the fit data for $K_4Fe(CN)_6 \cdot xH_2O$ using the monoclinic (C2/c) model as can be confirmed both visually and through comparison of the values of the R_factor for both fits. The higher value of the R_factor for $K_4Fe(CN)_6 \cdot xH_2O$ is likely due to the presence of the anhydrous or less hydrated form, which was confirmed on the basis of XRD analysis. However, despite the higher value of the R_factor, the R_XAFS values for the Fe-C and Fe-N single scattering paths are almost identical to the R_XRD values. In the case of $K_3Fe(CN)_6$, it can also be seen that the R_XAFS for the Fe-C and Fe-N shells are close to the R_XRD values derived on the basis of the orthorhombic structural model. Hence, one is able to conclude that the XAFS determined distances of the first and second coordination spheres of Fe(II)-C and Fe(II)-N as well as Fe(III)-C and Fe(III)-N for $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$, respectively, are in excellent agreement with those derived on the basis of the well-established XRD structural models. Furthermore, the Fe(II)-C and Fe(III)-C coordination distances are similar within the uncertainty in the data despite the difference in the oxidation state of Fe in both compounds and also both having the same octahedral geometry. The similarity in the distances are consistent with previously reported results by Bianconi et al.⁵¹ Based on their analysis of EXAFS spectra with limited k-range (4-8 Å⁻¹), they reported the similarity to be within a range of ±0.02 Å. The similarity has been attributed to the fact that both Fe(II) and Fe(III) have somewhat similar electron densities due to electron back donation from Fe(II) to the CN ligand.⁴⁸ Furthermore, based on the Fe(II)/Fe(III)-C and the Fe(II)/Fe(III)-N bond distances and taking into account the collinearity of the Fe-C-N local coordination geometry, the average C-N bond distance was estimated to be 1.151 ± 0.033 Å and 1.157 ± 0.015 Å for the Fe(II) and Fe(III) systems, respectively. These values are in good agreement with the values of 1.151 and 1.154 Å based on the XRD, respectively. Thus, the difference in the EXAFS determined C-N distance for the Fe(III) system

relative to the Fe(III) system is $-0.006 \pm 0.036 \text{ \AA}$, which is within the uncertainty in the data is consistent with the value of -0.034 \AA derived utilizing the multiple scattering approach employed by Bianconi et al.⁵¹ To be noted, based on the XRD structural model, the second coordination sphere of Fe(II)-N for $\text{K}_4\text{Fe}(\text{CN})_6 \cdot x\text{H}_2\text{O}$ is split into two contributions with 1 Fe(II)-N at slightly smaller distance than that of the 5 Fe(II)-N contribution.

Furthermore, within the uncertainty in the data, the disorder for the first shell of Fe(II)-C in $\text{K}_4\text{Fe}(\text{CN})_6 \cdot x\text{H}_2\text{O}$ is similar to that of Fe(III)-C in $\text{K}_3\text{Fe}(\text{CN})_6$. On the other hand, the disorder for the second shell of Fe(II)-N is somewhat greater than that of Fe(III)-N. As pointed out in an earlier operando XAS study of iron hexacyanocobaltate ($\text{K}_{0.44}\text{Fe}_{1.56}\text{Co}(\text{CN})_6$) during charge and discharge,⁴² the change in the first shell of Fe-N distance was very small upon going from the charged state to the discharged state but the change in the disorder parameter for the first Fe-N shell was significant and proved to be a better indicator of redox activity in this material. Due to the complexity of the structure of PB, quantitative analysis of the local structure of Fe(II) and Fe(III) was investigated using the site selective approach of EXAFS spectroscopy and was not attempted in this investigation.³⁹

Since our objective is to use these compounds as fast redox active material loaded in electrodes for supercapacitors,¹⁸ we also investigated the stability of some of these compounds under the synthesis procedure commonly used to cast electrodes for supercapacitors. Comparisons of normalized XANES data of $\text{K}_4\text{Fe}(\text{CN})_6 \cdot x\text{H}_2\text{O}$ and $\text{K}_3\text{Fe}(\text{CN})_6$ loaded in the form of a boron nitride pellet and loaded in the form of an electrode suitable for use in supercapacitors are shown in Figure 7. Clearly, the $\text{K}_4\text{Fe}(\text{CN})_6 \cdot x\text{H}_2\text{O}$ material loaded in the electrode retained its structural and chemical stability and potentially can be used as an active electrode material with redox activity due to the Fe(II)/Fe(III) couple. On the other hand, the $\text{K}_3\text{Fe}(\text{CN})_6$ suffered significant

1
2
3 structural and chemical modification as a result of the electrode synthesis procedure and these
4 changes must be fully understood in order to evaluate its suitability as an active redox material for
5 supercapacitors and batteries. The mechanistic origin of the reduction of $K_3Fe(CN)_6$ as a result of
6 electrode synthesis procedure requires detailed analysis of XANES spectra as well as quantitative
7 analysis of the EXAFS spectra, which are the subject of a forthcoming paper. A proposed
8 mechanism of the reduction of $K_3Fe(CN)_6$ incorporated in a Nafion membrane has been reported
9 to occur via a sulfonate-coupled interaction by Parthasarathy et al.⁵² In the case of PB, the material
10 proved to be stable under the electrode synthesis procedures and its redox activity under in situ
11 conditions will be discussed in a separate article.¹⁸ One could argue that the electrode synthesis
12 procedures should also induce at least partial reduction of Fe(III) in PB. However, our
13 experimental evidence based on XANES analysis clearly showed no such reduction took place.¹⁸
14 The lack of Fe(III) reduction in the case of PB could be related to differences in local atomic
15 structure of Fe(III) in both materials. Fe(III) is present in the high-spin state and resides next to
16 nitrogen in the case of PB as opposed to low-spin Fe(III), which resides next to carbon in the case
17 of $K_3Fe(CN)_6$.

41 Conclusions

42
43 Based on XRD analysis, commercially obtained $K_4Fe(CN)_6 \cdot 3H_2O$ was found to consist of
44 $K_4Fe(CN)_6 \cdot 3H_2O$ which crystallizes in the monoclinic lattice with space group *C2c* and a less
45 hydrated or anhydrous phase of $K_4Fe(CN)_6$ which crystallizes in the orthorhombic lattice with
46 space group *Bmmm*. Our commercially obtained $K_3Fe(CN)_6$ was found to consist of a pure phase
47 which crystallizes in the orthorhombic lattice with space group *Pnca*. The XRD of our synthesized
48 PB was found to consist of a single phase with composition $(KOH)_{0.7}Fe(III)_{4/3}Fe(II)(CN)_6 \cdot 4.0H_2O$

which crystallizes in the cubic lattice with space group $Fm\bar{3}m$. Both XPS and XAS confirmed the presence of ferrous Fe(II) at the surface and bulk levels in $K_4Fe(CN)_6 \cdot xH_2O$. However, XPS revealed the presence of majority (70%) ferric Fe(III) and minority (30%) Fe(II) in the surface region of $K_3Fe(CN)_6$ while XAS confirmed the presence of mostly Fe(III) at the bulk level. Both XPS and XAS confirmed the presence of Fe(II) and Fe(III) in the surface and bulk regions of PB. Based on XPS results, the fraction of Fe(II) was estimated to be near 43% in our synthesized PB in agreement with previously reported XRD results. Based on XPS and energy dispersive spectroscopy (EDXS) of PB, the K content was significantly below the value derived on the basis of XRD analysis and its composition stoichiometry is closer to $(KOH)_xFe(III)_{4/3}Fe(II)(CN)_6 \cdot 4H_2O$ where x is significantly below < 0.7 . Analysis of the pre-edge region in the X-ray absorption near edge structure confirmed the presence of high-spin Fe(III) in PB. The Fourier transforms for $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$ were qualitatively similar displaying clear contributions from the first two shells of Fe-C and Fe-N. However, the Fourier transform of PB is more complex displaying contributions from Fe(II)-C and Fe(II)-N and Fe(III)-N/O and Fe(III)-C as well as strong Fe-Fe contribution because of the super focusing multiple scattering effect as has been confirmed in a previous XAFS study.³⁹

Quantitative analysis of the of the Fourier transforms revealed local coordination distances for the Fe(II)-C and Fe(II)-N in $K_4Fe(CN)_6 \cdot xH_2O$ and Fe(III)-C and Fe(III)-N in $K_3Fe(CN)_6$ that are consistent with those based on the well-established XRD monoclinic and orthorhombic structural models, respectively. The disorder parameters, which include the sum of thermal and static disorders, were also estimated for the Fe-C and Fe-N single scattering contributions for both $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$ and were found to be similar within the uncertainty in the data. Accurate determination of the disorder parameters may prove essential to follow redox activity in

1
2
3 situations where the changes in the first shell distance and the energy shift in the XANES data
4 versus redox activity are very small.
5
6

7
8 The stability of these compounds under the synthesis procedures used to cast electrodes for
9 supercapacitors and batteries must be understood in order to better understand their potentials as
10 redox active centers. This *ex situ* XAS study will be used to guide the analysis of *in situ* XAS data
11 collected from a PB containing supercapacitor to understand the mechanistic origin of
12 pseudocapacitance in these devices, which will be published in a separate article.¹⁸
13
14
15
16
17
18
19
20
21

22 Acknowledgements 23

24 This work was financially supported by the Office of Naval Research under the award
25 numbers N000141712362 and N0001419WX00662. The XAS experiments were conducted on
26 beamline 20-BM, which is supported by resources of the Advanced Photon Source, an Office of
27 Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by
28 Argonne National Laboratory and was supported by the U.S. DOE under Contract No. DEAC02–
29 06CH11357.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

References:

1. A. Burke, "Ultracapacitors: Why, How, and Where is the Technology." *J. Power Sources*, **91**, 37–50 (2000).
2. Y. Wang, Y. Song, Y. Xia, "Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications." *Chem. Soc. Rev.*, **45**, 5925–5950 (2016).
3. S. Zhang, N. Pan, "Supercapacitors Performance Evaluation." *Adv. Energy Mater.*, **5**, 1–19 (2015).
4. Z.S. Iro, C. Subramani, S.S. Dash, "A Brief Review on Electrode Materials for Supercapacitor." *Int. J. Electrochem. Sci.*, **11**, 10628–10643 (2016).
5. Y. Yin, J. Zhou, A.N. Mansour, X. Zhou, "Effect of NaI/I₂ Mediators on Properties of PEO/LiAlO₂ based All-Solid-State Supercapacitors." *J. Power Sources*, **196**, 5997–6002 (2011).
6. A.N. Mansour, J. Zhou, X. Zhou, "X-ray Absorption Spectroscopic Study of Sodium Iodide and Iodine Mediators in a Solid-State Supercapacitor." *J. Power Sources*, **245**, 270–276 (2014).
7. J. Zhou, J. Cai, S. Cai, X. Zhou, A.N. Mansour, "Development of All-Solid-State Mediator-Enhanced Supercapacitors with Polyvinylidene Fluoride/Lithium Trifluoromethanesulfonate separators." *J. Power Sources*, **196**, (2011) 10479–10483.
8. J. Zhou, Y. Yin, A.N. Mansour, X. Zhou, "Experimental Studies of Mediator-Enhanced Polymer Electrolyte Supercapacitors." *Electrochem. Solid-State Lett.*, **14**, A25-A28 (2011).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

9. Y. Xu, S. Zheng, H. Tang, X. Guo, H. Xue, H. Pang, "Prussian Blue and its Derivatives as Electrode Materials for Electrochemical Energy Storage." *Energy Storage Mater.*, **9**, 11–30 (2017).

10. J.F. Keggin, F.D. Miles, "Structures and Formulae of the Prussian Blues and Related Compounds." *Nature*, **137**, 577-578 (1936).

11. M.J. Willans, R.E. Wasylisen, and R. McDonald, "Polymorphism of Potassium Ferrocyanide Trihydrate as Studied by Solid-State Multinuclear NMR Spectroscopy and X-ray Diffraction." *Inorg. Chem.*, **48(10)**, 4342-4353 (2009).

12. B.N. Figgis, B.W. Skelton and A.H. White, "Crystal Structures of the Simple Monoclinic and Orthorhombic Polytypes of Tripotassium Hexacyanoferrate (III)." *Aust. J. Chem.*, **31**, 1195-1199 (1978).

13. H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, "The Crystal Structure of Prussian Blue: $\text{Fe}_4[\text{Fe}(\text{CN})_6]3.x\text{H}_2\text{O}$." *Inorg. Chem.*, **16**, 2704–2710 (1977).

14. R.D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." *Acta Cryst.*, **A32**, 751-767 (1978).

15. D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, "The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage." *Angew. Chemie - Int. Ed.*, **54**, 3432–3448 (2015).

16. H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, "Aqueous Rechargeable Li and Na Ion Batteries." *Chem. Rev.*, **114**, 11788–11827 (2014).

17. C.D. Wessells, S. V. Peddada, R.A. Huggins, Y. Cui, "Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries." *Nano Lett.*, **11**, 5421–5425 (2011).

1
2
3
4
5 18. X. Qiao, Z. Yan, C. Zhang, Y. Wang, M. Akin, X. Zhou, A.N. Mansour, J.K. Ko, G.H. Waller,
6 C.A. Martin and M. Balasubramanian, "Electrochemical and in situ Spectroscopic Study of the
7 Effect of Prussian Blue as a Mediator in a Solid-State Supercapacitor." Under review for
8 publication in *J. Electrochem. Soc.*, July 2021.

9
10 19. M. Oku, "Kinetics of Photoreduction of Fe(III) in Solid Solution K₃(Fe,M)(CN)₆ (Where M
11 is Cr, Co) during XPS Measurements." *J. Electron Spectroscopy and Related Phenomena*, **67**,
12 401-407 (1994).

13
14 20. J.F. Moulder, W.F. Stickle, P.E. Sohol, K.D. Bomben, "Handbook of X-ray Photoelectron
15 Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of
16 XPS Data." Edited by J. Chastain and R.C. King, Jr. ULVAC-PHI, Inc., Enzo, Chigasaki,
17 Japan, 1995.

18
19 21. N. Vannerberg, "The ESCA-Spectra of Sodium and Potassium Cyanide and of the Sodium and
20 Potassium Salts of the Hexacyanometallates of the First Transition Metal Series." *Chemica
21 Scripta*, **9**, 122-126 (1976).

22
23 22. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Mullenberg, "Handbook of X-
24 ray Photoelectron Spectroscopy." Perkin-Elmer Corporation, Physical Electronics Division,
25 Eden Prairie, MN 55344 (1979).

26
27 23. K.B. Yatsimirskii, V.V. Nemoshkalenko, Y.P. Makarenko, V.G. Aleshin, V.V. Zhilinskaya
28 and N.A. Tomashevsky, "Use of X-ray Photoelectron and Mössbauer Spectroscopies in the
29 Study of Iron Pentacyanide Complexes." *J. Electron Spectroscopy Rel. Phenomena*, **10**, 239-
30 245 (1977).

31
32 24. K. Lu and E.A. Stern, "Size Effect of Powdered Sample on EXAFS Amplitude." *Nucl. Instrum.
33 Methods*, **212**, 475-478 (1983).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

25. E.A. Stern and K. Kim, "Thickness Effect on the Extended X-ray-Absorption Fine Structure Amplitude." *Phys. Rev. B* **23**, 3781-3787 (1981).

26. R.D. Deslattes, E.G. Kessler, Jr., P. Indelicato, L. de Billy, E. Lindroth and J. Anton, "X-ray Transition Energies: New Approach to a Comprehensive Evaluation." *Rev. Mod. Phys.*, **75(1)**, 35-99 (2003).

27. M. Newville, "IFEFFIT: Interactive EXAFS Analysis and FEFF Fitting." *J. Synchrotron Radiat.*, **8**, 322–324 (2001).

28. B. Ravel, M. Newville, "ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-ray Absorption Spectroscopy using IFEFFIT." *J. Synchrotron Radiat.*, **12**, 537–541 (2005).

29. R. Kiriyama, H. Kiriyama, T. Wada, N. Niizeki, and H. Hirabayashi, "Nuclear Magnetic Resonance and X-Ray Studies of Potassium Ferrocyanide Trihydrate." *J. Phys. Soc. Jpn.*, **19**, 540-549 (1964).

30. "Standard X-ray Diffraction Powder Patterns." *Natl. Bur. Stand. (U. S.) Monogr.*, **25**, section 18, 56-56 (1981).

31. "Standard X-ray Diffraction Powder Patterns." *Natl. Bur. Stand. (U. S.) Monogr.*, **25**, section 9, 35-36 (1971).

32. Y. Morioka, K. Toriumi, T. Ito, A. Saito, I. Nakagawa. "Crystal Structures of the Room- and Low-Temperature Phases of Monoclinic Potassium Ferricyanide". *J. Phys. Soc. Jpn.*, **54**, 54 (1985), 2184-2189.

33. P.R. Bueno, F.F. Ferreira, D.R. Gimenez, G.O. Setti, R.C. Faria, C. Gabrielli, H. Perrot, Garcia J.J. Jareno, F. Vicente, "Synchrotron Structural Characterization of Electrochemically Synthesized Hexacyanoferrates Containing K+: a Revisited Analysis of Electrochemical Redox." *J. Phys. Chem. C*, **112**, 13264-13271 (2008).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

34. L.Y. Johansson, R. Larsson, J. Blomquist, C. Cederström, S. Grapengiesser, U. Helgeson, L.C. Moberg, and M. Sundbom, "X-ray Photoelectron and Mössbauer Spectroscopy on a Variety of Iron Compounds." *Chem. Phys. Lett.*, **24(4)**, 508-513 (1974).

35. S.J. Gerber and E. Erasmus, "Electronic Effects of Metal Hexacyanoferrates: An XPS and FTIR Study." *Mat. Chem. Phys.*, **203**, 73-81 (2018).

36. J.-G. Wang, Z. Zhang, X. Liu, and B. Wei, "Facile Synthesis of Cobalt Hexacyanoferrate / Graphene Nanocomposites for High-Performance Supercapacitor." *Electrochimica Acta*, **235**, 114-121 (2017).

37. L. Qian and X. Yang, "Preparation of Cobalt Hexacyanoferrate Nanowires using Carbon Nanotubes as Templates." *Talanta*, **69**, 957-962 (2006).

38. Y. Nanba and K. Okada, "Charge Transfer Effects on Fe 2p X-ray Photoemission of RbMn[Fe(CN)]₆, K₃Fe(CN)₆, and K₄Fe(CN)₆." *J. Phys. Soc. Jpn.*, **80**, 074710(1-6) (2011).

39. P. Glatzel, L. Jacquemet, U. Bergmann, F.M.F. de Groot, and S.P. Cramer, "Site-Selective EXAFS in Mixed-Valence Compounds Using High-Resolution Fluorescence Detection: A Study of Iron Prussian Blue." *Inorg. Chem.*, **41**, 3121-3127 (2002).

40. M. Giorgetti, S.D. Longa, and M. Benfatto, "EXAFS and XANES simulation of Fe/Co hexacyanoferrate spectra by GNXAS and MXAM." *14th Inter. Conf. on X-ray Absorption Fine Structure (XAFS14)*, *J. Phys.: Conf. Series*, **190**, 012145 (1-6) (2012).

41. M. Giorgetti, L. Guadagnini, D. Tonelli, M. Minicucci, and G. Aquilanti, "Structural Characterization of Electrodeposited Copper Hexacyanoferrate Films by Using a spectroscopic Multi-Technique Approach." *Phys. Chem. Chem. Phys.*, **14**, 5527-5537 (2012).

42. M. Giorgetti, A. Mignani, G. Aquilanti, P. Conti, M. Fehse, and L. Stievano, "Structural and Electronic Studies of Metal Hexacyanoferrates Based Cathodes for Li Rechargeable Batteries,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

16th Inter. Conf. on X-ray Absorption Fine Structure (XAFS16)." J. Phys.: Conf. Ser., **712**, 012127 (1-5) (2016).

43. M. Giorgetti, "A Review on Structural Studies of Batteries and Host Materials by X-ray Absorption Spectroscopy." *ISRN, Mat. Sci.*, **2013**, 1-22 (2013).

44. H. Niwa, W. Kobayashi, T. Shibata, H. Nitani, and Y. Moritomo, "Invariant Structure of Substituted Element in Metal-Hexacyanoferrate." *Scientific Reports*, **7**, 13225 (1- 8) (2017).

45. A. Mullaliu, J. Asenbauer, G. Aquilanti, S. Passerini, and M. Giorgetti, "Highlighting the Reversible Manganese Electroactivity in Na-Rich Manganese Hexacyanoferrate Material for Li- and Na-Ion Storage." *Small Methods*, 1900529 (1-7), (2019).

46. M. B. Sassin, A. N. Mansour, K. A. Pettigrew, D. R. Rolison, and J. W. Long, "Electroless Deposition of Conformal Nanoscale Iron Oxide on Carbon Nanoarchitectures for Electrochemical Charge Storage." *ACS Nano*, **4(8)**, 4505–4514 (2010).

47. D. N. Wong, D. A. Wetz, J. M. Heinzel, and A. N. Mansour, "Characterizing rapid capacity fade and impedance evolution in high rate pulsed discharged lithium iron phosphate cells for complex, high power loads." *J. Power Sources*, **328**, 81-90 (2016).

48. R. K. Hocking, E. C. Wasinger, F. M. F. de Groot, K. O. Hodgson, B. Hedman, and E. I. Solomon, "Fe L-Edge XAS Studies of K₄[Fe(CN)₆] and K₃[Fe(CN)₆]: A Direct Probe of Back-Bonding." *J. Am. Chem. Soc.*, **128**, 10442-10451 (2006).

49. T.E. Westre, P. Kennepohl, J.G. DeWitt, B. Hedman, K.O. Hodgson, and E.I. Solomon, "A Multiplet Analysis of Fe K-edge 1s-3d Pre-edge Features of Iron Complexes." *J. Am. Chem. Soc.*, **119**, 6297-6314 (1997).

1
2
3
4 50. T. Yokoyama, T. Ohta, O. Sato, and K. Hashimoto, "Characterization of Magnetic Co-Fe
6 Cyanides by X-ray Absorption Fine Structure spectroscopy." Phys. Rev. B, **58**, 8257-8266
7 (1998).
8
9
10
11 51. A. Bianconi, M. Dell'Ariccia, P. J. Durham and J. B. Pendry, "Multiple-Scattering Resonances
12 and Structural Effects in the X-ray-Absorption Near-Edge Spectra of FeII and FeIII
13 Hexacyanide Complexes." Phys. Rev. B, **26(12)**, 6502-6508 (1982).
14
15
16
17
18 52. M. Parthasarathy, C. S. Gopinath, and V. K. Pillai, "Auto reduction of Cyanoferrate(III) Ions
19 in a Polymer Electrolyte Membrane: ALL Solid State Electrochemical and Spectroscopic
20 Investigations." Chem. Mater., **18**, 5244-5252 (2006).
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table I. Summary of XPS atomic percentages for $K_4Fe(CN)_6 \cdot xH_2O$, $K_3Fe(CN)_6$ and PB as determined based on the integrated areas and the sensitivity factors for the C 1s, N1s, O 1s, K 2p and Fe 2p_{3/2} regions. The values in parenthesis for the K/Fe, N/Fe and O/Fe ratios were derived based on nominal stoichiometry as listed in the table where the XRD determined stoichiometry for PB was used. The surface composition was also included after normalizing the N stoichiometry to 6 since it has the least surface contamination relative to all other components.

Sample	$K_4Fe(CN)_6 \cdot xH_2O$	$K_3Fe(CN)_6$	PB $(KOH)_xFe_{2.33}(CN)_6 \cdot zH_2O$
Atomic % C	40.7	43.8	46.1
Atomic % N	22.8	26.5	27.2
Atomic % O	9.8	6.6	13.3
Atomic % K	22.5	18.5	0.54
Atomic % Fe	4.2	4.7	12.9
K/Fe ratio	5.3 (4)	4.0 (3)	0.042 (0.3)
N/Fe ratio	5.4 (6)	5.7 (6)	2.1 (2.6)
O/Fe ratio	2.3 (3)	1.4 (0)	1.0 (2.0)
Surface composition	$K_{5.9}Fe_{1.1}C_{10.9}N_{6.0}O_{2.6}$	$K_{4.2}Fe_{1.1}C_{9.9}N_{6.0}O_{1.5}$	$K_{0.1}Fe_{2.8}C_{10.7}N_{6.0}O_{2.9}$

1
2
3 **Table II.** Summary of XPS deconvolution results, which includes binding energy (BE) full-
4 width-at-half-maximum (FWHM) and atomic percentages for each deconvoluted chemical state.
5
6

Sample	$K_4Fe(CN)_6 \cdot xH_2O$	$K_3Fe(CN)_6$	PB (KOH) _x Fe _{2.33} (CN) ₆ ·zH ₂ O	
XPS Region	BE (FWHM) Area/At.%	BE (FWHM) Area/At.%	BE (FWHM) Area/At.%	Chemistry
C 1s	285.02 (1.41) 91.8/37.3 286.36 (1.09) 3.4/1.4 288.35 (1.56) 4.8/2.0	284.84 (1.21) 96.7/42.4 286.02 (1.09) 3.3/1.4	284.90 (1.34) 65.5/30.2 286.21 (1.50) 23.6/10.9 288.77 (1.94) 10.9/5.0	C-H, C≡N C-O, C-N O-C=O, C=O
N 1s	398.00 (1.40) 92.7/21.1 402.18 (1.13) 2.9/0.7 407.25 (1.13) 4.3/1.0	398.00 (1.15) 100/26.5	398.00 (1.28) 79.9/21.7 399.62 (2.00) 15.1/4.1 402.45 (1.39) 5.0/1.4	C≡N C-N NO NO ₃
O 1s	531.02 (1.36) 15.5/1.5 532.71 (1.69) 84.5/8.3	532.29 (2.38) 100/6.6	532.23 (1.87) 84.0/11.2 533.52 (1.76) 16.0/2.1	OH group H ₂ O, NO ₃ , C=O C-O
K 2p _{3/2} K 2p _{1/2}	293.21 (1.48) 67.0/15.1 295.98 (1.48) 33.0/7.4	292.76 (1.24) 66.6/12.3 295.53 (1.22) 33.4/6.2	293.74 (1.16) 70.8/0.38 296.53 (1.10) 29.2/0.16	K(I) K(I)
Fe 2p _{3/2}	708.79 (1.43) 100/4.2	708.43 (1.38) 29.1/1.4 709.97 (1.11) 52.2/2.4 711.34 (1.35) 18.6/0.9	708.82 (1.33) 30.2/3.9 710.37 (3.03) 48.6/6.2 712.56 (2.19) 8.6/1.1 715.07 (3.26) 12.6/1.6	Fe (II) ¹ Fe (III) Fe(III) satellite Fe(III) satellite
Fe 2p _{3/2}			708.78 (1.21) 42.7/5.5 710.33 (3.45) 38.2/4.9 712.34 (2.67) 8.6/1.1 715.24 (3.06) 10.5/1.4	Fe (II) ² Fe (III) Fe(III) satellite Fe(III) satellite

35 ¹ A combined Gaussian Lorentzian line shape was used to fit this component, which resulted in a
36 χ^2 value of 2.07. Based on this fit the fraction of Fe(II) is 19.5%, which is well below the value
37 expected based on XRD analysis for PB of 42.9%.

41
42 ² An asymmetric line shape was used to fit this component, which resulted in a χ^2 value of 1.31
43 significantly below that of the combined Gaussian Lorentzian line shape. Based on this fit, the
44 fraction of Fe(II) is 42.6%, which is in close agreement with the value expected based on XRD
45 analysis for PB of 42.9%.

1
2
3 **Table III. Summary of quantitative analysis of XAFS spectra listing the structural parameters from**
4 **XAFS and XRD for comparison purposes.**
5
6

8 9 Sample	10 Model	11 X-Y Pair	12 N_XRD	13 R_XRD (\AA)	14 R_XAFS (\AA)	15 $10^3 \times \sigma^2$ (\AA^2)	16 E ₀ (eV)	17 R_Factor
18 19 $\text{K}_4\text{FeCN}_6 \cdot x\text{H}_2\text{O}$	20 21 Monoclinic S.G: <i>C2c</i>	22 Fe(II)-C	23 6	24 1.922	25 1.924(0.017)	26 3.9(2.4)	27 -5.1(2.1)	28 0.098
		29 Fe(II)-N	30 1	31 3.042	32 3.046(0.028)	33 6.0(2.2)		
		34 Fe(II)-N	35 5	36 3.077	37 3.081(0.028)	38 6.0(2.2)		
39 40 $\text{K}_3\text{Fe}(\text{CN})_6$	41 42 Orthorhombic S.G: <i>Pnca</i>	43 Fe(III)-C	44 6	45 1.936	46 1.946(0.008)	47 2.2(1.1)	48 -1.6(1.8)	49 0.040
		50 Fe(III)-N	51 6	52 3.083	53 3.100(0.013)	54 3.7(1.0)		

55
56 N_XRD is the coordination number derived from XRD data and was used as constant during the
57 fit. Structural parameters, which were free to vary during the fit procedure include the coordination
58 distance (R_XAFS), mean square relative displacement (σ^2) of the first and second shells, and the
59 inner potential parameter (E₀), which is used to define the electron wave number. The many body amplitude
60 reduction factor (S_0^2), which is normally used to calibrate the amplitudes of the experimental and theoretical
XAFS spectra was estimated to be 0.81 ± 0.06 from analysis of XAFS spectra of a Fe reference foil.

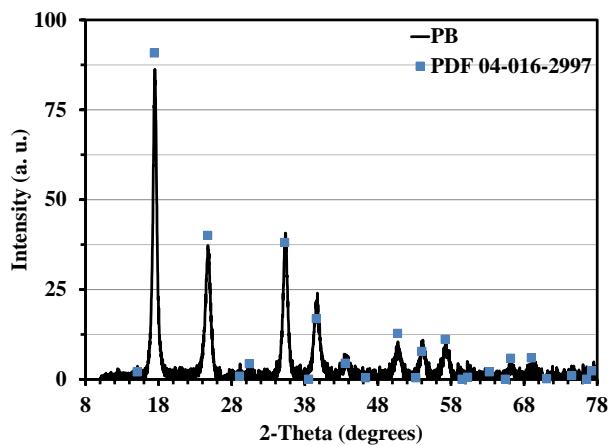


Figure 1. XRD data of our synthesized PB powder material along with the position of Bragg diffraction peaks from PDF 04-016-2997 for a material with composition listed as $K_{0.525}Fe_{1.75}(CN)_{4.5}(OH)_{0.525}(H_2O)_{2.98}$, which can be written as $(KOH)_{0.7}Fe_{2.33}(CN)_6 \cdot 4.0(H_2O)$.

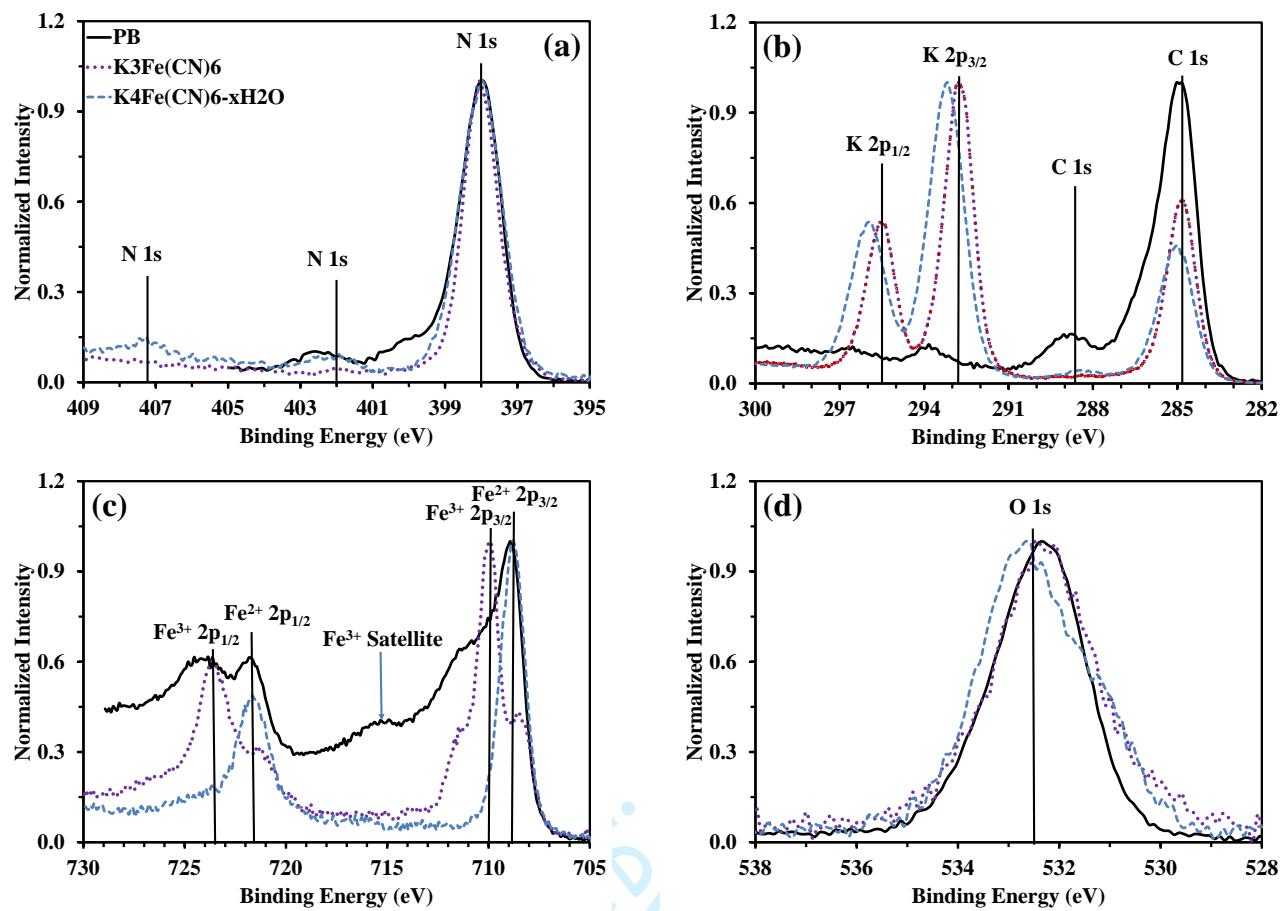


Figure 2. Comparison of N 1s (a), C 1s and K 2p (b), Fe 2p (c), and O 1s (d) XPS spectra for K₄Fe(CN)₆·xH₂O, K₃Fe(CN)₆ and PB ((KOH)_xFe_{2.33}(CN)₆·zH₂O).

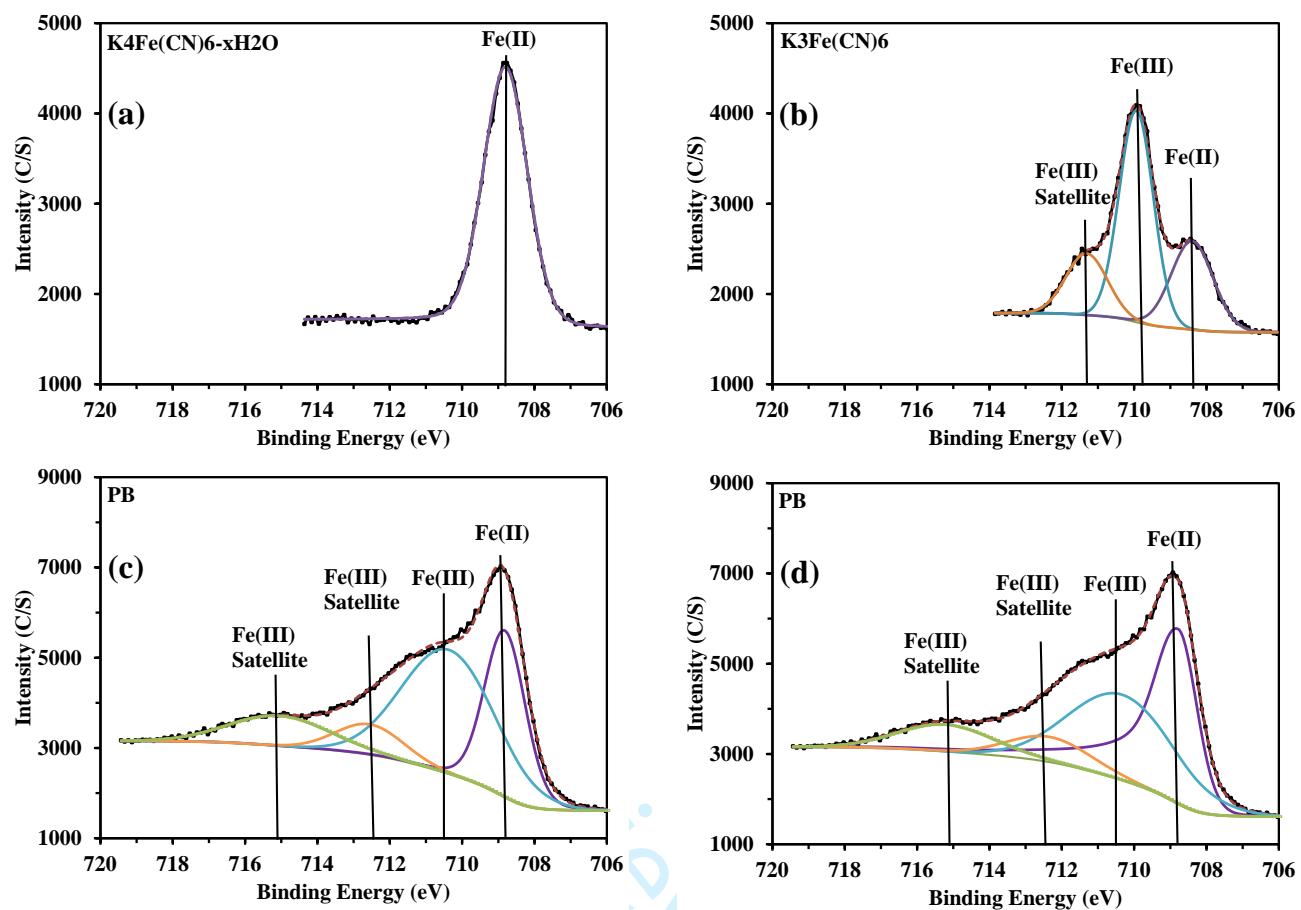


Figure 3. Curve fit analyses displaying the measured (solid black curve) and simulated (dash blue curve) along with the deconvoluted components for the Fe 2p_{3/2} region of K₄Fe(CN)₆·xH₂O (a) K₃Fe(CN)₆ (b) and PB (c) and (d). The spectra were deconvoluted using a combined Gaussian Lorentzian line shape for all components except in (d) where an asymmetric line shape was used for the Fe(II) component, which yielded significantly lower χ^2 value of residuals relative to the fit in (c).

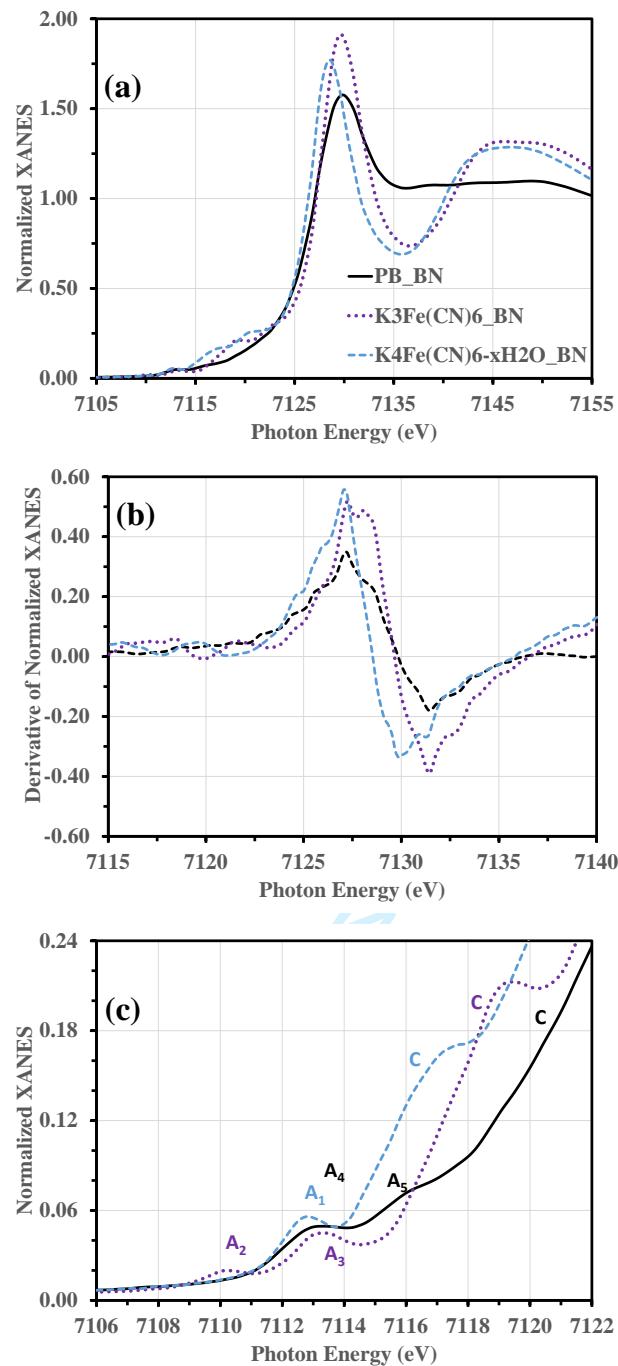


Figure 4. Comparison of normalized XANES (a), their derivative (b), and an expanded view of the pre-edge region (c) for K₄Fe(CN)₆·xH₂O, K₃Fe(CN)₆ and PB.

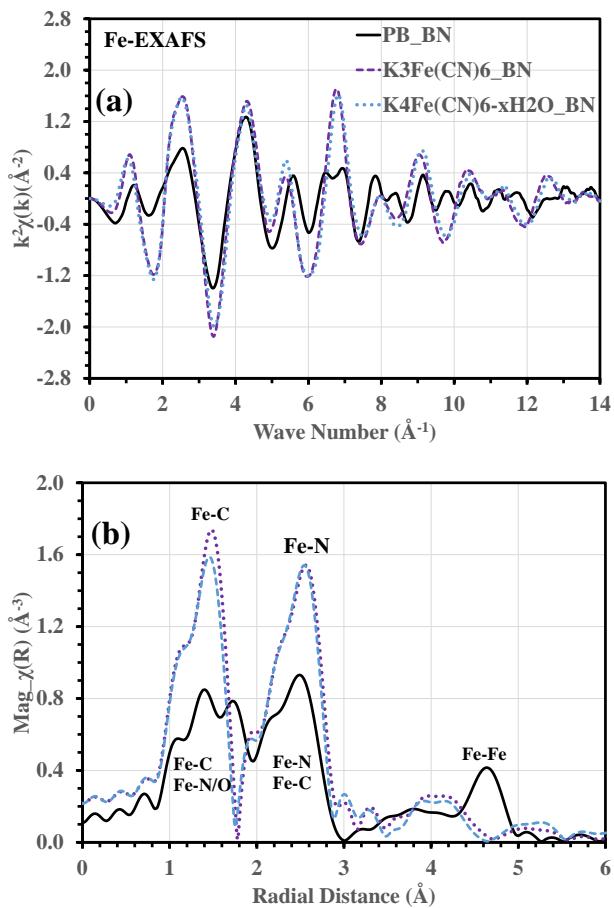


Figure 5. Comparison of normalized k^2 -weighted EXAFS spectra (a) and their Fourier transforms (b) for $K_4Fe(CN)_6 \cdot xH_2O$, $K_3Fe(CN)_6$ and PB material loaded in the form BN pellets. The Fourier transforms were performed over the k -range 3.0-13.83 Å⁻¹ and a Hanning window of 1.0 Å⁻¹. The Fe-O contribution is relevant only in the case of PB because water replaces the N atoms associated with the Fe(II) vacant sites. No Fe-O contributions are expected in the case of $K_4Fe(CN)_6 \cdot xH_2O$ and $K_3Fe(CN)_6$ Fourier transforms in the 1.0-3.0 Å range.

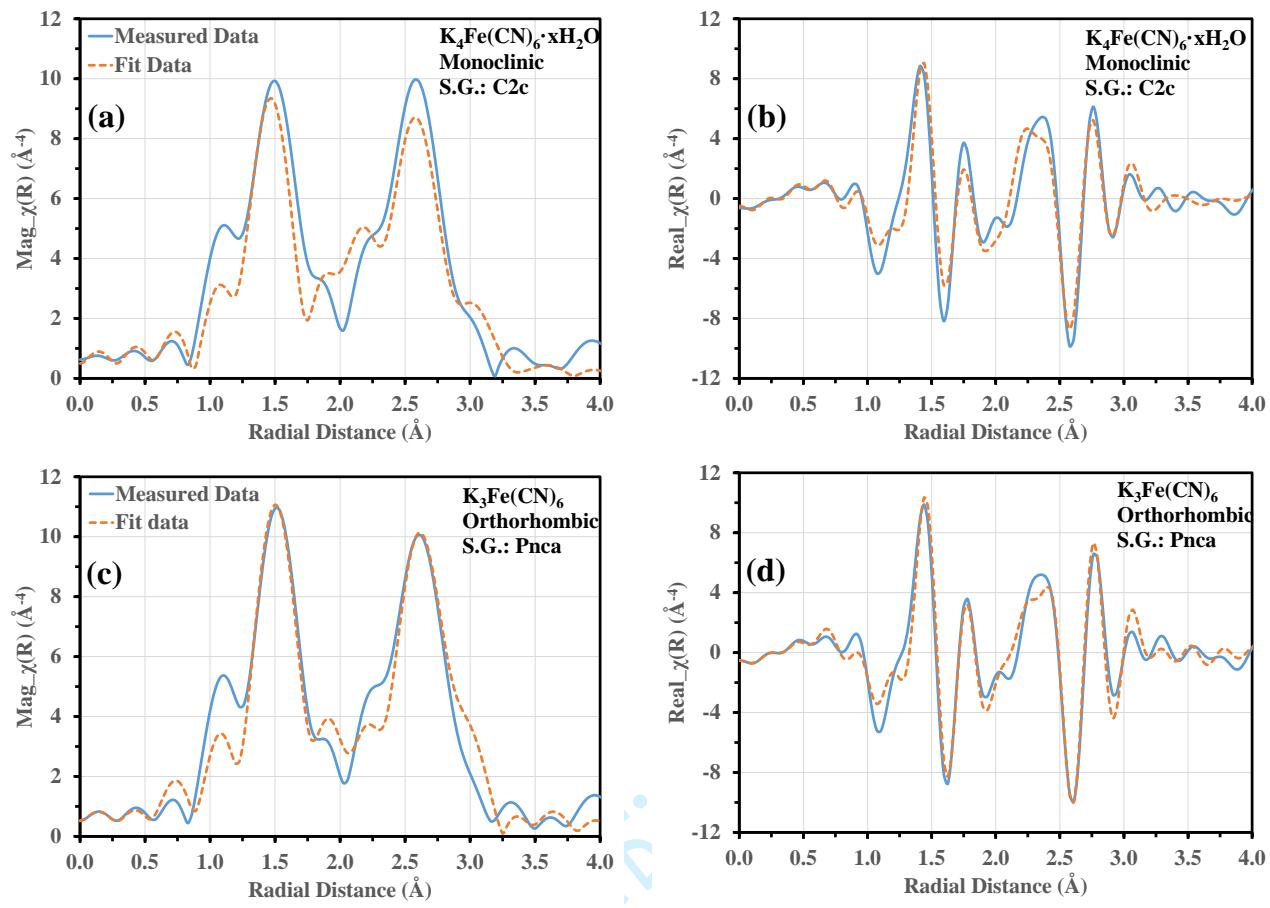


Figure 6. Comparison of the magnitude (a and c) and real part (b and d) of Fourier transforms derived from the measured data (solid line) and fit data (dash line) for $\text{K}_4\text{Fe}(\text{CN})_6 \cdot x\text{H}_2\text{O}$ using backscattering amplitudes and phase shifts generated from the monoclinic lattice with space group $C2c$ (a and b) and for $\text{K}_3\text{Fe}(\text{CN})_6$ using backscattering amplitudes and phase shifts generated from the orthorhombic lattice with space group $Pnca$ (c and d). The Fourier transforms were generated from k^3 -weighted EXAFS spectra over the range $3\text{--}13.0 \text{ \AA}^{-1}$ with a Hanning window of 1.0 \AA^{-1} and the fitted range in r-space was $1.0\text{--}3.0 \text{ \AA}$.

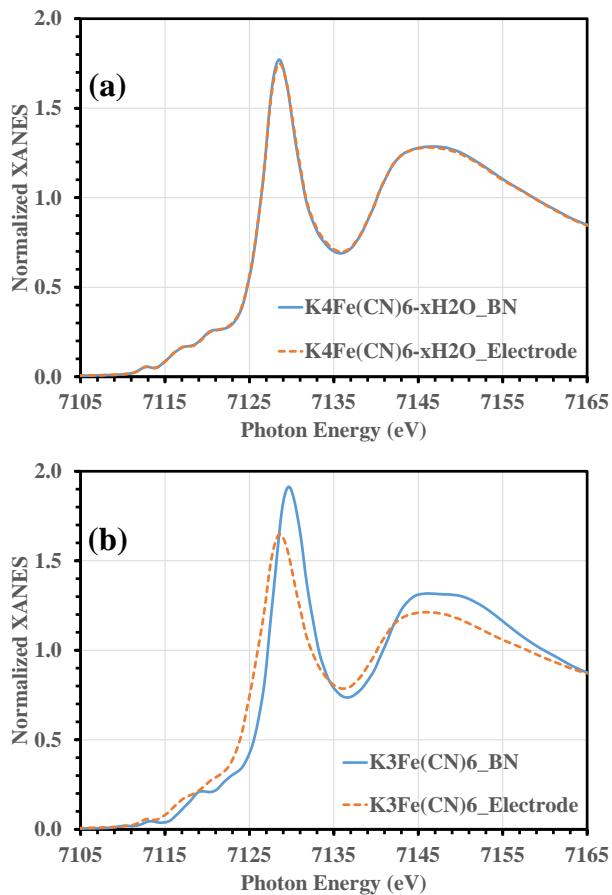


Figure 7. Comparison of normalized XANES data of $\text{K}_4\text{Fe}(\text{CN})_6 \cdot \text{xH}_2\text{O}$ (a) and $\text{K}_3\text{Fe}(\text{CN})_6$ loaded in the form of a boron nitride pellet (_BN) and loaded in the form of an electrode (_Electrode) suitable for use in a supercapacitor.