

Boric Acid Removal with Polyol-Functionalized Polyether Membranes

Matthew R. Landsman^{1#}, Frederick Rivers^{2#}, Benjamin J. Pedretti², Benny D. Freeman²,
Desmond F. Lawler¹, Nathaniel A. Lynd², and Lynn E. Katz^{1*}

[#]These authors contributed equally to this work (joint first authorship).

*corresponding author, lynkatz@mail.utexas.edu, 301 E Dean Keeton Street, ECJ 9.102H,
University of Texas at Austin, Austin, TX 78712 United States

¹Department of Civil, Architectural, and Environmental Engineering, The Center for Materials
for Water and Energy Systems (M-WET), University of Texas at Austin, Austin, TX 78712
United States

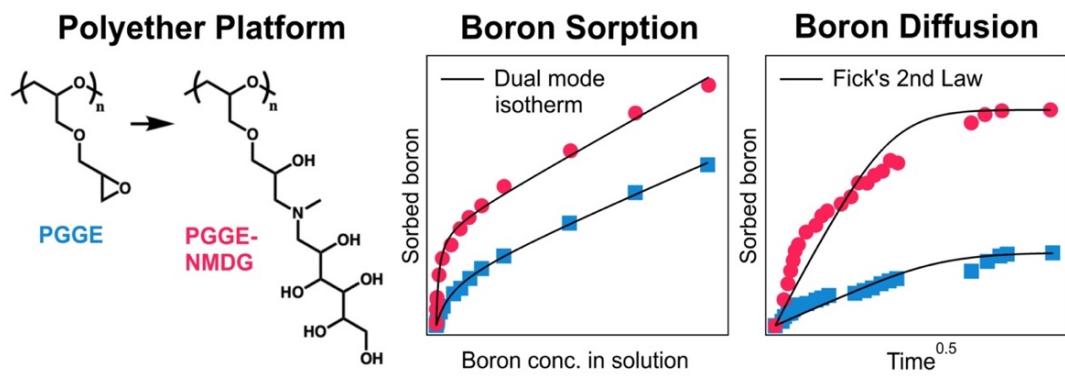
²McKetta Department of Chemical Engineering, The Center for Materials for Water and Energy
Systems (M-WET), University of Texas at Austin, Austin, TX 78712 United States

Resubmitted to *Journal of Membrane Science*

August 1, 2021

1 **Abstract**

2 Poor selectivity of conventional desalination membranes for boron often necessitates
3 multi-stage treatment trains to achieve desired boron removal for end uses such as irrigation. One
4 approach to membrane design for improved single-pass boric acid removal is via incorporation of
5 chelating ligands that selectively sorb boron. In this study, membranes based on epoxy-amine
6 crosslinked poly(glycidyl glycidyl ether) (PGGE) were synthesized and functionalized with *N*-
7 methyl-D-glucamine (NMDG), a polyol known to interact selectively with boron. PGGE and
8 PGGE-NMDG membranes exhibited boron sorption isotherms that were well-described by dual
9 mode isotherms. PGGE-NMDG sorbed 2.5 mmol B/g dry polymer from a neutral aqueous solution
10 containing 100 mmol B/L, which was almost three times the adsorption density of a commercial
11 boron selective resin, Amberlite IRA743. The membranes were regenerated in acid without a
12 significant loss of boron sorption capacity over four cycles. Interactions between boron and
13 NMDG and PGGE sites (*e.g.*, epoxides) impacted boron diffusion in both membranes. The use of
14 ligand functionalized membranes to capture target solutes such as boron requires high loading of
15 interacting sites to maximize uptake capacity. Establishing fundamental structure/property rules
16 for boron selectivity could lead to new material designs with improved boron separation properties
17 for water purification.


18

19 **Keywords:** poly(allyl glycidyl ether), *N*-methyl-D-glucamine, boron, water reuse, selective
20 capture

21 **Highlights**

- PGGE membranes were synthesized and functionalized with NMDG for boron removal
- Boron sorption in the membranes was reversible and exhibited dual mode behavior
- Boron diffusion was influenced by specific interactions with PGGE and NMDG sites
- Boron capture by polyol membranes requires high capacities or frequent regeneration

27 Graphical Abstract

29 **1. Introduction**

30 Expanding current water resources to nontraditional sources of water such as seawater,
31 brackish water, municipal/industrial wastewater, and produced water from oil/gas industries
32 would help disrupt linkages between food, water, and energy known as the food-water-energy
33 nexus. Membrane separation processes provide a promising option to achieve water security
34 because they can remove a wide variety of solutes with greater energy-efficiency and smaller
35 footprints than many traditional techniques [1]. In particular, reverse osmosis (RO) has served as
36 a prominent technology for brackish water and seawater desalination for several decades [2,3]
37 and it plays a key role in potable reuse of municipal wastewater [4,5]. However, a challenge
38 limiting the potential for RO to treat unconventional waters is the removal of small, neutral
39 solute from such water (*e.g.*, boric acid, N-nitrosodimethylamine, 1,4-dioxane, urea). The
40 electrostatic- and size-based interactions governing rejection of such solutes in RO membranes
41 are weaker than those of charged and larger solutes. In particular, poor rejection of boric acid,
42 $\text{B}(\text{OH})_3$ – the dominant form of boron at circumneutral pH – is of great interest because boron's
43 toxicity to some plants limits the reusability of many waters for crop irrigation [6–8]. Maximum
44 boron concentrations in the range of 0.5–1.0 mg/L are common for irrigation of several sensitive
45 crops (*e.g.*, wheat, beans), so boron removal during seawater desalination often requires at least
46 90% rejection of an influent containing 5 mg B/L [9,10]. For comparison, boron concentrations
47 in nontraditional waters relevant to water reuse can significantly exceed maximum allowable
48 concentrations (*e.g.*, 120 mg B/L in a produced water sample from the Eagle Ford shale play
49 [11]; 2,000 mg B/L in an industrial wastewater from a boric acid production plant in Turkey
50 [12]), thus favoring the development of treatment trains with superior boron removal properties.

51 Currently, desalination plants often employ multi-stage RO and/or post-treatment using
52 boron-selective resins (BSRs) to meet boron removal goals. Multi-stage RO incorporates
53 intermediate pH adjustments to convert boric acid to borate anion, $\text{B}(\text{OH})_4^-$, because borate is
54 more easily removed than boric acid via charge repulsion and size exclusion mechanisms (*i.e.*,
55 the membrane rejection of borate is substantially higher than that of boric acid) [13,14]. The
56 Ashkelon desalination plant in Israel uses a four-stage RO process with intermediate pH
57 adjustments to achieve product water boron concentrations of <0.4 mg/L while controlling
58 mineral scaling [15,16].

59 BSRs containing polyols such as *N*-methyl-D-glucamine (NMDG) remove boron via
60 chelation due to the high affinity of vicinal hydroxyl groups for boron [17,18]. Novel BSRs have
61 been developed that outperform commercial products in terms of boron uptake capacity and
62 sorption rate in complex water streams [19–21], representing one approach to improving boron
63 removal capabilities for water reuse. Moreover, process designs for membrane systems that
64 employ BSRs in the feed water have been proposed, but industrial scale-up has been limited by
65 operational challenges (*e.g.*, regeneration, membrane fouling) [13]. Other integrated membrane
66 processes have also shown potential for increasing boron removal with reduced energy
67 consumption [22] and reduced fouling [23], yet these approaches often involve increased
68 complexity and cost. Therefore, the development of novel membranes that effectively remove
69 boron during single-pass permeation could expand our portfolio of energy-efficient water reuse
70 technologies.

71 Some membrane researchers have incorporated surface grafts on RO membranes to seal
72 defects and improve boron rejection based on steric, electrostatic, and hydrophobic interactions
73 at the membrane surface [24–28]. Other approaches, such as electrically conducting RO

74 membranes that modify pH at the interface to convert boric acid to borate, have also been
75 proposed [29]. However, these materials are often limited by the effects of such modifications on
76 other interfacial interactions including water flux and fouling.

77 Another potential approach to achieve high solute selectivity is via incorporation of
78 chelating ligands into polymer membranes because this method leverages the selectivity of
79 specific functional groups to modulate the transport of target solutes. This class of materials has
80 seen extensive use in heavy metal separations [30,31], and more recently it has been proposed
81 for several solute-specific separations in water reuse and resource recovery [32,33]. In particular,
82 supported liquid membranes containing 1,3-diols have been used to facilitate boric acid transport
83 during boron extraction from industrial brines [34], and porous membranes functionalized with
84 polyols have been developed to remove boron during water purification through a capture-and-
85 release mechanism [35–37]. Meanwhile, the incorporation of polyols in nonporous water
86 purification membranes, where high boron rejection is imperative in applications such as
87 seawater desalination by RO, has not been thoroughly investigated. Di Vincenzo *et al.* [38]
88 showed NMDG-functionalized membranes to have higher boric acid rejection than a standard
89 thin film composite membrane during dead-end filtration, and recent work by Uliana *et al.* [39]
90 used NMDG-functionalized nonporous membranes to capture boric acid during diffusion dialysis
91 experiments. To this end, these studies did not investigate the specific interactions between
92 boron and the NMDG groups that influence transport. Permeation of solutes through nonporous
93 membranes depends on sorption of the solute from the water to the membrane phase as well as
94 diffusion of the solute through the membrane matrix [40]. The incorporation of chelating ligands
95 in polymer membranes can influence both sorption and diffusion of solutes [33], so fundamental

96 investigation of the interactions between boron and NMDG as they relate to transport and
97 selectivity is essential to designing materials in this space.

98 The objectives of this research were to develop a membrane platform that could be
99 functionalized with a boron selective ligand and to evaluate the performance of such ligand-
100 functionalized membranes relative to current boron removal sorbents. Poly(allyl glycidyl ether)
101 (PAGE) was chosen as the membrane platform due to the functionalizable pendant allyl groups
102 providing broad compositional versatility [41]. NMDG was chosen as the boron selective ligand
103 due to its widespread use in BSRs and the ability to functionalize an epoxidized PAGE network
104 with NMDG via its amine functionality. This study also investigated the boron transport
105 mechanism within the membranes (*i.e.*, sorption and diffusion) to determine the influence of
106 specific ligands in nonporous polymer membranes for targeted solute separations during water
107 treatment.

108

109 **2. Materials and Methods**

110 *2.1. Materials*

111 Allyl glycidyl ether (AGE) (>99%) was purchased from TCI America (Portland, OR), dried
112 over calcium hydride overnight, degassed, and distilled under reduced pressure. Potassium
113 (>99%, Millipore Sigma, Burlington, MA) in mineral oil, naphthalene (98%, Millipore Sigma),
114 benzyl alcohol (anhydrous, 99.8%, Sigma Aldrich, St. Louis, MO), methanol (certified ACS,
115 Fisher, Waltham, MA), hydrochloric acid (37%, Millipore Sigma), dichloromethane (DCM)
116 (certified ACS, 99.5%, Fisher), 3-chloroperoxybenzoic acid (mCPBA) (70-75% balance 3-
117 chlorobenzoic acid and water, Fisher), 1,4-diaminobutane (Acros Organics, Fair Lawn, NJ),
118 sodium bicarbonate (NaHCO₃) (Fisher), sodium sulfate (Na₂SO₄) (Fisher), and NMDG (Sigma

119 Aldrich) were all used as received. Tetrahydrofuran (THF) was collected from a J. C. Meyer dry
120 solvent system and immediately used thereafter. Deuterated chloroform (CDCl_3) was purchased
121 from Cambridge Isotope Laboratories, Inc (Tewksbury, MA).

122 Boric acid solutions were prepared using Milli-Q deionized (DI) water (Millipore Sigma)
123 and ACS grade B(OH)_3 (Sigma Aldrich). Boric acid sorption/diffusion experiments were
124 performed in 10 mM HEPES (Fisher) buffer at pH 7.0 such that boric acid was the primary
125 boron species; HEPES is a zwitterionic sulfonic acid buffering agent and is one of Good's
126 buffers [42]. A control sorption experiment used poly(ethylene glycol) diacrylate (PEGDA,
127 average $M_n = 700$ g/mol) (Sigma Aldrich) and phenylboronic acid (Sigma Aldrich). The nitric
128 and hydrochloric acids used in all experiments and analyses were of trace metal grade (Fisher).
129 The commercial BSR, DuPont Amberlite IRA743, was purchased from Sigma Aldrich and used
130 as received in the free base form. The Amberlite IRA743 resin is a copolymer of
131 styrene/divinylbenzene functionalized with NMDG and the average particle diameter of the resin
132 is between 500–700 μm [43–45].

133

134 *2.2. Analytical Equipment*

135 Polymers were characterized by ^1H nuclear magnetic resonance (NMR) spectroscopy and
136 gel permeation chromatography (GPC) to determine the composition, degree of
137 functionalization, and molecular weight. ^1H NMR spectroscopy was performed on a 400 MHz
138 Agilent MR spectrometer at room temperature and referenced to the residual solvent signal of
139 CDCl_3 (7.26 ppm). GPC was carried out on an Agilent system with a 1260 Infinity isocratic
140 pump, degasser, and thermostatted column chamber held at 30 °C containing an Agilent PLgel
141 10 μm MIXED-D column with an operating range of 200–400,000 g/mol relative to polystyrene

142 standards. Chloroform was used as the mobile phase. This system was equipped with an Agilent
143 1260 Infinity refractometer and Bio-SEC Multi-Detector suite featuring dual-angle static and
144 dynamic light scattering detection. The kinetics of epoxy-amine polymerizations were studied by
145 time-resolved, *in situ* Fourier transform infrared (FTIR) spectroscopy on a Mettler Toledo
146 ReactIR 15 using a DiComp diamond probe connected via silver halide fiber optic cable with an
147 optical range of 3000–650 cm⁻¹. Spectra were collected at room temperature and the probe was
148 calibrated with a one-point temperature calibration. The sampling rate for spectra was one scan
149 per minute for the first two hours and then one scan per five minutes for 18 hours. All ¹H NMR
150 spectroscopy, GPC, and *in situ* FTIR data are provided in Section S1 of the Supplementary
151 Materials.

152 Boron solution concentrations were determined using Inductively Coupled Plasma Optical
153 Emission Spectrometry (ICP-OES) (Varian 710-ES, Agilent Technologies, Santa Clara, CA) in
154 accordance with Standard Method 3120 [46]. Due to long washout times of boron in ICP, blanks
155 were run between every sample, and standard checks and matrix spikes were used to ensure
156 analytical accuracy. Standards were prepared in background matrices to account for potential
157 interferences, and all regression coefficients for calibration curves and standard additions had
158 R²>0.999. To quantify the concentrations of boron in the membranes, dried membrane samples
159 were digested in 10 M nitric acid on a Milestone ETHOSTM UP high performance microwave
160 digestion system (Milestone, Shelton, CT). Boron concentrations in the final digestion solution
161 were determined using ICP-OES via standard addition and converted to the boron concentration
162 in the membrane via mass balance. Solution pH was measured using a Thermo Orion glass pH
163 electrode (Fisher). Attenuated total reflectance-FTIR (ATR-FTIR) was employed to collect
164 absorbance spectra of the membranes on a Thermo Scientific Nicolet 6700 with the Smart IRTTM

165 ATR accessory (Thermo Mattson, Waltham, MA) containing a diamond crystal (penetration
166 depth of 2.0 μm at 1000 cm^{-1}). One hundred and twenty-eight scans were collected for each
167 spectrum and the spectra were normalized to the maximum absorbance for ease of comparison.
168 Peak fitting of ATR-FTIR data was completed using the multi-peak fitting tool in Igor Pro
169 (WaveMetrics, Portland, OR).

170

171 *2.3. Synthesis of poly(glycidyl glycidyl ether)*

172 Polymerization of AGE was conducted via anionic ring opening polymerization based on
173 previously reported methods [41]. The polymerization was performed in custom, thick-walled
174 glass reactors fitted with threaded adapters and charged with glass-coated stir bars. The reactors
175 were first flame dried under vacuum, followed by cycling nitrogen and vacuum three times. The
176 reactor was charged with a positive pressure (5 psig) nitrogen atmosphere and sealed from the
177 Schlenk line. 104 μL of benzyl alcohol (0.925 mmol, 1.0 eq) was then added via a gas-tight
178 syringe to the bottom of the reactor and deprotonated by titration with a solution of potassium
179 naphthalenide (*ca.* 0.3 M in THF) until a light green coloration persisted, indicating complete
180 deprotonation of the alcohol. 20.8 mL of AGE (177 mmol, 191 eq relative to benzyl alcohol)
181 were then added via a gas-tight syringe. The reaction was allowed to proceed for 48 hours at
182 room temperature, at which point degassed, acidified methanol (0.1 M) was added to the reaction
183 vessel to terminate the reaction. The polymer was precipitated from excess hexanes. The
184 supernatant was decanted and the resultant PAGE was dried overnight *in vacuo*. Number average
185 molecular weight, M_n , determined by end group analysis by ^1H NMR spectroscopy was 17.0 kDa
186 (Figure S1), while GPC results yielded M_n of 18.7 kDa and a dispersity of 1.5 relative to
187 polystyrene standards (Figure S3).

188 PAGE was oxidized to poly(glycidyl glycidyl ether) (PGGE) using mCPBA. 28.1 grams of
189 75% mCPBA stabilized with water (131 mol, 1.3 eq) were added to a stirred solution of PAGE
190 (10 g, 0.67 mmol, 1 eq) in DCM (100 mL) over the course of ten minutes. The reaction was
191 allowed to stir for 24–48 hours. Once all the starting allyl groups had been converted to
192 epoxides, as confirmed by ^1H NMR spectroscopy (Figure S2), the reaction mixture was filtered
193 and washed with a saturated solution of NaHCO_3 (4×100 mL). The organic phase was then
194 dried over Na_2SO_4 , filtered, rotary evaporated, and dried *in vacuo* overnight.

195

196 *2.4. Preparation of crosslinked polyether membranes*

197 PGGE was cast with 1,4-diaminobutane and NMDG into porous polypropylene mesh that
198 acted as mechanical support to create NMDG-functionalized polyether membranes (PGGE-
199 NMDG). A representative sample preparation protocol proceeded as follows: First, 88.1 μL
200 (0.88 mmol, 0.2 eq) of 1,4-diaminobutane was added to a solution of PGGE (1.0 g, 0.07 mmol,
201 1.0 eq) in THF (1.12 mL). For the NMDG-functionalized membranes, 0.19 g of NMDG (0.97
202 mmol) dissolved in 1.0 mL DI water was also added to the reaction mixture. This amount was
203 chosen to match the boron uptake capacity of the commercial Amberlite IRA743 assuming 1:1
204 boron-NMDG binding stoichiometry based on a previously-reported capacity (0.99 mmol B/g
205 dry polymer) [21]. After briefly stirring, the solution was poured onto the polypropylene mesh
206 support placed on a quartz plate. Aluminum spacers (0.45 mm thick) were placed underneath the
207 support to maintain uniform casting thickness. The solution was dispersed evenly on the mesh
208 via a Teflon roller to assure solution uniformity in the mesh. The casting solution was then left to
209 react while evaporating overnight. Water and boron sorption and diffusion data were normalized
210 based on the polymer phase alone according to a previously reported method [47], and the

211 polypropylene support exhibited no water or boron uptake. See Section S2 of the Supplementary
212 Materials for more information on the porous polypropylene support membranes.

213

214 *2.5. Water uptake measurements*

215 Water uptake of the membrane samples was measured based on a general liquid sorption
216 measurement technique in which the mass of a circular membrane sample was determined after
217 soaking the sample in DI water for at least 24 h and after drying the sample under vacuum at
218 ambient temperature for at least 24 h [48]. Water uptake in the membranes was the same for
219 measurements in DI water and 10 mM HEPES. Water volume fraction in the hydrated polymer
220 was determined based on volume additivity using a density determination kit (Part 238490,
221 Mettler Toledo, Columbus, OH) at ambient conditions with heptane as the auxiliary solvent, per
222 a previously-reported method [49].

223

224 *2.6. Equilibrium boron sorption experiments*

225 Dried samples of PGGE and PGGE-NMDG membranes and Amberlite IRA743 were
226 weighed in polypropylene vials and hydrated for 24 h in a background matrix of 10 mM HEPES
227 (pH 7.0). Then, the batch reactors were spiked with a boric acid stock solution (500 mM, pH 7.0)
228 to obtain desired initial concentrations (0.01–100 mM) and shaken for 48 h at room temperature.
229 Solutions were then filtered through 0.22 µm polyethersulfone filters (Foxx Life Sciences,
230 Salem, NH) and concentrations of boron in the initial and equilibrium solutions were determined
231 via ICP-OES. Boron uptake, q_e (mmol B/g dry polymer), of the materials was calculated by:

232
$$q_e = (C_0 - C_{eq}) \frac{V}{M} \quad (1)$$

233 where C_0 and C_{eq} are the concentrations of boron in the initial and equilibrium solutions
234 (mmol/L), respectively, V is the solution volume (L), and M is the dry mass of the polymer (g).
235 Equilibrium boron sorption data for PGGE and PGGE-NMDG membranes were fit to the dual
236 mode sorption isotherm [50]:

$$237 \quad q_e = q_{Diss} + \sum_{i=1}^n q_{i,Lang} = K_{Diss} C_{eq} + \sum_{i=1}^n \frac{q_{i,max} K_{i,Lang} C_{eq}}{1 + K_{i,Lang} C_{eq}} \quad (2)$$

238 where q_{Diss} and $q_{i,Lang}$ are the equilibrium boron uptakes due to absorption/partitioning in the
239 membrane and sorption to Langmuir site i , respectively (mmol/g dry polymer), n is the number
240 of Langmuir sites, K_{Diss} is the linear partition coefficient for boron absorption in the polymer (L
241 solution/g dry polymer), $K_{i,Lang}$ is the Langmuir affinity constant of site i (L solution/mmol), and
242 $q_{i,max}$ is the maximum Langmuir sorption capacity of site i (mmol/g dry polymer). The dual mode
243 sorption model is commonly used to describe gas sorption in polymers at temperatures below
244 their glass transition temperatures, as it considers linear partitioning in the polymer as well as
245 sorption in the unrelaxed volume of the glass [51]. In the hydrated PGGE and PGGE-NMDG
246 membranes, several moieties including epoxide and NMDG groups provide selective binding
247 sites for boron that can be described using the Langmuir isotherm model, and the linear portion
248 of the isotherm is attributed to boron dissolved in the membrane via other interactions (e.g.,
249 electrostatic, van der Waals). The linear isotherm model assumes that boron affinity for the
250 dissolved membrane phase does not change as a function of aqueous boron concentration.

251 Boron sorption in PGGE was modeled using a single-site Langmuir model to account for all
252 potential moieties (*i.e.*, sites) in PGGE that specifically interact with boron (*e.g.*, epoxide, ether,
253 amine, and hydroxyl groups) and a linear model to account for partitioning into the membrane
254 phase. The dual mode model for boron sorption in PGGE-NMDG contained two types of
255 Langmuir sites (with different affinities and capacities) to represent specific interactions between

256 boron and PGGE sites and chelation of boron by NMDG. To fit the boron sorption isotherm
257 model for PGGE-NMDG, the Langmuir affinity parameter, K_{Lang} , for PGGE sites was fixed to
258 the value determined for the PGGE control membrane, as the interactions between boron and
259 PGGE sites were not expected to change significantly upon functionalization of PGGE with
260 NMDG. The linear partition coefficient, K_{Diss} , for the isotherm model of boron sorption in
261 PGGE-NMDG was constrained to be equal to or greater than the value obtained for the PGGE
262 control membrane because PGGE-NMDG had a higher water uptake than PGGE. Also, the
263 maximum Langmuir capacity, q_{max} , of PGGE sites in PGGE-NMDG was constrained to be less
264 than or equal to the value for the PGGE control membrane, as the conversion of epoxide groups
265 to NMDG was not expected to increase the number of PGGE sites in the PGGE-NMDG
266 membrane relative to the PGGE control membrane. The resulting four-parameter dual mode
267 isotherm model was shown to provide a better fit to the experimental boron sorption data for
268 PGGE-NMDG relative to several other models based on the Akaike information criterion (AIC),
269 which accounts for the ability of a model with more parameters to provide a better fit based on
270 common error minimization/weighting procedures. Additional information on the sorption
271 isotherm models and AIC analysis is provided in Section S3 of the Supplementary Materials.

272 Equilibrium sorption data for the commercial Amberlite IRA743 resin were fit to a single-
273 site Langmuir isotherm (*i.e.*, only the second term in equation 2 with $n=1$). All fitting
274 coefficients were determined in Matlab (MathWorks, Natick, MA) using a nonlinear least
275 squares regression fitting technique within the Optimization Toolbox.

276

277 *2.7. Sorption-desorption rate studies*

278 To investigate transient transport of boron within PGGE and PGGE-NMDG membranes,
279 sorption and desorption rate experiments were performed on pristine and regenerated membranes
280 in well-mixed stirred solutions of finite volume. Dry membrane samples were weighed and
281 hydrated in background solution matrices (*i.e.*, 10 mM HEPES, pH 7.0) for 24 h, and wet masses
282 were recorded prior to rate experiments. Then, hydrated membrane samples were placed in
283 solutions containing 10 mM boric acid and 10 mM HEPES (pH 7.0), and 100 μ L aliquots were
284 collected over 48 h to track the uptake of boron into the membranes. After sorption equilibrium
285 was attained, the membranes were placed in 10 mM HEPES (pH 7.0) for desorption rate
286 experiments, and 100 μ L aliquots were collected over 48 h to track boron release from the
287 membranes. A second desorption equilibrium stage was performed to investigate sorption
288 hysteresis via comparison of boron uptake measurements in desorption equilibrium experiments
289 and in equilibrium sorption isotherms. Then, this process was repeated on the same membranes.
290 At the end of the second set of sorption-desorption rate experiments, the membrane samples
291 were dried in a vacuum oven overnight and microwave digested to determine the amount of
292 boron in the membranes following the final desorption stage.

293 Transient transport of boron in PGGE and PGGE-NMDG membranes was described using a
294 one dimensional model for Fickian diffusion in a plane sheet from a stirred solution of limited
295 volume [52]. Using this approach, apparent average diffusion coefficients of boron in PGGE and
296 PGGE-NMDG membranes were determined for each sorption and desorption rate experiment
297 using a nonlinear curve fitting technique in Matlab. The apparent average diffusion coefficients
298 were normalized to the polymer phase using a series resistance model per a previously reported
299 method [47]. More information on the modeling approach can be found in Section S5 of the
300 Supplementary Materials.

301

302 *2.8. Acid regeneration experiments*

303 To assess the acid regeneration potential of PGGE and PGGE-NMDG membranes, four

304 cycles of boron sorption in 10 mM HEPES and desorption in hydrochloric acid were performed.

305 First, dry samples of PGGE and PGGE-NMDG membranes were weighed and hydrated in 10

306 mM HEPES (pH 7.0) for 24 h. Then, membranes were placed in aqueous solutions containing 10

307 mM boric acid and 10 mM HEPES (pH 7.0) and shaken for 48 h to ensure sorption equilibrium.

308 Following sorption equilibrium, the membranes were placed in 0.1 M (cycle 1) or 1.0 M (cycles

309 2–4) hydrochloric acid to desorb the boron, and 100 μ L aliquots of the solutions were collected

310 periodically to investigate the boron desorption rates of the materials in acid (*cf.*, Section 2.7).

311 After apparent desorption equilibrium was reached, the membranes were placed in 10 mM

312 HEPES (pH 7.0) for 24 h and the sorption/desorption cycle was repeated. After four cycles of

313 acid regeneration, the membranes were microwave digested to assess if any boron remained in

314 the membranes.

315

316 **3. Results and Discussion**

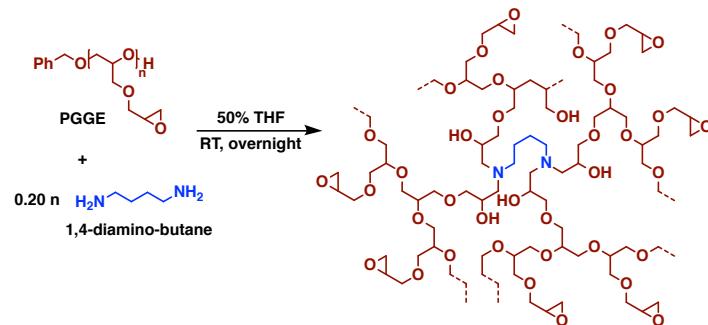
317 *3.1. Cross-linked PGGE and PGGE-NMDG membranes*

318 Polyether materials – typically, poly(ethylene oxide)-based – have seen widespread use in

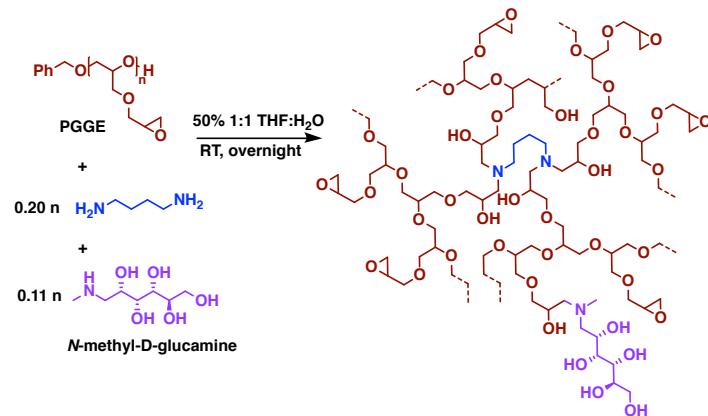
319 gas separations [53–56], drug delivery [57], and polymer electrolytes [58] due to their

320 compositional versatility and the widespread availability of monomers. This study leveraged the

321 versatility of PAGE to create crosslinked membranes with tunable physical properties that could


322 be functionalized with ligands such as NMDG. With PGGE, epoxy/amine coupling was

323 employed for crosslinking PGGE with 1,4-diaminobutane and for adding functional groups to


324 the backbone of the network in a single step (*cf.*, Figure 1). NMDG contains a secondary amine
325 that participates in simultaneous epoxy/amine crosslinking/functionalization. *In situ* FTIR
326 measurements show that the formation of C–N bonds involved in the simultaneous cross-linking
327 and NMDG-functionalization of PGGE reaches completion after approximately 6 h (Figure S4)
328 [59], resulting in the functionalized, crosslinked membrane. Water uptake in the composite
329 PGGE-NMDG membranes is within the range of typical polymer membranes (*ca.* 0.35–0.70 g
330 water/g dry polymer) (*cf.*, Table 1) [60], and the higher water uptake in PGGE-NMDG relative to
331 the PGGE control membrane is attributed to the hydrophilicity of the NMDG functional group.
332 Crosslinker density was held constant at 20 mol percent in the synthesized membranes; however,
333 due to the impact of crosslinker density on water permeability and water/salt selectivity in
334 hydrogel membranes [61], the optimization of crosslinker density for the PGGE and PGGE-
335 NMDG membranes could be investigated in the future to maximize boron selectivity in these
336 ligand-functionalized membranes.

337

338 (A) PGGE control membrane synthesis

340 (B) PGGE-NMDG membrane synthesis

342

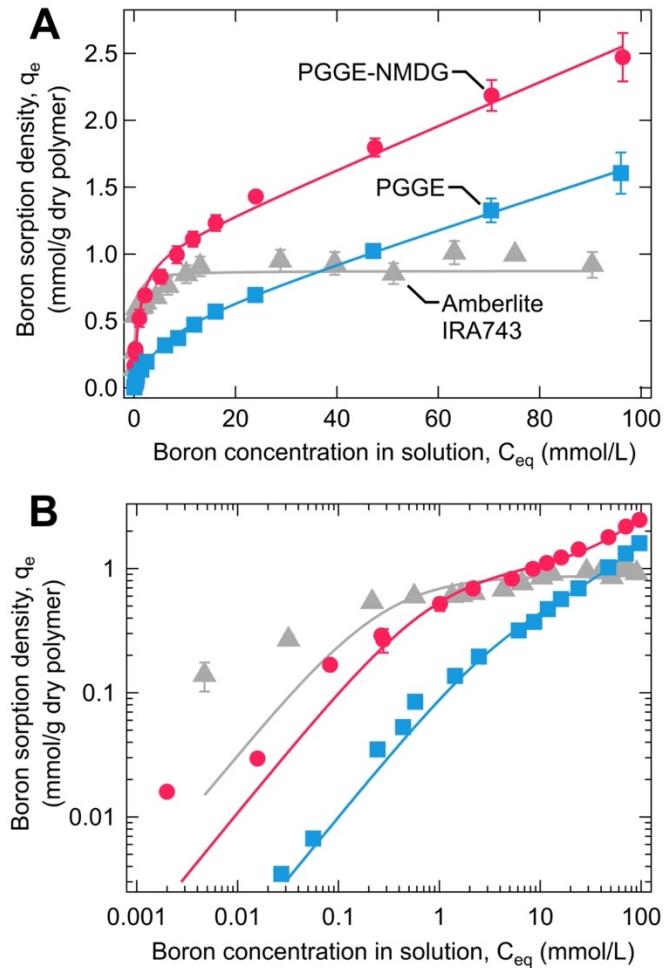
343 **Figure 1.** General scheme for the synthesis of: (A) PGGE and (B) PGGE-NMDG membranes.

344

345 **Table 1.** Material properties of PGGE and PGGE-NMDG membranes.

Property	PGGE	PGGE-NMDG
Water uptake in composite membrane (g/g)	0.372 ± 0.013	0.442 ± 0.037
Water uptake in dense polymer (g/g)	0.527 ± 0.034	0.684 ± 0.034
Water volume fraction in hydrated polymer (-)	0.374 ± 0.013	0.430 ± 0.007

346


347 *3.2. Equilibrium boron sorption*

348 As shown in Figure 2, boron sorption isotherms of PGGE and PGGE-NMDG membranes

349 exhibited dual mode sorption behavior, while the commercial BSR followed a Langmuir

346 isotherm typical of macroreticular resins, including previously-studied BSRs [21,62]. All three
347 materials exhibited Langmuir sorption behavior at low solution-phase boron concentrations,
348 presumably due to specific interactions between boron and functional groups in the
349 membranes/resin. PGGE membranes provide binding sites that can be described with a single-
350 site Langmuir model that assumes all sites are equivalent, while PGGE-NMDG membranes
351 contain two Langmuir sites due to the additional presence of NMDG in the membranes. The two-
352 site Langmuir model assumes sorption to the two binding sites are independent. Linear boron
353 sorption behavior in PGGE and PGGE-NMDG describes boron absorption/partitioning in the
354 membranes in direct proportion to the solution-phase boron concentration due to intermolecular
355 interactions (*e.g.*, electrostatic, van der Waals).

356

357

358 **Figure 2.** Boron uptake in PGGE (squares) and PGGE-NMDG (circles) membranes followed
 359 dual mode sorption isotherms, while the commercial BSR (triangles) exhibited Langmuir
 360 isotherm behavior. The same data are plotted on: (A) linear and (B) log-log scales to show trends
 361 over a range of concentrations. All experimental data were performed in 10 mM HEPES (pH
 362 7.0) buffer and equilibrated for 48 hours. Error bars represent standard deviations of
 363 measurements on at least three membrane/resin samples and lines represent the fit of the
 364 isotherm models to the data.

365

366 The specific (*i.e.*, Langmuir) interactions between boron and the membranes dominated at
367 low aqueous boric acid concentrations relevant to water treatment applications such as seawater
368 desalination, where influent boron concentrations are 0.5 mmol/L [9]. The sorption capacity,
369 q_{\max} , of NMDG sites in PGGE-NMDG was lower than that of the commercial BSR (*cf.*, Table 2),
370 indicating that the average binding stoichiometry of the boron-NMDG complexes in PGGE-
371 NMDG was less than one since the synthesis conditions were designed assuming 1:1 complexes
372 to match the boron sorption capacity of the commercial BSR. As shown in Table 2, the Langmuir
373 affinity coefficient, K_{Lang} , of PGGE-NMDG was also lower than that of the commercial BSR,
374 which may be due to the different nature of the materials (*i.e.*, hydrated polyether membrane
375 versus macroreticular resin with a hydrophobic polystyrene backbone). The sorption capacity
376 and Langmuir affinity coefficient of NMDG sites in PGGE-NMDG are comparable to the values
377 for similar NMDG-functionalized materials reported in literature (*cf.*, Table S3). Interactions at
378 the water-membrane/resin interface influence boron sorption affinity and mechanisms. For
379 example, electrostatic interactions between borate and residual metal cations on BSR surfaces
380 have been shown to contribute to boron uptake in NMDG-functionalized resins [63]. The
381 isotherm models for Amberlite IRA743 and PGGE-NMDG underpredicted experimental
382 sorption measurements at aqueous boron concentrations below 0.1 mmol/L (*cf.*, Figure 2),
383 suggesting that the Langmuir and dual mode isotherm models may not fully capture the
384 interactions between boron and the membranes/resin at low equilibrium solution-phase boron
385 concentrations.

386

Table 2. Fitted isotherm parameters for boron sorption in the membranes and BSR.

Sample	Absorption		PGGE sites		NMDG sites	
	K_{Diss} (L/g)	K_{Lang} (L/mmol)	q_{max} (mmol/g)	K_{Lang} (L/mmol)	q_{max} (mmol/g)	
PGGE	0.012 ± 0.0004 ^a	0.18 ± 0.03	0.49 ± 0.03	-	-	
PGGE-NMDG	0.015 ± 0.0006	0.18 ^b	0.49 ± 0.14	2.5 ± 0.76	0.62 ± 0.10	
Amberlite IRA743	-	-	-	3.7 ± 1.3	0.88 ± 0.04	

^aPlus/minus values represent standard deviations of fitted values.

^bThe value of K_{Lang} of PGGE sites in PGGE-NMDG was fixed to the value obtained for the PGGE control membrane, and the remaining four parameters were fit using a nonlinear least squares regression. Details of the fitting process are presented in Section S3 of the Supplementary Materials.

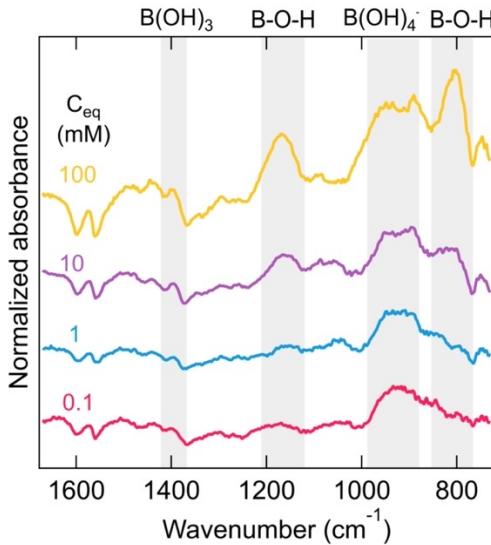
389 The PGGE control membrane also exhibited some affinity for boron, suggesting that the
 390 epoxide groups in PGGE, the hydroxyl groups formed upon epoxide ring opening, the amine
 391 groups in the crosslinker, and/or the backbone polyether interact with boron, although to a lesser
 392 extent than the NMDG ligand. Possible interactions that contribute to the observed behavior
 393 include Lewis pairing of boron and oxygen heteroatoms and hydrogen bonding between
 394 hydroxyl groups in boric acid and oxygen- and nitrogen-containing moieties in PGGE. Boric
 395 acid, as well as various boranes and boronic acids, have been used as hydrogen bond donors and
 396 Lewis acid catalysts during epoxide ring opening for applications including carbon dioxide
 397 conversion to cyclic carbonates [64–68]. Moreover, recent work by Kim *et al.* [69] showed boric

398 acid suppresses curing of epoxy resins; the authors attributed this behavior to hydrogen bonding
399 of hydroxyl groups in boric acid and oxygen in epoxide groups. Bernstein *et al.* [26] used an
400 epoxide surface graft to increase boric acid rejection of a commercial RO membrane and
401 attributed the observed increase in rejection to caulking/sealing of defects by the adhesion of
402 epoxides through reaction with amine groups in the polyamide RO membranes. The boron
403 sorption isotherm of the PGGE membrane suggests that specific interactions between boron and
404 epoxide also influence boron rejection during RO using epoxide-grafted membranes.

405 Linear partitioning of boron in PGGE and PGGE-NMDG membranes contributes significant
406 boron uptake at aqueous boric acid concentrations above 10 mmol/L. Meanwhile, the
407 hydrophobic, polystyrene-based Amberlite IRA743 resin had no appreciable absorption of boron
408 despite a comparable water uptake of the resin (0.48–0.54 g water/g dry polymer) relative to
409 PGGE and PGGE-NMDG (0.53–0.68 g water/g dry polymer) [45]. Since boric acid can
410 hydrogen bond with water [70], the higher water uptake of the PGGE-NMDG membrane likely
411 contributed more boron absorption (*i.e.*, a higher slope of the linear portion of the curve in Figure
412 2) relative to the PGGE control membrane. Polyborates form in solution when total boron
413 concentrations are greater than 25 mmol/L [71], but the constant slopes of the linear isotherms at
414 aqueous boron concentrations above 25 mmol/L suggest that the formation of polyborates did
415 not have a direct impact on boron sorption in studied membranes and BSR at equilibrium
416 solution concentrations up to 100 mmol/L.

417 Using measured values of dry polymer mass and swollen volumes of PGGE and PGGE-
418 NMDG membranes, conversion of K_{Diss} values presented in Table 2 to volumetric partition
419 coefficients – defined as the ratio of solute concentration in the swollen membrane to the
420 concentration in the external solution – yield values of 6.8 ± 0.65 and 6.5 ± 0.35 L external

421 solution/L swollen membrane for PGGE and PGGE-NMDG, respectively. The partition
422 coefficient of dehydrated boric acid in a commercial polyamide active layer has been reported as
423 0.45 L solution/L swollen membrane [72]. The large linear partition coefficients of boron in the
424 polyether membranes indicate that the membranes provide a thermodynamically favorable
425 environment for boron relative to the aqueous solution (*i.e.*, the interactions between boron and
426 neighboring molecules in the dissolved membrane phase are more favorable than that of boron
427 and water). Hydrogen bonding between boric acid molecules absorbed in the polymer matrix and
428 boron bound to PGGE and/or NMDG sites is a possible reason for the large partition coefficient
429 of boron from the bulk solution to the hydrated membranes, as hydrogen-bonded structures
430 containing boric acid have previously been found in aqueous and polymer systems [73,74].
431 Hydrogen bonding has been found to contribute to high sorption (3–8 L external solution/L
432 swollen membrane) of arsenious acid ($\text{As}(\text{OH})_3$) in polyamide membranes [75]. In the context of
433 the solution-diffusion model, the high partition coefficient of boron in PGGE and PGGE-NMDG
434 membranes would increase boron permeation by a selective membrane layer unless boron
435 diffusion is significantly slowed by interactions between boron and the polymer.


436

437 *3.3. Ex situ ATR-FTIR investigation of boron-NMDG interactions*

438 Figure 3 presents *ex situ* ATR-FTIR spectra of dried PGGE-NMDG membranes equilibrated
439 at several solution-phase boron concentrations following subtraction of the spectra of the pristine
440 PGGE-NMDG membrane (*i.e.*, the membrane with zero boron sorbed). The raw ATR-FTIR
441 spectra prior to subtraction of the pristine membrane are provided in Figure S10. At all tested
442 solution-phase boron concentrations, peaks at approximately 950 cm^{-1} are noted, representative
443 of the asymmetric B–O stretch of tetrahedral borate anions (*cf.*, Figure S9) [76]. ATR-FTIR

444 spectral changes coming from the asymmetric stretch of boric acid, which occurs in the range
445 1300–1500 cm^{−1} [76], were not as significant as the changes from borate in the PGGE-NMDG
446 spectra, suggesting that boron interacted with the NMDG groups as tetrahedral borate anions
447 despite boric acid being the dominant species of boron in solution. Peak *et al.* [76] suggested that
448 the speciation of boron at the surface of mineral oxides is generally quite different than that of
449 the bulk solution, and Yoshimura *et al.* [77] showed the amino group in NMDG promotes
450 formation of borate-NMDG complexes when Amberlite IRA743 resin is equilibrated with
451 neutral solutions of boric acid. FTIR peaks from B–O–H in plane (1150 cm^{−1}) and out of plane
452 (800 cm^{−1}) bending are apparent when the boron concentration in the external solution was 10
453 and 100 mmol/L (*cf.*, Figure 3), presumably due to higher boron absorption in PGGE-NMDG at
454 increased solution-phase boron concentrations. The subtracted ATR-FTIR spectra of the PGGE-
455 NMDG membranes also feature negative absorbance peaks at 1350 and 1600 cm^{−1}, which are
456 attributed to the deprotonation of hydroxyl groups and the loss of water/carbonate following
457 boron sorption, respectively [76,78]. The PGGE control membranes showed no significant
458 boron-induced FTIR peaks except those from B–O–H bending at external boron concentrations
459 of 10 and 100 mmol/L (*cf.*, Figure S10).

460

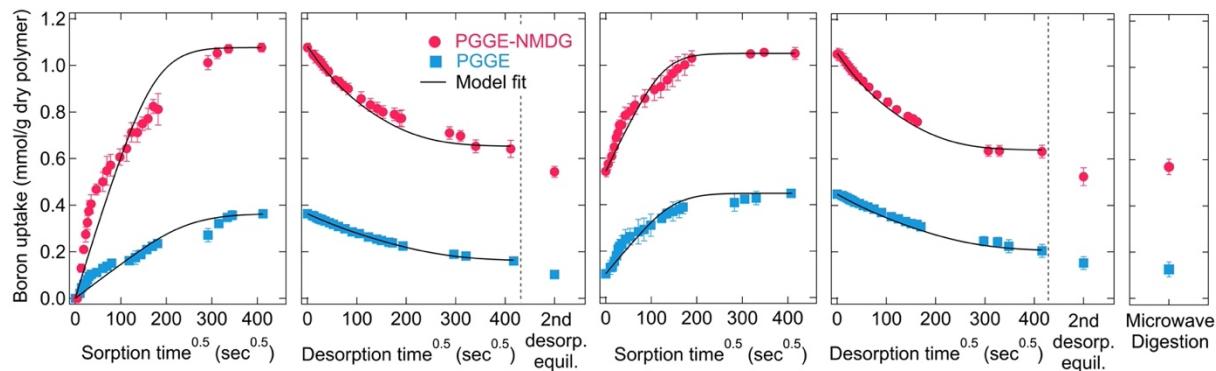
461

462 **Figure 3.** ATR-FTIR spectra of PGGE-NMDG membranes equilibrated with several aqueous
 463 concentrations of boric acid (C_{eq}) following subtraction of the spectra of the pristine PGGE-
 464 NMDG membrane (*i.e.*, the membrane equilibrated at $C_{eq}=0$ mmol/L). The appearance of a peak
 465 at approximately 950 cm^{-1} is indicative of borate-NMDG interactions that increase in intensity
 466 and variability (*i.e.*, peak width) as aqueous boron concentration is increased. Peaks from B–O–
 467 H in plane (1150 cm^{-1}) and out of plane (800 cm^{-1}) bending also emerge with increasing boron
 468 concentration, but changes in the boric acid-induced peaks (1400 cm^{-1}) are less significant.

469

470 As boron loading increased in PGGE-NMDG, the relative intensity and width of the peak
 471 from tetrahedral borate increased, with the most significant change occurring between 10 and
 472 100 mmol/L boron in the external solution containing boric acid (*cf.*, Table S4). This trend
 473 implies the formation of borate-NMDG complexes with a range of molecular configurations at
 474 increased solution phase concentrations. Based on boron sorption isotherms in Figure 2, boron
 475 uptake capacity in PGGE-NMDG does not seem to be significantly impacted by conformational
 476 changes of the boron-NMDG complexes, yet the formation of different boron-NMDG complexes

477 at different concentrations of boric acid could be the reason for the poor agreement between
478 experimental sorption data and the Langmuir and dual mode isotherm models of Amberlite
479 IRA743 and PGGE-NMDG, respectively, at aqueous boron concentrations below 0.1 mmol/L.
480 Boron can form several monochelate and bischelate complexes with NMDG [63,77,79,80],
481 and the formation of specific complexes influences both boron uptake capacity and boron
482 mobility within the material. Assuming that all of the NMDG in the polymerization mixture was
483 incorporated into PGGE-NMDG membranes, the average binding stoichiometry of boron-
484 NMDG complexes in PGGE-NMDG – defined as the ratio of the maximum Langmuir sorption
485 capacity, q_{\max} , of the NMDG sites over the NMDG loading in PGGE-NMDG – was 0.63
486 mol B/mol NMDG. Ratios in the range 0.36–2.1 mol B/mol NMDG have been reported in
487 literature for several NMDG-functionalized materials (*cf.*, Table S3). Previous studies using ^{11}B
488 NMR suggested the preferential formation of bischelate borate-NMDG complexes in BSRs
489 [21,63,77,80], which would yield a binding stoichiometry of 0.5. Density-functional theory
490 simulations of boron complexation with NMDG in an aqueous system by Ide and Hirayama [79]
491 showed that two NMDG groups can complex with two borate molecules, yielding a binding
492 stoichiometry of one. Monochelate complexes (*e.g.*, bidentate, tetradentate) would also yield a
493 binding stoichiometry of one. Yoshimura *et al.* [77] suggested the preferential formation of the
494 tetradentate borate-NMDG complex in a crosslinked polymer due to dehydration caused by the
495 lower activity of water in the resin phase, but in hydrated systems, tetradentate borate-NMDG
496 complexes have been considered thermodynamically unfavorable due to ring strain [79].
497 Additional factors including binding strength of individual complexes and accessibility of
498 binding sites also influence the distribution of boron-NMDG complexes in BSRs and polyol-
499 functionalized membranes. Based on the boron-NMDG binding stoichiometry and ATR-FTIR


500 data, the distribution of boron-NMDG complexes in PGGE-NMDG membranes likely included a
501 combination of monochelate and bischelate complexes that varied as a function of boron uptake.

502

503 *3.4. Boron sorption-desorption rate studies*

504 As shown in Figure 4, boron sorption in PGGE and PGGE-NMDG membranes was partially
505 reversible through two cycles of sorption-desorption in 10 mM HEPES (pH 7.0) buffer, and
506 microwave digestion of the membranes at the end of the second cycle confirmed the presence of
507 residual boron in both membranes. The initial aqueous boron concentration used in sorption
508 experiments (10 mM) was chosen to capture the upper-limit of the Langmuir-dominated portion
509 of the sorption isotherms. In turn, the transient data collected during the sorption-desorption rate
510 experiments provide fundamental insight into boron diffusion in the membranes when boron-
511 ligand interactions are significant.

512

513

514 **Figure 4.** Transient sorption and desorption of boron in PGGE (squares) and PGGE-NMDG
515 (circles) membranes. Lines represent the fits of a one-dimensional Fickian diffusion model
516 without sorption explicitly included, as described in Section S5 of the Supplementary Materials.
517 Sorption experiments were performed in 10 mM boric acid solutions in 10 mM HEPES (pH 7.0),
518 while desorption experiments were performed in 10 mM HEPES (pH 7.0) with no boric acid.

519

520 The one-dimensional Fickian diffusion model predicts a linear relationship between boron
521 uptake in the membranes and the square root of time, as shown in Figure 4, but the experimental
522 boron uptake values obtained in sorption and desorption rate experiments do not exhibit the same
523 behavior. In fact, two-stage sorption is observed for boron uptake in PGGE and PGGE-NMDG
524 membranes during sorption-desorption rate experiments, indicating that boron transport in the
525 membranes is not strictly controlled by a single diffusion process. Whereas linear sorption would
526 be captured in a Fickian diffusion model for linear, local equilibrium and reflected in an apparent
527 diffusion coefficient for transport in the membrane, that approach was not able to describe the
528 two-stage sorption behavior observed in PGGE and PGGE-NMDG membranes.

529 The two-stage sorption behavior was not caused by the composite membrane structure (*i.e.*,
530 the dense top layer and supported composite layer). A control experiment was conducted by
531 monitoring phenylboronic acid uptake in a composite membrane having XLPEGDA impregnated
532 in a porous polypropylene support membrane. Phenylboronic acid was chosen for this
533 investigation because it exhibits a high partition coefficient in XLPEGDA relative to boric acid,
534 so changes in external solution boron concentrations changed significantly during sorption rate
535 experiments and thus were detectable via ICP-OES. XLPEGDA was chosen as the model
536 membrane because XLPEGDA was previously used to investigate the impact of polypropylene
537 support membranes on salt sorption and permeation in composite membrane structures [47]. The
538 results of this control experiment are set forth in Section S3 of the Supplementary Materials.

539 Phenylboronic acid uptake in the composite XLPEGDA membrane followed the behavior
540 predicted by a one-dimensional Fickian diffusion model that incorporates linear, local-
541 equilibrium partitioning, and the data did not exhibit the two-stage behavior shown in the

542 sorption experiments in Figure 4. Thus, the two-stage behavior observed during boron sorption
543 rate experiments is ascribed to interactions of boron with PGGE and PGGE-NMDG.

544 Two-stage sorption has been attributed to the initial filling of easily-accessible sorption sites
545 followed by diffusion and sorption to remaining sites, as previously reported in ion exchange
546 resins with bidisperse pore structures [81] and in glassy polymers undergoing polymer relaxation
547 during solute uptake/diffusion [82–84]. In PGGE and PGGE-NMDG membranes,
548 conformational changes in the polymer network following specific solute/membrane interactions
549 such as hydrogen bonding between boron and PGGE sites and/or the formation of boron-NMDG
550 complexes could retard boron transport and contribute to the observed two-stage sorption
551 behavior.

552 While transport of boron in PGGE and PGGE-NMDG membranes was not completely
553 diffusion controlled, the calculation of apparent average Fickian diffusion coefficients allowed
554 further investigation of the important mechanisms that control boron transport in the membranes.
555 As shown in Table 3, the apparent average diffusion coefficients of boron in PGGE and PGGE-
556 NMDG are low relative to diffusion of reference solutes (*i.e.*, methanol and NaCl) in XLPEGDA
557 membranes with similar water uptake [85,86], supporting the hypothesis that sorptive boron-
558 membrane interactions control boron transport in PGGE and PGGE-NMDG membranes. The
559 apparent diffusion coefficients of boron in PGGE and PGGE-NMDG are only 0.9-5.9% of the
560 values predicted using the Mackie-Meares model (Table S5), which accounts for polymer chain
561 obstruction (*i.e.*, tortuosity) effects on solute diffusivity in polymer membranes [87]. Possibly,
562 hydrogen bonding and Lewis pairing of boric acid with other boric acid molecules and polymer
563 functional groups in PGGE and PGGE-NMDG membranes, which were hypothesized to

564 contribute significantly to boron sorption in Section 3.2, limits diffusion of boron in the
565 membranes.

566

567 **Table 3.** Apparent boron diffusion coefficients in PGGE and PGGE-NMDG membranes, as well
 568 as reference solute diffusion coefficients in cross-linked poly(ethylene glycol) diacrylate
 569 (XLPEGDA) taken from literature [85,86].

Experiment ^a	$D_{app}^b (10^{-8} \text{ cm}^2/\text{s})$	
	PGGE	PGGE-NMDG
S-1	1.9 ± 0.32	2.8 ± 0.39
D-1	0.99 ± 0.16	1.1 ± 0.10
S-2	5.0 ± 1.2	5.2 ± 1.5
D-2	0.98 ± 0.03	1.1 ± 0.09
1 mol/L methanol in XLPEGDA		235^c
1 mol/L NaCl in XLPEGDA		125 ± 50

^aS=sorption; D=desorption; 1=pristine membrane; 2=regenerated membrane. Entries below the dividing line were taken from literature for solutes in XLPEGDA membranes with water uptake of approximately 0.7 g water/g dry polymer, similar to the water uptake in PGGE-NMDG (*cf.*, Table 1).

^bApparent diffusion coefficients were determined using a one-dimensional Fickian diffusion model without sorption explicitly included, as described in Section S5 of the Supplementary Materials. The sorption-desorption rate data presented in Figure 4 were fit to the model to extract apparent diffusion coefficients. Plus/minus represent the standard deviation of values among three membrane samples.

^cNo uncertainty was reported for this value.

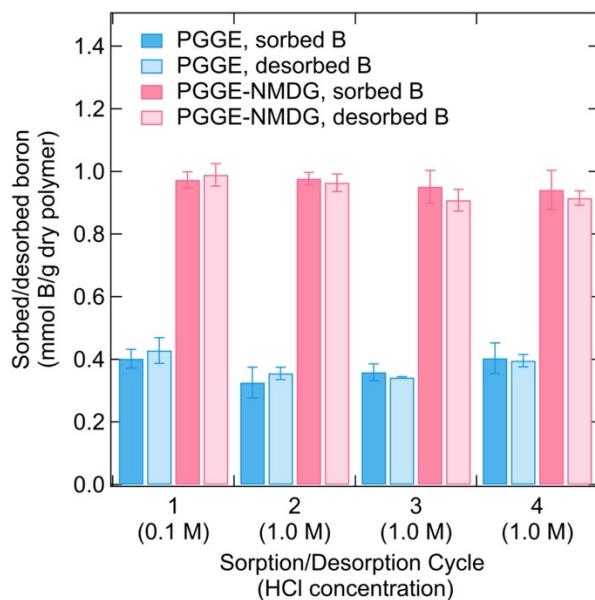
571 The apparent diffusion coefficient of boron in PGGE-NMDG is larger than that in PGGE
572 during the sorption rate experiments using the pristine membranes (*i.e.*, experiment S-1 in Table
573 3), but insignificant differences in apparent average boron diffusion coefficients are noted
574 between the two membranes in all other experiments. Boron diffusion appeared slower in the
575 pristine membranes relative to the regenerated membranes, possibly due to the filling of
576 Langmuir sites. The higher apparent diffusion coefficient of boron in the pristine PGGE-NMDG
577 membrane relative to the pristine PGGE membrane is attributed to the boron affinity for the
578 NMDG sites and the higher water uptake of PGGE-NMDG relative to the PGGE control
579 membrane. However, when the Langmuir sites were (partially) filled, the boron-NMDG
580 interactions were less significant, and boron diffusion was likely controlled by the boron-PGGE
581 interactions (*e.g.*, hydrogen bonding to epoxide groups).

582 Desorption rate experiments yielded lower apparent diffusion coefficients than sorption rate
583 experiments for both membranes, which may be caused by polymer conformational changes at
584 sorption equilibrium to favor different boron-PGGE and boron-NMDG complexes with varying
585 levels and rates of reversibility that lead to desorption resistance and hysteresis, respectively.
586 This phenomenon has been noted for solute sorption in organic matter of soil/sediment systems
587 and other materials relevant to water treatment [88–90]. Indeed, sorption/desorption hysteresis
588 was noted for boron uptake in the PGGE-NMDG membrane (*cf.*, Figure S7), and deviations
589 among the sorption isotherms and the desorption rate equilibrium data for both membranes (*cf.*,
590 Figure S8) confirm a significant role of desorption resistance during desorption rate experiments.
591 Previous researchers have modeled diffusion of water-soluble drugs (*e.g.*, riboflavin,
592 acetazolamide) in hydrogels where solute-specific binding is significant; these studies used a
593 local sorption equilibrium model based on linear partitioning to polymer sorption sites to

594 describe the significant (*i.e.*, orders of magnitude) decrease in apparent diffusion coefficients due
595 to specific interactions between drugs and hydrogel-polymer chains [91]. The observed
596 hysteresis during desorption rate experiments limited the applicability of a local Langmuir
597 sorption equilibrium model to accurately describe the impact of sorptive interactions on boron
598 transport but warrants future investigation. Local sorption equilibrium models assume that
599 sorptive interactions occur on much faster time scales than diffusion; other models have
600 considered diffusion-immobilization processes for cases where sorption and diffusion proceed at
601 comparable rates [92]. Future research in this space could establish fundamental
602 structure/property rules for solute selectivity in ligand-functionalized membranes and lead to the
603 design of new materials with desired properties (*e.g.*, water uptake, ligand density) for achieving
604 transport or removal of target solutes during membrane filtration.

605

606 *3.5. Membrane regeneration*


607 Affinity-based separations using adsorbents and ion exchange resins rely on regeneration of
608 the material for continued reuse, and the development of ligand functionalized membranes must
609 adapt similar approaches if removal is achieved through a capture-and-release mechanism.
610 While boron sorption in the membranes was partially reversible in 10 mM HEPES solutions, the
611 regeneration of the membranes in acid would be required for full-scale applications because acid
612 regeneration is generally faster than regeneration in neutral solution, thus minimizing downtime
613 and limiting the volume of the generated waste stream. At acidic conditions (*i.e.*, low pH),
614 borate-polyol complexes are hydrolyzed to release boric acid from the polyol complex (*cf.*,
615 Figure S13) [93]. As shown in Figure 5, PGGE and PGGE-NMDG membranes retained their
616 boron uptake capacities through four cycles of batch sorption and acid regeneration experiments.

617 Microwave digestion of the membranes at the end of the fourth cycle showed no residual boron
618 in the materials. This result confirms the reversibility of the boron-PGGE and boron-NMDG
619 interactions in the membranes using acid. Indeed, vicinal hydroxyl groups generally exhibit good
620 pH-reversibility for borate complexes, as highlighted by previous studies on polyol-
621 functionalized adsorbents [19–21] and the use of dynamic covalent boronic esters in hydraulic
622 fracturing fluids [94,95], molecular sensing [96], and several biomedical applications [97,98].
623 The stability constants of monochelate and bischelate borate-NMDG complexes in aqueous
624 solution have been reported to be $10^{4.9}$ M and $10^{6.3}$ M, respectively [77]. These values are within
625 the range proposed by Millner [99] of stability constants for protein-ligand interactions
626 employed in membrane chromatography such that the binding is both selective and reversible
627 (10^4 – 10^8 M). While the stability constant of the boron-epoxide interaction is not known, the
628 lower binding affinity, K_{Lang} , of boron to PGGE relative to the NMDG-functionalized materials
629 (cf., Table 2) support the findings that this interaction is reversible via acid regeneration.

630 In 1.0 M HCl, complete boron desorption from the membranes occurred in less than 1 h, and
631 desorption occurred within 2 h in 0.1 M HCl. The rate of boron release during acid desorption
632 experiments exhibited linear behavior versus the square root of time, suggesting Fickian
633 diffusion behavior (Figure S12). In HEPES, the partial desorption of boron from the membranes
634 to a new equilibrium position occurred over >24 hours (cf., Figure 4). Acids of higher strength
635 could be used to further increase desorption rates, and Meng *et al.* [20] showed 4 M HCl enabled
636 complete desorption of boron from a complexing membrane in a similar batch system within 15
637 minutes. Adapting the approach of the IonPac® boron-selective ion exchange column [100],
638 regeneration could also be possible through the passage of aqueous polyol species that exhibit
639 higher binding affinities than the immobilized NMDG groups in PGGE-NMDG membranes. The

640 optimization of such process design considerations in a flow regime presents interesting
641 opportunities for research needed before incorporation of NMDG membranes in full-scale
642 treatment trains. No significant degradation of the polyether membranes was noted after four
643 cycles of acid regeneration. Ring opening of epoxides in PGGE and PGGE-NMDG was not
644 noted following aqueous washing during polymer synthesis (per ^1H NMR results presented in
645 Figure S2) or during acid regeneration experiments (per constant boron uptake through four
646 regeneration cycles), but hydrolysis of the polyether materials over extended use could influence
647 membrane stability in full-scale operations [101].

648

649

650 **Figure 5.** Boron sorption in PGGE and PGGE-NMDG membranes was reversible through four
651 cycles of acid desorption. Sorption equilibrium measurements were performed over 48 h in 10
652 mM boric acid and 10 mM HEPES (pH 7.0), while desorption experiments were performed in
653 0.1 M (cycle 1) or 1.0 M (cycles 2-4) hydrochloric acid (HCl) until equilibrium was reached
654 (within 2 h, see Figure S12).

655

656 3.6. *Implications: Full-scale regeneration times*

657 The membranes synthesized and characterized in this study exhibit high affinity for boric
658 acid and excellent regeneration potential during batch experiments, but in a real-world setting,
659 the membranes would be used in continuous flow. PGGE and NMDG Langmuir sites in PGGE-
660 NMDG membranes provide boron removal through a capture-and-release mechanism. Low
661 saturation capacities are a primary challenge in adapting chelating membranes instead of high
662 surface area resins in water treatment [32], so membranes must exhibit sufficient capacities such
663 that regeneration is only needed periodically. To assess the potential for NMDG functionalized
664 membranes to remove boron during full scale water treatment operations through a capture-and-
665 release mechanism, the saturation time of NMDG sites in dense, RO membranes was estimated
666 based on the boron sorption isotherm of the NMDG membranes developed herein (*cf.*, Figure 2)
667 and the operating conditions of the Ashkelon desalination plant in Israel. Additional information
668 on these calculations can be found in Section S7 of the Supplementary Materials.

669 By assuming that NMDG-functionalized RO membranes equilibrate with 0.4 mg B/L
670 (*i.e.*, the desired effluent concentration) during permeation of a feed water containing 4 mg B/L
671 (*i.e.*, 90% removal), regeneration of NMDG sites is needed after less than one minute of
672 operation, with each of the membrane elements having the capacity to capture just two mg of
673 boron. This finding suggests that RO membrane layers are not viable for removal by capture-
674 and-release alone due to a limited number of binding sites in the ultrathin membranes. To this
675 end, the microporous support structure of RO membranes can be functionalized to provide
676 additional sites, and by using the boron sorption isotherm of the NMDG-grafted polysulfone
677 membranes reported in Du *et al.* [35] with the typical properties of RO support structures (*cf.*,
678 Table S6), the saturation time of the membranes could be extended to 0.7 h. Not considering the

679 time required for regeneration, which would need to be on the order of minutes to make this
680 process feasible, this approach still requires 30 regeneration cycles a day, but it assumes that all
681 of boron in the feed water is removed by the NMDG sites.

682 Current seawater RO membranes reject up to 90% of influent boron concentrations at
683 neutral pH, while novel membranes can achieve higher rejection (>95%) [13]. Removal of 90%
684 of influent boron is necessary for single-pass boron removal (assuming influent and product
685 boron concentrations at the Ashkelon plant of 4 and 0.4 mg/L, respectively), so a conservative
686 estimate of 80% removal of influent boron by a selective RO membrane layer was used to
687 investigate the saturation time of NMDG sites in the porous support. This calculation shows that
688 regeneration is needed every 6 h, suggesting that novel asymmetric membranes for high boron
689 rejection could incorporate boron-rejecting selective layers and porous support layers with
690 NMDG (or a similar boron-selective ligand) to act as an integrated polishing step. Perhaps, the
691 epoxide sites in PGGE that were proposed to interact with boric acid in this study and in
692 Bernstein *et al.* [26] could be considered in the design of boron rejecting selective layers. PGGE-
693 NMDG membranes could also be investigated for other membrane processes such as
694 electrodialysis, as recent work has shown promise for the capture of toxic metals during
695 electrodialysis with adsorptive membranes [39].

696 While polyol-functionalized membranes provide a highly selective approach for
697 removing boron from contaminated waters, feedwater chemistry must be considered in the
698 design of processes that employ such materials. Clearly, feedwaters with high boron
699 concentrations will saturate sorption sites faster and thus require frequent regeneration. Indeed, if
700 the boron concentration of the influent water at the Ashkelon desalination plant increased from 4
701 mg B/L to 120 mg B/L (*i.e.*, the boron concentration of a produced water sample taken from the

702 Eagle Ford shale play [11]), the saturation time for sorption sites in the porous support (assuming
703 80% rejection by the selective RO layer) decreases from 6 h to 6 min. Additionally, since this
704 fundamental study only investigated boron transport in the NMDG membranes when exposed to
705 solutions of boric acid and HEPES, the selectivity of ligand-functionalized membranes should be
706 investigated in complex solutions typical of unconventional waters (*e.g.*, high ionic strength).

707

708 **4. Conclusions**

709 A versatile membrane platform based on poly(glycidyl glycidyl ether) (PGGE) was
710 functionalized with *N*-methyl-D-glucamine (NMDG) to provide selective removal of boric acid
711 during water purification. PGGE and PGGE-NMDG membranes exhibited dual mode sorption
712 isotherms for boric acid, presumably due to absorption of boron in the polymer matrix and
713 additional specific interactions between boron and functional groups in the membranes. Specific
714 interactions between boron and the membranes were well-described using a single-site and two-
715 site Langmuir isotherm model for PGGE and PGGE-NMDG, respectively. PGGE interacted with
716 boron via its epoxide, ether, and amine groups, and PGGE-NMDG also provided boron removal
717 via chelation by NMDG. Experiments performed using buffered solutions of boric acid (pH 7.0)
718 indicated that borate-NMDG complexes form in PGGE-NMDG membranes over all tested
719 concentrations. Boron sorption in PGGE and PGGE-NMDG membranes was reversible over four
720 cycles of acid regeneration without a significant loss of boron uptake capacity. Diffusion of
721 boron in PGGE and PGGE-NMDG exhibited two-stage sorption behavior, which may result
722 from specific solute/membrane interactions such as chelation by NMDG groups and hydrogen
723 bonding with epoxide, ether, and amine groups. This study highlights several important
724 properties of ligand-functionalized membranes that can be leveraged to enhance removal of
725 challenging solutes such as boric acid during water reuse.

726

727 **Acknowledgements**

728 This work was supported as part of the Center for Materials for Water and Energy Systems (M-
729 WET), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of
730 Science, Basic Energy Sciences under Award #DE-SC0019272. The authors thank *General*
731 *Electric Power and Water* for providing the porous polypropylene membranes used for
732 membrane casting.

733

734 **Author contribution statement**

735 F.W.R. and B.J.P. made the materials and M.R.L. characterized them, and each of these authors
736 wrote their respective portions of the manuscript. The remaining authors (L.E.K., N.A.L., D.F.L.,
737 and B.D.F.) supervised the research and provided critical feedback during data collection,
738 analyses, and manuscript preparation.

739

740 **References**

741 [1] M.R. Landsman, R. Sujanani, S.H. Brodfuehrer, C.M. Cooper, A.G. Darr, R.J. Davis, K.
742 Kim, S. Kum, L.K. Nalley, S.M. Nomaan, C.P. Oden, A. Paspureddi, K.K. Reimund,
743 L.S.R. III, S. Yeo, D.F. Lawler, B.D. Freeman, L.E. Katz, Water treatment: Are
744 membranes the panacea?, *Annu. Rev. Chem. Biomol. Eng.* 11 (2020) 1–27.
745 <https://doi.org/10.1017/CBO9781107415324.004>.

746 [2] M. Elimelech, W.A. Phillip, The future of seawater desalination: Energy, technology, and
747 the environment, *Science* 333 (2011) 712–717. <https://doi.org/10.1126/science.1200488>.

748 [3] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis
749 desalination: Water sources, technology, and today's challenges, *Water Res.* 43 (2009)
750 2317–2348. <https://doi.org/10.1016/j.watres.2009.03.010>.

751 [4] C.Y. Tang, Z. Yang, H. Guo, J.J. Wen, L.D. Nghiem, E. Cornelissen, Potable water reuse
752 through advanced membrane technology, *Environ. Sci. Technol.* 52 (2018) 10215–10223.
753 <https://doi.org/10.1021/acs.est.8b00562>.

754 [5] D.M. Warsinger, S. Chakraborty, E.W. Tow, M.H. Plumlee, C. Bellona, S. Loutatidou, L.
755 Karimi, A.M. Mikelonis, A. Achilli, A. Ghassemi, L.P. Padhye, S.A. Snyder, S. Curcio,
756 C.D. Vecitis, H.A. Arafat, J.H. Lienhard, A review of polymeric membranes and
757 processes for potable water reuse, *Prog. Polym. Sci.* 81 (2018) 209–237.
758 <https://doi.org/10.1016/j.progpolymsci.2018.01.004>.

759 [6] M. Brdar-Jokanović, Boron toxicity and deficiency in agricultural plants, *Int. J. Mol. Sci.*
760 21 (2020). <https://doi.org/10.3390/ijms21041424>.

761 [7] A.J. Kondash, J.H. Redmon, E. Lambertini, L. Feinstein, E. Weinthal, L. Cabrales, A.
762 Vengosh, The impact of using low-saline oilfield produced water for irrigation on water

763 and soil quality in California, *Sci. Total Environ.* 733 (2020) 139392.
764 <https://doi.org/10.1016/j.scitotenv.2020.139392>.

765 [8] H. Miller, P. Trivedi, Y. Qiu, E.M. Sedlacko, C.P. Higgins, T. Borch, Food crop irrigation
766 with oil field-produced water suppresses plant immune response, *Environ. Sci. Technol.*
767 Lett. 6 (2019) 656–661. <https://doi.org/10.1021/acs.estlett.9b00539>.

768 [9] N. Hilal, G.J. Kim, C. Somerfield, Boron removal from saline water: A comprehensive
769 review, *Desalination* 273 (2011) 23–35. <https://doi.org/10.1016/j.desal.2010.05.012>.

770 [10] Y. Jie, K. Goh, M. Kurihara, R. Wang, Seawater desalination by reverse osmosis: Current
771 development and future challenges in membrane fabrication – A review, *J. Memb. Sci.*
772 629 (2021) 119292. <https://doi.org/10.1016/j.memsci.2021.119292>.

773 [11] M.A. Sari, S. Chellam, Mechanisms of boron removal from hydraulic fracturing
774 wastewater by aluminum electrocoagulation, *J. Colloid Interface Sci.* 458 (2015) 103–111.
775 <https://doi.org/10.1016/j.jcis.2015.07.035>.

776 [12] B. Özyurt, Ş. Camcioğlu, M. Fırtın, Ç. Ateş, H. Hapoglu, Boron removal from industrial
777 wastewaters by means of optimized sequential chemical precipitation and coagulation
778 processes, *Desalin. Water Treat.* 172 (2019) 292–300.
779 <https://doi.org/10.5004/dwt.2019.24932>.

780 [13] Y.P. Tang, L. Luo, Z. Thong, T.S. Chung, Recent advances in membrane materials and
781 technologies for boron removal, *J. Memb. Sci.* 541 (2017) 434–446.
782 <https://doi.org/10.1016/j.memsci.2017.07.015>.

783 [14] K.L. Tu, L.D. Nghiem, A.R. Chivas, Coupling effects of feed solution pH and ionic
784 strength on the rejection of boron by NF/RO membranes, *Chem. Eng. J.* 168 (2011) 700–
785 706. <https://doi.org/10.1016/j.cej.2011.01.101>.

786 [15] A. Gorenflo, M. Brusilovsky, M. Faigon, B. Liberman, High pH operation in seawater
787 reverse osmosis permeate: First results from the world's largest SWRO plant in Ashkelon,
788 Desalination. 203 (2007) 82–90. <https://doi.org/10.1016/j.desal.2006.05.004>.

789 [16] B. Sauvet-goichon, Ashkelon desalination plant — A successful challenge, Desalination.
790 203 (2007) 75–81. <https://doi.org/10.1016/j.desal.2006.03.525>.

791 [17] Z. Guan, J. Lv, P. Bai, X. Guo, Boron removal from aqueous solutions by adsorption — A
792 review, Desalination. 383 (2016) 29–37. <https://doi.org/10.1016/j.desal.2015.12.026>.

793 [18] J. Lin, N.N.N. Mahasti, Y. Huang, Recent advances in adsorption and coagulation for
794 boron removal from wastewater: A comprehensive review, J. Hazard. Mater. 407 (2021)
795 124401. <https://doi.org/10.1016/j.jhazmat.2020.124401>.

796 [19] Y.P. Tang, T.S. Chung, M. Weber, C. Maletzko, Development of novel diol-
797 functionalized silica particles toward fast and efficient boron removal, Ind. Eng. Chem.
798 Res. 56 (2017) 11618–11627. <https://doi.org/10.1021/acs.iecr.7b03115>.

799 [20] J. Meng, J. Cao, R. Xu, Z. Wang, R. Sun, Hyperbranched grafting enabling simultaneous
800 enhancement of the boric acid uptake and the adsorption rate of a complexing membrane,
801 J. Mater. Chem. A. 4 (2016) 11656–11665. <https://doi.org/10.1039/c6ta02348g>.

802 [21] J. Kamcev, M.K. Taylor, D.M. Shin, N.N. Jarenwattananon, K.A. Colwell, J.R. Long,
803 Functionalized porous aromatic frameworks as high-performance adsorbents for the rapid
804 removal of boric acid from water, Adv. Mater. (2019) 1808027.
805 <https://doi.org/10.1002/adma.201808027>.

806 [22] S. Kürklü, S. Velio, M. Göktu, S.B. Tantekin-ersolmaz, W.B. Krantz, A novel energy-
807 efficient concurrent desalination and boron removal (CDBR) process, 423 (2017) 79–94.
808 <https://doi.org/10.1016/j.desal.2017.09.005>.

809 [23] M.R. Landsman, D.F. Lawler, L.E. Katz, Application of electrodialysis pretreatment to
810 enhance boron removal and reduce fouling during desalination by nanofiltration/reverse
811 osmosis, *Desalination*. 491 (2020) 114563. <https://doi.org/10.1016/j.desal.2020.114563>.

812 [24] Z. Ali, Y. Al Sunbul, F. Pacheco, W. Ogieglo, Y. Wang, G. Genduso, I. Pinna, Defect-
813 free highly selective polyamide thin-film composite membranes for desalination and
814 boron removal, *J. Memb. Sci.* 578 (2019) 85–94.
815 <https://doi.org/10.1016/j.memsci.2019.02.032>.

816 [25] Y. Li, S. Wang, X. Song, Y. Zhou, H. Shen, X. Cao, P. Zhang, C. Gao, High boron
817 removal polyamide reverse osmosis membranes by swelling induced embedding of a
818 sulfonyl molecular plug, *J. Memb. Sci.* 597 (2020) 117716.
819 <https://doi.org/10.1016/j.memsci.2019.117716>.

820 [26] R. Bernstein, S. Belfer, V. Freger, Toward improved boron removal in RO by membrane
821 modification: Feasibility and challenges, *Environ. Sci. Technol.* 45 (2011) 3613–3620.
822 <https://doi.org/10.1021/es103991u>.

823 [27] S. Shultz, M. Bass, R. Semiat, V. Freger, Modification of polyamide membranes by
824 hydrophobic molecular plugs for improved boron rejection, *J. Memb. Sci.* 546 (2018)
825 165–172. <https://doi.org/10.1016/j.memsci.2017.10.003>.

826 [28] S. Wang, Y. Zhou, C. Gao, Novel high boron removal polyamide reverse osmosis
827 membranes, *J. Memb. Sci.* 554 (2018) 244–252.
828 <https://doi.org/10.1016/j.memsci.2018.03.014>.

829 [29] B. Jung, C.Y. Kim, S. Jiao, U. Rao, A. V. Dudchenko, J. Tester, D. Jassby, Enhancing
830 boron rejection on electrically conducting reverse osmosis membranes through local
831 electrochemical pH modification, *Desalination*. 476 (2020) 114212.

832 https://doi.org/10.1016/j.desal.2019.114212.

833 [30] H. Yamagishi, K. Saito, S. Furusaki, T. Sugo, I. Ishigaki, Introduction of a high-density
834 chelating group into a porous membrane without lowering the flux, *Ind. Eng. Chem. Res.*
835 30 (1991) 2234–2237. https://doi.org/10.1021/ie00057a028.

836 [31] Y. Zhang, J.R. Vallin, J.K. Sahoo, F. Gao, B.W. Boudouris, M.J. Webber, W.A. Phillip,
837 High-affinity detection and capture of heavy metal contaminants using block polymer
838 composite membranes, *ACS Cent. Sci.* 4 (2018) 1697–1707.
839 https://doi.org/10.1021/acscentsci.8b00690 ACS.

840 [32] J.R. Hoffman, W.A. Phillip, 100th anniversary of macromolecular science viewpoint:
841 Integrated membrane systems, *ACS Macro Lett.* 9 (2020) 1267–1279.
842 https://doi.org/10.1021/acsmacrolett.0c00482.

843 [33] R. Sujanani, M.R. Landsman, S. Jiao, J.D. Moon, M.S. Shell, D.F. Lawler, L.E. Katz,
844 B.D. Freeman, Designing solute-tailored selectivity in membranes: Perspectives for water
845 reuse and resource recovery, *ACS Macro Lett.* 9 (2020) 1709–1717.
846 https://doi.org/10.1021/acsmacrolett.0c00710.

847 [34] N. Bachelier, C. Chappey, D. Langevin, M. M, J. Verch, Facilitated transport of boric acid
848 by 1,3-diols through supported liquid membranes, *J. Memb. Sci.* 119 (1996) 285–294.

849 [35] X. Du, J. Meng, R. Xu, Q. Shi, Y. Zhang, Polyol-grafted polysulfone membranes for
850 boron removal: Effects of the ligand structure, *J. Memb. Sci.* 476 (2015) 205–215.
851 https://doi.org/10.1016/j.memsci.2014.11.042.

852 [36] Z. Wang, Z. Wu, Y. Zhang, J. Meng, Hyperbranched-polyol-tethered poly (amic acid)
853 electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal,
854 *Appl. Surf. Sci.* 402 (2017) 21–30. https://doi.org/10.1016/j.apsusc.2017.01.070.

855 [37] F. Albertini, T. Ribeiro, S. Alves, C. Baleizão, J.P.S. Farinha, Boron-chelating membranes
856 based in hybrid mesoporous silica nanoparticles for water purification, *Mater. Des.* 141
857 (2018) 407–413. <https://doi.org/10.1016/j.matdes.2018.01.001>.

858 [38] M. Di Vincenzo, M. Barboiu, A. Tiraferri, Y.M. Legrand, Polyol-functionalized thin-film
859 composite membranes with improved transport properties and boron removal in reverse
860 osmosis, *J. Memb. Sci.* 540 (2017) 71–77. <https://doi.org/10.1016/j.memsci.2017.06.034>.

861 [39] A.A. Uliana, N.T. Bui, J. Kamcev, M.K. Taylor, J.J. Urban, J.R. Long, Ion-capture
862 electrodialysis using multifunctional adsorptive membranes, *Science*. 372 (2021) 296–
863 299. <https://doi.org/10.1126/science.abf5991>.

864 [40] J.G.G. Wijmans, R.W.W. Baker, The solution-diffusion model: A review, *J. Memb. Sci.*
865 107 (1995) 1–21. [https://doi.org/10.1016/0376-7388\(95\)00102-I](https://doi.org/10.1016/0376-7388(95)00102-I).

866 [41] B.F. Lee, M.J. Kade, J.A. Chute, N. Gupta, L.M. Campos, G.H. Fredrickson, E.J. Kramer,
867 N.A. Lynd, C.J. Hawker, Poly(allyl glycidyl ether)-A versatile and functional polyether
868 platform, *J. Polym. Sci. Part A Polym. Chem.* 49 (2011) 4498–4504.
869 <https://doi.org/10.1002/pola.24891>.

870 [42] N.E. Good, G.D. Winget, W. Winter, T.N. Connolly, S. Izawa, R.M. Singh, Hydrogen ion
871 buffers for biological research, *Biochemistry*. 5 (1966) 467–477.
872 <https://doi.org/10.1021/bi00866a011>.

873 [43] N. Bin Darwish, V. Kochkodan, N. Hilal, Boron removal from water with fractionized
874 Amberlite IRA743 resin, *Desalination*. 370 (2015) 1–6.
875 <https://doi.org/10.1016/j.desal.2015.05.009>.

876 [44] M. Simonnot, C. Castel, M. Nicolaiè, C. Rosin, M. Sardin, H. Jauffret, Boron removal
877 from drinking water with a boron selective resin: Is the treatment really selective?, *Water*

878 Res. 34 (2000) 109–116. [https://doi.org/10.1016/S0043-1354\(99\)00130-X](https://doi.org/10.1016/S0043-1354(99)00130-X).

879 [45] DuPont, Product Data Sheet: AmberSepTM IRA743 Chelating Resin (Form No. 45-

880 D00805-en, Rev. 1), 2020.

881 [46] R.B. Baird, A.D. Eaton, E.W. Rice, Standard methods for the examination of water and

882 wastewater, 23rd Ed., American Public Health Association, Water Environment

883 Federation, and American Water Works Association, Washington, D.C., 2017.

884 [47] M. Galizia, F.M. Benedetti, D.R. Paul, B.D. Freeman, Monovalent and divalent ion

885 sorption in a cation exchange membrane based on cross-linked poly (p-styrene sulfonate-

886 co-divinylbenzene), *J. Memb. Sci.* 535 (2017) 132–142.

887 <https://doi.org/10.1016/j.memsci.2017.04.007>.

888 [48] H. Yasuda, C.E. Lamaze, L.D. Ikenberry, Permeability of solutes through hydrated

889 polymer membranes. Part I. Diffusion of sodium chloride, *Die Makromol. Chemie.* 118

890 (1968) 19–35. <https://doi.org/10.1002/macp.1968.021180102>.

891 [49] E.-S. Jang, J. Kamcev, K. Kobayashi, N. Yan, R. Sujanani, T.J. Dilenschneider, H. Bum,

892 D.R. Paul, B.D. Freeman, Influence of water content on alkali metal chloride transport in

893 cross-linked poly(ethylene glycol) diacrylate. 1. Ion sorption, *Polymer.* 178 (2019)

894 121554. <https://doi.org/10.1016/j.polymer.2019.121554>.

895 [50] R.M. Barrer, J.A. Barrie, J. Slater, Sorption and diffusion in ethyl cellulose. Part III.

896 Comparison between ethyl cellulose and rubber, *J. Polym. Sci.* 27 (1958) 177–197.

897 <https://doi.org/10.1002/pol.1958.1202711515>.

898 [51] D.R. Paul, Gas sorption and transport in glassy polymers, *Berichte Der*

899 *Bunsengesellschaft Für Phys. Chemie.* 83 (1979) 294–302.

900 <https://doi.org/10.1002/bbpc.19790830403>.

901 [52] J. Crank, The Mathematics of Diffusion, Oxford University Press, 1979.

902 [53] C.G. Rodriguez, M. Chwatko, J. Park, C.L. Bentley, B.D. Freeman, N.A. Lynd,
903 Compositionally controlled polyether membranes via mono(μ -
904 alkoxo)bis(alkylaluminum)-initiated chain-growth network epoxide polymerization:
905 Synthesis and transport properties, *Macromolecules*. 53 (2020) 1191–1198.
906 <https://doi.org/10.1021/acs.macromol.9b02318>.

907 [54] H. Lin, B.D. Freeman, Materials selection guidelines for membranes that remove CO₂
908 from gas mixtures, *J. Mol. Struct.* 739 (2005) 57–74.
909 <https://doi.org/10.1016/j.molstruc.2004.07.045>.

910 [55] T. Brinkmann, J. Lillepärg, H. Notzke, J. Pohlmann, S. Shishatskiy, J. Wind, T. Wolff,
911 Development of CO₂ selective poly(ethylene oxide)-based membranes: From laboratory to
912 pilot plant scale, *Engineering*. 3 (2017) 485–493.
913 <https://doi.org/10.1016/J.ENG.2017.04.004>.

914 [56] S. Bandehali, A. Moghadassi, F. Parvizian, Advances in high carbon dioxide separation
915 performance of poly(ethylene oxide)-based membranes, *J. Energy Chem.* 46 (2020) 30–
916 52. <https://doi.org/10.1016/j.jechem.2019.10.019>.

917 [57] K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly(ethylene glycol) in drug
918 delivery: Pros and cons as well as potential alternatives, *Angew. Chemie - Int. Ed.* 49
919 (2010) 6288–6308. <https://doi.org/10.1002/anie.200902672>.

920 [58] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, *J.*
921 *Mater. Chem. A*. 3 (2015) 19218–19253. <https://doi.org/10.1039/c5ta03471j>.

922 [59] J. McMurry, Amines and heterocycles: Spectroscopy of amines, in: *Org. Chem.*, 9th Ed.,
923 Cengage Learning, Boston, MA, 2015.

924 [60] G.M. Geise, D.R. Paul, B.D. Freeman, Fundamental water and salt transport properties of
925 polymeric materials, *Prog. Polym. Sci.* 39 (2014) 1–42.
926 <https://doi.org/10.1016/j.progpolymsci.2013.07.001>.

927 [61] H. Ju, A.C. Sagle, B.D. Freeman, J.I. Mardel, A.J. Hill, Characterization of sodium
928 chloride and water transport in crosslinked poly (ethylene oxide) hydrogels, *J. Memb.*
929 *Sci.* 358 (2010) 131–141. <https://doi.org/10.1016/j.memsci.2010.04.035>.

930 [62] X. Zhang, J. Wang, S. Chen, Z. Bao, H. Xing, Z. Zhang, B. Su, Q. Yang, Y. Yang, Q.
931 Ren, A spherical N-methyl-D-glucamine-based hybrid adsorbent for highly efficient
932 adsorption of boric acid from water, *Sep. Purif. Technol.* 172 (2017) 43–50.
933 <https://doi.org/10.1016/j.seppur.2016.08.002>.

934 [63] G.N. Manjunatha Reddy, J.A. Gerbec, F. Shimizu, B.F. Chmelka, Nanoscale surface
935 compositions and structures influence boron adsorption properties of anion exchange
936 resins, *Langmuir*. 35 (2019) 15661–15673. <https://doi.org/10.1021/acs.langmuir.9b02042>.

937 [64] J. Wang, Y. Zhang, Boronic acids as hydrogen bond donor catalysts for efficient
938 conversion of CO₂ into organic carbonate in water, *ACS Catal.* 6 (2016) 4871–4876.
939 <https://doi.org/10.1021/acscatal.6b01422>.

940 [65] Y. Ye, D. Li, P. Xu, J. Sun, B-doped and NH₂-functionalized SBA-15 with hydrogen bond
941 donor groups for effective catalysis of CO₂ cycloaddition to epoxides, *Inorg. Chem. Front.*
942 7 (2020) 3636–3645. <https://doi.org/10.1039/d0qi00703j>.

943 [66] L. Zhao, J. Chen, W. Li, A. Lu, B₂O₃: A heterogeneous metal-free Lewis acid catalyst for
944 carbon dioxide fixation into cyclic carbonates, *J. CO₂ Util.* 29 (2019) 172–178.
945 <https://doi.org/10.1016/j.jcou.2018.12.006>.

946 [67] A.Z. Halimehjani, H. Gholami, M.R. Saidi, Boric acid/glycerol as an efficient catalyst for

947 regioselective epoxide ring opening by aromatic amines in water, *Green Chem. Lett. Rev.*
948 5 (2012) 1–5. <https://doi.org/10.1080/17518253.2011.572297>.

949 [68] M. Pineschi, Boron reagents and catalysts for the functionalization of strained
950 heterocycles, *Adv. Synth. Catal.* 363 (2021) 2325–2339.
951 <https://doi.org/10.1002/adsc.202001493>.

952 [69] Y.J. Kim, S.H. Choi, S.J. Lee, K. Jang, Latent curing, chemorheological, kinetic, and
953 thermal behaviors of epoxy resin matrix for prepgs, *Ind. Eng. Chem. Res.* (2021).
954 <https://doi.org/10.1021/acs.iecr.1c00576>.

955 [70] F. Risplendi, F. Ra, L. Lin, C. Grossman, Fundamental insights on hydration environment
956 of boric acid and its role in separation from saline water, *J. Phys. Chem. C.* 124 (2020)
957 1438–1445. <https://doi.org/10.1021/acs.jpcc.9b10065>.

958 [71] N. Ingri, G. Lagerström, M. Frydman, L.G. Sillén, Equilibrium studies of polyanions. II.
959 Polyborates in NaClO_4 medium, *Acta Chem. Scand.* 11 (1957) 1034–1058.
960 <https://doi.org/10.3891/acta.chem.scand.11-1034>.

961 [72] J. Wang, R.S. Kingsbury, L.A. Perry, O. Coronell, Partitioning of alkali metal salts and
962 boric acid from aqueous phase into the polyamide active layers of reverse osmosis
963 membranes, *Environ. Sci. Technol.* 51 (2017) 2295–2303.
964 <https://doi.org/10.1021/acs.est.6b04323>.

965 [73] T. Itou, H. Kitai, A. Shimazu, T. Miyazaki, K. Tashiro, Clarification of cross-linkage
966 structure in boric acid doped poly(vinyl alcohol) and its model compound as studied by an
967 organized combination of X-ray single-crystal structure analysis, Raman spectroscopy,
968 and density functional theoretical calculation, *J. Phys. Chem. B.* 118 (2014) 6032–6037.
969 <https://doi.org/10.1021/jp5026569>.

970 [74] A. Roy, A. Choudhury, C.N.R. Rao, Supramolecular hydrogen-bonded structure of a 1:2
971 adduct of melamine with boric acid, *J. Mol. Struct.* 613 (2002) 61–66.
972 [https://doi.org/10.1016/S0022-2860\(02\)00128-X](https://doi.org/10.1016/S0022-2860(02)00128-X).

973 [75] B. Mi, B.J. Marin, D.G. Cahill, RBS characterization of arsenic(III) partitioning from
974 aqueous phase into the active layers of thin-film composite NF/RO membranes, *Env. Sci
975 Technol.* 41 (2007) 3290–3295. <https://doi.org/10.1021/es062292v>.

976 [76] D. Peak, G.W.G.W.I. Luther, D.L.D.L. Sparks, ATR-FTIR spectroscopic studies of boric
977 acid adsorption on hydrous ferric oxide, *Geochim. Cosmochim. Acta.* 67 (2003) 2551–
978 2560. [https://doi.org/10.1016/S0016-7037\(03\)00096-6](https://doi.org/10.1016/S0016-7037(03)00096-6).

979 [77] K. Yoshimura, Y. Miyazaki, F. Ota, S. Matsuoka, H. Sakashita, Complexation of boric
980 acid with the N-methyl-D-glucamine group in solution and in crosslinked polymer, *J.
981 Chem. Soc. - Faraday Trans.* 94 (1998) 683–689. <https://doi.org/10.1039/a707790d>.

982 [78] M.P. Schmidt, S.D. Siciliano, D. Peak, The role of monodentate tetrahedral borate
983 complexes in boric acid binding to a soil organic matter analogue, *Chemosphere.* 276
984 (2021) 130150. <https://doi.org/10.1016/j.chemosphere.2021.130150>.

985 [79] T. Ide, Y. Hirayama, How boron is adsorbed by D-glucamine: A density functional theory
986 study, *Comput. Theor. Chem.* 1150 (2019) 85–90.
987 <https://doi.org/10.1016/j.comptc.2019.01.007>.

988 [80] C. Sanfeliu, R. Martínez-Máñez, F. Sancenón, J. Soto, P. Amorós, T. Azaïs, M.D. Marcos,
989 11B-MAS NMR approach to the boron adsorption mechanism on a glucose-functionalised
990 mesoporous silica matrix, *Microporous Mesoporous Mater.* 266 (2018) 232–241.
991 <https://doi.org/10.1016/j.micromeso.2018.02.016>.

992 [81] E. Ruckenstein, A.S. Vaidyanathan, G.R. Youngquist, Sorption by solids with bidisperse

993 pore structures, *Chem. Eng. Sci.* 26 (1971) 1305–1318. [https://doi.org/10.1016/0009-2509\(71\)80051-9](https://doi.org/10.1016/0009-2509(71)80051-9).

994

995 [82] M. Laatikainen, M. Lindstrom, Measurement of sorption in polymer membranes with a

996 quartz crystal microbalance, *J. Memb. Sci.* 29 (1986) 127–141.

997 [https://doi.org/10.1016/S0376-7388\(00\)82464-3](https://doi.org/10.1016/S0376-7388(00)82464-3).

998 [83] M.D. Placette, X. Fan, J.-H. Zhao, D. Edwards, A dual stage model of anomalous

999 moisture diffusion and desorption in epoxy mold compounds, 2011 12th Intl. Conf.

1000 Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems. (2011) 1–8.

1001 <https://doi.org/10.1109/ESIME.2011.5765824>.

1002 [84] C.C. McDowell, B.D. Freeman, G.W. McNeely, Acetone sorption and uptake kinetic in

1003 poly(ethylene terephthalate), *Polymer.* 40 (1999) 3487–3499.

1004 [85] E. Jang, J. Kamcev, K. Kobayashi, N. Yan, R. Sujanani, T.J. Dilenschneider, H. Bum,

1005 D.R. Paul, B.D. Freeman, Influence of water content on alkali metal chloride transport in

1006 cross-linked Poly(ethylene glycol) diacrylate. 2. Ion diffusion, *Polymer.* 192 (2020)

1007 122316. <https://doi.org/10.1016/j.polymer.2020.122316>.

1008 [86] M. Galizia, D.R. Paul, B.D. Freeman, Liquid methanol sorption, diffusion and permeation

1009 in charged and uncharged polymers, *Polymer.* 102 (2016) 281–291.

1010 <https://doi.org/10.1016/j.polymer.2016.09.010>.

1011 [87] J.S. Mackie, P. Meares, The diffusion of electrolytes in a cation-exchange resin

1012 membrane. I. Theoretical, *Proc. R. Soc. London, Ser. A.* 232 (1955) 498–509.

1013 <https://doi.org/10.1098/rspa.1955.0234>.

1014 [88] W. Huang, W.J. Weber, A Distributed reactivity model for sorption by soils and

1015 sediments. 10. Relationships between desorption, hysteresis, and the chemical

1016 characteristics of organic domains, Env. Sci Technol. 31 (1997) 2562–2569.

1017 <https://doi.org/10.1021/es960995e>.

1018 [89] A.T. Kan, G. Fu, M.B. Tomson, Adsorption/desorption hysteresis in organic pollutant and
1019 soil/sediment interaction, Env. Sci Technol. 28 (1994) 859–867.
1020 <https://doi.org/10.1021/es00054a017>.

1021 [90] X. Cheng, A.T. Kan, M.B. Tomson, Naphthalene adsorption and desorption from aqueous
1022 C-60 fullerene, J. Chem. Eng. Data. 49 (2004) 675–683.
1023 <https://doi.org/10.1021/je030247m>.

1024 [91] D.E. Liu, T.J. Dursch, N.O. Taylor, S.Y. Chan, D.T. Bregante, C.J. Radke, Diffusion of
1025 water-soluble sorptive drugs in HEMA/MAA hydrogels, J. Control. Release. 239 (2016)
1026 242–248. <https://doi.org/10.1016/j.jconrel.2016.08.025>.

1027 [92] J.A. Tshudy, C. von Frankenberg, A model incorporating reversible immobilization for
1028 sorption and diffusion in glassy polymers, J. Polym. Sci. 11 (1973) 2027–2037.
1029 <https://doi.org/10.1002/pol.1973.180111012>.

1030 [93] A. Gennari, C. Gujral, E. Hohn, E. Lallana, F. Cellesi, N. Tirelli, Revisiting Boronate/Diol
1031 Complexation as a Double Stimulus- Responsive Bioconjugation, Bioconjug. Chem. 28
1032 (2017) 1391–1402. <https://doi.org/10.1021/acs.bioconjchem.7b00080>.

1033 [94] R. Barati, J.T. Liang, A review of fracturing fluid systems used for hydraulic fracturing of
1034 oil and gas wells, J. Appl. Polym. Sci. 131 (2014) 1–11.
1035 <https://doi.org/10.1002/app.40735>.

1036 [95] T. Bu, F. Chen, X. He, Y. Yang, W. Wang, Researching the complexing conditions of
1037 residual boron in produced water from oil & gas fields, Process Saf. Environ. Prot. 116
1038 (2018) 254–261. <https://doi.org/10.1016/j.psep.2018.02.013>.

1039 [96] S.D. Bull, M.G. Davidson, J.M.H. van den Elsen, J.S. Fossey, A.T.A. Jenkins, Y. Jiang,
1040 Y. Kubo, F. Marken, K. Sakurai, J. Zhao, T.D. James, Exploiting the reversible covalent
1041 bonding of boronic acids: Recognition, sensing, and assembly, *Acc. Chem. Res.* 46 (2013)
1042 312–326. <https://doi.org/10.1021/ar300130w>.

1043 [97] B. Marco-Dufort, M.W. Tibbitt, Design of moldable hydrogels for biomedical
1044 applications using dynamic covalent boronic esters, *Mater. Today Chem.* 12 (2019) 16–
1045 33. <https://doi.org/10.1016/j.mtchem.2018.12.001>.

1046 [98] S.Y. Lee, M. Yang, J. Seo, D.I. Jeong, C. Hwang, H. Kim, J. Lee, K. Lee, J. Park, H. Cho,
1047 Serially pH-modulated hydrogels based on boronate ester and polydopamine linkages for
1048 local cancer therapy, *ACS Appl. Mater. Interfaces.* 13 (2021) 2189–2203.
1049 <https://doi.org/10.1021/acsami.0c16199>.

1050 [99] P. Millner, *High Resolution Chromatography: A Practical Approach*, Oxford University
1051 Press, 1999.

1052 [100] Dionex, Product Manual: IonPac TBC-1 Trace Borate Concentrator Column and IonPac
1053 ICE-Borate IC Column, Sunnyvale, CA, 2004.

1054 [101] S. Bonollo, D. Lanari, L. Vaccaro, Ring-opening of epoxides in water, *European J. Org.*
1055 *Chem.* (2011) 2587–2598. <https://doi.org/10.1002/ejoc.201001693>.

1056