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Abstract—We present algorithmic improvements to the loading
operations of certain reduced data ensembles produced from neu-
tron scattering experiments at Oak Ridge National Laboratory
(ORNL) facilities. Ensembles from multiple measurements are
required to cover a wide range of the phase space of a sample
material of interest. They are stored using the standard NeXus
schema on individual HDF5 files. This makes it a scalability
challenge, as the number of experiments stored increases in a
single ensemble file. The present work follows up on our previous
efforts on data management algorithms, to address identified
input output (I/O) bottlenecks in Mantid, an open-source data
analysis framework used across several neutron science facilities
around the world. We reuse an in-memory binary-tree metadata
index that resembles data access patterns, to provide a scalable
search and extraction mechanism. In addition, several memory
operations are refactored and optimized for the current common
use cases, ranging most frequently from 10 to 180, and up to 360
separate measurement configurations. Results from this work
show consistent speed ups in wall-clock time on the Mantid
LoadMD routine, ranging from 19% to 23% on average, on
ORNL production computing systems. The latter depends on
the complexity of the targeted instrument-specific data and the
system I/O and compute variability for the shared computational
resources available to users of ORNL’s Spallation Neutron Source
(SNS) and the High Flux Isotope Reactor (HFIR) instruments.
Nevertheless, we continue to highlight the need for more research
to address reduction challenges as experimental data volumes,
user time and processing costs increase.

Index Terms—experimental data, reduction, workflows, meta-
data, indexing, Mantid, NeXus, HDF5, neutron scattering

I. INTRODUCTION

Oak Ridge National Laboratory (ORNL) neutron science
facilities, the Spallation Neutron Source (SNS) and the High-
Flux Isotope Reactor (HFIR), produce large amounts of ex-
perimental raw data from a variety of instruments [1]. Raw

data at SNS and HFIR is stored in “event mode” [2], in which
each neutron is tagged with its arrival time, thus recording
what is known as ”time-of-flight” information. In addition,
detector and measurement characteristics annotations must
be stored, to capture meaningful physical information under
certain conditions [3]. The result is a large database stored
using the metadata-rich standard NeXus schema [4], built on
top of the self-describing hierarchical data format, HDF5 [5],
hosted at ORNL’s SNS and HFIR computing facilities [6].
Raw event data needs to be post-processed into higher-level
data products, to extract physical quantities of interest. More-
over, single experimental runs only expose limited information
on complex material physics studied with neutron scattering
techniques. Hence, experiments from a particular instrument
need to cover a wide range of observational parameters (e.g.
angular coverage, different temperatures or magnetic fields,
etc.), which could also incur in significant overlap [7]. The
latter results in large data set ensembles of different statistical
significance, posing major challenges in post-processing and
interpretation workflows.

In this paper, we tackle the data loading challenges for
single-crystal inelastic experiments, which require many sam-
ple orientations [8]. The raw data and metadata from each
orientation is pre-processed into a single “multidimensional”
data set ensemble. It contains all the information required
to visualize different slices of the dynamic structure factor,
typical in neutron scattering techniques. Loading this single,
common, “multidimensional” data set from disk and process-
ing the results into a reduced data structure in memory for
slicing the entire experimental domain is a major bottleneck
in the analysis workflows at SNS and HFIR available to users.

The Mantid framework [9] is an international collaboration



between several neutron sciences facilities around the world;
including ORNL’s SNS and HFIR [1], the ISIS Neutron
and Muons Source [10], and The Institut Laue–Langevin
(ILL) [11]. Mantid is used by several production workflows
for data reduction and analysis at these facilities. The present
work is the result of the optimizations applied to the Mantid
loading algorithm for multidimensional data ensembles named
“LoadMD” [9]. The latter has been identified as a bottleneck in
the process of data visualization for single crystal experiments.
Two major changes are applied to this algorithm, the first one
is the caching of an “in-memory index” [12] data structure,
which reuses similar strategies outlined in our previous work
addressing raw neutron data reduction bottlenecks [13]; the
second change is the reduction of “LoadMD” memory alloca-
tion requests which, in a shared computational resource, can
lead to increased variability in the overall loading operation.
Impact is obtained from the wall-clock time scalability of
“LoadMD” operations on SNS/HFIR production computa-
tional systems1 as a function of the number of orientations,
between 10 to 360 experimental measurements, stored in data
sets ensembles that are typical of the targeted applications [7].

The paper is organized as follows, Section II provides a
description of the neutron multidimensional data ensembles
produced from raw event-based data and the loading and pro-
cessing workflow for analyzing a full experiment. Section III
describes the proposed methodology to address the identified
current bottleneck in loading operations from profiling the
current operations in “LoadMD”, while Section IV presents
results on SNS/HFIR data analysis computing systems, includ-
ing the expected speed ups, scalability from comparing actual
experimental data set sizes, and the variability in wall-clock
times due to the shared-resource nature of the system. Finally,
Section V presents the conclusions from our study outlining
the need to continue improving existing data reduction work-
flows as data volumes continue to increase in future generation
instruments at ORNL, thus resulting in a wealth of research
opportunities for tackling scientific data challenges [14].

II. NEUTRON MULTIDIMENSIONAL DATA ENSEMBLES

The targeted single-crystal neutron inelastic scattering in-
struments at SNS and HFIR produce raw event-based data
for every experimental setup and conditions. In order to get
information on an entire experiment, to construct a meaningful
map of the dynamic structure factor S(Q, E), several mea-
surements need to be taken at different sample orientations.
A schematic description is shown in Figure 1 for constructing
the resulting data ensemble. We use the Mantid terminology
of “workspaces“ [9] for various data structures in memory.

The raw data for each sample orientation (event workspaces)
contain information about neutron detection events (time and
position in a detector), together with some metadata about the
sample orientation and experiment setup. One transforms this
information into a coordinate system relevant to the physics
of the materials to be studied, a three dimensional momentum

1https://analysis.sns.gov
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Fig. 1: Schematic overview of the multidimensional event
workspace, “MDWorkspace”, workflows used at SNS/HFIR
using Mantid’s “SaveMD” to save on disk (once) and the
identified “LoadMD” bottleneck operation (executed many
times) to retrieve the entire experimental ensemble containing
several orientation outputs.

transfer Q and an energy transfer E. This is stored as a multi-
dimensional workspace, “MDWorkspace”. Information from
multiple sample orientations (or other metadata parameters,
such as sample temperature) can be converted to the same
coordinates, and stored in the same structure. The resulting
“MDWorkspace” container is then stored in a single HDF5
file using the standard NeXus schema.

For visualization and further analysis purposes, researchers
typically take multiple one or two dimensional slices out
of this workspace, aligned along some arbitrary directions,
relevant to the particular sample they study. Pre-processing
the raw data into the “MDWorkspace” in Fig. 1 is a com-
putationally expensive process, but it is enough to perform
it only once. The slicing operation occurs multiple times,
with different slicing parameters. It is therefore desirable to
store the intermediate data and load it several times using the
“SaveMD” and “LoadMD” algorithms in Mantid. Typical 2D
slices for various number of sample orientations are shown in
Fig. 2.

The entries from a typical file ensemble are illustrated in
Table I. Thus showing the scalable nature of the file size,
hence operations, as a function of the number of experiments
conducted and stored at the targeted SNS/HFIR instruments.
For example, based on the current number of entries listed in
Table I, a file containing 180 measurements can contain close
to 200K entries. This leads to a scalability challenge when
processing the metadata and data in “LoadMD”.

As expected from being the inverse operation of “SaveMD”,
“LoadMD” essentially retrieves the stored information by
looping through the experiments data and metadata from the
overall ensemble. This is illustrated in Fig. 3 showing the
steps for loading samples and log info for each experiment
configuration in the dataset ensemble. While, multithreaded

https://analysis.sns.gov


(a) 5 experiments (b) 20 experiments

(c) 80 experiments (d) 180 experiments

Fig. 2: Slice view results of the dynamic structure factor
S(Q, E), as a function of two of the momentum transfer
components (Qx and Qz). The multi-dimensional data is a
synthetic one for the ARCS instrument [15], covering different
orientation ranges of the sample (2◦ offsets in the sample
rotation).

Data Type Entry Name
group /entry
attribute /entry/NX class

...
group /MDEventWorkspace/experiment0
group /MDEventWorkspace/box structure
dataset /MDEventWorkspace/coordinate system
dataset /MDEventWorkspace/dimensions
group /MDEventWorkspace/event data

...
attribute /MDEventWorkspace/experiment0/NX class
group /MDEventWorkspace/experiment0/instrument

... 20 entries
group /MDEventWorkspace/experiment0/logs

... 700 to 1000 entries
group /MDEventWorkspace/experiment0/sample

... 17 entries
group /MDEventWorkspace/process

...

...

...
group /MDEventWorkspace/experimentN

...

TABLE I: Schematic representation of the hierarchical NeXus
schema [4] for “MDWorkspace” files storing information for
several experiments including instrument configuration infor-
mation (logs, sample, process). Index contents scale up with
the total number of experiments (N+1).
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Samples
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Logs “i”

Load
Instrument

Info “i”

MD-
Workspace

N

Fig. 3: Mantid’s “LoadMD” loop steps for processing entries
of a single input “MDWorkspace” NeXus file containing a “N”
number of experiments.

parallelization strategies could be an option to speed up the
present loop, it is still desired to load the entire experimental
data ensemble. It is expected that more complex slicing
patterns than those shown in Fig. 2 will not necessarily match
the data ordering in the in-memory “MDWorkspace” data
structure. As a result, focusing on the repeated functionality
will guide initial efforts to locate bottlenecks that scale with
the number of experiments stored in a single ensemble.

III. PROPOSED METHODOLOGY

Similar to our previous effort in speeding up the loading of
raw neutron scattering data [13], we first understand the cur-
rent bottlenecks in “LoadMD” due to existing access patterns
previously identified in Mantid [16].

Figure 4 illustrates the result of profiling “LoadMD” from
the existing algorithm in Mantid’s main branch, as of October
2021, using flame graphs [17] for visualization purposes. The
x axis indicates the relative proportion of time for functions
inside “LoadMD” in which most time on the central processing
unit (CPU) is consumed, while the y axis indicates the call
stack down to the underlying libraries outside Mantid (in red).
Figure 4a shows that functions associated with reconstructing
the “in-memory” metadata index can take a large portion of
CPU runtime (∼ 20%), in addition a few cases of memory
reallocation per experiment entry have been identified for
potential refactoring that lead to savings in memory opera-
tions (∼ 4-5%). The latter becomes important in the targeted
shared resource as requests can add to the operating system
(OS) overhead for finding available resources (e.g. contiguous
memory).



To address the bottleneck due to in-memory index metadata
reconstruction operations we reuse the binary-tree formulation
described in our previous work [13]. This binary-tree is cached
in memory from the beginning of “LoadMD” and is kept
persistent through the loop operations described in Fig. 3.
Table II shows a schematic representation of the proposed in-
memory index for the reduced ensemble stored in a single
HDF5 NeXus file with “SaveMD”. Rather than following a
hierarchical approach as the data outlined on disk, the entries
are sorted by the NX_class attribute to match processing
patterns observed in “LoadMD” as profiled in Fig. 4. Large
data entries are identified as scientific datasets (SDS) and
compose the majority of the entries. The final number of SDS
entries scale up with the number of experiments stored in a
single file.

Key: NX class Value: Sorted binary-tree with absolute-path entry key
NXdata /MDEventWorkspace/box structure

/MDEventWorkspace/event data
/MDEventWorkspace/experiment0/sample/material
/MDEventWorkspace/experiment1/sample/material
...
/MDEventWorkspace/experimentN/sample/material

NXentry /MDEventWorkspace

NXgroup /MDEventWorkspace/experiment0
/MDEventWorkspace/experiment0/logs
...
/MDEventWorkspace/experimentN
/MDEventWorkspace/experimentN/logs
..

NXinstrument /MDEventWorkspace/experiment0/instrument
...
/MDEventWorkspace/experimentN/instrument

NXpositioner /MDEventWorkspace/experiment0/goniometer
...
/MDEventWorkspace/experimentN/goniometer

NXlog /MDEventWorkspace/experiment0/logs/gd prtn chrg
...
/MDEventWorkspace/experimentN/logs/gd prtn chrg

SDS /MDEventWorkspace/experiment0/instrument/...
/MDEventWorkspace/experiment0/logs/...
/MDEventWorkspace/experiment0/sample/...
...
/MDEventWorkspace/experimentN/instrument/...
/MDEventWorkspace/experimentN/logs/...
/MDEventWorkspace/experimentN/sample/...
...

TABLE II: Schematic “in-memory” binary-tree index from
MDFile NeXus file entries implemented using using C++’s
map<string,set<string> data structure in our refactor-
ing. Scientific data set (SDS) entries form the largest sub-tree.

A new profiling flame graph is shown in Fig. 4b after
applying the proposed algorithmic changes to reduce the iden-
tified bottlenecks in “LoadMD”. It can be seen that the index
reconstruction functions have been replaced by the proposed
cached large binary-tree. Also, refactoring memory allocations
and deallocations in fewer operations lead to a less fragmented
profile for memory operations. As a result, the redesigned
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Fig. 4: Mantid’s “LoadMD” CPU profiling flame graph repre-
sentation for (a) Mantid v6.0 main branch, and (b) proposed
PR branch2 on Mantid. The reduction of metadata-related CPU
operations bottlenecks and memory allocation fragmentation is
illustrated.

“LoadMD” algorithm is expected to make fewer calls to the
underlying HDF5 library binary tree search functions and the
OS “malloc/free” functions for memory management. The
expectation is that these algorithmic changes would impact
the overall wall-clock times occupied by users of SNS/HFIR
experimental facilities and computational resources1.

IV. PERFORMANCE RESULTS AND IMPACT

This section presents the performance gains that result from
our proposed implementation in Section III on SNS/HFIR



production computing systems1 that are accessible to users
of the neutron science facilities at ORNL [6].

After applying the algorithmic changes described in Sec-
tion III, we compare the performance of “LoadMD” for the
current Mantid “main” branch and our proposed implemen-
tation, accessible through a pull request (PR)2, for a wide
range of files with different number of experiments stored with
“SaveMD”. These files are described in Table III showing the
typical ranges for the synthetic database resembling products
from the Wide Angular-Range Chopper Spectrometer, ARCS
instrument [15] at SNS. It can be seen that both, metadata
entries and data sizes, scale up perfectly linearly since the
number of stored parameters and data per experiment are fixed
when selecting a particular instrument. Nevertheless, these
numbers might change as we move to other instruments, which
is currently out of the scope of the present work.

Number of Number of File Size
Experiments Entries (GB)

10 11,000 2.1
40 43,910 8.1
80 88,887 17.0

180 198,587 37.0

TABLE III: Description of the synthetic file ensembles based
on the ARCS instrument [15] products used for the perfor-
mance and scalability tests in this study.

To obtain a meaningful benchmark statistic, we ran 500
computational experiments for each case in Table III on a sin-
gle node on SNS/HFIR computational systems1. Each node is
powered by a 48-core Intel Xeon E5-2670 CPU and 512 GB of
random-access memory (RAM). It is important to mention that
system variability must be considered in our results due to the
shared nature of the resources, thus rather than a deterministic
analysis we obtain a distribution from our benchmarks tests
capturing overall “LoadMD” wall-clock times. The obtained
wall-clock histograms are presented in Fig. 5 for the largest
cases in Table III, (40, 80 and 180 experiments). Overall, it
can be seen that even when system variability is considered,
the modifications introduced in this work result in consistent
speed ups for any number of experiments. As expected, Fig 5
also shows that system variability has a noticeable influence
on “LoadMD” wall-clock times as the stored number of ex-
periments, thus operations, increase per target file. The system
variability is more likely to be influenced by the state of the
system when performing this calculations: CPU load, memory
availability, file disk requests. Hence, we observe the effect
that reducing the number of requests to lower-level memory
and I/O operations also reduces the variability introduced by
other users requesting system resources.

For completeness, we present the statistical box plots show-
ing the consistent speed ups in terms of median values of the
obtained wall-clock times on SNS/HFIR systems in Fig. 6.
This includes improvements for even the smaller case for files
containing 10 experiments. To further illustrate the overall

2https://github.com/mantidproject/mantid/pull/32529

(a) 40 experiments

(b) 80 experiments

(c) 180 experiments

Fig. 5: Wall-clock times histograms for current Mantid “main”
branch and the speed ups proposed changes from our pull
request (PR), showing a 19% to 23% improvements on average
for all cases on SNS/HFIR computing systems1.

speed ups, we present a summary of the obtained wall-clocks
time median, standard deviation, and speed ups from applying
“LoadMD” on files up to 360 experiments in Table IV. It
is interesting to note that while we confirm the speed ups
in terms of the median, the standard deviation indicating the
dispersion of the measurements might not correlate with the
saving in wall-clock times. We infer that this might be due
to system interference and more runs might be necessary for
capturing different states of the system. Nevertheless, these are

https://github.com/mantidproject/mantid/pull/32529


Fig. 6: Boxplots showing a consistent reduction in the overall
wall-clock times for Mantid’s “LoadMD” operation on a
single node on SNS/HFIR computational resources1 for a wide
range of “MDWorkspace” files with a different number of
experiments from SNS/HFIR instruments.

Number of WC median (s) WC stddev (s) WC median
Experiments main PR main PR speed up

10 13.3 10.6 0.7 0.6 20.3%
40 50.7 39.6 2.6 3.6 21.9%
80 101.0 81.5 8.7 8.1 19.2%

180 216.0 166.0 42.1 24.8 23.1%
360 357.0 285.0 59.4 32.9 20.3%

TABLE IV: Statistics comparing “LoadMD” wall-clock times
from 500 experimental runs on a single node of SNS/HFIR
computational resources1 using Mantid’s main branch and the
current PR effort2 for different numbers of experiments on a
single file.

measurements worth considering in order to be confident that
the present algorithmic improvements will have a very high
probability to provide a consistent 19% to 23% speed up when
compared to the current Mantid “LoadMD” implementation.

V. CONCLUSIONS

The present work reuses efficient strategies for addressing
bottlenecks when processing reduced data ensembles stored
using a single HDF5 file and the NeXus schema for a range of
experimental setups. The latter is a typical use-case on time-of-
flight instruments at ORNL neutron science facilities: SNS and
HFIR. Bottlenecks due to index reconstruction and memory
allocation and deallocation operations have been identified and
addressed on Mantid’s “LoadMD” function that loops through
different experimental configurations. “LoadMD” serves as
a backend for loading reduced data ensembles in several
reduction workflows that provide facility users with a complete
picture of the dynamic structure factor, S(Q,E), that is typical
in neutron scattering experiments. Two algorithmic changes
on “LoadMD” are proposed: i) reusing a cached in-memory
index for efficient entry search (15-20% savings), and ii) re-

ducing the number of memory allocations and deallocations in
“LoadMD” (4-5% savings). The proposed algorithmic changes
were tested across files stored at SNS/HFIR covering a typical
range for the data ensemble size (10 to 360 experiments). Tests
ran on a single node powered with a 48-core Intel Xeon E5-
2670 CPU and 512 GB of RAM on the SNS/HFIR hosted
computational resources available to facility users1. Results
show consistent speed ups in the range of 19% to 23% for
the median of the measured wall-clock times distributions
expected from the shared nature of the resources. The proposed
improvements have been recently integrated into the Mantid
open-source framework, thus expecting further impact from
our work in other neutron science facilities using “LoadMD”
for retrieving data ensembles from multiple experiment con-
figurations.
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