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ABSTRACT

The computed tomography (CT) facilities and the Multi-Sensor Core Logger (MSCL) at the
National Energy Technology Laboratory (NETL) in Morgantown, West Virginia were used to
characterize core from the Wellington KGS 2-32 well (API 15-191-22770). Core from the well
was obtained as part of the Small-Scale Field Test Demonstrating Carbon Dioxide (CO)
Sequestration in Arbuckle Saline Aquifer and by CO,-Enhanced Oil Recovery at Wellington
Field, Sumner County, Kansas (DE-FE0006821).

The primary impetus of this work was to capture a detailed a digital representation of the core
from the Wellington KGS 2-32 well (Sumner County, Kansas). The collaboration between the
U.S. Department of Energy’s (DOE) NETL and the Kansas Geological Survey (KGS) at the
University of Kansas enables other research entities to access information about this potential
carbon storage location and formations. The resultant datasets are presented in this report and
can be accessed from NETL's Energy Data eXchange (EDX) online system using the following
link: https://edx.netl.doe.gov/dataset/wellington2-32-core.

All equipment and techniques used were non-destructive, enabling future examinations and
analyses to be performed on these cores. Fractures, discontinuities, and millimeter-scale features
were readily detectable with the medical CT scanner-acquired images. Imaging with the NETL
medical CT scanner was performed on the entire core. Qualitative analysis of the medical CT
images, coupled with X-ray fluorescence, P-wave, gamma density, and magnetic susceptibility
measurements from the MSCL were useful in identifying zones of interest for more detailed
analysis. Higher-resolution industrial CT images were acquired of selected zones along the depth
of the core to visualize the structure in higher detail. The ability to quickly identify key areas for
more detailed study with higher resolution will save time and resources in future studies. The
combination of methods used providesa multi-scale analysis the core; the resulting macro- and
micro-descriptionsare relevant to many subsurface energy related examinations traditionally
performedat NETL.
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1. INTRODUCTION

Evaluation of reservoir samples can support resource estimations for geologic carbon dioxide
(CO,) storage. While it is common for commercial entities to perform these characterizations,
the resources necessary to conduct these analyses are not always available to the broader interest
base, such as state agencies and research-based consortia. To meet the growing need for
comprehensive and high-quality lithologic data for collaborative research initiatives, the U.S.
Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has used
available resources to develop a systematic approach for the evaluation of subsurface geological
core materials.

In this study, the primary objective was to characterize core with methods not available to most
researchers. The data is presented in several formats here and online from NETL's Energy Data
eXchange (EDX) (https://edx.netl.doe.gov/dataset/wellington2-32-core) are potentially useful for
various analyses. However, little detailed analysis is presented in this report as the research
objective was not to perform a site characterization, but rather to acquire the data for others to
utilize and to create a digital representation of the core that could be preserved in perpetuity. A
lengthy and robust core analysis was performed by Kansas Geological Survey (KGS) as part of
the DOE funded project DE-FE0006821 (Watney etal., 2017; Holubnyak et al., 2017) that can
be reviewed for a more complete understanding of the formations of interest in the Wellington
Field.

1.1  SITE BACKGROUND

Wellington KGS 2-32 was drilled in association with Small Scale Field Test Demonstrating CO,
Sequestration in Arbuckle Saline Aquifer and by CO,-Enhanced Oil Recovery at Wellington
Field (DE-FE0006821) near the town of Wellington, Sumner County, Kansas. The Wellington
Field produced 20 million barrels of oil over 26 years (1929-1957). primarily from Mississippian
age reservoirs, before being transitioned to a tertiary waterflood recovery field in 1957
(Holubnyak etal., 2017). In 2020, it produced approximately 40,392 barrels of oil (~100 barrels
per day) and 20,950,498 mcf of natural gas from 49 active production wells and 15 injection
wells (KGS, 2021).

The Wellington KGS 2-32 well (API 15-191-22770) was drilled as a CO; injection well to a
depth of 3,860 ft in March 2015, targeting the Mississippian Limestone. The well was cored
from 3,654-3,752 ft which encompasses rock from the bottom 6 ft of the superjacent Cherokee
Group through the entire Mississippian Lime reservoir interval.
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1.2 GEOLOGIC BACKGROUND

The Wellington KGS 2-32 well sits on the eastern edge of the Sedgwick Basin, which is
dominated by carbonate sediments deposited in a shallow marine environment during the
Mississippian. The Sedgwick Basin is bordered to the west by the Pratt Anticline and Central
Kansas Uplift, to the north by the Salina Basin, and west by the Nemaha Ridge. Dynamic sea
level rise and fall led to deposition of interbeds of lime-rich mud, shell-debris and chert. The
Nehama Ridge, which uplifts the underlying Precambrian basement, experienced significant
movement during the Pennsylvanian, which lead to weathering portions of Mississippian Lime.
The weathered portions contain vug-rich “chat” zones and many of the stratigraphic trapsin the
Wellington Field (Watney etal., 2002; Evans and Newell, 2013).

The Mississippi Lime in the study area is primarily made up of the Cowley facies. The Cowley is
a cherty, fine-grained limestone with some interbedded shale (Evans and Newell, 2013). The top
of Mississippian deposition is expected to be found at a depth of approximately ~2,500 ft above
mean sea level and the Cowley Formation itself is ~250 ft thick (Figure 1 and Figure 2,
respectively) (KGS, 1998).
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Figure 1: Mississippian Systemstructure map with Wellington KGS 2-32 well represented by
the red pointandoil fieldsingreen (modified from KGS, 1998).
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Isopachous Map of Cowley Facies

Figure 2: Cowley Facies isopach map with the red dot representing Wellington KGS 2-32
(modified from Watney etal.,2002)

1.3 COREDESCRIPTION

Wellington KGS 2-32 was cored from the base of the superjacent Cherokee Group through the
Upper Mississippian series, which is made up of primarily dolomite and dolomitic limestone
with intervals of chertand vugs. There is a decrease in chert contentand vugs, and an increase in
argillaceous dolomites, with increasing depth. The upper part of the Upper Mississippian Series,
known colloquially as the Mississippi Lime or Mississippi “Chat”, is primarily made up of
polymictic chert breccia with some sucrosic dolomite reworked throughout and is approximately
20-ft thick. The Cherokee Group is made of a variety of lithologies, primarily mudstone and
paleosols (Scheffer, 2012). The bottom 6 ft of the Cherokee recovered in the well is made up of
shale with some minor intervals of paleosols and chert nodules. Figure 3 provides a detailed
lithology description of the Wellington KGS 2-32 well from the Kansas Geological Survey
(KGS, 2015, link).
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. Black shale . Buff gray dolomitic packstone E Gray monomictic chert breccia . Light brown dolosiltstone
. Brown dolomitic chert . Dark olive shale Gray guart silt E Light gray dolomitc chert
. Brown dolomitic packstone E Gray argillaceous limestone . Light brown dolomite chert . Polymictic chert breccia
. Brown dolosiltstone Gray dolosiltstone . Light brown dolomite . Very dark brown-gray limestone
Depth (ft) Lithology Description
3655 —| Shale, firm to soft, black to green-gray
- Shale, mixed variegated chert pebbles, black
3660 —]
n (Chat Formation) polymictic chert breccia, fractured, minor clay, scattered clasts of
3665 — sucrosic dolomite (reworked dolo from updip)
7 Polymictic chert breccia, fractured, abundant silt, clay, green to light brown
3670 —
. Palymictic breccia, coarse, mixed clasts with reaction rims, scattered sucrosic dolomite
clasts (reworked from updip?), slightly argillaceous, gray
3675 —| Monomictic chert breccia, dolomific, sorfed cm-sized, fightly packed clasts, gray
(weathered upper high frequency cycle 37, karst fill?)
Quarlz silt, argillaceous, autoclastic breccia clasts, green (sediment infiltration?)
3680 —] Chert, dolomitic, microporous (in situ ), light gray,
- Chert, dolomitic, breccia, autoclastic, fractured, microporous, chalky, light brown
3685 —|
3690 —]
3695 —J Dolomite, microporous, sucrosic, abundanlt chert nodules, scattered vugs ( vuggy ) ,
- brown to light brown
3700 —
3705 —|
J Dolomite packstone to wackstaone, spiculitic, very fine, quartz silt, tight, gray
3710 —] (transgressive, high frequency cycle 2)
] Chert, dolomitic, siliceous, bryozoan, wackstone, argillaceous, dense, brown,
— phycosiphon burrows (pencil lead shapped) ( flooding, condensed section of high
3715 —J frequency cycle 2, abrupt deepening)
- Dolomite, clean, microporous, high porosity, sucrosic, quartz, siliceous dolosiltstone,
— abundant chert nodules, scattered anhydrite nodules, light brown
37120 —
3725 E Dolomite, argillaceous, siliceous dolosiltstone, quartz, porous, brown
. Packstone limestone, dolomitic, peloidal, crinoid, brachiopod, spiculitic bioclastic, tight,
3730 ] brown (transgressive, high frequency cycle 1)
3735 —|
E Dolomite, calcareous, shaly quariz siltstone (dolosiltite), microporous, organic macerals,
3740 — gray
3745 —
1750 _: Limestone, dolomitic, argillaceous silt, quartz, microporous, dark gray
3755 — Very dark brown gray microcrystalline very dense and hard siliceous limestone; almost
T conchoidal fracture (leaves metal streak on cuttings ); no porosity
3760

Figure 3: Description of cored interval (3,654-3,760 ft), evaluated by Kansas Geological
Survey, compiled by Thomas Paronish.
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1.4 COREPHOTOGRAPHS

Figures 4 through 15 represent core photos of the Wellington KGS 2-32, 4-in. diameter whole
core. High resolution photos are available on the KGS website (KGS, 2015, link).

3,654-3,657 ft 3,657-3,660 ft 3,660-3,663 ft

Figure 4: Wellington KGS 2-32 core photos from 3,654-3,663 ft.
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Figure 5: Wellington KGS 2-32 core photos from 3,663-3,670.8 ft.
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Figure 6: Wellington KGS 2-32 core photos from 3,670.8-3,679.8 ft.
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Figure 7: Wellington KGS 2-32 core photos from 3,679.8-3,689 ft.
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3,688.2-3,691.2ft 3,691.2-3,693.5ft 3,693.5-3,696.4ft

Figure 8: Wellington KGS 2-32 core photos from 3,688.2—-3,696.4 ft.
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3,696.4-3,699ft 3,699-3,701.5ft 3,701.5-3,703.75 ft

Figure 9: Wellington KGS 2-32 core photos from 3,696.4-3,703.75 ft.
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Figure 10: Wellington KGS 2-32 core photos from 3,703.75-3,711.55ft.
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3,711.55-3,714.7 ft 3,714.7-3,717.6ft 3,717.6-3,720.6ft

Figure 11: Wellington KGS 2-32 core photos from3,711.55-3,720.6 ft.
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3,720.6-3,723.63 ft 3,723.63-3,726.63ft 3,726.63-3,729.6 ft

Figure 12: Wellington KGS 2-32 core photos from 3,720.6-3,729.6 ft.
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Figure 13: Wellington KGS 2-32 core photos from 3,729.6-3,738.3 ft.
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5 S
-4 .

3,738.3-3,741.12 ft 3,741.12-3,743.92ft 3,743.92-3,746.63ft

Figure 14: Wellington KGS 2-32 core photos from 3,738.3-3,746.63 ft.
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3,746.63-3,749.1 ft 3,749.1-3,752.08 ft

Figure 15: Wellington KGS 2-32 core photos from 3,746.63-3,752.08 ft.
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2. DATAACQUISITION AND METHODOLOGY

The core was evaluated using medical-grade computed tomography (CT) scanning and high
spatial resolution geophysical measurements along its length, including X-ray fluorescence
(XRF) spectrometry.

2.1  MEDICAL CT SCANNING

Core scale CT scanning was performed with a Toshiba Aquilion TSX-101A/R medical CT
scanner as shown in Figure 16. The medical CT scanner generates images with a resolution in
the millimeter range, with scans having voxel resolutions of 0.43 x 0.43 mm in the XY plane and
0.50 mm alongthe core’s long axis (i.e., z-axis). The scans were conducted at a voltage of 135
KV and ata currentof 200 mA. Subsequent processing and combining of stacks were performed
to create three-dimensional (3D) volumetric representations of the cores and a two-dimensional
(2D) cross-section through the middle of the core samples using ImageJ (Schneider, 2012). The
variation in greyscale values observed in the CT images indicates changes in the CT number
(CTN) obtained fromthe CT scans, which is directly proportional to changes in the attenuation
and density of the scanned rock. Darker regions are less dense. As can be seen in Figure 21
through Figure 32, filled fractures, open fractures, and changes in bedding structure canall be
resolved via careful examination of the CT images. While the medical CT scanner was not used
for detailed characterization in this study, it allowed for non-destructive bulk characterization of
the core.

Figure 16: Toshiba Aquilion Multislice Helical CT scanner at NETL used forcoreanalysis.
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2.2 CORELOGGING

Geophysical measurements of P-wave travel time, magnetic susceptibility, and attenuated
gamma counts were obtained with a Geotek® Multi-Sensor Core Logging (MSCL) system on a
competent core. For the Wellington KGS 2-32 core the P-wave velocity, attenuated gamma
counts, and magnetic susceptibility were measured and are reported (Figure 46 and Figure 47).
Additionally, the system was used to measure bulk elemental chemistry with a built-in, portable
XRF spectrometer. The compiled core logs were scaled to fit on single pages for rapid review of
the combined data from the medical CT scans and XRF readings. Core scale CT scanning was
done with a Toshiba Aquilion TSX-101A/R medical CT scanner.

2.2.1 Magnetic Susceptibility

Magnetic susceptibility is a measure of the degree of magnetization in a sample. The sampleis
exposed to an external magnetic field and magnetic susceptibility is its measured magnetic
response to that field:

J=kH

Where, J is the magnetic response (per unit volume), k is volume susceptibility, and H is an
external magnetic field. The measurement unit is dimensionless (abbreviated simply as Sl).

All materials have magnetic susceptibility. Positive values of magnetic susceptibility indicate
that materials are paramagnetic and occur in rocksthat consist of the majority ferromagnetic,
ferrimagnetic, or antimagnetic (iron-bearing) materials. Negative values of magnetic
susceptibility indicate that materials are diamagnetic and occur in rocks dominated by non-iron
material (e.g., calcite or quartz). Table 1 lists examples of common magnetic susceptibility
ranges (Hunts etal., 1995).

Magnetic susceptibility was measured using the Bartington point sensor, where a 1-cm diameter,
low intensity (8.0 A/m RMS), non-sensitive, alternating magnetic field (2 kHz) was generated
for 10 s. To minimize any potential drift in the oscillating field, the point sensor was zeroed at
the beginning and end of the sample and after every 5t measurement. The point sensor due to the
small field, was limited in whole core measurements, and additionally was temperature
dependent (Geotek Ltd. Multi-Sensor Core Logger Manual, Version 05-10; Geotek Ltd., 2010).
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Table 1: Magnetic Susceptibility Values for Common Minerals (Huntsetal., 1995)

| Mineral x (*10%)SI
Water 9
Calcite -7.5t0-39
Halite, Gypsum -10to-60
Shale 631t018,600
Illite, Montmorillonite 330to 410
Pyrite 5to 3,500
Chalcopyrite 23t0400
Hematite 500t0 40,000
Magnetite 1,000,000 to 5,700,000

2.2.2 P-wave Velocity

P-wave velocity measurements were performed to measure the acoustic impedance of a geologic
sample with respect to compressional waves. Acoustic impedance is a measure of how well a
material transmits vibrations, which is directly proportional to the material’s density or
consolidation. An example of a material that has a high acoustic impedance would be air, with a
P-wave speed of 330 m/s. Granite has a low acoustic impedance, with a wave speed of over
5,000 m/s. These measurements can be proxies for seismic reflection coefficients and can be
translated to field use when performing seismic surveys.

The software associated with the MSCL measures the travel time of the pulse with a resolution
of 50 ns. The absolute accuracy of the instrument measurements is £ 3 m/s with a resolution of
1.5 m/s (Geotek Ltd. Multi-Sensor Core Logger Manual, Version 05-10; Geotek Ltd., 2010).

2.2.3 Gamma Density

Gamma density was acquired by subjecting the sample to gamma radiation and then measuring
the attenuation of that radiation. The attenuation is directly proportional to the density of the
sample and is acquired by measuring the difference between radiation energy at the emission
source and after it passes through the sample. Specifically, the MSCL software calculatesthe
bulk density, p, by using the following equation:

Where p = Compton attenuation coefficient, d =sample thickness, I, =source intensity, and I =
measured intensity.

20



Computed Tomography Scanning and Petrophysical Measurements of the Wellington KGS 2-32 Core

2.24 X-ray Fluorescence Spectrometry

In addition to the geophysical measurements a portable, handheld Innov-X® XRF Spectrometer
was used to measure relative elemental abundances. The Mining-Plus Suite of the Innov-X®
handheld XRF Spectrometer was utilized at 6 cm resolution with 60 s exposure time per beam.
The Mining-Plus Suite utilizes a 2-beam analysis that resolves major elements (Mg, Al, Si, P, S,
Cl, Fe, K, Ca, and Ti), minor elements (V, Cu, Ni, Cr, Mn, and Pb), trace elements (Co, Zn, As,
Zr, Mo, Ag, Cd, Sn, Sb, Hf, W, and Bi) and an aggregated “light element” (H to Na) (Figure 17).
Elemental abundances are reported relative to the total elemental composition (i.e., out of 100%
weight).

The XRF spectrometer measures elemental abundances by subjecting the sample to X-ray
photons. The high energy of the photons displaces inner-orbital electrons in the respective
elements. The vacancies in the lower orbitals cause outer-orbital electrons to “fall” into lower
orbits to satisfy the disturbed electron configuration. The substitution into lower orbitals causes a
release of a secondary X-ray photon, which has an energy associated with a specific element.
These relative and element specific energy emissions can then be used to determine bulk
elemental composition.
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Figure 17: Periodic table showing elements measurable by the Innov-X® XRF Spectrometer
using the Mining-Plus.
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2.3 HIGHRESOLUTION INDUSTRIAL CT SCANNING

Selected cores from the Wellington KGS 2-32 well were scanned using NETL’s NorthStar
Imaging Inc. M-5000® Industrial CT System (Industrial CT) (Figure 18). The scan on sections of
the whole core were performed at a voltage of 185 kV and a current of 200 pA. A 2 x 2 pixel
binning on the Perkin Elmer detection panel was performed to reduce noise and scatter. These
settings provided the proper photon energy to penetrate the samples. The samples were rotated
360°and 1,440 radiograph projections of the samples were obtained, averaging 10 individual
radiographs at each step to create the reconstruction. These scan settings resulted in high
resolution scans with voxel resolutions between 58 and 67 um3 (Table 4).

24 DATACOMPILATION

Strater® by Golden Software was used to compile the medical CT data into a series of logs. The
data used to generate these logs can be accessed from NETL's EDX online system using the
following link: https://edx.netl.doe.gov/dataset/wellington2-32-core.
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3. RESULTS

The following section contains the data obtained from the medical CT and the MSCL scans of
the core obtained from Wellington KGS 2-32 well.

3.1 MEDICAL CT SCANS

Processed 2D slices of the medical CT scans through the cores are shown first, followed by
various analyses of fractures and variationsin the shale structure observed from the medical CT
scans. As discussed previously, the variation in greyscale values observed in the medical CT
images indicates changes in the CTN obtained, which is directly proportional to changes in the
attenuation of the X-ray beam and thus density of the scanned rock (i.e., darker regions are less
dense, lighter regions are denser).

Core was scanned in 3 ft or smaller sections. Detailed information in logbooks and photographs
of the core were used to confirm the locations of missing core and depths.

3.11 X/Z Planes

A 2D image through the center of each core can be found in Figure 21 through Figure 32 (on the
left of each column). These are referred to as “XZ” planes with the coordinates that are shown in
Figure 19. There is no scale bar shown in these images; the core has a diameter of 4 in. (10.16
cm) for reference. The labels below each 2D XZ plane in Figure 21 through Figure 32 are the
depth at the bottom of each core; the full range of core lengths shown in each figure is listed in
the figure captions. The greyscale values were shifted in these images to best represent the
structure of the core in each image.

-

$
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~<

Figure 19: Schematic of the XZ isolated plane through the vertical center of the medical CT
scans.
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3.1.2 Polar Transform

A 2D image through the circumference of the core can be found in Figure 21 through Figure 32
(on right of each column). There images are referred to as “Polar Transform” images. The
original XY CT image is “unwrapped” from polar coordinates to a cartesian coordinates where,
the y-axis represents the angle from 0 to 360° and the x-axis represents the distance from the
center of the image (Figure 20). This is done for all slices in the volume. The resulting volume is
resliced perpendicular to the XY plane and an isolated plane is taken along the outer most
portion of the core.

360°

Figure 20: Schematic of the polar transform isolated plane around the circumference of the
medical CT scans; (A) original CT image slice, (B) cartesian “remapping” image, (C) Polar
transformimage
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3.2 WELLINGTON KGS 2-32 CORE SAMPLES

3,654-3,657 ft

3,657-3,660 ft

3,660-3,663 ft

Figure 21: 2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington KGS 2-32corefrom 3,654.0-3,663 ft.
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3,663-3,666 ft

3,666-3,669 ft

3,669-3,670 ft

Figure 22: 2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington KGS 2-32corefrom 3,663-3,670 ft.
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3,670-3,673 ft

3,673-3,676.8ft

3,676.8-3,679.8ft

Figure 23: 2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington 2-32 core from 3,670-3,679.8 ft.
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3,679.8-3,683ft

3,683-3,686 ft

3,686-3,688.2ft

Figure 24:2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington KGS 2-32 corefrom 3,679.8-3,688.2 ft.
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3,688.2-3,691.2ft

3,691.2-3,693.5ft

3,693.5-3,696.4ft

Figure 25: 2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington 2-32 core from 3,688.2-3,696.4 ft.
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3,696.4-3,699ft

3,699-3,701.5ft

3,701.5-3,703.8ft

Figure 26: 2D isolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington 2-32 core from 3,696.4-3,703.8 ft.
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3,703.8-3,707ft

3,707-3,708.6 ft

3,708.6-3,711.9ft

Figure 27: 2Disolated planesthrough the vertical center and a polar transform of the outside
of the medical CT scans of Wellington KGS 2-32corefrom 3,703.8-3,711.9ft.
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3,711.9-3,714.71ft

3,714.7-3,717.6ft

3,717.6-3,720.6ft

Figure 28: 2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington 2-32 core from 3,711.9-3,720.6 ft.
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3,720.6-3,723.6ft

3,723.6-3,726.6ft

3,726.6-3,729.6ft

Figure 29: 2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington 2-32 core from 3,720.6-3,729.6 ft.
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3,729.6-3,732.81t 3,732.8-3,735.3ft

3,735.3-3,738.3ft

Figure 30: 2Disolated planesthrough the vertical center and a polar transform of the outside

of the medical CT scans of Wellington 2-32 core from 3,729.6-3,738.3 ft.
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3,738.3-3,741.1ft 3,741.1-3,743.9ft 3,743.9-3,746.6ft

Figure 31:2Disolated planesthrough the vertical center and a polar transform of the outside
of the medical CT scans of Wellington 2-32 core from 3,738.3-3,746.6 ft.
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Figure 32: 2Disolated planesthrough the vertical center and a polar transform of the outside
of the medical CT scans of Wellington 2-32 core from 3,746.6-3,752 ft.
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3.3 ADDITIONAL CT DATA

Additional CT data can be accessed from NETL's EDX online system using the following link:
https://edx.netl.doe.gov/dataset/wellington2-32-core. The original CT data is available as 16-bit
tif stacks suitable for reading with ImageJ (Schneider etal., 2012) or other image analysis
software.

3.3.1 Medical CT Image Videos

In addition, videos showing the variation along the length of the cross-section images shown in
the previous section are available for download and viewing on EDX. A single image from these
videos is shown in Figure 33, where the cross section of a mineral filled vug with in a dolomitic
and cherty matrix of the core around a depth of 3,702 ft is shown. The red line through the XZ-
plane image of the core shows the location of the XY -plane displayed above. The videos on
EDX show this XY variation along the entire length of the core.

Figure 33: Single image from a video file available on EDX showing variation from 3,7015-
3,703.8 ft. Image above shows the variation in composition within the matrix perpendicular to
the core length.

3.3.2 Industrial CT Scans

Detailed industrial CT scans of core sections were performed at NETL. The industrial CT
scanner was used to obtain higher resolution images with voxel resolutions between 58 and 67
um3 and capture the details of internal features clearly. A listing of the core sections scanned
with the industrial CT scanner is shown in Table 2, followed by montages of images through the
center of these scans. The “File Name” listed in in Table 2 aligns with the naming sequence of
data on EDX, where the full scans are available for download and additional analyses. The
montages shown in Figures 34—44 are cross-sections through the center of each core, separated
by several mm and illustrate the internal variation in each sample.
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Table 2: Industrial Scans of Whole Core

Depth (ft)

| Top Bottom File Name Resolution (um?3)
3,657.22 3,658.59 2-32_CN-1_Bx-2 63.1
3,672.45 3,673.00 | 2-32_CN-9_Bx-2 63.1
3,674.50 3,675.00 | 2-32_CN-11_Bx-3 63.1
3,675.48 3,676.00 | 2-32_CN-12_Bx-3 63.1
3,684.50 3,685.00 | 2-32_CN-18_Bx-6 63.1
3,694.00 3,694.50 | 2-32_CN-25_Bx-2 63.1
3,700.15 3,700.65 2-32_CN-64_Bx-4 63.1
3,713.00 3,713.40 | 2-32_CN-40_Bx-9 67
3,728.00 3,728.50 | 2-32_CN-49_Bx-14 58
3,741.50 3,742.00 | 2-32_CN-58_Bx-19 63.1
3,751.30 3,751.80 | 2-32_CN-63_Bx-22 63.1

Figure 34: Montage of images through the center of Wellington KGS 2-32 core from 3,657.2—
3,658.6 ftscanned with the industrial CT.

Figure 35: Montage of images through the center of Wellington KGS 2-32 core from 3,672.4—
3,673.0 ftscanned with the industrial CT.
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Figure 36: Montage of images through the center of Wellington KGS 2-32 core from 3,6745-
3,675.0 ftscanned with the industrial CT.

Figure 37: Montage of images through the center of Wellington KGS 2-32 core from 3,6755-
3,676.0 ftscanned with the industrial CT.

Figure 38: Montage of images through the center of Wellington KGS 2-32 core from 3,684.5—
3,685.0 ftscanned with the industrial CT.
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Figure 39: Montage of images through the center of Wellington KGS 2-32 core from 3,694.0—
3,694 .5 ftscanned with the industrial CT.

Figure 40: Montage of images through the center of Wellington KGS 2-32 core from 3,713.0—
3,713.4 ftscanned with the industrial CT.

Figure 41: Montage of images through the center of Wellington KGS2-32 core from 3,728.0—
3,728.5 ftscanned with the industrial CT.
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Figure 42: Montage of images through the center of Wellington KGS 2-32 corefrom 3,700.15-
3,700.65ftscanned with the industrial CT.

2cm P

Figure 43: Montage of images through the center of Wellington KGS 2-32 core from3,7415-
3,742.0 ftscanned with the industrial CT.

Figure 44: Montage of images through the center of Wellington KGS 2-32 core from3,751.3-
3,751.8 ftscanned with the industrial CT.
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3.4 DUALENERGY CT SCANNING

Dual energy CT scanning uses two sets of images, produced at different X-ray energies, to
approximate the density (pg) (Siddiqui and Khamees, 2004; Johnson, 2012). The technique relies
on the use of several standards of known pg to be scanned at the same energies as the specimen.
These scans are performed at lower energies (<100 KeV) and higher energies (>100 KeV) to
induce two types of photon interactions with the object (Figure 45). The lower energy scans
induce photoelectric absorption, which occurs when the energy of the photon is completely
absorbed by the object mass and causes ejection of an outer orbital electron (Figure 45a). The
high energy scans induce Compton scattering, which causes a secondary emission of a lower
energy photon due to incomplete absorption of the photon energy in addition to an electron
ejection (Figure 45b).

Incident Photon
>

Incident Photon
>

N

“a

Figure 45: Photoninteractions atvaryingenergies: A) Photoelectric absorption, B) Compton
scattering. Modified from lowa State University Center for Nondestructive Evaluation (2021).

Medical grade CT scanners are typically calibrated to known standards, with the output being
translated in CTN or Hounsfield Units (HU). Convention for HU defines water as 0 and air as -
1,000. A linear transform of recorded HU values is performed to convert them into CTN. This
study used CTN as it is the native export format for the medical CT scanner, but it is possible to
use HU. Dual energy CT requires at least three calibration points and it is prudent to utilize
standards that approximate the object or material of interest. Pure samples of aluminum,
graphite, and sodium chloride were used as the calibration standards as they most closely
approximate the rocks and minerals of interest (Table 3). Most materials denser than water or
with higher atomic masses have a non-linear response to differing CT energies (Table 4).

Table 3: Dual Energy Calibration Standards, Bulk Density (gm/cm?)

\ E
Material (gfem’)
Air -0.001
Water 1
Graphite 2.3

Sodium Chloride 2.16

Aluminum 2.7
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Table 4: Dual Energy Calibration Standards, HU and CTN for “Low” and “High” Energies

‘ Material 135 KeV 135 KeV

Air -993 -994 31,775 31,774
Water -3.56 -2.09 32,764 32,766
Graphite 381 437 33,149 33,205
Sodium Chloride 1,846 1,237 34,614 34,005
Aluminum 2,683 2,025 35,451 34,793

Dual energy CT utilizes these differences to calibrate to the X-ray spectra. Two equations with
three unknownseach are utilized to find pg (Siddiqui and Khamees, 2004):

pg = MCTNyoy + PCTNpign + q

Where [m, p, and g] and [r, s, and t] are unknown coefficients that can be solved by setting up a
system of equations with four 3 x 3 determinants. The CTN is obtained from the CT scans for
each of the homogenous calibration standards.

In this study, the high and low energy image stacks were loaded into Python as arrays. A 3D
Gaussian blur filter with a sigma of 2 was used to reduce noise in the images. The scipy.solv
module of Python was then employed to solve for the coefficients based on the calibration CTN
values. The pp was solved for each pixel in the 3D volume and saved as two new separate image
stacks.

3.5 COMPILED CORE LOG

The compiled core logs were scaled to fit on single pages for rapid review of the combined data

from the medical CT scans and MSCL readings. Two sets of logs are presented for the core: the

first set with data from the CT scans and XRF, and the second set with calculated ratios fromthe
XRF scans, P-wave data, and notable features. Features that can be derived from these combined
analyses include determination of mineral locations, such as pyrite, from magnetic susceptibility
and using the XRF to inform geochemical composition and mineral form.

Data from the MSCL with P-wave velocity less than 330 m/s has been removed from these logs.
This low P-wave velocity is less than the anticipated velocity through air, indicating a highly
fractured zone and unreliable readings. The location of these fractured zones was confirmed
through visual examination and with the medical CT scanned images.

The elemental results from the XRF were limited to light elements, Ca, and Si, and the remaining
top nine elements (Al, Mg, Ti, S, Fe, Mn, Cl, Zn, and V). Of the remaining top nine elements,
Mg was the most abundant with a maximum occurrence of 101,331 ppm at one location in the
core, followed by Al with a maximum occurrence of 97,456 ppm. Zn had the lowest maximum
occurrence with 526.41 ppm, all other elements had maximum occurrences less than 500 ppm.
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Trends in elemental ratios can provide insight into mineral composition. Examples include:

Ca/Si, provides information of carbonate to chert/detrital influence

Si/Al, provides information on the abundance of illite and micas versus other clays, and
the abundance of cherts to clays

Mn/Fe and S/Fe, can provide information in redox trends

Mg/Ca, provides information on the abundance of dolomite to calcite (note there is no
information in the top portion of the well due to the presence of siliciclastic rocks)

Magnetic susceptibility can test for iron sulfides (reducing) or oxidized Fe and sulfate.
Pyrite (reduced) should have low magnetic susceptibility. Additionally, magnetic
susceptibility in “normal” rock matrices (carbonate and siliciclastic) have low magnetic
susceptibility values.

Fe oxide or hydroxide, should have high magnetic susceptibility

These broad trends can quickly give information on large suites of core and direct more focused
research (Figure 46 and Figure 47).

Additionally, a plate representing Wellington KGS 2-32 is available on EDX
(https://edx.netl.doe.gov/dataset/wellington2-32-core). This plate shows all the data compiled in

this report (except the industrial CT scans) in a raster log and provides a more detailed visual
representation of the well. The header provides the general log information and where the data in
the log plots is sourced. This plot (Figure 48) contains:

The lithology description

Density from the MSCL gamma density, dual energy density, and log density
Magnetic susceptibility (MS1)

P-wave Velocity (PWVel)

Dual energy density CT-image reslices with royal LUT

Polar transform CT-image slices

KGS core data (whole core permeability (max and vertical))

Whole core porosity, and water and oil saturations

XRF mineralogy (quartz (Si), clay (Al), calcite (Ca), and dolomite (Mg))
Lithology proxies (Si, Ca, Al, K, Mg, Zr, Mn, Fe, and S)

Redox proxies (Mo, V, Cr, Cu)

Paleoproductivity proxies (P, Zn, Ni, and Pb)
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Figure 48: Combined core characterization for the Wellington KGS 2-32 well. For the full-
size version visit EDX (https://edx.netl.doe.gov/dataset/wellington2-32-core).
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4. DISCUSSION

The measurements of the magnetic susceptibility, P-wave velocity, XRF, and CT analysis
provide a unique look into of the internal structure of the core and macroscopic changes in
lithology. These techniques:

e Arenon-destructive
e When performed in parallel, give insight into the core beyond what one individual
technique can provide

e Can be used to identify zones of interest for detailed analysis, experimentation, and
quantification

e Provide a detailed digital record of the core, before any destructive testing or further
degradation, thatis accessible and can be referenced for future studies
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