

Pragmatic Generative Optimization of Novel Structural Lattice Metamaterials with Machine Learning

PRESENTED BY

Anthony Garland (agarlan@sandia.gov)

Collaborators: Ben White; Scott Jensen; Brad Boyce

Sandia
National
Laboratories

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

Overview

Meta-materials

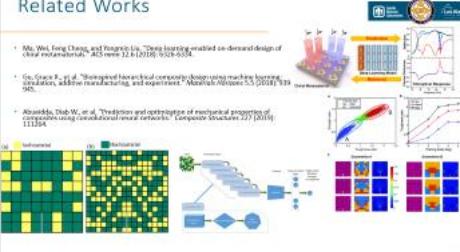
- A periodic structure that is at least one scale smaller than the macro structure
- The unit cell structure's shape/topology results in unique effective properties of the metamaterial

Need for Design Automation

- The literature has seemingly endless examples of metamaterials
- How are they designed? Intuition and parametric optimization
- How are products designed?
 - Gather Requirements
 - Conceptual design
 - Embody design
- The design engineers needs to find a meta-material which meets specific requirements.
- How can we generate new metamaterials that meet specific requirements?

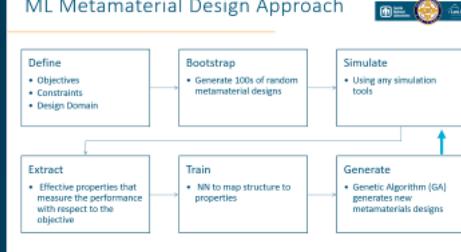
Related Works

- Mu, Wei, Feng Cheng, and Pragnell Li. "Deep learning enabled on-demand design of wave metamaterials - from 3D design to 3D printing." *Materials* 12, no. 12 (2019): 3053.
- Ge, Grace F., et al. "Streamlined hierarchical design of composite using machine learning." *Materials* 12, no. 12 (2019): 3052.
- Kikuchi, Daisuke, et al. "Prediction and optimization of mechanical properties of composites using convolutional neural networks." *Composite Structures* 225 (2019): 111354.



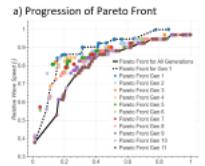
ML Metamaterial Design Approach

```
graph TD; Define[Define  
- Objectives  
- Constraints  
- Design Domain] --> Bootstrap[Bootstrap  
- Generate 100s of random metamaterial designs]; Bootstrap --> Simulate[Simulate  
- Using any simulation tools]; Simulate --> Extract[Extract  
- Effective properties that measure the performance with respect to the objective]; Extract --> Train[Train  
- NN to map structure to properties]; Train --> Generate[Generate  
- Genetic Algorithm (GA) generates new metamaterials designs];
```

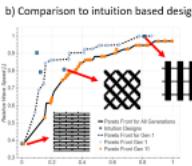


Results

a) Progression of Pareto Front



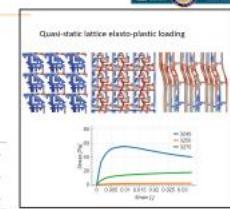
b) Comparison to intuition based designs



18

Validation

Quasi-static lattice elasto-plastic loading

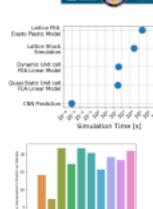


19

Conclusion

- Combining a GA and a NN enables automated design of metamaterials
- The CNN's prediction speed enables the accelerated identification of candidate designs
- The approach is generic and should work with other design problems
- An active learning approach enables a significant reduction in the amount of data needed
- The role of the engineer is to define the problem and select a result from the Pareto front.

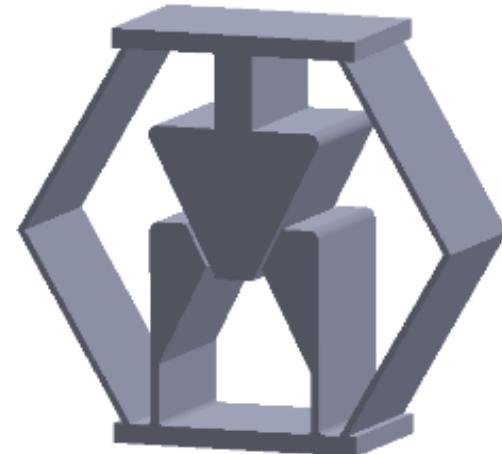
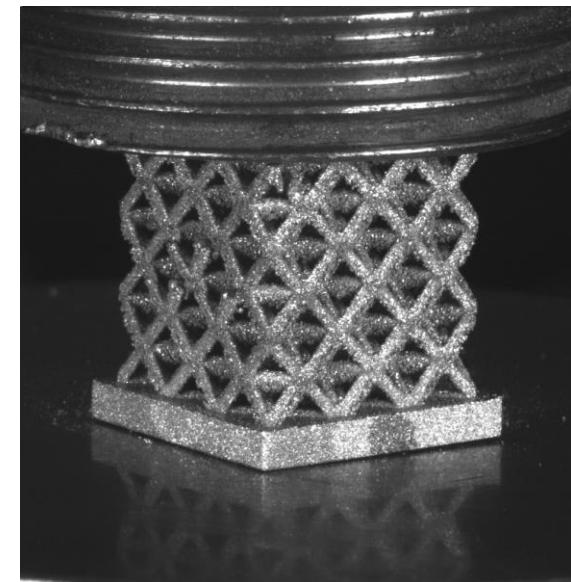
Anthony Garland (agarlan@sandia.gov)



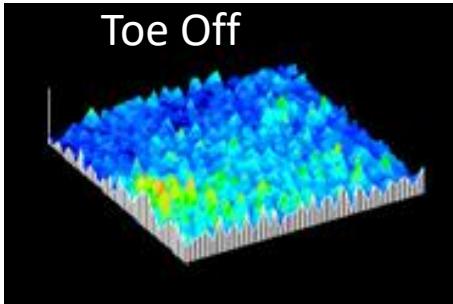
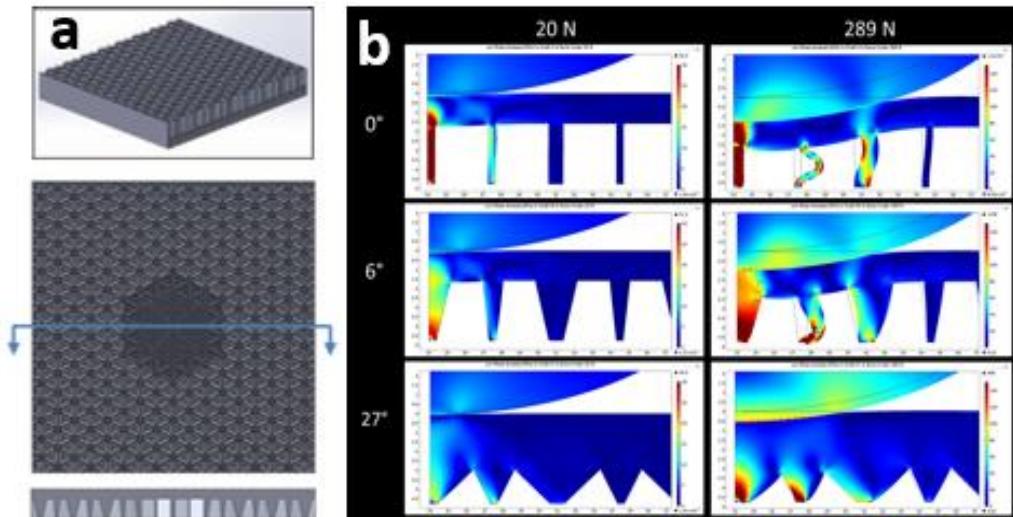
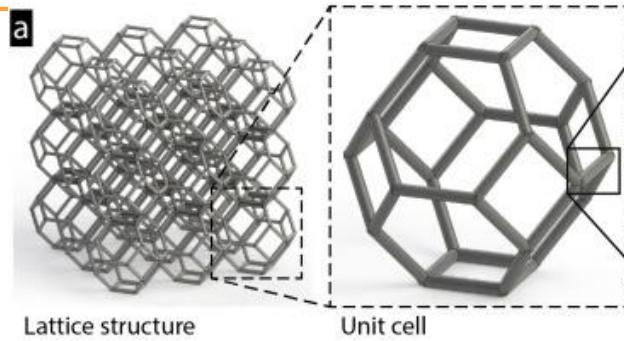
20

Meta-materials

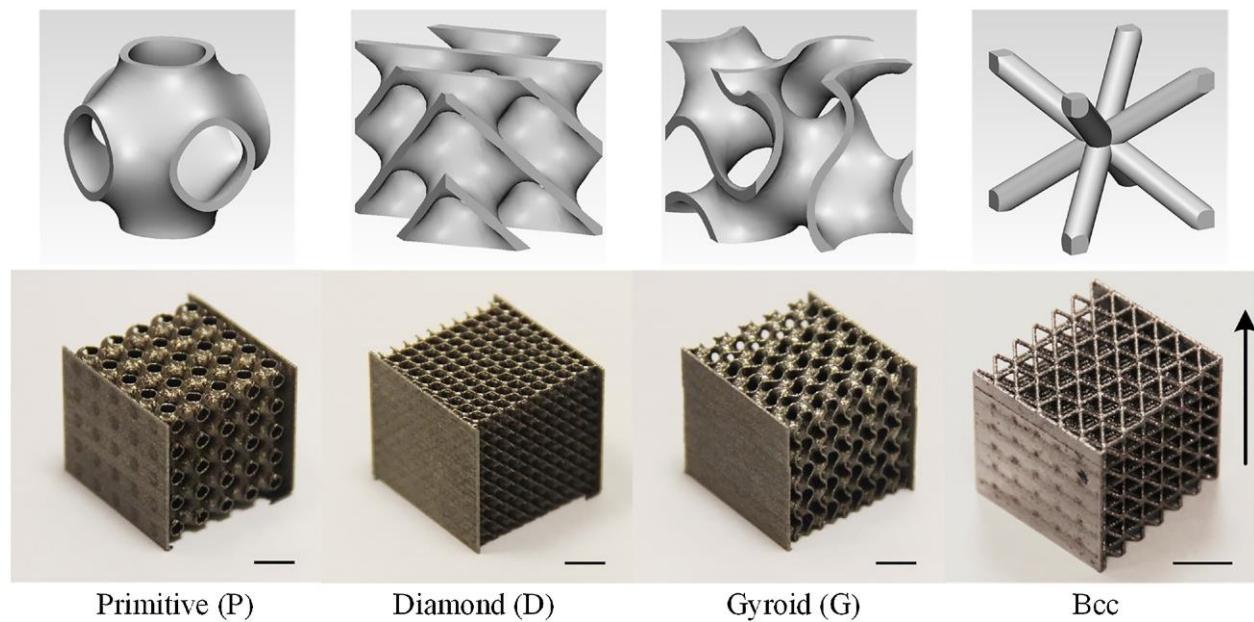
- A periodic structure that is at least one scale smaller than the macro structure
- The unit cell structure's shape/topology results in unique effective properties of the metamaterial



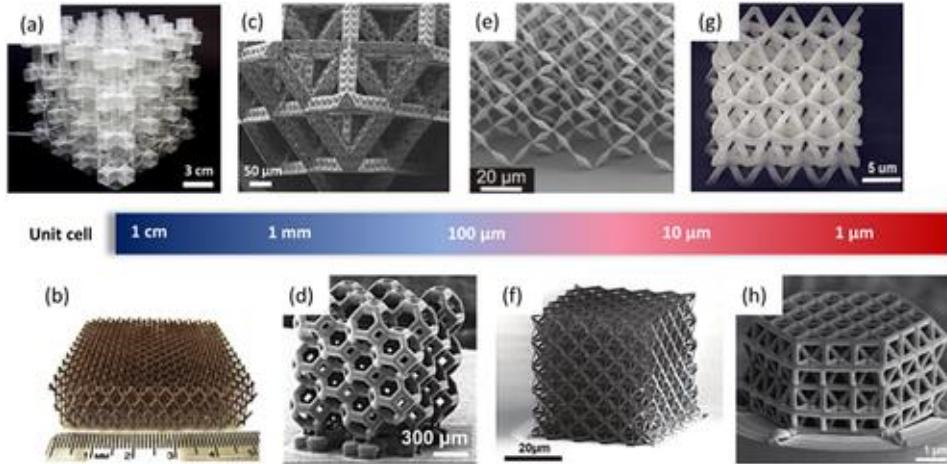
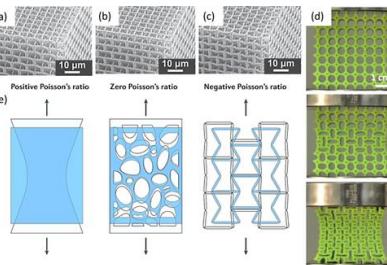
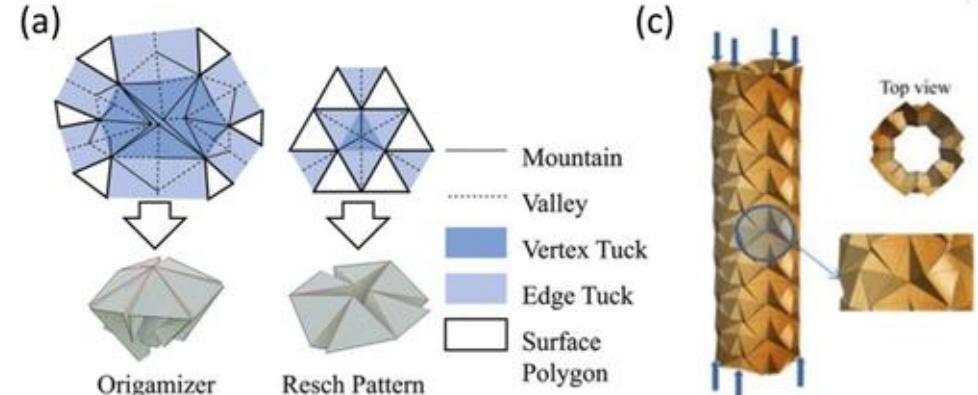
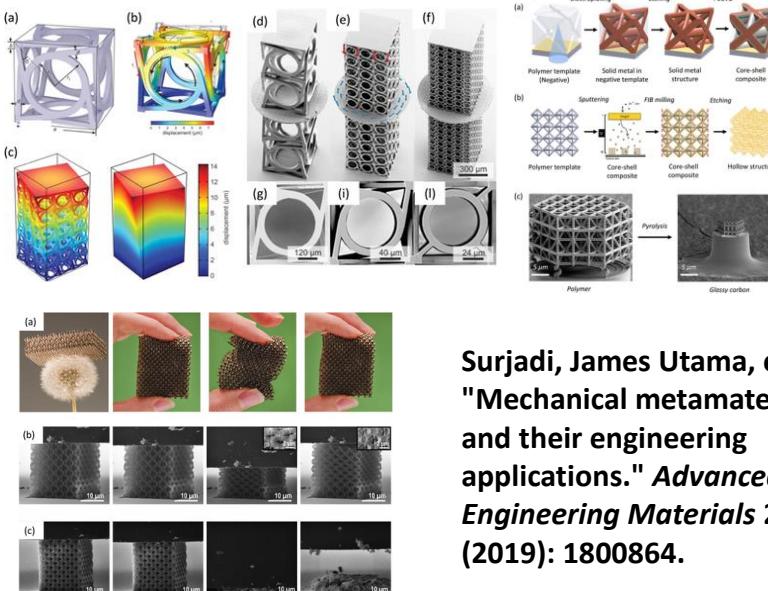
Meta-materials II



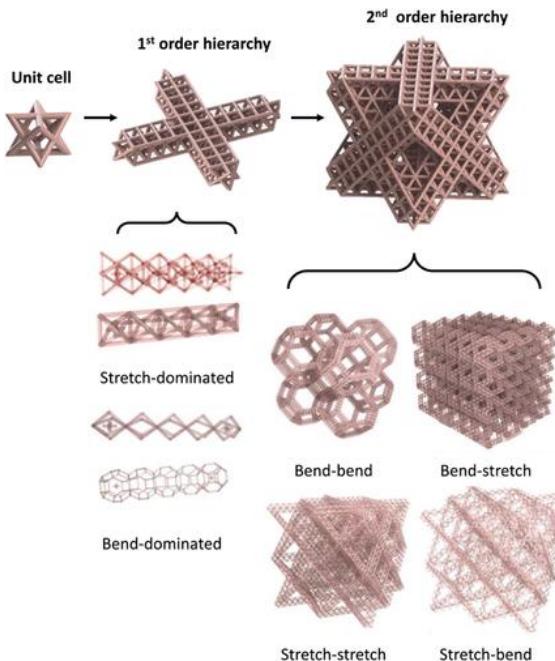
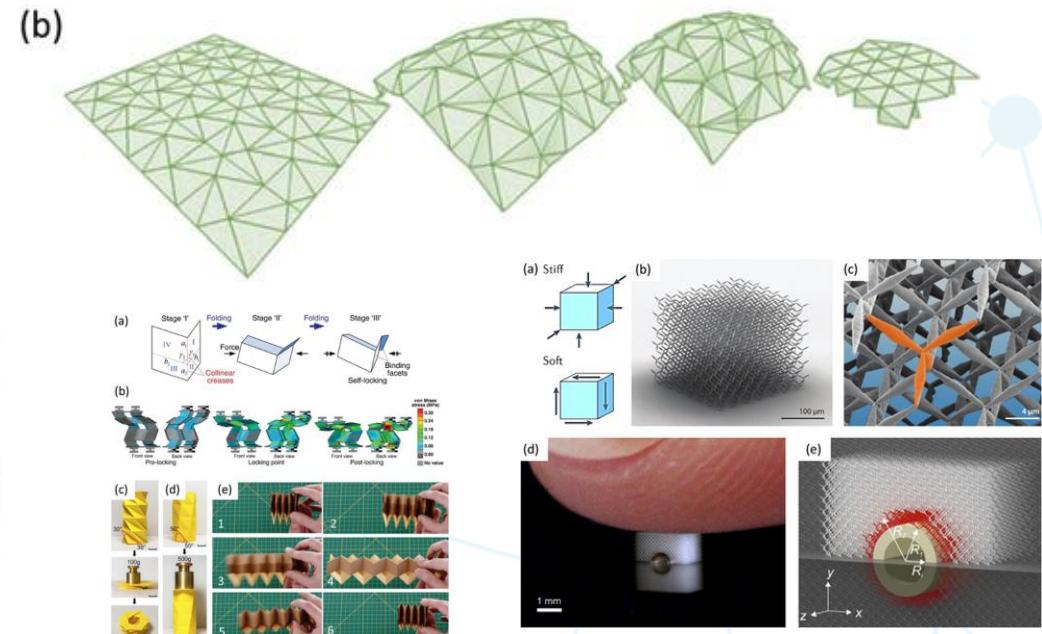
Mueller, Jochen, and Kristina Shea. "Stepwise graded struts for maximizing energy absorption in lattices." *Extreme Mechanics Letters* 25 (2018): 7-15.



Metamaterials III

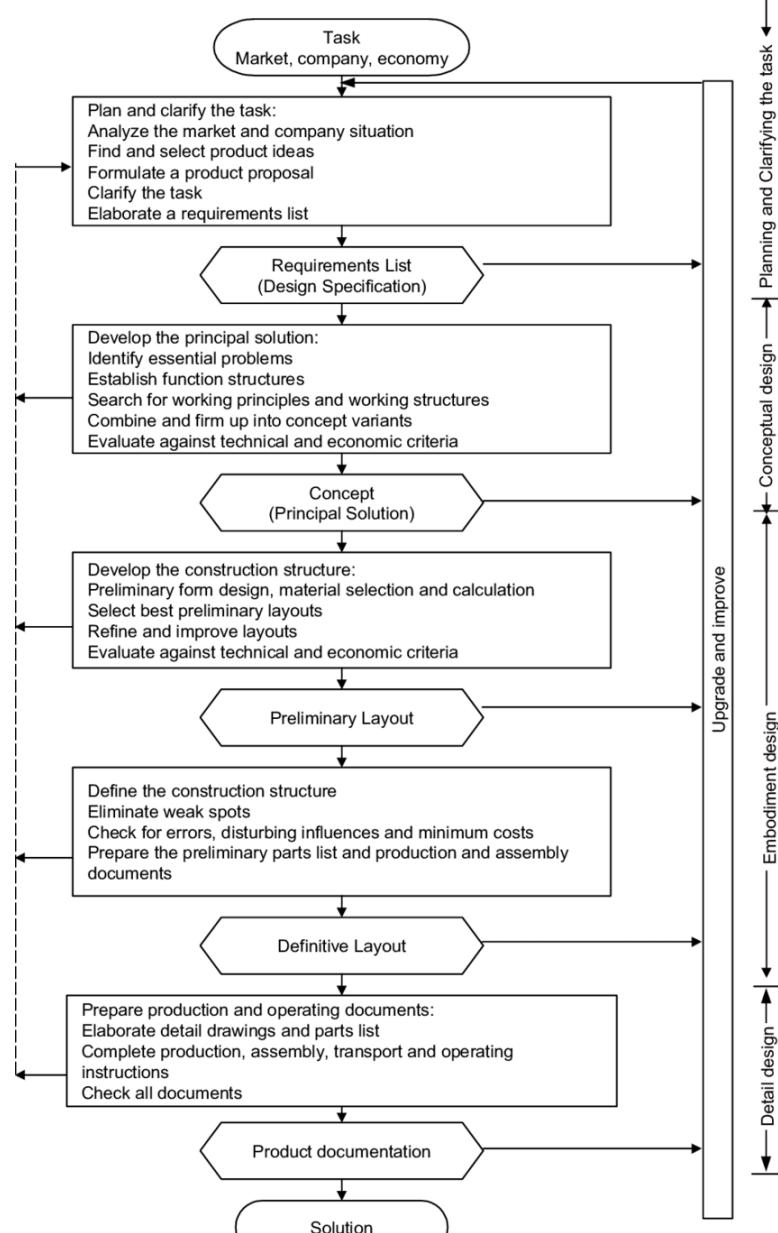


Surjadi, James Utama, et al.
"Mechanical metamaterials and their engineering applications." *Advanced Engineering Materials* 21.3 (2019): 1800864.



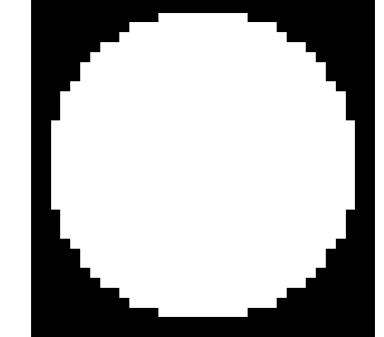
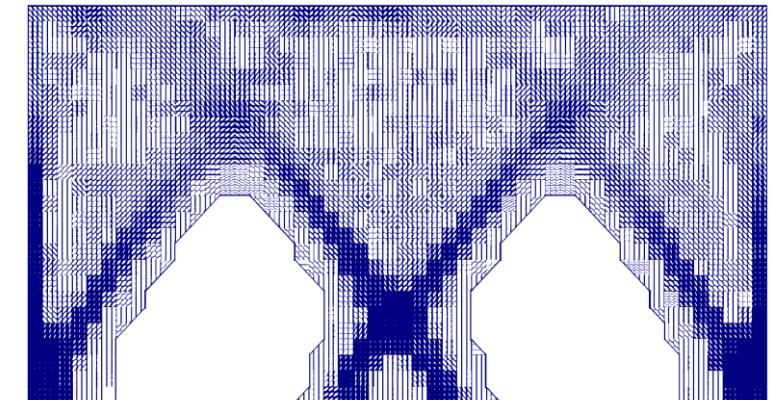
Need for Design Automation

- The literature has seemingly endless examples of metamaterials
- How are they designed? Intuition and parametric optimization
- How are products designed?
 - Gather Requirements
 - Conceptual design
 - Embodiment design
- The design engineers needs to find a meta-material which meets specific requirements.
- How can we generate new metamaterials that meet specific requirements?



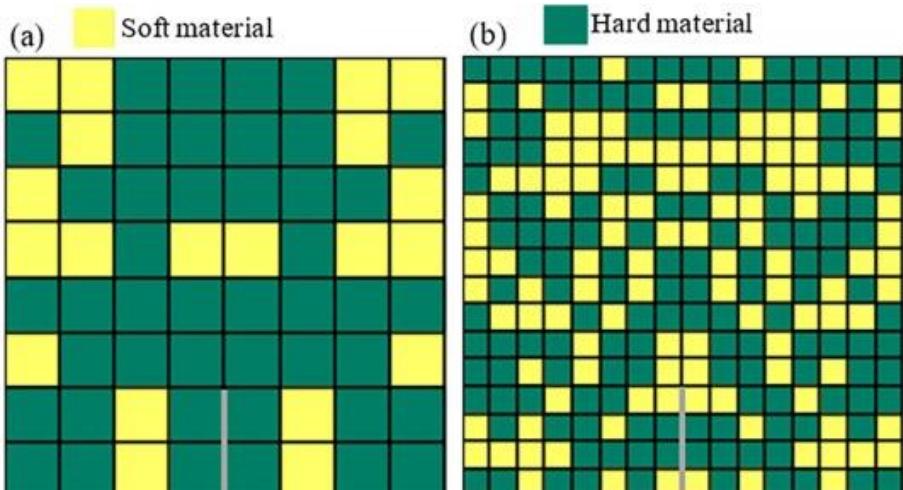
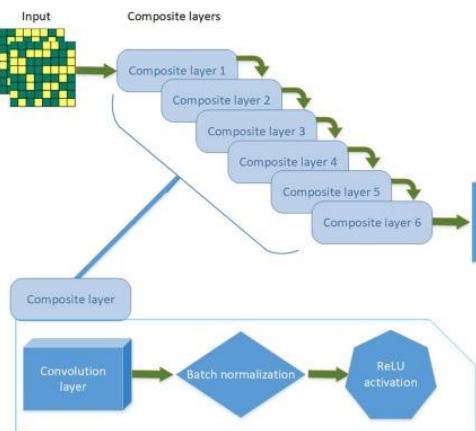
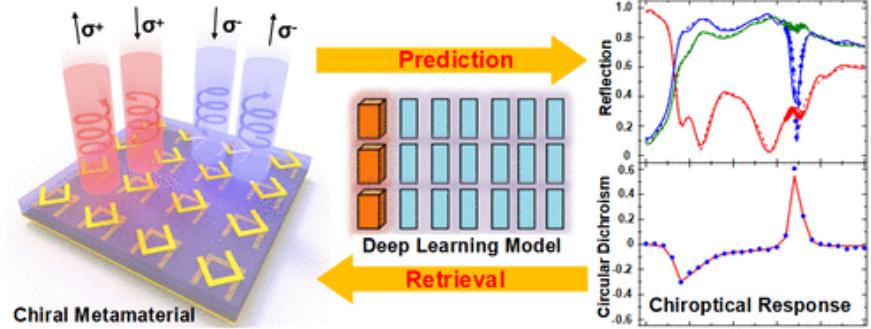
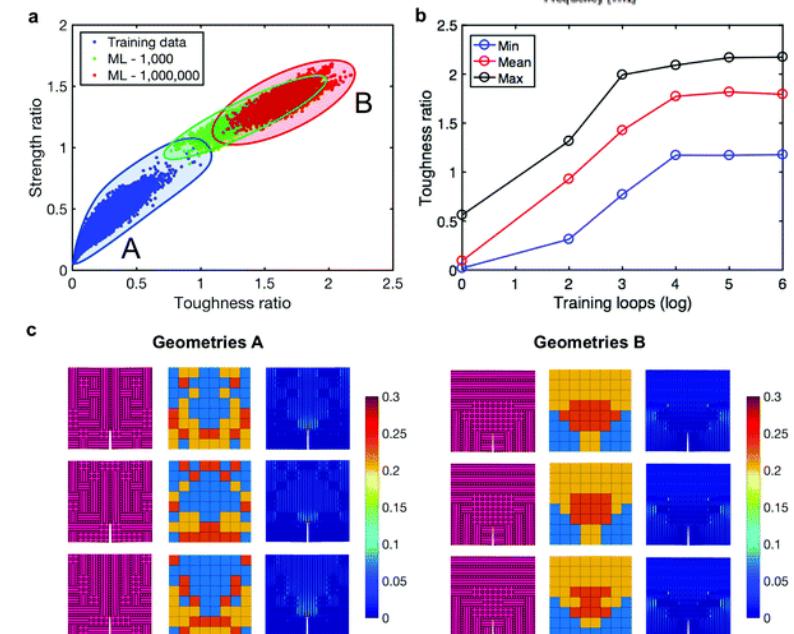
Design automation Methods

- Topology optimization
 - Requires a formal mathematical description of the problem
 - Difficult/Impossible for many processes
 - The objective function must be continuous and smooth
 - Excludes non-continuous phenomenon like contact and failure
- A generic method of mapping structure to property is needed
 - NN can provide this mapping

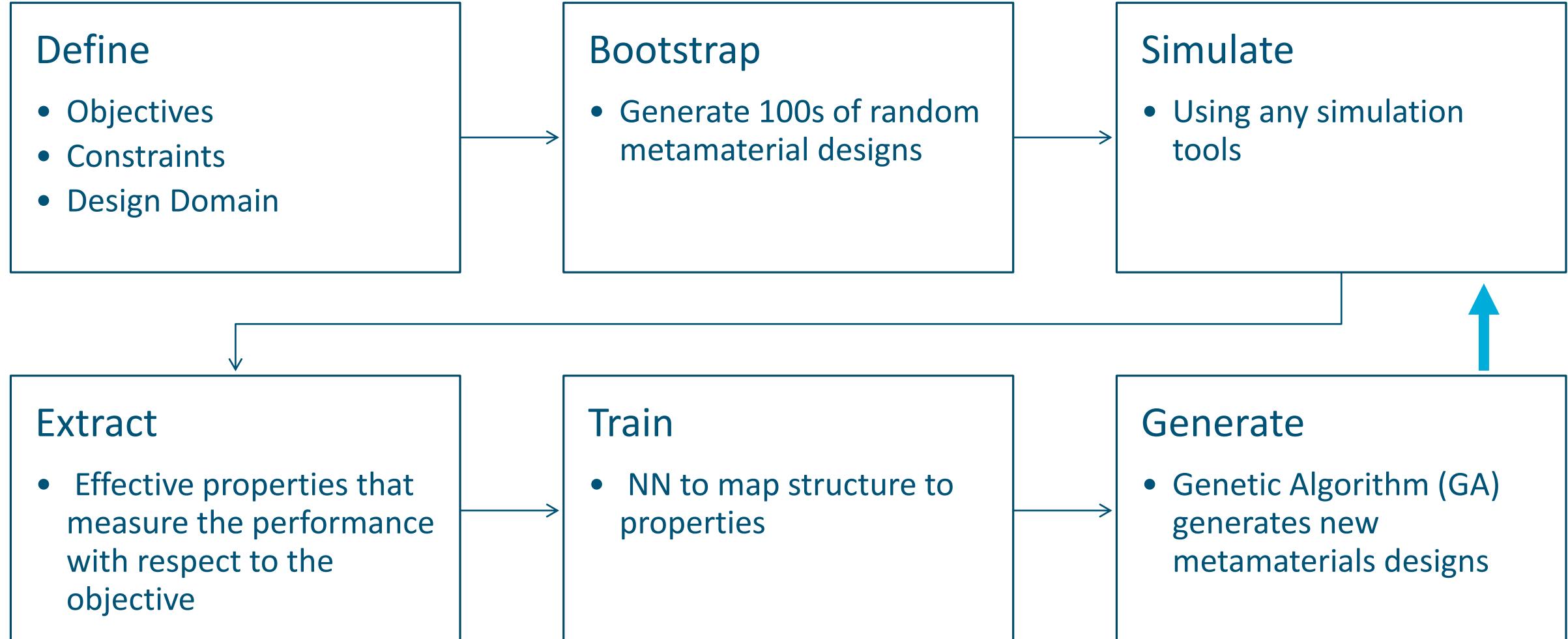


Related Works

- Ma, Wei, Feng Cheng, and Yongmin Liu. "Deep-learning-enabled on-demand design of chiral metamaterials." *ACS nano* 12.6 (2018): 6326-6334.
- Gu, Grace X., et al. "Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment." *Materials Horizons* 5.5 (2018): 939-945.
- Abueidda, Diab W., et al. "Prediction and optimization of mechanical properties of composites using convolutional neural networks." *Composite Structures* 227 (2019): 111264.

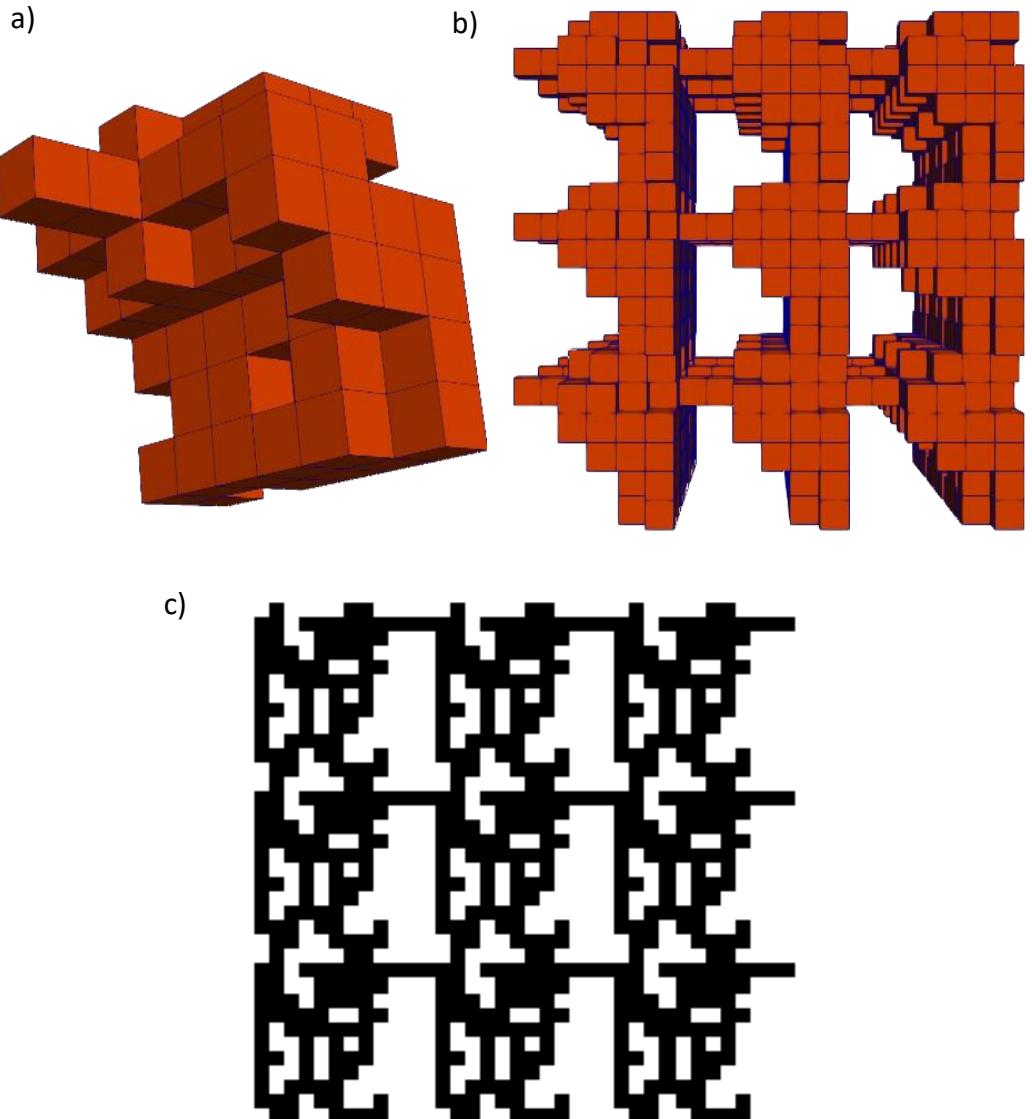


ML Metamaterial Design Approach



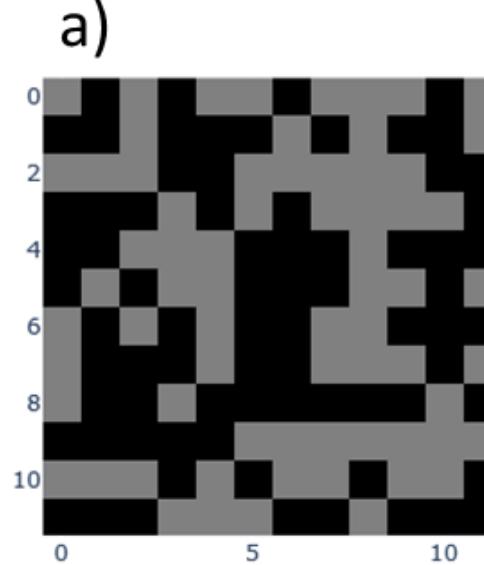
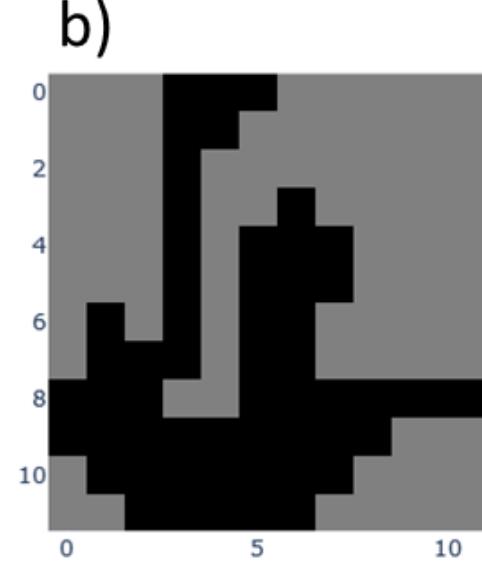
Define

- Objectives
 - Maximize stiffness of the metamaterial
 - Minimize wave-speed through the metamaterial
- Constraints
 - Basic Constraints
 1. A single connected body
 2. Hinge points are not allowed
 3. Design must connect to adjacent cells in all dimensions
 4. Density, $\rho \in [0.4, 0.6]$
 - Additive Manufacturing Constraints
 1. Unsupported overhangs (diving boards) are not allowed. 45 degree angles are ok.
 2. Bridges have a maximum length
 - Design Domain (Simplified)
 - Unit cell is 12x12 “pixel” locations can have material or void

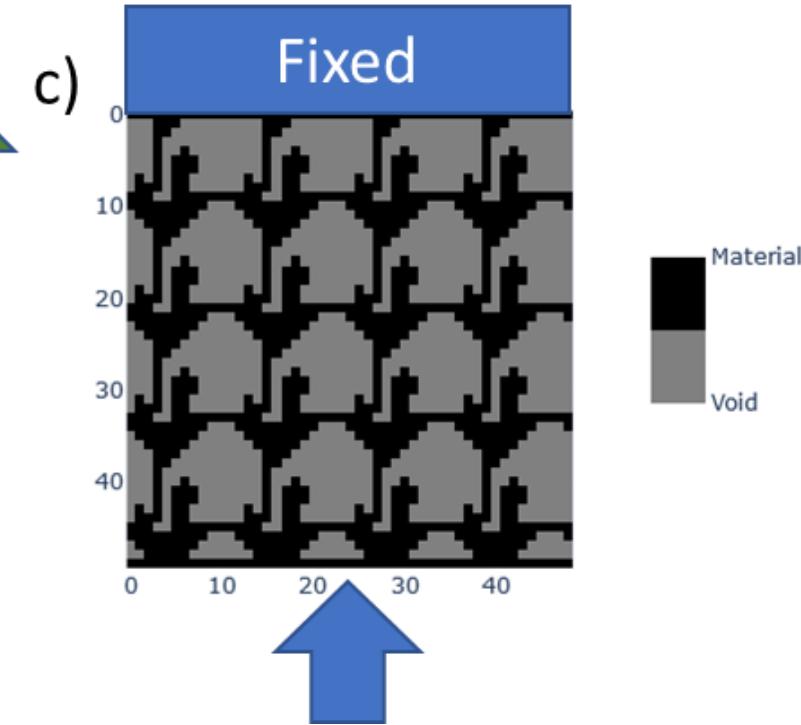


Bootstrap –Generate initial designs

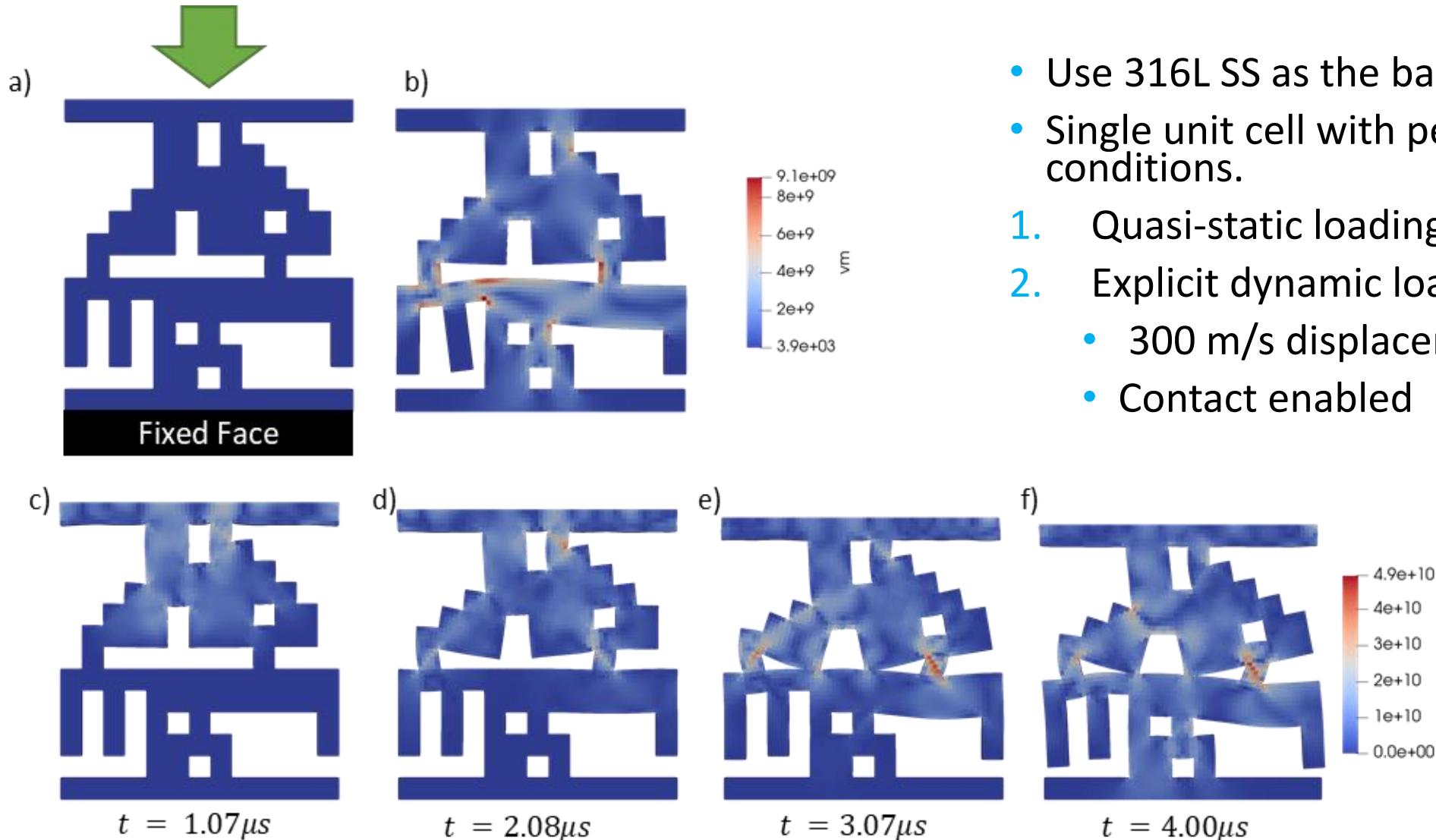
- Generate 1000 random designs.
- Iteratively correct the design until they meet all the constraints.



Print Direction



Simulate

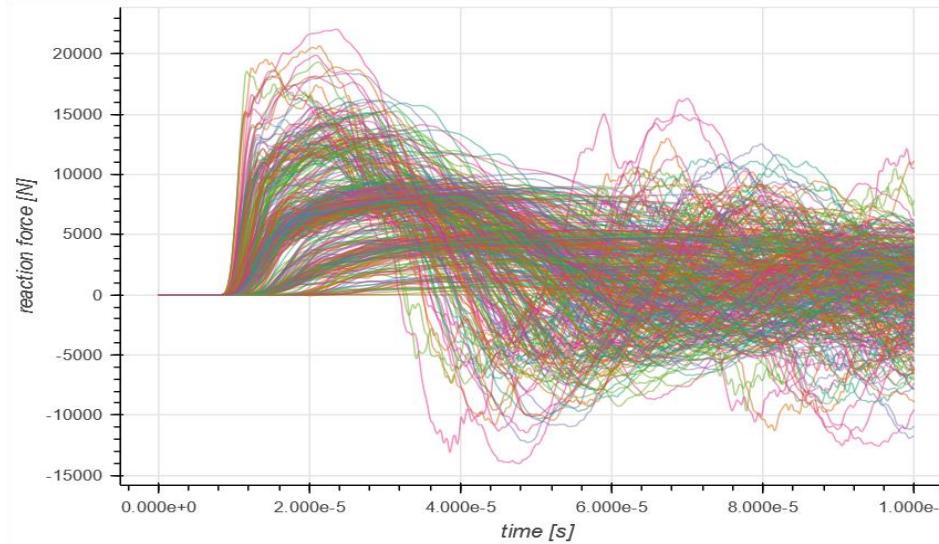


- Use 316L SS as the base material
- Single unit cell with periodic boundary conditions.

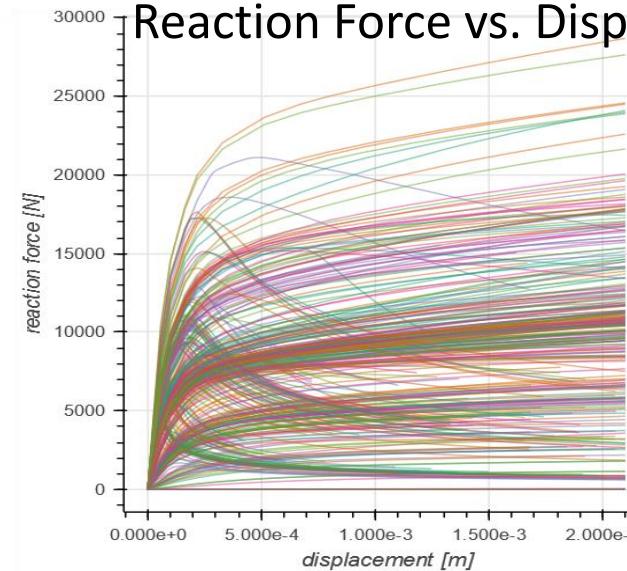
1. Quasi-static loading 3% strain
2. Explicit dynamic loading
 - 300 m/s displacement on top surface
 - Contact enabled

- Extract modulus from the quasi-static stress–strain curve
- Extract wave speed from the dynamic simulation force-time curve.

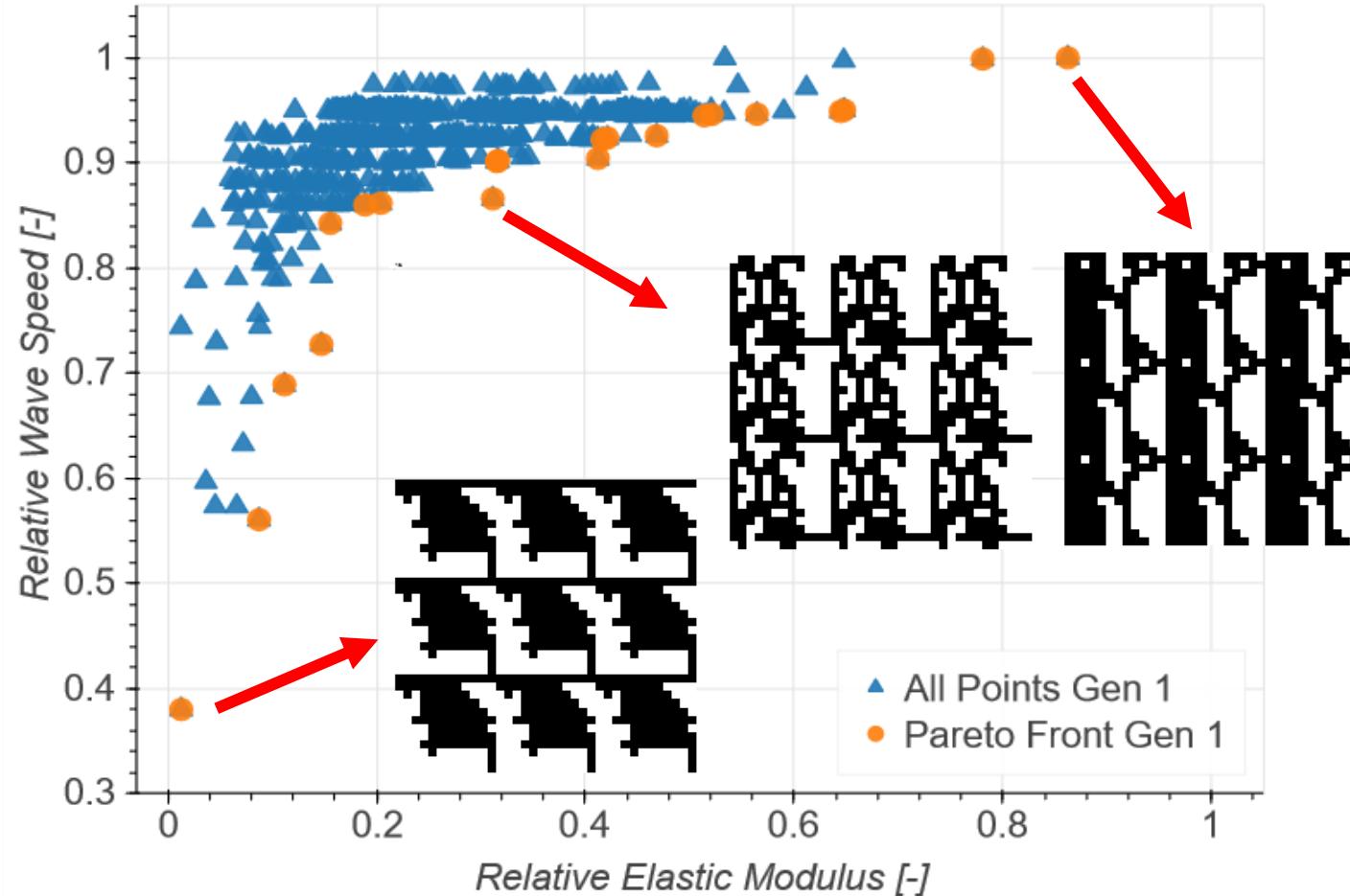
Dynamic
Reaction force vs. Time



Quasi-static
Reaction Force vs. Disp



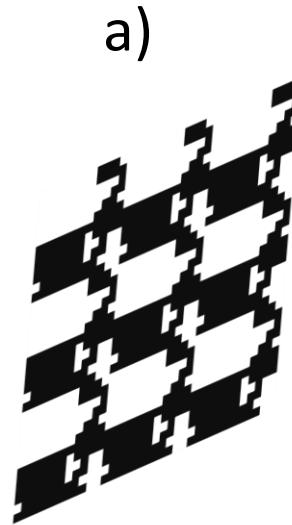
Extract II



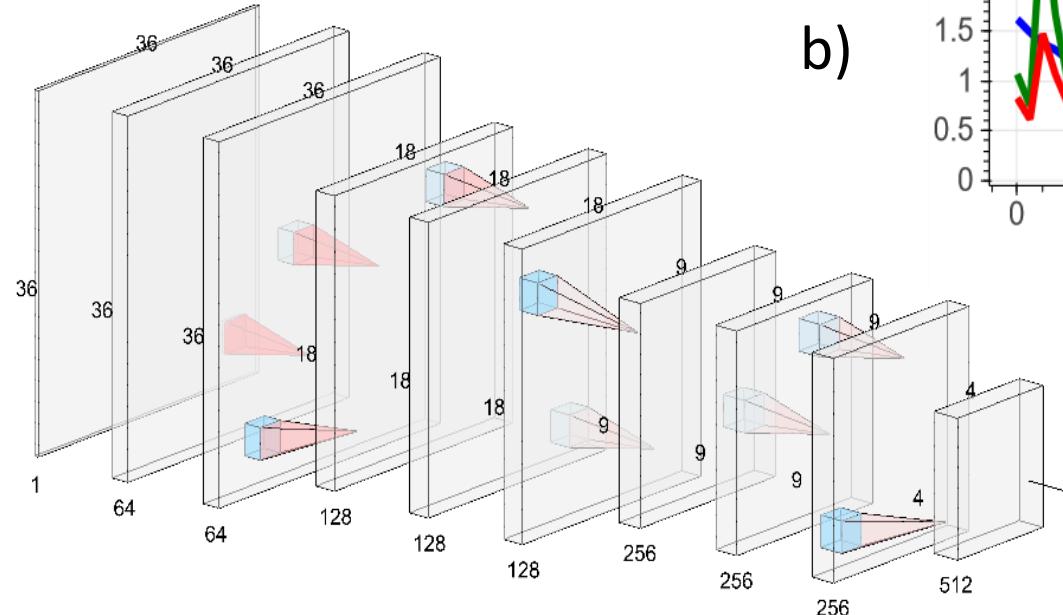
A trade-off (Pareto Front) of designs exists.

Train

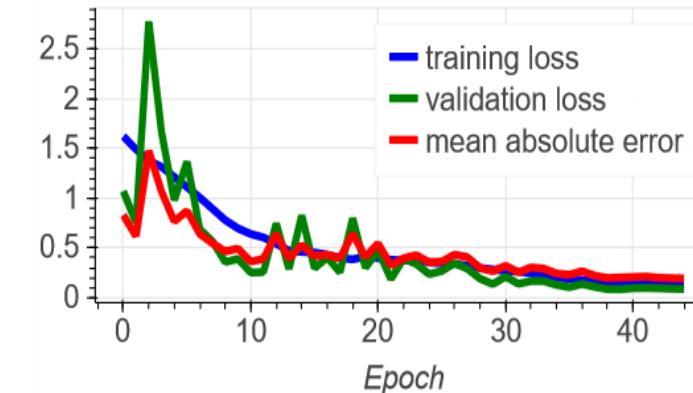
- A Convolutional Neural Network (CNN) is trained to predict modulus and wave-speed based on the unit cell.



a)



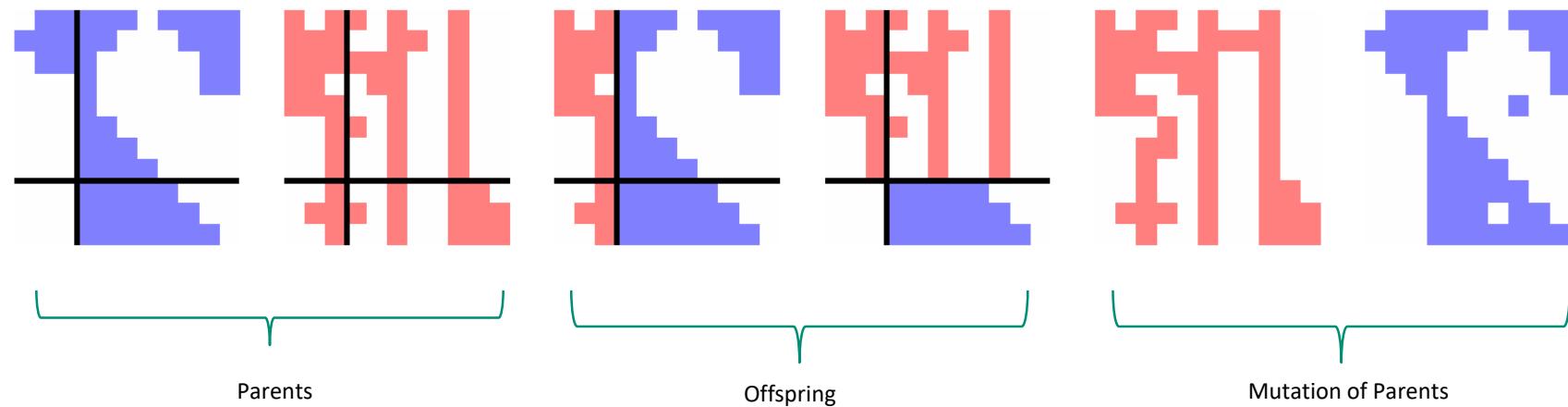
b)



$[E, c]$

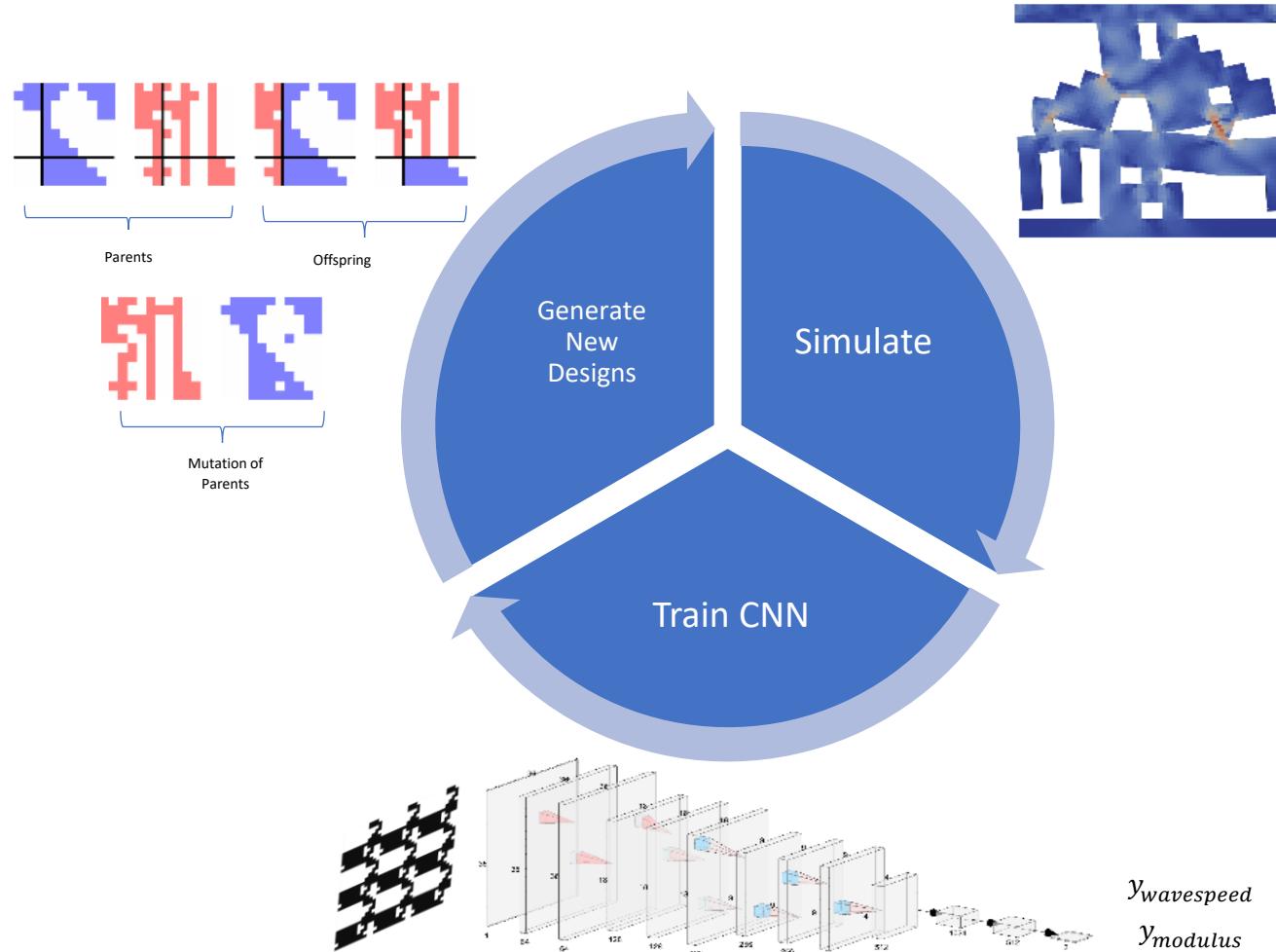
Generate

- Genetic Algorithm generates new designs.
- Uses the CNN as the evaluation function
- NSGA-II – multi-objective GA attempts to build a well distributed pareto front
- Designs which don't meet design constraints are discarded



Active Learning

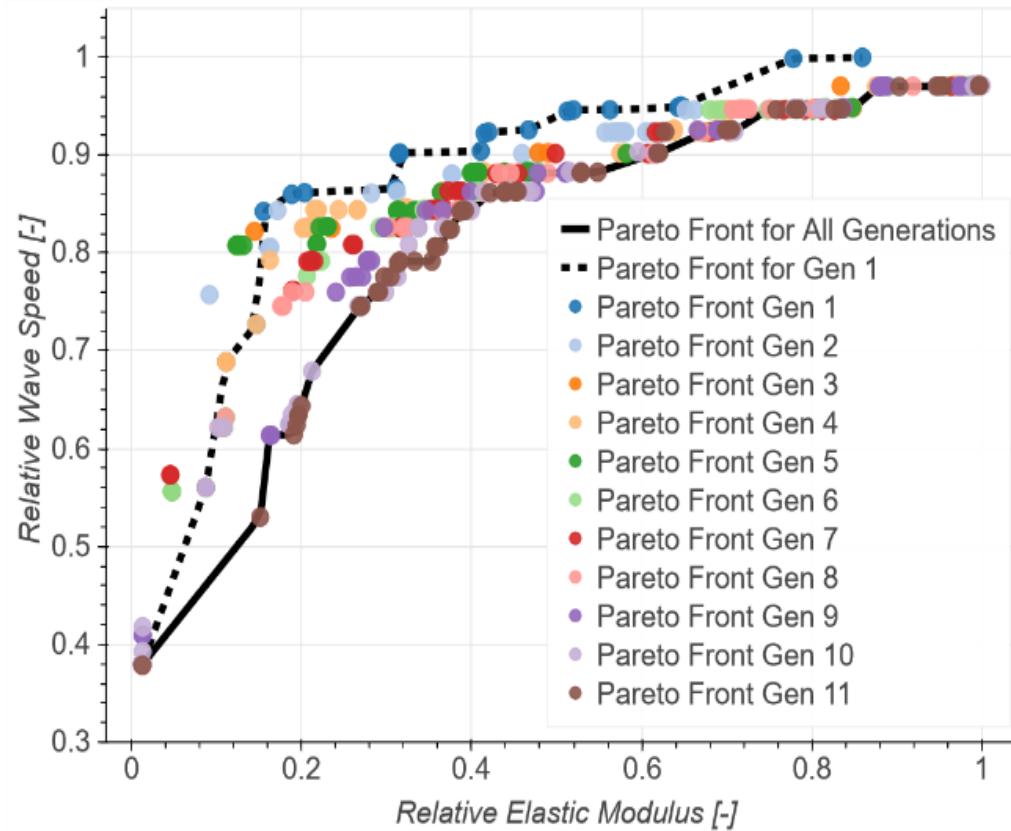
- The GA generates/picks the next set of designs to simulate
- Active Learning
 - Taking an active part in your own learning
 - e.g. Picking its own training data



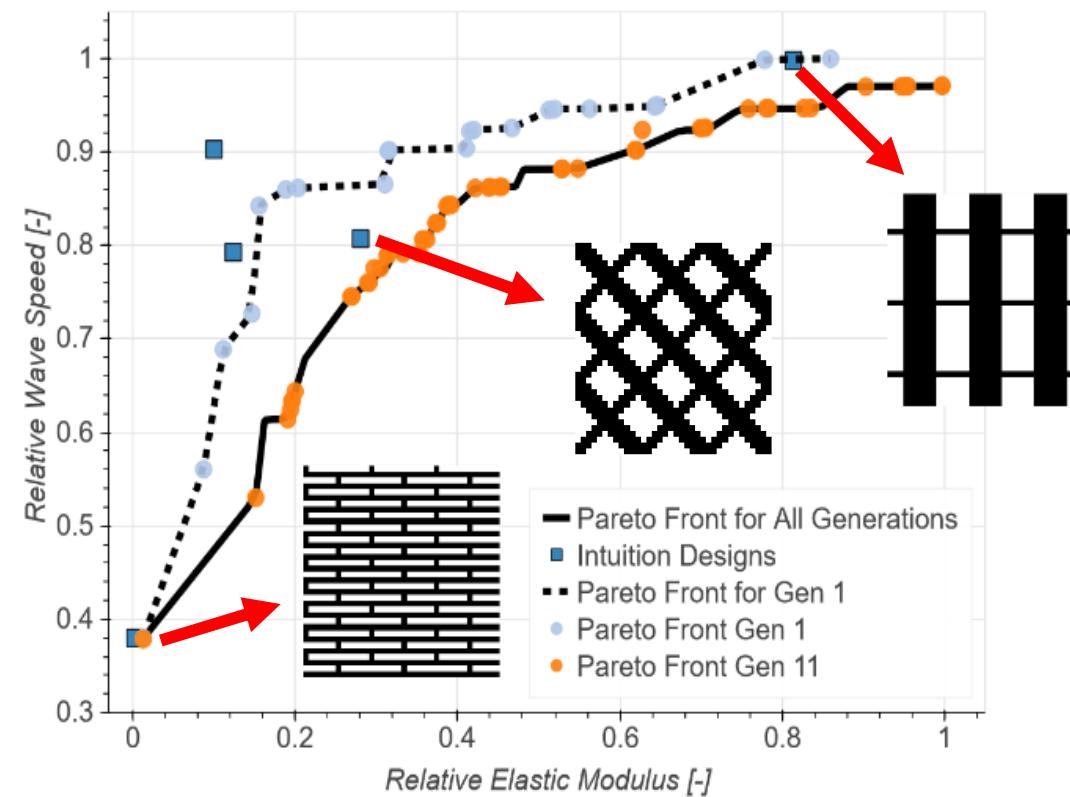
Run for 11 generations (loops)

Results

a) Progression of Pareto Front

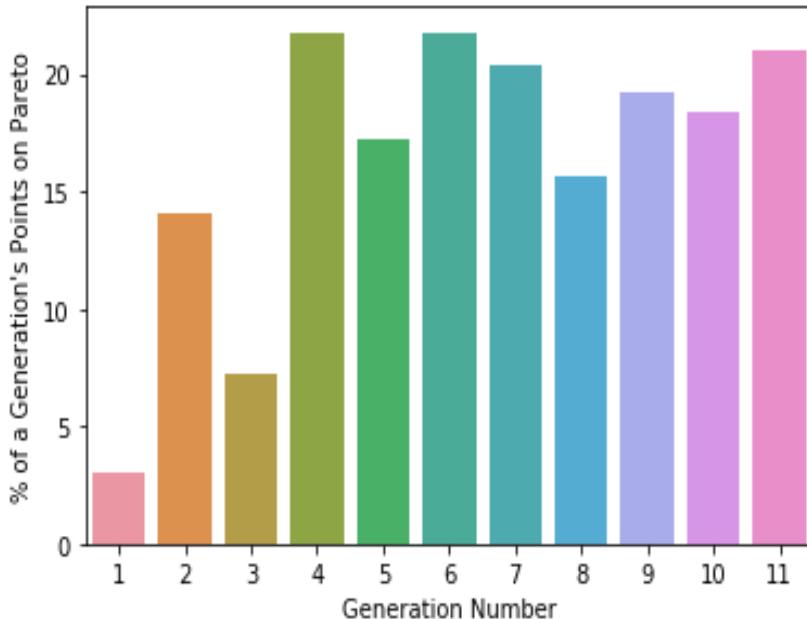


b) Comparison to intuition based designs

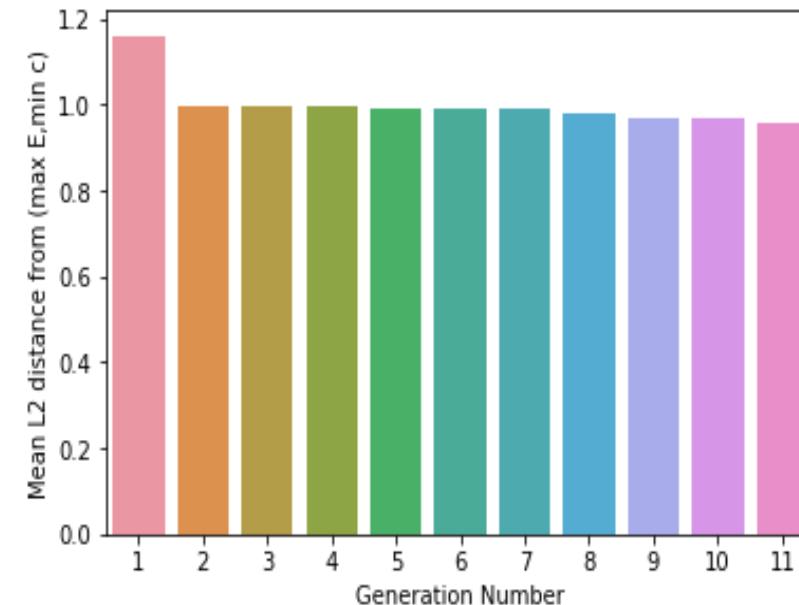


Results II

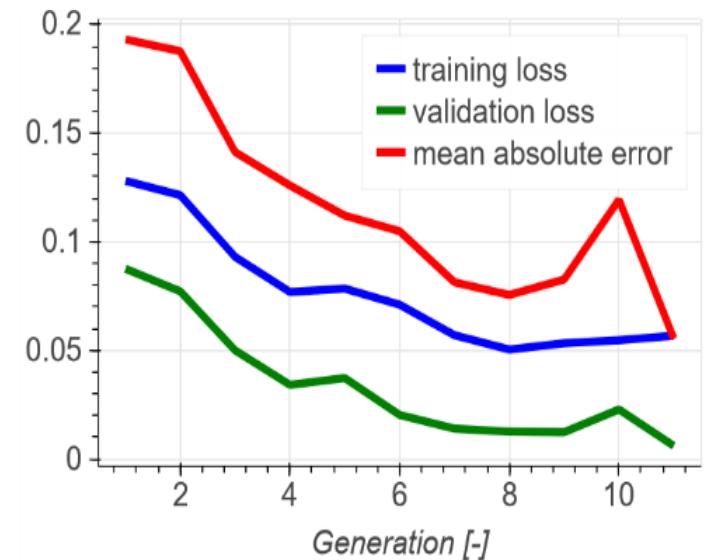
c)



d)

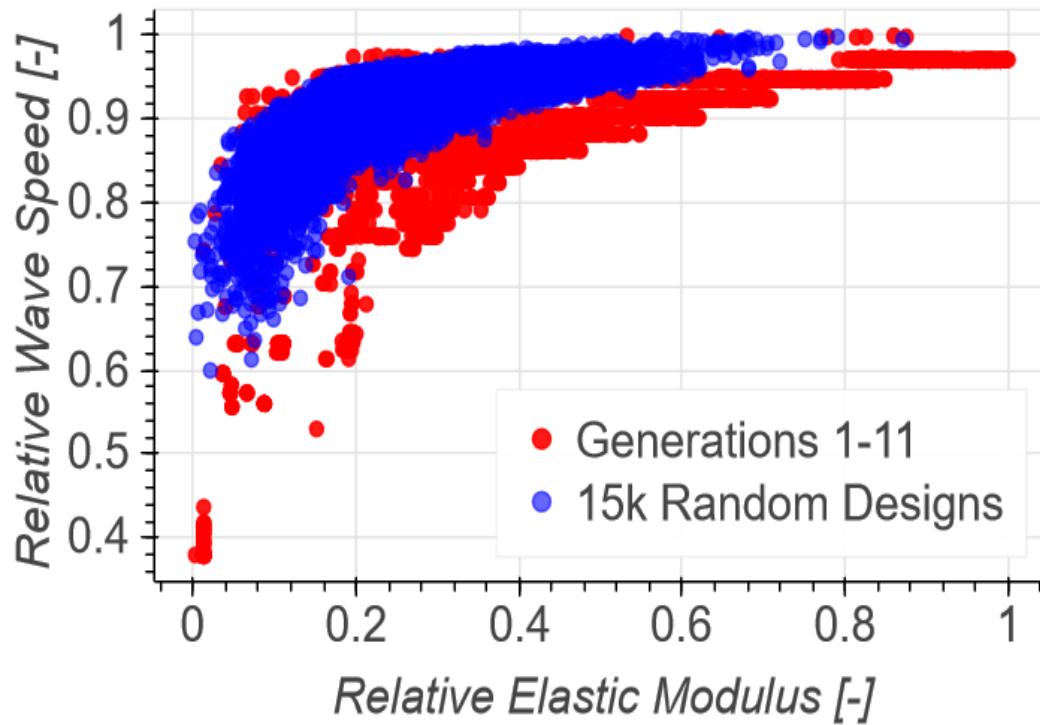


e)

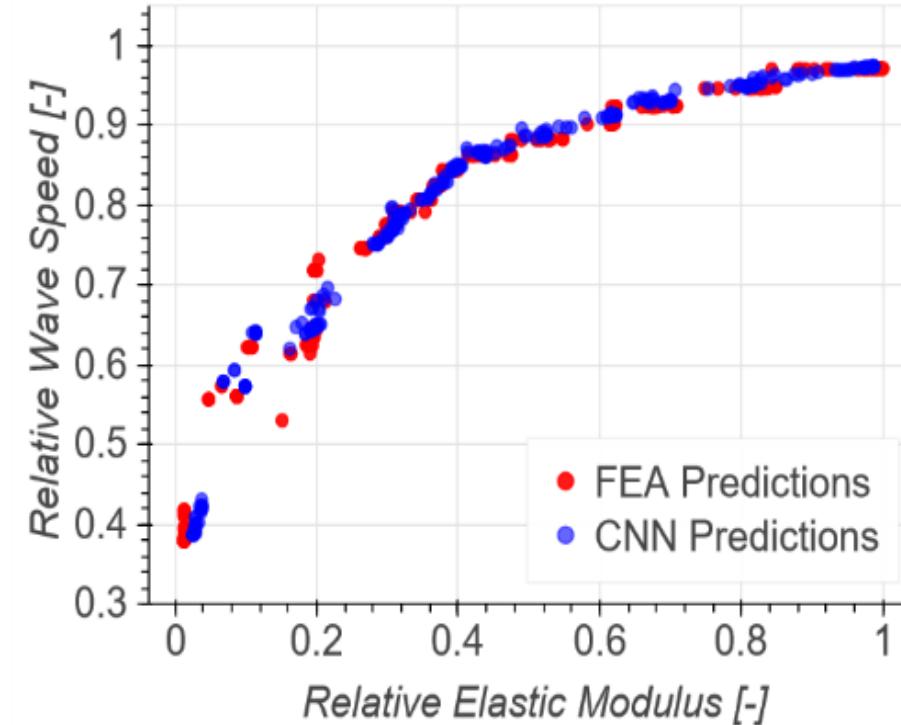


Results III

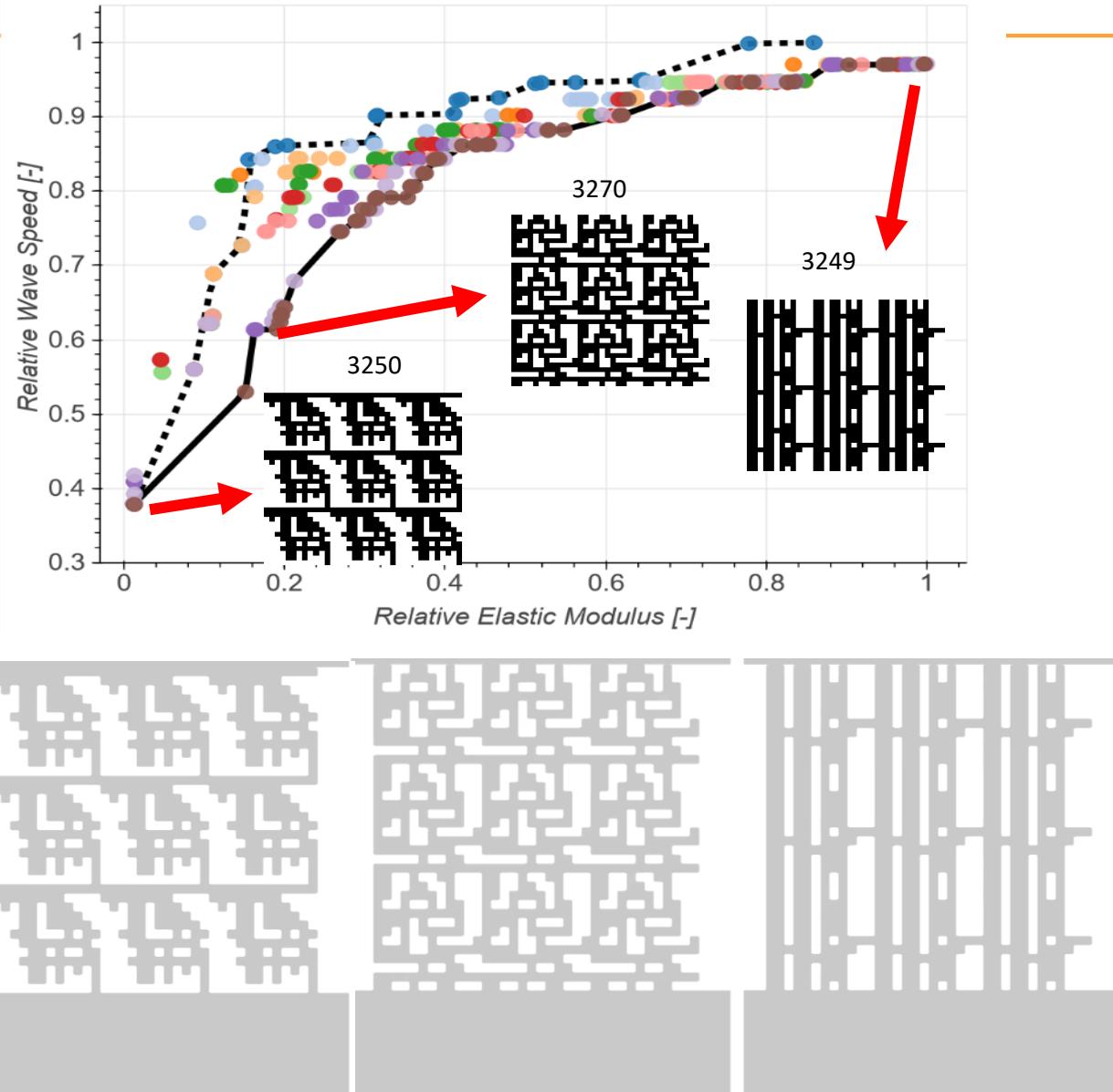
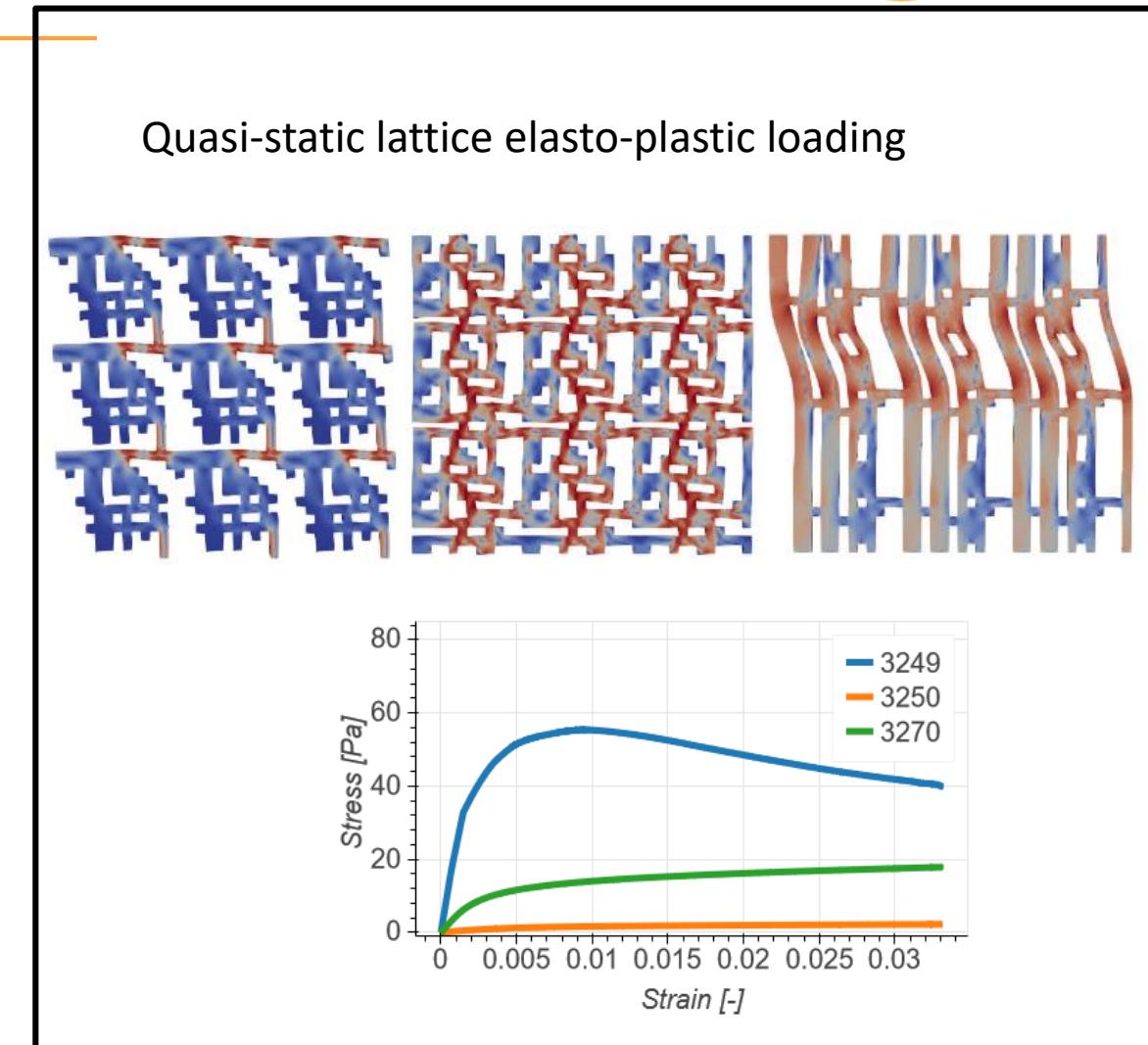
a) Design Results vs 15k Random Designs



b) CNN vs FEA Predictions



Validation



Conclusion

1. Combining a GA and a NN enables automated design of metamaterials
2. The CNN's prediction speed enables the accelerated identification of candidate designs
3. The approach is generic and should work with other design problems
4. An active learning approach enables a significant reduction in the amount of data needed
5. The role of the engineer is to define the problem and select a result from the Pareto front.

Anthony Garland (agarlan@sandia.gov)

