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* A periodic structure that is at least one scale smaller than the macro
structure

* The unit cell structure’s shape/topology results in unique effective properties
of the metamaterial
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Need for Design Automation

The literature has seemingly endless examples of
metamaterials

How are they designed? Intuition and parametric
optimization

How are products designed?
* Gather Requirements
* Conceptual design
* Embodiment design

The design engineers needs to find a meta-material
which meets specific requirements.

How can we generate hew metamaterials that meet
specific requirements?
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Plan and clarify the task:

Analyze the market and company situation
Find and select product ideas

Formulate a product proposal

Clarify the task

Elaborate a requirements list

¥

Requirements List
(Design Specification)
v

Develop the principal solution:

Identify essential problems

Establish function structures

Search for working principles and working structures
Combine and firm up into concept variants

Evaluate against technical and economic criteria

Concept \
(Principal Solution) /
v

Develop the construction structure:

Preliminary form design, material selection and calculation
Select best preliminary layouts

Refine and improve layouts

Evaluate against technical and economic criteria

¥

Upgrade and improve

< Preliminary Layout >

¥

Define the construction structure

Eliminate weak spots

Check for errors, disturbing influences and minimum costs
Prepare the preliminary parts list and production and assembly
documents

¥

< Definitive Layout >

¥

Prepare production and operating documents:
Elaborate detail drawings and parts list

Complete production, assembly, transport and operating
instructions

Check all documents

¥
N

< Product documentation /

Solution

ing and Clarifying the task +—

ceptual design —b| Plann
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* Topology optimization

* Requires a formal mathematical description
of the problem

* Difficult/Impossible for many processes
* The objective function must be continuous

and smooth L | ,Li}”i |
_ e A e |
* Excludes non-continuous phenomenon . L
like contact and failure | 1

* A generic method of mapping structure to
property is needed

* NN can provide this mapping
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Define

e Objectives
e Constraints
e Design Domain

Bootstrap

e Generate 100s of random
metamaterial designs

Simulate

e Using any simulation
tools

1

Extract

o Effective properties that
measure the performance
with respect to the
objective

Train

e NN to map structure to
properties

Generate

e Genetic Algorithm (GA)
generates new
metamaterials designs
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Define BE

* Objectives
* Maximize stiffness of the metamaterial
* Minimize wave-speed through the metamaterial
* Constraints
* Basic Constraints
1. Asingle connected body
2. Hinge points are not allowed

3. Design must connect to adjacent cells in all
dimensions

4.  Density, p € [0.4,0.6]
* Additive Manufacturing Constraints

1. Unsupported overhangs (diving boards) are not
allowed. 45 degree angles are ok.

2.  Bridges have a maximum length
* Design Domain (Simplified)
* Unit cell is 12x12 “pixel” locations can have material or void




Bootstrap —Generate initial designs o
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* Generate 1000 random designs.
* lteratively correct the design until they meet all the constraints.
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Simulate -
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* Use 316L SS as the base material
* Single unit cell with periodic boundary

o conditions.

- 1. Quasi-static loading 3% strain

:: : 2. Explicit dynamic loading

L... * 300 m/s displacement on top surface

* Contact enabled
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Extract @

* Extract modulus from the quasi-static stress—strain curve
* Extract wave speed from the dynamic simulation force-time curve.

Dynamic

Reaction force vs. Time Quasi-static
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‘ A trade-off (Pareto Front) of designs exists. 5
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* A Convolutional Neural Network (CNN) is trained to predict modulus and
wave-speed based on the unit cell.

2.9 = training loss
21 == validation loss
] == mean absolute error
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Generate

* Genetic Algorithm generates new designs.

* Uses the CNN as the evaluation function

* NSGA-II — multi-objective GA attempts to build a well distributed pareto front
* Designs which don’t meet design constraints are discarded

el

Parents Offspring Mutation of Parents
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* The GA generates/picks the
next set of designs to
simulate

Generate

New

* Active Learning : s

* Taking an active partin
your own learning

* e.g. Picking its own
training data

ywavespeed

Ymodulus

Run for 11 generations (loops) 17



Results

a) Progression of Pareto Front

'1 '- .o .. ' |
: PP XL P cadian
0.9 3"'- y-i

] C (u'" |
o] == Pareto Front for All Generations
3 0.8 == Pareto Front for Gen 1
L%{ e Pareto Front Gen 1
o 0.7 1 Pareto Front Gen 2
R Pareto Front Gen 3
% 0 6 Pareto Front Gen 4
=2 0] ® Pareto Front Gen 5
.g ] Pareto Front Gen 6
® 5]

® Pareto Front Gen 7
Pareto Front Gen 8

® Pareto Front Gen 9
Pareto Front Gen 10

¢ Pareto Front Gen 11

T T T ¥ T T T T

o 02 04 06 08 1
Relative Elastic Modulus [-]

o o o o
[=3] | o) ow
T B T R SR T | PRI

Relative Wave Speed [-]

<
o
L

Sandia
National
Laboratories

—— == Pareto Front for All Generations

B |ntuition Designs

== Pareto Front for Gen 1
— Pareto Front Gen 1

1 I Pareto Front Gen 11

04 06 08 1
Relative Elastic Modulus [-]

18



Results I
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Results Il

a) Design Results vs 15k Random Designs
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b) CNN vs FEA Predictions
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Conclusion -
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. . Lattice FEA | .

1. Combining a GA and a NN enables automated Elasto Plastic Model

design of metamaterials Lattice Shock o
2. The CNN'’s prediction speed enables the Dynamic Unit cell | o

accelerated identification of candidate designs  quisttic unit cen o

FEA Linear Model

3. The approach is generic and should work with M predicton| @ |

other design problems RN R XTI

Simulation Time [s]

4. An active learning approach enables a
significant reduction in the amount of data

needed £

5. The role of the engineer is to define the
problem and select a result from the Pareto
front. 5 |
Anthony Garland (agarlan@sandia.gov) ’ )
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