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Overview



Meta-materials

• A periodic structure that is at least one scale smaller than the macro 
structure

• The unit cell structure’s shape/topology results in unique effective properties 
of the metamaterial
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Meta-materials II
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Need for Design Automation

• The literature has seemingly endless examples of 
metamaterials

• How are they designed? Intuition and parametric 
optimization

• How are products designed?
• Gather Requirements
• Conceptual design
• Embodiment design

• The design engineers needs to find a meta-material 
which meets specific requirements. 

• How can we generate new metamaterials that meet 
specific requirements?
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Design automation Methods

• Topology optimization 

• Requires a formal mathematical description 
of the problem

• Difficult/Impossible for many processes

• The objective function must be continuous 
and smooth

• Excludes non-continuous phenomenon 
like contact and failure

• A generic method of mapping structure to 
property is needed

• NN can provide this mapping
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ML Metamaterial Design Approach

Define

• Objectives

• Constraints

• Design Domain

Bootstrap

• Generate 100s of random  
metamaterial designs

Simulate

• Using any simulation 
tools

Extract

• Effective properties that 
measure the performance 
with respect to the 
objective

Train

• NN to map structure to 
properties

Generate

• Genetic Algorithm (GA) 
generates new 
metamaterials designs 
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Define

• Objectives

• Maximize stiffness of the metamaterial

• Minimize wave-speed through the metamaterial

• Constraints

• Basic Constraints

1. A single connected body

2. Hinge points are not allowed

3. Design must connect to adjacent cells in all 
dimensions

4. Density, 𝜌 ∈ [0.4,0.6]

• Additive Manufacturing Constraints

1. Unsupported overhangs (diving boards) are not 
allowed. 45 degree angles are ok. 

2. Bridges have a maximum length

• Design Domain (Simplified)

• Unit cell is 12x12 “pixel” locations can have material or void
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Bootstrap –Generate initial designs

• Generate 1000 random designs.

• Iteratively correct the design until they meet all the constraints.  
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Simulate

• Use 316L SS as the base material

• Single unit cell with periodic boundary 
conditions. 

1. Quasi-static loading 3% strain

2. Explicit dynamic loading

• 300 m/s displacement on top surface

• Contact enabled
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Extract

• Extract modulus from the quasi-static stress–strain curve

• Extract wave speed from the dynamic simulation force-time curve.
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Quasi-static
Reaction Force vs. Disp

Dynamic
Reaction force vs. Time



Extract II
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A trade-off (Pareto Front) of designs exists.



Train

• A Convolutional Neural Network (CNN) is trained to predict modulus and 
wave-speed based on the unit cell. 
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Generate

• Genetic Algorithm generates new designs. 

• Uses the CNN as the evaluation function

• NSGA-II – multi-objective GA attempts to build a well distributed pareto front

• Designs which don’t meet design constraints are discarded
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Parents Offspring Mutation of Parents



Active Learning

• The GA generates/picks the 
next set of designs to 
simulate

• Active Learning 

• Taking an active part in 
your own learning

• e.g. Picking its own 
training data
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Simulate

Train CNN

Generate 
New 

Designs

𝑦𝑤𝑎𝑣𝑒𝑠𝑝𝑒𝑒𝑑

𝑦𝑚𝑜𝑑𝑢𝑙𝑢𝑠

Parents Offspring

Mutation of 

Parents

Run for 11 generations (loops)



Results
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a) Progression of Pareto Front b) Comparison to intuition based designs



Results II
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Results III
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a) Design Results vs 15k Random Designs b) CNN vs FEA Predictions



Validation
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Conclusion

1. Combining a GA and a NN enables automated 
design of metamaterials

2. The CNN’s prediction speed enables the 
accelerated identification of candidate designs

3. The approach is generic and should work with 
other design problems

4. An active learning approach enables a 
significant reduction in the amount of data 
needed

5. The role of the engineer is to define the 
problem and select a result from the Pareto 
front. 
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