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Project History, Research Goals and Summary Accomplishments

The goal of this DOE-funded project was to investigate the fundamental science related to
selective catalytic oxidation reactions for converting renewable polyhydroxylated bio-feedstocks into
new classes of value-added chemicals. The focus was on selective oxidation catalysis, specifically the
mechanisms and origin of chemoselectivity for the selective Pd-catalyzed aerobic oxidations of biomass-
derived polyols and carbohydrates.

Specific Objectives for this project were to: (1) Investigate the basic science, mechanistic
pathways and reactive intermediates generated in the aerobic oxidation of polyols and sugars with highly
selective cationic Pd catalysts [L1Pd(OAc)];[OTf].. (1, L1 = neocuproine), (2) Investigate the
mechanistic origin of the competitive oxidative degradation of 1 and to use these insights to extend
catalyst lifetimes and turnover numbers, (3) Investigate the origin of high chemoselectivities for the
oxidation of vicinal diols, polyols and unprotected carbohydrates, and (4) Investigate the scope and
mechanism of catalytic strategies for the selective catalytic oxidation of diols, polyols and carbohydrates.
In the last grant period, significant progress was made on objectives (1), (2), and (4); less progress was
made on objective (3) due to an intentional effort to focus on new ligand designs, catalysts, concepts and
strategies for selective oxidation reactions. Accomplishments and activities included:

(1) Extension of catalyst lifetimes and improvement of turnover number for aerobic oxidation of
alcohols with cationic Pd neocuproine complexes:' The cationic Pd complex 1 [L1Pd(u-OAc)]2[OTf]:
(L1 = neocuproine),' ' is an exceptionally chemoselective catalyst for the oxidation of primary and
secondary alcohols, vicinal diols, and complex polyols such as carbohydrates.'’!* This catalyst exhibits
high selectivity for the oxidation of secondary alcohols in vicinal diols*®’ and carbohydrates'®!* to
generate a-hydroxyketones.!*!” The selective oxidation of unprotected polyhydroxylated substrates and
carbohydrates provides an alternative to multi-step protection and deprotection strategies,'>* and has
been used by us®’!” and others'!"'3?!"?> for the expedient synthesis of natural products, chemical
intermediates®’*® and rare sugars.'*'*2!2 Catalytic oxidation of a,m-diols to lactones?’ with 1 provides
an expedient synthesis of monomers for ring-opening polymerization.”®?’ Our group has invested effort
into examining the wide scope of reactions possible**!' with this Pd catalyst and also the mechanistic
pathways and reactive intermediates involved in catalysis.*® With Pd catalyst 1, both air and
benzoquinone can be used as terminal oxidants, but aerobic oxidations are accompanied by oxidative
degradation of the neocuproine ligand, thus necessitating high Pd loadings. In the last grant period,
strategies to improve aerobic catalyst lifetimes were devised, guided by mechanistic studies of catalyst
deactivation.! Kinetic and mechanistic studies of alcohol oxidation with 1 are consistent with the
mechanism outlined in Figure 1.! These studies revealed the oxidative degradation of the neocuproine
ligand occurs when O or air is used as the terminal oxidant.” Several strategies were employed to
illuminate the pathways for the oxidative degradation of the neocuproine during aerobic oxidations with
the goal of increasing turnover numbers and enabling lower catalyst loadings.'

In-operando mass spectrometry studies, in collaboration with the Zare group at Stanford,
revealed several ions (D and E, Figure 1) whose intensities increased in an inverse correlation with the
decrease in rate of the aerobic oxidation reactions.’ These studies collectively revealed that H atom
abstraction from the benzylic methyl groups of the neocuproine ligand initiates catalyst degradation.
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Guided by this hypothesis, we prepared the de-ligand F'*? and CF;-substituted ligand G.* both
of which resulted in modest increases in catalyst turnover numbers (from 20 to 54 mole ketone/mole Pd,
Figure 2).! Sacrificial reductants were also investigated. Phenol anti-oxidants H proved a particularly
useful additive for mitigating oxidative degradation of the catalyst and styrene additives proved to
improve catalyst lifetimes by intercepting Pd hydrides, mitigating the formation of Pd black."'* These
insights enabled us to modify our aerobic oxidation protocols for the aerobic oxidation of a variety of
polyols on a multigram scale with catalyst loadings as low as 0.25 mol % Pd.' Nevertheless, the
requirements for stoichiometric additives are not optimal and motivated us to investigate alternative
ligand designs.

(2) New Ligand Designs. Prior studies revealed that 2,9-substituents on the neocuproine were
critical to activity,>* but benzylic hydrogens are oxidative liabilities. To eliminate the vulnerable
benzylic C(sp3)-H bonds near the catalyst active site, we prepared 2H-dibenzophenanthroline (L2), 2,2'-
biquinoline (L3, Fig. 3) and the corresponding cationic Pd complexes [LPd(pu-OAc)].[OTf],. Catalytic
aerobic oxidation of 1,2-propanediol with all three catalysts revealed higher turnover numbers(TON) for
catalysts ligated by L2 and L3 relative to that with neocuproine L1. Aerobic oxidation of 1,2-propane
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substantially reduced compared to the neocuproine system, limiting their synthetic utility. For example,
catalytic aerobic oxidation of 1,2-propane diol with the biquinoline ligated Pd complex 3 [Ls:Pd(p-
OAc)][OTf]> (L3 = biquinoline) required > 3 days to reach full conversion at < 2.5 mol% Pd loading.
Mechanistic investigations and in-situ mass spectrometry studies suggest that reaction rates with L3 may
be limited due to buildup of a poorly soluble trimeric species [(LPd)s;(u-O):]*" (L = 2,2’-biquinoline).
Further ligand modifications and mechanistic studies are described in the Project Narrative (Specific
Objective 1).




(3) Scope and Utility of Chemoselective Catalytic Oxidations: The fundamental investigations
to improve the scope of the Pd-catalyzed alcohol oxidations inspired the development of improved
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for selective alcohol oxidation catalysts.>

While these selective catalytic aerobic oxidation reactions with the Pd complexes have proven quite
useful, these and other aerobic oxidation systems can suffer from complications due to safety concerns
(explosion hazards of O in organic solvents),*® unselective reactivity from partially-reduced active
oxygen species,"” as well as mass transport limitations®’ resulting from the use of gaseous reagents.
During the last grant period, we initiated studies to investigate other alcohol oxidation strategies that
would avoid O; as a terminal oxidant.

We focused on several different coordination complexes and alternative alcohol oxidation
strategies, including transfer hydrogenation,”® acceptorless alcohol dehydrogenation (AAD - the
catalytic elimination of H, from alcohols),*** as well as electrocatalytic strategies.”**!>> We initially
targeted a class of Co(II) pincer complexes reported by Hanson’* that were reported to be effective for
the acceptorless alcohol dehydrogenation (AAD) of benzylic alcohols,”>® but in-situ investigations by
electrospray mass spectrometry (ESI-MS) revealed that vicinal diols bound avidly to the Co complexes
and did not turnover readily. Moreover, the Co catalysts precursors/intermediates proved strongly basic
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ketones/aldehydes.  As acceptorless alcohol dehydrogenation is a close chemical analog of
electrocatalytic alcohol oxidation, we targeted these complexes to evaluate whether electrochemical
oxidations might provide an alternate pathway for selective oxidation reactions.*> While considerable




mechanistic and computational investigations of these systems had been carried out,*** little was known
of the electrochemical behavior of the Mn and Fe PNP pincer systems.

Cyclic voltammetry of the [Fe]-N, 6 and [Fe](H)(NH), 6-H (Fig. 6) complexes in
tetrahydrofuran with [BuN][BF4] as supporting electrolyte revealed a one-electron irreversible
oxidation with an onset at —0.34 V versus ferrocene/ferrocenium (Fc”*) for [Fe]-N 6 and a one-electron
irreversible oxidation with an onset at —0.74 V versus Fc”" for the corresponding iron hydride 6-H (Fig.
7). In the presence of a strong base P2 (P2 = (P,-Et, Et-N=P»(dma)s,*’ 3 mM) electrochemical oxidation
of Fe hydride 6-H at —0.74 V afforded the Fe amide [Fe]-N 6, indicating that the electrocatalytic
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these studies reveal that AAD catalysts are
promising candidates as electrocatalysts, the stability of the Fe complexes under conditions of bulk
electrolysis provides a limitation to large-scale electrocatalytic alcohol oxidation reactions. These
insights will be used to guide the development more stable and long-lived chemoselective alcohol
oxidation electrocatalysts.
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