

LA-UR-22-20353

Approved for public release; distribution is unlimited.

Title: Neutron Radiography at LANSCE: Interrogation and Characterization of Materials for Next Generation Nuclear Reactor Designs

Author(s): Long, Alexander Makenzie; Balke, Thilo; Jackson, Jay Matthew; Luther, Erik Paul; Mehta, Vedant Kiritkumar; Monreal, Marisa Jennifer; Parker, Stephen Scott; Shivprasad, Aditya Prahlad; Trellue, Holly Renee; Tremsin, A. S.; Vogel, Sven C.

Intended for: International Conference on Methods and Applications of Radioanalytical Chemistry (MARC), 2022-04-03/2022-04-08 (Kona, Hawaii, United States)

Issued: 2022-01-14

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

NEUTRON RADIOGRAPHY AT LANSCE: INTERROGATION AND CHARACTERIZATION OF MATERIALS FOR NEXT GENERATION NUCLEAR REACTOR DEGSINGS

Long, A.M. (1); Balke, T. (1); Jackson, J.M. (1); Luther, E. (1); Mehta, V. (1); Monnreal, M. (1); Parker, S.S. (1); Shivprasad, A.P. (1); Trellue, H. (1); Tremsin, A. (2); Vogel, S.C. (1). (1) Los Alamos National Laboratory; (2) University of California, Berkeley

Neutron radiography is an ideal probe for integrating and characterizing potential nuclear fuel and moderator materials in next generation nuclear reactor designs. Due to the nature of interaction with the nucleus, neutrons have complex attenuation functions that result in contrast mechanisms and material penetrabilities that are not only well-suited investigating materials that contain high-Z isotopes (such as actinides in nuclear fuels), but also characterizing hydrogen distributions in various hydride materials considered in future moderator designs. Additionally, with a high intensity short-pulsed neutron source, Energy-Resolved Neutron Imaging can be utilized to map out specific isotopes based on neutron resonance absorptions with in a given material. Presented will be efforts in developing these capabilities on FP5, along with initial results from notable measurements ranging from thermophysical property characterization of uranium based molten salts, to H-concentration mapping in hydrides, to isotope mapping in fresh and irradiated fuel samples for post-irradiation examination (PIE).