Chemistry of Materials

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not
copy or disclose without written permission. If you have received this item in error, notify the sender and

delete all copies.

Discovery of Energy Storage Molecular Materials using
Quantum Chemistry-guided Multi-objective Bayesian

Optimization

Journal:

Chemistry of Materials

Manuscript ID

cm-2021-020409.R3

Manuscript Type:

Article

Date Submitted by the
Author:

n/a

Complete List of Authors:

Agarwal, Garvit; Argonne National Laboratory, Materials Science Division
Doan, Hieu; Argonne National Laboratory, Materials Science Division
Robertson, Lily; Argonne National Laboratory, Chemical Sciences and
Engineering Division

Zhang, Lu; Argonne National Laboratory, Electrochemical Energy Storage
Assary, Rajeev; Argonne National Laboratory, Materials Science Division

<

o

{OLARONE™
Manuscripts

ACS Paragon Plus Environment




Page 1 of 25 Chemistry of Materials

Discovery of Energy Storage Molecular Materials using Quantum Chemistry-guided
Multi-objective Bayesian Optimization
Garvit Agarwal'2t, Hieu A. Doan'->f, Lily A. Robertson'3, Lu Zhang'? and Rajeev S. Assary'->"
! Joint Center for Energy Storage Research (JCESR)
*Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

9 3Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439,
10 USA

fGA and HAD contributed equally to this work.

oNOYTULT D WN =

15 *Corresponding Author
16 Rajeev S. Assary — Materials Science Division, Argonne National Laboratory, Lemont, IL, USA,
17 60439; Phone: 630-252-3536; Email: assary@anl.gov

60 ACS Paragon Plus Environment


mailto:assary@anl.gov

oNOYTULT D WN =

Chemistry of Materials

Abstract

Redox flow batteries (RFBs) are a promising technology for stationary energy storage applications
due to their flexible design, scalability, and low cost. In RFBs, energy is carried in flowable redox-
active materials (redoxmers) which are stored externally and pumped to the cell during operation.
Further improvements in energy density of RFBs necessitates redoxmers design with wider redox
potential window and higher solubility. Additionally, designing redoxmers with fluorescence
enabled self-reporting functionality allows monitoring of the state-of-health of RFBs. To
accelerate the discovery of redoxmers with desired properties, state-of-the-art machine learning
(ML) methods such as Multi-objective Bayesian Optimization (MBO) is useful. Here, we first
employed density functional theory calculations to generate a database of reduction potentials,
solvation free energies, and absorption wavelengths for 1400 redoxmer molecules based on a
2,1,3-benzothiadiazole (BzNSN) core structure. From the computed properties, we identified 22
Pareto-optimal molecules that compromise all desired properties. We further utilized this data to
develop and benchmark a MBO approach to identify candidates quickly and efficiently with
multiple targeted properties. With MBO, optimal candidates from the 1400 molecule dataset can
be identified at least 15 times more efficiently compared to brute force or random selection
approach. Importantly, we utilized this approach for discovering promising redoxmers from
unseen database of 1 million BZNSN based molecules, where we discovered 16 new Pareto-
optimal molecules with significant improvements in properties over the initial 1400 molecules.
We anticipate that this active learning technique is general and can be utilized for the discovery of
any class of functional materials that satisfies multiple desired property criteria.
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Introduction

The rising energy demand requires integration of intermittent renewable energy sources,
such as solar and wind, with the electric grid to maintain a carbon neutral economy [!,%]. This
requires the development of long duration stationary energy storage technologies. Redox flow
batteries, utilizing either aqueous or nonaqueous electrolytes, are considered a promising strategy
to address this challenge [3,%°]. Nonaqueous redox flow batteries (NRFBs) offer several
advantages over their aqueous counterparts, such as wider electrochemical stability window and
lower cost, thanks to the use of organic solvents and cost-effective redox-active molecules
(redoxmers) [%,7]. However, the development of next-generation NRFBs with high energy density
and superior cycling performance is dependent on the discovery of new and improved redoxmers,
which poses a major challenge for material design.

Several properties need to be considered when designing redoxmer molecules for high
performance NRFBs. For example, the 2,1,3-benzothiadiazole (BzZNSN) is a well-studied anolyte
redoxmer (which undergoes reduction) in NRFBs that features low redox potential, small
molecular weight, high stability of the charged radical anion, and outstanding electrochemical
cycling performance [%,°,'9]. Recently, a BZNSN derivative, CH3-AcBzCs, was also engineered
with a m-extended acetamide group['!], which enabled an orthogonal molecular property, namely
fluorescence, to monitor the crossover of the active species and assess the state-of-health of the
battery ['!]. Hence, one promising strategy for designing anolyte redoxmers is to perform
molecular engineering of the BZNSN scaffold using a wide range of functional groups to achieve
the desired properties (e.g., use electron-withdrawing/-donating groups to tune the redox
potential). However, high-throughput experimental synthesis and characterization is often a
significant bottleneck and high-fidelity computational methods provide a cost-efficient alternative
to enable the design and discovery.

To accelerate materials discovery, high-fidelity density functional theory (DFT)
calculations have been used to screen large molecular libraries and guide experiments toward the
most optimal candidate molecules ['2,13,4,15]. The computed properties, such as redox potentials
of the organic molecules, are observed to be in good agreement with experimentally measured
values using cyclic voltammetry [!6,17,18]. Thus, a combination of molecular engineering and high-
throughput DFT calculations are routinely used to identify redoxmer candidates with desired redox
potentials for application in NRFBs [!6,19,20]. For example, Pelzer et al. have performed high-
throughput DFT calculations to screen molecules with desired reduction and oxidation potentials
from a library of 4178 molecules [2!]. Similarly, DFT calculations have been used to develop linear
regression models to predict solubilities of the organic molecules using the computed solvation
free energies and the dipole moments of the molecules [??]. While such high-throughput materials
screening approaches are attractive, the brute-force computational screening methods become
intractable as the size of the search space grows beyond few thousand candidates.

The recent emergence of data-driven and machine learning (ML) techniques has
accelerated the screening of large search spaces for identification of molecules/materials with
desired properties. Several surrogate ML models have been developed using experimental or DFT
computed data to accurately and rapidly predict material properties such as band gap [*,%4,%],
lattice thermal conductivity [%¢], dielectric constant [?7], refractive index [?%], thermodynamic
stability [?°], melting temperature [*°], and defect formation energies [*',3%]. The prediction
accuracy of the ML models typically depends on the diversity and the quantity of data used for
training the models. The generation of large quantities of high-fidelity data is computationally
expensive and time-consuming, which is one of the major bottlenecks in the development of
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generalizable and robust ML models based on supervised learning. Thus, the surrogate ML models
perform well within the domain of applicability and often fail for unseen datapoints which are
outside the training domain [33,34]. The a priori identification of the domain of applicability of
such ML models is a challenging task. To circumvent this problem, multiple active learning
strategies have been proposed [33,36,37,38 39],

Active learning (AL) is a class of ML strategies in which a learning algorithm interactively
queries an information source (or database) to label new data points with the desired outputs. The
goal of AL is to strike a good balance between exploitation and exploration to minimize the number
of computations or experimental measurements needed to optimize the property of a given material
system or achieve desired accuracy of the trained ML model. For example, AL has been
successfully used to guide the experiments to accelerate the discovery of new shape-memory alloys
with low thermal hysteresis from a search space of 800k compositions [*°] and to tune the measured
electro-strain of the Pb-free piezoelectric materials [*!']. Bassman et al. used an AL model based
on Bayesian Optimization (BO) to discover layered materials with optimal band gaps [**].
Similarly, Kim et al. used AL to search for polymers with high glass transition temperatures using
few DFT evaluations [*}]. Recently, we used BO framework to identify redoxmers with optimum
oxidation potentials for application in NRFBs from a large search space of 112k molecules by
performing only 100 DFT calculations [*]. While a specific property of redoxmers such as redox
potential, solubility, or even fluorescence may be efficiently identified via single-objective AL, it
is always more desirable, albeit challenging, to search for redoxmers with multiple optimized
properties. Indeed, while most of the applications of AL for materials design have been limited to
optimization of a single objective/property of the materials, there are only a few examples where
AL has been successfully used for simultaneous optimization of two or more material properties
[43,46,47]. In particular, Janet et al. used multi-objective Bayesian optimization to accelerate the
search for candidates with optimal combination of two properties (i.e., redox potential and
solubility) from a search space of 2.8 million transition metal complexes for application in RFBs
[4°]. Gopakumar et al. demonstrated superior performance of the AL strategy for simultaneous
optimization of two properties compared to random search across multiple datasets [*]. Recently,
Jablonka et al. developed a novel multi-objective AL algorithm which simultaneously optimizes
3 properties (i.e., adsorption free energy, repulsion free energy of dimers and radius of gyration)
of the polymer beads and efficiently identify Pareto-optimal candidates from a large search space
of polymeric materials [*7].

In this work, we have developed an AL framework based on Multi-objective Bayesian
Optimization (MBO) to accelerate the search of desired redox-active molecules for application in
high energy density NRFBs. As shown in Scheme 1, our goal is to identify anolyte molecules
quickly and efficiently with three simultaneously optimized properties including reduction
potential (E4), solvation free energy (G*°), and absorption wavelength (A2*s). Although the
stability of anolyte molecules is also an important criterion for designing long-duration redox flow
batteries, it is a function of multiple factors (redox potential window, solvation structure, reactivity
at the electrode/electrolyte interface, etc.) and is therefore beyond the scope of this work. The
MBO is first benchmarked against a DFT-evaluated dataset of 1400 BZNSN molecules. Then, the
model is applied to an unknown dataset of 1 million molecules to determine optimal candidates
using only 100 DFT evaluations.
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Ideal molecule

High solubility
Easily detectable
High energy density

Design parameters

Scheme 1: Multi-objective design of anolyte candidate molecules for non-aqueous redox flow batteries. Ed, Gsolv,
and A2bs stand for computed reduction potential, solvation free energy, and absorption wavelength, respectively.

Results and Discussion

1. Structure Enumeration and DFT calculations of BZNSN molecules:

A molecule dataset is generated by engineering the substituent (R;-Rs) positions in the scaffold of
acetamide-substituted BZNSN molecule with different functional groups as shown in Figure 1(a).
The use of Simplified Molecular Input Line Entry System (SMILES) allows for fast and robust
text-based enumeration, resulting in a dataset of c.a. 1400 BZNSN molecules. This dataset consists
of 7 chemical elements, H, Br, C, N, O, S, and F. The size of molecules ranges from 20 to 36 heavy
atoms (non-H atoms). Before DFT evaluations, the initial 3D molecular structures are
automatically generated from SMILES representations and subsequently optimized using MMF9%4
forcefield as implemented in RDKit cheminformatics package [*¥]. Then, DFT calculations are
performed to compute the reduction potentials (E™9), solvation free energies (G*°!Y) and absorption
wavelengths (A2) of the molecules (see Computational Details section). The distributions of the
computed Ed, GV and A2 of the 1400 BzZNSN molecule dataset are shown in Figure 1 (b), 1(c),
and 1(d), respectively. The computed properties are observed to vary over a wide range of values,
indicating a diverse dataset of molecular properties. Shown in Figure 1(b), the computed reduction
potential (E™d) varies in the range of ~1.5 to ~3.0 V vs. Li/Li*. Shown in Figure 1(c), the computed
solvation free energy (G*°V) varies in range of -1.2 ¢V to -0.2 eV. Also, shown in Figure 1(d), the
computed absorption wavelength varies from 300 to 500 nm. The statistics (minimum, maximum,
mean, standard deviation) of the computed properties (E*d, Gs°Iv and A2>) are summarized in Table
1.
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Figure 1: (a) Scaffold with “R” groups (R;-Rs) used for enumerating the dataset of 1400 BzNSN molecules.
Distributions of the DFT (wb97xd/6-31+G(d,p) using SMD solvation model using acetonitrile) computed (b)
reduction potential (E™?), (c) solvation free energy (G*°) and (d) absorption wavelength (A%*) of the 1400 molecules.

Among the computed properties, lower E™ is crucial to expand the electrochemical
window of the active species and thus helps to improve the operating voltage of a NRFB. More
negative G*°V (from DFT) is a reasonable indicator of higher solubility of the BZNSN anolytes in
acetonitrile solvent, which can result in increased concentration of the active species in solution.
We note that the actual solubility measurements using computations are not possible due to lack
of sublimation energies of the molecular materials. In a recent work, Robertson et al. have
identified that BZNSN molecules with A% values ranging from 350-400 nm exhibit fluorescent
activity ['']. Our DFT calculations of a subset of 1400 BzZNSNss also confirms that molecules with
A25s in this range also possess emission wavelength (A°™) in the visible range (Figure S1). Since the
computational evaluation of A°™ is significantly more expensive than that of A2, we used the latter
as an approximate screening indicator of fluorescent activity. Particularly, to search for new
molecules that are easily detectable via fluorescent activity in the electrolyte solutions, a target
value of 375 nm is considered desirable for A2, The ideal material candidate must therefore be
designed by minimizing the values of E'd, GV, and |\2bs-375]| concurrently. Unlike single property
optimization, the simultaneous optimization of multiple properties requires identification of a
Pareto front, in which the Pareto-optimal datapoints represent the best trade-off among properties.
Here, we have used an AL strategy based on MBO to accelerate the search of the Pareto-optimal
datapoints while utilizing minimal number of expensive DFT calculations.
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Table 1: List of the minimum, maximum, mean, and standard deviation values of the DFT-
computed reduction potential (E™d), solvation free energy (G*°!Y) and absorption wavelength (A2s)
of the 1400 BzZNSN molecule dataset

Property Minimum Maximum Mean Standard
Deviation
Erd(V vs Li/Li") 1.541 3.378 2.32 0.320
Gl (eV) -1.190 -0.293 -0.664 0.151
A% (nm) 293.76 487.49 357.429 37.453

2. Multi-objective Bayesian Optimization:

Multi-objective Bayesian Optimization (MBO) is a class of multi-objective optimization in which
a surrogate model, e.g., Gaussian Process Regression (GPR, See Computational Details section),
is used to search for the optimal candidates based on an improvement metrics such as expected
improvement (EI, see Computational Details section). By defining how the EI of a multi-objective
function may be evaluated, several methods have been proposed in the recent literature. In one
approach by Knowles, called ParEGO, N objectives are aggregated into a single objective via
parametrized scalarizing weight factors and a single-objective EI is then used for the resulting
single-objective function [+°]. Further modifications of ParEGO for improved computational speed
and efficiency were also proposed by Liu ef al. [*°] and Zhang et al. [*']. Recently, Hise and
colleagues introduced a new lexicographical approach to combine multiple objectives into one, in
which the contribution from each objective is based on its hierarchical order of importance[3?]. In
the case where objective aggregation is not preferred, either multiple-objective EI or multiple
single-objective EIs must be evaluated with respect to a Pareto front. For example, Keane derives
a 2-objective EI equation that computes the probability of augmenting the current Pareto front so
that a new dominating solution can be determined [**]. The magnitude of improvement is then
calculated with respect to the closest point on the current Pareto front. In another approach, the
improvement metrics is defined by the S-metric or hypervolume increment to the Pareto front and
can be computed using EI in the hypervolume formulation [**%]. In general, multi-objective EI
equations are mathematically complex and may not be easily expanded to large number of
objectives (Nopjective>2). A possible approach to circumvent such difficulty is to employ multiple
single-objective EI equations. As shown by Jeong and Obayashi, for every candidate, an EI will
be computed for each objective, and the resulting set of Els is treated as fitness values for selecting
the optimal candidate [*¢]. Beyond MBO, it is important to mention that Jablonka and co-workers
recently proposed a novel multi-objective active learning algorithm that optimizes toward the
Pareto front by directly using the GPR-predicted mean and uncertainty values [*']. In this work,
we employ a similar approach to Jeong and Obayashi’s method, in which the Els for different
objectives are computed independently followed by the construction of a Pareto front in the EI
space. The main advantage of our approach lies in the efficient implementation that enables
evaluation of multi-dimensional Pareto front in large datasets (3D Pareto front and up to 1 million
datapoints in this work).

The overall scheme for our MBO workflow is shown in Figure 2. Similar to our recently
described single-objective BO scheme for identifying molecules with a desired oxidation potential
[44], the preprocessing step (green) consists of feature generation for the entire candidate library
followed by random selection of 10 BZNSN molecules. The molecular properties of interest, E™d,
Gso, and A2, are computed using DFT simulations and used as initial dataset for training of the
GPR models (red). Then, GPR-predicted properties and uncertainties of the remaining candidates
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are used to calculate three sets of EI values, where each set corresponds to a property. The
candidate(s) with the Pareto-optimal EI combination will be chosen for the next round of DFT
simulations, and the cycle repeats. Perhaps, the main differences between single-objective and
MBO lie in the training of different GPR models for different properties and the use of EI and
Pareto front evaluation to determine subsequent training data. These specific components, i.e.,
feature generation from SMILES strings, GPR model training, and candidate selection from multi-
dimensional EI will be discussed next.

candidate lib Initial training data DFT Simulati
andidate Library —70 random moleculeg s imulations
SMILES strings Property k (k=1,2,3...)

Multi-objective
Bayesian Optimization

Pareto front
evaluation

MW, logP, TPSA...
Principle Component Analysis

_____________________________________________________

Figure 2: Active learning workflow for molecule discovery from Candidate Library (BzZNSN molecules) via Multi-
objective Bayesian Optimization (MBO). Here, the candidates are represented using SMILES strings. PCs, p, X are
principal components, GPR-predicted mean, and GPR-predicted uncertainty, respectively. The details of DFT
simulation, acquisition functions and Gaussian Process Regression is given in Computational Details section.

2.1 Feature generation:

To build robust ML models for property prediction, it is critical to design features/fingerprints to
numerically represent each molecule. It is also important to recognize that the generated features
should uniquely represent the molecule and should be easy to compute for any new molecule.
Here, we use the RDKit cheminformatics package [*8] to generate such a set of 125 features using
various physical and chemical properties of the molecules (see Table S1 of the supplementary
information). Based on Pearson correlation analysis, we identified that no single feature among
the original 125 features can reliably capture the trend of the computed E™d,Gs°lV, or A2s (Figure
S2, S3 and S4). After feature normalization, we perform principal component analysis (PCA) to
reduce the dimensionality of the feature vector. From PCA, a total of 22 principal components
(PCs) are found to be sufficient to account for 100% variance in the data (see Figure S5 of the
supplementary information). The graphical illustration of the chemical space of 1400 BzNSN
dataset is also shown in Figure S6. Thus, feature vectors consisting of 22 PCs are used as inputs
for property predictions. We note that the feature generation protocol is consistent with our recent
study [*4].

2.2 Gaussian process regression (GPR) models:

Gaussian process regression (GPR) is used to train separate predictive model for each of the 3
properties in the computed dataset. The details of the GPR model are provided in the
Computational Details section. The performance of the trained GPR models is evaluated using
coefficient of determination (R?) and root mean square error (RMSE) as the error metrics. The
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entire data of 1400 BZNSN molecules are split into training and test sets. To determine the optimal
training/test ratio, we examine learning curves that are generated by systematically increasing the
size of the training set from 10% to 90% of the total dataset. The corresponding remaining data
are used as test sets to evaluate the performance of the model. To generate statistically meaningful
results, 100 evaluations are performed for each training set size and the reported test RMSE values
are calculated as the average of those 100 runs.

The learning curves for the three properties (E™d, Gs°IV, and A\2b%) depicting the variation of
average test RMSE as a function of training set size are shown in Figure 3 (a)-(c). The error bars
denote 1 standard deviation (1o) of the average RMSE values for the 100 runs. The plots include
the learning curves for the model trained using all the original 125 features as well as reduced
feature vector of 22 PCs. The GPR models trained using reduced feature vector of 22 PCs result
in similar performance as compared to the models trained using all 125 features. This shows that
PCA is an effective method for reducing the dimensionality of the feature vector without
compromising the accuracy of the final model. It is evident from the plot that the average test
RMSE decreases with increase in the training set size for all the 3 properties. The test RMSE
reaches convergence at c.a. 70% training set size resulting in average test RMSE of 77 mV for
reduction potential, 57 meV for solvation free energy and 15 nm for absorption wavelength. The
parity plots (i.e., GPR predicted property vs DFT computed property) comparing the performance
of the final GPR models trained with 70% training data using 22 PCs as the feature vector are
shown in Figure 3(d)-(f). The error bars in each parity plot represent the GPR uncertainty. The
high R? coefficients of 0.94, 0.87 and 0.82 on the test set for reduction potential, solvation free
energy and absorption wavelength, respectively, indicate good accuracy of the trained GPR
models.
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Figure 3: Learning curves of the GPR models of (a) reduction potential (E™9), (b) solvation free energy (G*W), and (c)
absorption wavelength (A2*5) showing the root mean square error (RMSE) of the test set as a function of training data.
The red and blue lines denote the learning curve for the GPR models trained using 22 principal components (PCs) and
all 125 features generated using RDKit, respectively. The error bars denote the 1 standard deviation (1o) of the average
RMSE values for 100 runs. Parity plots showing the performance of final GPR models (using 22 PCs) of (d) reduction
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potential (E™d), (e) solvation free energy (G*"), and (f) absorption wavelength (A2%%) trained using train/test ratio of
70/30%. The error bars denote GPR uncertainties.

2.3 Candidate selection using Pareto-optimal Expected Improvements (EI)

In single objective BO, the current optimal (e.g., minimum, or maximum) value in the training set
is used as the reference for computing the improvement metrics associated with candidates in the
test data set. With EI formulation, the candidate with maximum EI value yields the maximum
potential to improve over the existing reference and is selected for evaluation. In the case of MBO,
however, the Pareto front in the training set dictates the choice of the reference value(s). All
members of a Pareto front are considered equivalent and an improvement over any one of them
will warrant a new Pareto front. Hence, the choice of which Pareto optimal point should be the
reference value is a matter of strategic preference. In this work, as shown Figure 4, we choose the
data point with maximum, non-infinite, crowding distance (see Computational Details) on the
Pareto front of the training data set as the reference for EI evaluations (solid red circle in Figure
4(a)).

As the Pareto-optimal reference is identified, the improvement region over this point in the
property space may be explored as indicated in Figure 4(b). Such reference point and GPR-
predicted mean and uncertainty values of the test set are then used to compute EI values for every
property. Thus, we obtain a multi-dimensional improvement metrics with the same number of
dimensions as the property space (here, it is 3 dimensions). Therefore, finding a candidate with the
optimal improvement over the reference point in all dimensions of the property space is now
equivalent to picking one with the maximum multi-dimensional EI value. Then, the task is to
identify Pareto-optimal points in the EI space. Since the number of possible Pareto-optimal
candidates increase exponentially with respect to the number of EI dimensions and the size of data
set, they should be strategically selected for evaluation for optimal computational efficiency. In
single-point selection approach shown in Figure 4(c), we choose only the Pareto-optimal candidate
with the maximum crowding distance for DFT evaluations. Although this approach increases the
size of the DFT-evaluated/training data set slowly, it provides consistent improvement of the GPR
models with limited computational resources. When concurrent DFT-evaluations of multiple
Pareto-optimal candidates are feasible, a set number of candidates may be collected via Latin
Hypercube Sampling (LHS) [*7,%8,°]. As shown in Figure 4(d), in the LHS approach, the selection
of data points on the EI Pareto front is evenly spaced in all dimensions and hence diversified.
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25 property 1 and 2. (a) Selecting the Pareto-optimal reference in the training set for EI calculations. (b) Using Gaussian
26 Process Regression to predict properties of the test set. The error bars representing the uncertainties of GPR predictions
27 are not to scale. Due to uncertainty, the blue line is an approximation of the pareto front. (c) and (d) Computing EI
28 values of the test set and suggesting the next candidate(s) for labeling. Details of GPR, EI and crowding distances are
29 given in Computational Details section.
30
31
32 3. Multi-objective BO performance on the 1400 BZNSN molecule dataset:
33 As mentioned earlier, our multi-objective goal is to minimize the reduction potentials (E*¢) and
gg solvation free energies (G*°) while targeting the desired absorption wavelength (A2%%) of 375 nm.
36 For the 1400 BzNSN dataset, there are 22 datapoints/molecules that form the true Pareto front, or
37 the optimal solution set as shown by solid stars in Figure 5(a). The 2D chemical structures and the
38 computed properties (E™d, GV, and A2b%) of these Pareto-optimal molecules are summarized in
39 Table 2 (IDs: 1-22). To evaluate the performance of our MBO approach, we perform 100 iterations
40 (equivalent to 100 molecule properties evaluations) on the 1400 BzNSN dataset. After every
H iteration, the next molecule is suggested using the single-point selection method based on
fé crowding distance as described in Figure 4(c). We also repeat the procedure 100 times, each using
44 a different initial training set of 10 randomly selected data points, to obtain meaningful statistics.
45 A well-known metric for evaluating the performance of MBO methods is the hypervolume
46 indicator, which is the volume enclosed by connecting the Pareto-optimal points to a chosen
47 reference point in the multi-objective space [*7> %°]. For computing the hypervolumes, we use a
48 reference point consisting of 3 components, each of which is slightly larger than the extremum
:g (maximum) in each property dimension, i.e., B > EXY, (3.38 V), G > G (-0.29 eV), Aoy >
51 A9l (487 nm)[®!]. As different solution sets/Pareto fronts yield different hypervolume values, they
52 can be directly used for comparison. Typically, a higher hypervolume indicates a better set of
53 Pareto optimal points, and it follows that the true Pareto front corresponds to the maximum
>4 hypervolume. For the 1400 BzZNSN dataset, we can calculate the maximum hypervolume as the
g 2 true Pareto front has been identified. Using maximum hypervolume as the target, the performance
57
58
59 1
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of our MBO can be benchmarked against random selection. Figure 5(b) shows the hypervolume
percentage (with respect to the maximum hypervolume) obtained by MBO and random selection
as a function of the number of evaluations. Two observations can be made from Figure 5(b). First,
based on shaded areas, which indicate 1 standard deviation around the mean, MBO provides more
stable solution sets compared to random selection. Second, the Pareto-optimal molecules
suggested by MBO reach the quality of the true Pareto front at a significantly faster pace than their
randomly selected counterparts. Specifically, to achieve 99% of the maximum hypervolume, MBO
only requires 74 molecule evaluations whereas random selection needs to investigate a total of
1126 molecules on average. Therefore, our MBO approach provides at least a 15-fold
improvement in efficiency over random selection. The distribution of the number of Pareto-
optimal molecules found in each of the 100 MBO runs is shown in Figure S7 of the supplementary
information. Similarly, the statistics of the number of successful runs and the number evaluations
required to find each of the 22 Pareto-optimal molecules are shown in Figure S8 and Table S2 of
the supplementary information.
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Figure 5: (a) Distribution of the DFT computed reduction potentials (E*d), solvation free energies (G*°), and
absorption wavelengths (A2%) of 1400 BzZNSN molecule dataset (solid circles). The 22 Pareto-optimal datapoints are
marked by solid stars, while their projected counterparts are shown as empty stars. The 2D molecular structures of the
extrema w.r.t to individual properties are shown for reference. (b) Performance comparison between MBO and random
selection using the hypervolume percentage w.r.t the maximum hypervolume. The solid lines and shaded area
represent the means and 1 standard deviations (10), respectively. The black dashed line indicates 99% of the maximum
hypervolume.

Table 2: List of 2D structures and computed reduction potentials (E™d), solvation free energies (G*V), absorption
wavelength (A2s) properties of the Pareto-optimal molecules found in the 1400 (1-22) BzZNSN datasets.
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4. Application of MBO on an unseen molecule dataset of 1 million BZNSNs:

To demonstrate the robustness and generalizability of the MBO approach, we applied it to a
significantly larger and new molecular dataset. This new dataset was generated by expanding the
molecular candidate library (similar to Figure 1(b)) with more diverse substituents (‘R’ positions)
in the molecular scaffold. The complete list of functional groups used for generation of this large
molecular dataset is provided in Table S3 of the supplementary information. We limit the
maximum number of heavy atoms (non-H atoms) in the molecules to 40 to maintain reasonable
computational cost for DFT calculations. The final dataset consists of 1 million BZNSN molecules.
Our goal is to discover new Pareto-optimal molecules that potentially outperform the existing 22
molecules (Table 2, IDs 1-22) with minimum number of DFT calculations. For this dataset, we
employ the multi-point selection strategy described in Figure 4(d), in which 10 molecules are
suggested for DFT evaluations in every MBO cycle, and a total of 10 cycles or 100 molecule
property evaluations (DFT) are performed. Due to the higher diversity and complexity of BZNSN
molecules in the new dataset, the evaluation of the 3 properties for each of the 100 new molecules
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using DFT is considerably more expensive. Thus, the number of MBO cycles were limited to 10
to strike a balance between the computational cost and the discovery of new molecules with
improved properties. The SMILES strings, computed reduction potentials, solvation free energies
and absorption wavelengths of the molecules are given in Table S4.

In Figure 6(a), 100 MBO-evaluated molecules from the 1 million BZNSN dataset (red) are
plotted together with the initial dataset of 1400 BzNSNs (blue). For ease of visualization and
analysis, the 3 properties are also projected on individual dimension of [A2bs -375|, Gs°Iv, and Ered
in Figure 6 (b), (c), and (d), respectively. To accurately determine if any of the 100 molecules
suggested by MBO yields property improvement over the 1400 BZNSN dataset, we combine them
together and re-evaluate the Pareto-optimal molecules. If a new Pareto front is identified, it is an
indication that molecules with more desirable properties have been discovered. Figure 6 (a-d)
shows the new Pareto front (red enclosed area) together with the existing one (blue enclosed area)
for comparison. Specifically, the new Pareto front consists of 19 molecules, 16 of which (red stars)
belong to the 100-molecule set suggested by our MBO from the 1 million BZNSN dataset. The 2D
structures and properties of those 16 molecules are tabulated in Table S5 (BzNSN 23-38, see
Supplementary Information). Among the new Pareto-optimal molecules, two new extrema are
identified for Ed and G* in BzZNSN 34 and 37, respectively, and both provide significant
improvement over the previous desired limits (1.54 V = 1.30 V, -1.19 = -1.69 eV). For the third
objective in which A% is targeted toward 375 nm, no improvement is found since the existing
extremum is already near the desired value (BzZNSN 15 with A2%5=374.98). Importantly, we identify
four MBO-suggested molecules from the 1 million BZNSN dataset, as shown in Figure 7 (BzNSN
ID 26, 29, 33, and 35), that possess both lower E™d and GV values compared to the entire 1400
BzNSN dataset, while maintaining the A2% in the desirable range of 350-400 nm (|A25-375[<=25).
These results indicate the high efficiency and robustness of our MBO approach for identifying
redoxmers of multiple design criteria. However, it is important to discuss the current practicality
of our MBO-suggested solutions, especially in the case of molecular design. As seen in Figure 7
and Table S5 in SI, many of the suggested Pareto-optimal BZNSN molecules are complex and
therefore difficult to synthesize. To circumvent this problem and create a more seamless
interaction with experiments, future implementation of MBO will consider synthesizability [6% 63]
as an additional and necessary criterion. Although our MBO algorithm has been optimized to
evaluate over 10¢ datapoints with N>=2 objectives efficiently, one bottleneck remains is the speed
of property evaluations via molecular simulations. Hence, the overall efficiency of our method
also depends on the complexity of the materials and their properties of interest.
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Figure 6: (a) Pareto front improvement over the known 1400 BzNSN dataset via multi-objective BO (MBO)
application on the new 1 million BZNSN molecular dataset. Projection of datapoints on 2D surface of G*°'v and Erd
(b), Ed and [A2»-375] (¢), and G*!¥ and |A2s-375| (d). All molecules in the 1400 BzZNSN dataset and 100 MBO-suggested
molecules from the 1 million BZNSN dataset are shown in blue and red circles, respectively. The Pareto-optimal
molecules of the 1400 BzZNSN dataset are shown as blue stars while the red stars are the updated Pareto front when
100 MBO-suggested molecules are added to the 1400 BZNSN dataset.

BzNSN 26 BzNSN 29 BzNSN 33 BzNSN 35
O
y O\/'L Qi
qu/©’ N/\/O\/\O N/\/ \\/\O /\/O\/\o
Ered =142V Ered =153V Ered =152V Ered =152V
Gl = -1.29 eV Gl = -1.24 eV G = -1.46 eV Gl = -1.27 eV
A2bs = 361.30 nm A%bs = 376.60 nm A2bs = 398.12 nm A2bs = 386.11 nm

Figure 7: 2-D chemical structures and DFT computed properties of the 4 BZNSN molecules identified by MBO from
the 1 million BZNSN molecular dataset which possess lower reduction potential (E*d) and solvation free energies
(G*!) compared to the entire 1400 BzZNSN dataset with absorption wavelength (\2s) in the range of 350-400 nm.
Sixteen new Pareto-optimal molecules (see Table S5 in SI for complete list of molecules) were identified within 10
MBO cycles from the expanded dataset of 1 million BZNSN molecules.

Conclusion
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Discovery of new and improved organic materials are essential for developing redox flow battery
technology, and atomistic simulations and Al-based approaches can provide design guidelines to
accelerate materials development. For non-aqueous redox flow battery (NRFB) technology,
molecules must satisfy multiple properties such as redox windows, solubility, stability, rheology,
conductivity, and other self-reporting/repairing properties. In this work, high-throughput DFT
calculations were first carried out to evaluate the reduction potentials, solvation free energies, and
absorption wavelengths of 1400 BzZNSN molecules to search for the ideal anolyte redoxmers for
NRFBs. Twenty-two Pareto-optimal BZNSN molecules that best compromise all three properties
were identified and suggested for experimental validation. To accelerate the discovery of the
Pareto-optimal candidates while keeping the computational cost minimal, an active learning model
based on Multi-objective Bayesian Optimization (MBO) was developed and benchmarked on the
1400 BzZNSN molecule dataset. The results indicate at least a 15-fold efficiency improvement over
random selection in searching the optimal molecules. Finally, when applied to a new molecular
dataset consisting of one million BZNSNs, our MBO quickly identified 16 new Pareto-optimal
molecules with significant property improvement over the 1400 BzZNSN dataset. Our robust and
flexible multi-objective active learning approach provides an accelerated discovery framework for
multi-criteria functional materials.

Computational Details

Density Functional Theory (DFT) Simulations:

All DFT calculations were carried out using Gaussian 16 software [%4] at wb97xd/6-31+G(d,p)
[65,%6] level of theory. The geometries of the molecules in the neutral and reduced charge states
were optimized and frequency calculations were performed to compute the Gibbs free energies at
298 K. The SMD continuum model [¢7] with acetonitrile as the solvent medium was used to
compute the solvation free energies. The reduction potentials (E™d, Li/Li") of the molecules were
calculated using the change in Gibbs free energy in solution medium at 298 K upon addition of 1
e to the neutral molecule (AGred = Greduced _ Greutral) 39 gjyen by equation 1.

red
B =———.124V (1)
Here, F is the Faraday constant (eV) and n is the number of electrons added to the neutral molecule
(n = 1). The constant value of 1.24 V is subtracted to convert the change in Gibbs free energy to
the reduction potential (Li/Li* reference electrode). More details about the calculation of redox
potential can be found elsewhere [68,99,70,71].
The solvation free energies of the neutral molecules were calculated as the difference in the Gibbs
free energies of the molecules in acetonitrile solvent medium (GM¢CN) and in gas-phase (G2%) using
equation 2.
Gsolv — (GMeCN _ Ggas) (2)
The absorption wavelengths of the molecules were calculated by performing single-point

calculation at the optimized geometry of the neutral molecule using time-dependent DFT (TD-
DFT) [72,73,74,73] as implemented in Gaussian 16.

Machine Learning

Gaussian Process Regression (GPR) Models:

The GPR models [7°] with Matérn kernel were trained using Scikit-learn package [7’]. Based on
our benchmark of GPR predictions on E™d, the parameter v that controls the smoothness of the
approximated function was chosen to be 1.5 (Figure S9). The covariance function between the two
molecules with feature vectors x, X’ is given by equation 3
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k(e x) = (1 ) ﬁllx-x'll)exp( ] ﬁllx-x'll) ol 3)

[ Gl

Here, o) and o, are the length scale and the expected noise level in the dataset, respectively. Each
parameter was determined using maximum likelihood estimate during model training.

Expected Improvement (El):

The expected improvement (EI) acquisition function was independently calculated for each
property as given by equation 4 [42,%4]

(e - fx))D(@2) + () p(2) o(x) > 0
El(x) = { 0 o(x)=0
)
_ 0 ) -
o o(x)
(5)

Here, 1(x) and o(x) are the GPR predicted mean and uncertainties, f(x") is the best property value
in the current training set and x* is the feature vector of the material with best property value, ®(Z)
and ¢(Z) are the cumulative and probability density functions, respectively. The parameter € in
Equation 5 determines the amount exploration during optimization, and we used a constant value
of 0.01 as it yields the optimal balance between exploration and exploitation in our dataset (Figure
S10).
Crowding distance assignment:
The crowding distance assignment was originally developed for the NSGA-II algorithm and used
to estimate the density of data points surrounding a particular point in the multi-objective solution
space [’%]. The crowding distance estimates the cuboid perimeter around a data point using its
nearest neighbors as vertices. Hence, data points with larger crowding distances are more isolated.
The crowding distance for each Pareto-optimal point 1, is dimwding, which was computed using the
following pseudo code:
- Initialize di:rowdng 0 (i=1, 2, ...n Pareto-optimal points)
- for each objective/property m:
sort i based on its value in m (yl,)
if 1 is an extremum:
d}:rowding: inﬁnity
else:
i+1 i-1

Ym Ym

dérowding += -
crowdmg max min
Ym - Ym

Associated Content

Supporting Information: Principal component analysis, analysis of 100 multi-objective Bayesian
optimization (MBO) runs on the 1400 BzZNSN dataset, SMILES representation and DFT computed
properties of the 1400 BzNSN dataset, SMILES representation and DFT computed properties of
the 100 MBO suggested molecules from the 1 million BZNSN dataset.
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