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Abstract

Redox flow batteries (RFBs) are a promising technology for stationary energy storage applications 
due to their flexible design, scalability, and low cost. In RFBs, energy is carried in flowable redox-
active materials (redoxmers) which are stored externally and pumped to the cell during operation. 
Further improvements in energy density of RFBs necessitates redoxmers design with wider redox 
potential window and higher solubility. Additionally, designing redoxmers with fluorescence 
enabled self-reporting functionality allows monitoring of the state-of-health of RFBs. To 
accelerate the discovery of redoxmers with desired properties, state-of-the-art machine learning 
(ML) methods such as Multi-objective Bayesian Optimization (MBO) is useful. Here, we first 
employed density functional theory calculations to generate a database of reduction potentials, 
solvation free energies, and absorption wavelengths for 1400 redoxmer molecules based on a 
2,1,3-benzothiadiazole (BzNSN) core structure. From the computed properties, we identified 22 
Pareto-optimal molecules that compromise all desired properties. We further utilized this data to 
develop and benchmark a MBO approach to identify candidates quickly and efficiently with 
multiple targeted properties. With MBO, optimal candidates from the 1400 molecule dataset can 
be identified at least 15 times more efficiently compared to brute force or random selection 
approach. Importantly, we utilized this approach for discovering promising redoxmers from 
unseen database of 1 million BzNSN based molecules, where we discovered 16 new Pareto-
optimal molecules with significant improvements in properties over the initial 1400 molecules. 
We anticipate that this active learning technique is general and can be utilized for the discovery of 
any class of functional materials that satisfies multiple desired property criteria. 
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Introduction
The rising energy demand requires integration of intermittent renewable energy sources, 

such as solar and wind, with the electric grid to maintain a carbon neutral economy [1,2]. This 
requires the development of long duration stationary energy storage technologies. Redox flow 
batteries, utilizing either aqueous or nonaqueous electrolytes, are considered a promising strategy 
to address this challenge [3,4,5]. Nonaqueous redox flow batteries (NRFBs) offer several 
advantages over their aqueous counterparts, such as wider electrochemical stability window and 
lower cost, thanks to the use of organic solvents and cost-effective redox-active molecules 
(redoxmers) [6,7]. However, the development of next-generation NRFBs with high energy density 
and superior cycling performance is dependent on the discovery of new and improved redoxmers, 
which poses a major challenge for material design. 

Several properties need to be considered when designing redoxmer molecules for high 
performance NRFBs. For example, the 2,1,3-benzothiadiazole (BzNSN) is a well-studied anolyte  
redoxmer (which undergoes reduction) in NRFBs that features low redox potential, small 
molecular weight, high stability of the charged radical anion, and outstanding  electrochemical 
cycling performance [8,9,10]. Recently, a BzNSN derivative, CH3-AcBzC6, was also engineered 
with a π-extended acetamide group[11], which enabled an orthogonal molecular property, namely 
fluorescence, to monitor the crossover of the active species and assess the state-of-health of the 
battery [11]. Hence, one promising strategy for designing anolyte redoxmers is to perform 
molecular engineering of the BzNSN scaffold using a wide range of functional groups to achieve 
the desired properties (e.g., use electron-withdrawing/-donating groups to tune the redox 
potential). However, high-throughput experimental synthesis and characterization is often a 
significant bottleneck and high-fidelity computational methods provide a cost-efficient alternative 
to enable the design and discovery.  

To accelerate materials discovery, high-fidelity density functional theory (DFT) 
calculations have been used to screen large molecular libraries and guide experiments toward the 
most optimal candidate molecules [12,13,14,15]. The computed properties, such as redox potentials 
of the organic molecules, are observed to be in good agreement with experimentally measured 
values using cyclic voltammetry [16,17,18]. Thus, a combination of molecular engineering and high-
throughput DFT calculations are routinely used to identify redoxmer candidates with desired redox 
potentials for application in NRFBs [16,19,20]. For example, Pelzer et al. have performed high-
throughput DFT calculations to screen molecules with desired reduction and oxidation potentials 
from a library of 4178 molecules [21]. Similarly, DFT calculations have been used to develop linear 
regression models to predict solubilities of the organic molecules using the computed solvation 
free energies and the dipole moments of the molecules [22]. While such high-throughput materials 
screening approaches are attractive, the brute-force computational screening methods become 
intractable as the size of the search space grows beyond few thousand candidates.  

The recent emergence of data-driven and machine learning (ML) techniques has 
accelerated the screening of large search spaces for identification of molecules/materials with 
desired properties. Several surrogate ML models have been developed using experimental or DFT 
computed data to accurately and rapidly predict material properties such as band gap [23,24,25], 
lattice thermal conductivity [26], dielectric constant [27], refractive index [28], thermodynamic 
stability [29], melting temperature [30], and defect formation energies [31,32]. The prediction 
accuracy of the ML models typically depends on the diversity and the quantity of data used for 
training the models. The generation of large quantities of high-fidelity data is computationally 
expensive and time-consuming, which is one of the major bottlenecks in the development of 
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generalizable and robust ML models based on supervised learning. Thus, the surrogate ML models 
perform well within the domain of applicability and often fail for unseen datapoints which are 
outside the training domain [33,34]. The a priori identification of the domain of applicability of 
such ML models is a challenging task. To circumvent this problem, multiple active learning 
strategies have been proposed [35,36,37,38,39]. 

Active learning (AL) is a class of ML strategies in which a learning algorithm interactively 
queries an information source (or database) to label new data points with the desired outputs. The 
goal of AL is to strike a good balance between exploitation and exploration to minimize the number 
of computations or experimental measurements needed to optimize the property of a given material 
system or achieve desired accuracy of the trained ML model. For example, AL has been 
successfully used to guide the experiments to accelerate the discovery of new shape-memory alloys 
with low thermal hysteresis from a search space of 800k compositions [40] and to tune the measured 
electro-strain of the Pb-free piezoelectric materials [41]. Bassman et al. used an AL model based 
on Bayesian Optimization (BO) to discover layered materials with optimal band gaps [42]. 
Similarly, Kim et al. used AL to search for polymers with high glass transition temperatures using 
few DFT evaluations [43].  Recently, we used BO framework to identify redoxmers with optimum 
oxidation potentials for application in NRFBs from a large search space of 112k molecules by 
performing only 100 DFT calculations [44]. While a specific property of redoxmers such as redox 
potential, solubility, or even fluorescence may be efficiently identified via single-objective AL, it 
is always more desirable, albeit challenging, to search for redoxmers with multiple optimized 
properties. Indeed, while most of the applications of AL  for materials design have been limited to 
optimization of a single objective/property of the materials, there are only a few examples where 
AL has been successfully used for simultaneous optimization of two or more material properties 
[45,46,47]. In particular, Janet et al. used multi-objective Bayesian optimization to accelerate the 
search for candidates with optimal combination of two properties (i.e., redox potential and 
solubility) from a search space of 2.8 million transition metal complexes for application in RFBs 
[45]. Gopakumar et al. demonstrated superior performance of the AL strategy for simultaneous 
optimization of two properties compared to random search across multiple datasets [46]. Recently, 
Jablonka et al. developed a novel multi-objective AL algorithm which simultaneously optimizes 
3 properties (i.e., adsorption free energy, repulsion free energy of dimers and radius of gyration) 
of the polymer beads and efficiently identify Pareto-optimal candidates from a large search space 
of polymeric materials [47]. 

In this work, we have developed an AL framework based on Multi-objective Bayesian 
Optimization (MBO) to accelerate the search of desired redox-active molecules for application in 
high energy density NRFBs. As shown in Scheme 1, our goal is to identify anolyte molecules 
quickly and efficiently with three simultaneously optimized properties including reduction 
potential (Ered), solvation free energy (Gsolv), and absorption wavelength (λabs). Although the 
stability of anolyte molecules is also an important criterion for designing long-duration redox flow 
batteries, it is a function of multiple factors (redox potential window, solvation structure, reactivity 
at the electrode/electrolyte interface, etc.) and is therefore beyond the scope of this work. The 
MBO is first benchmarked against a DFT-evaluated dataset of 1400 BzNSN molecules.  Then, the 
model is applied to an unknown dataset of 1 million molecules to determine optimal candidates 
using only 100 DFT evaluations. 
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Scheme 1: Multi-objective design of anolyte candidate molecules for non-aqueous redox flow batteries. Ered, Gsolv, 
and λabs stand for computed reduction potential, solvation free energy, and absorption wavelength, respectively. 

Results and Discussion
1. Structure Enumeration and DFT calculations of BzNSN molecules:
A molecule dataset is generated by engineering the substituent (R1-R5) positions in the scaffold of 
acetamide-substituted BzNSN molecule with different functional groups as shown in Figure 1(a). 
The use of Simplified Molecular Input Line Entry System (SMILES) allows for fast and robust 
text-based enumeration, resulting in a dataset of c.a. 1400 BzNSN molecules. This dataset consists 
of 7 chemical elements, H, Br, C, N, O, S, and F. The size of molecules ranges from 20 to 36 heavy 
atoms (non-H atoms). Before DFT evaluations, the initial 3D molecular structures are 
automatically generated from SMILES representations and subsequently optimized using MMF94 
forcefield as implemented in RDKit cheminformatics package [48]. Then, DFT calculations are 
performed to compute the reduction potentials (Ered), solvation free energies (Gsolv) and absorption 
wavelengths (λabs) of the molecules (see Computational Details section). The distributions of the 
computed Ered, Gsolv and λabs of the 1400 BzNSN molecule dataset are shown in Figure 1 (b), 1(c), 
and 1(d), respectively. The computed properties are observed to vary over a wide range of values, 
indicating a diverse dataset of molecular properties. Shown in Figure 1(b), the computed reduction 
potential (Ered) varies in the range of ~1.5 to ~3.0 V vs. Li/Li+.  Shown in Figure 1(c), the computed 
solvation free energy (Gsolv) varies in range of -1.2 eV to -0.2 eV. Also, shown in Figure 1(d), the 
computed absorption wavelength varies from 300 to 500 nm. The statistics (minimum, maximum, 
mean, standard deviation) of the computed properties (Ered, Gsolv and λabs) are summarized in Table 
1. 
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Figure 1: (a) Scaffold with “R” groups (R1-R5) used for enumerating the dataset of 1400 BzNSN molecules. 
Distributions of the DFT (wb97xd/6-31+G(d,p) using SMD solvation model using acetonitrile) computed (b) 
reduction potential (Ered), (c) solvation free energy (Gsolv) and (d) absorption wavelength (λabs) of the 1400 molecules.

Among the computed properties, lower Ered is crucial to expand the electrochemical 
window of the active species and thus helps to improve the operating voltage of a NRFB. More 
negative Gsolv (from DFT) is a reasonable indicator of higher solubility of the BzNSN anolytes in 
acetonitrile solvent, which can result in increased concentration of the active species in solution. 
We note that the actual solubility measurements using computations are not possible due to lack 
of sublimation energies of the molecular materials. In a recent work, Robertson et al.  have 
identified that BzNSN molecules with λabs values ranging from 350-400 nm exhibit fluorescent 
activity [11]. Our DFT calculations of a subset of 1400 BzNSNs also confirms that molecules with 
λabs in this range also possess emission wavelength (λem) in the visible range (Figure S1). Since the 
computational evaluation of λem is significantly more expensive than that of λabs, we used the latter 
as an approximate screening indicator of fluorescent activity. Particularly, to search for new 
molecules that are easily detectable via fluorescent activity in the electrolyte solutions, a target 
value of 375 nm is considered desirable for λabs. The ideal material candidate must therefore be 
designed by minimizing the values of Ered, Gsolv, and |λabs-375| concurrently. Unlike single property 
optimization, the simultaneous optimization of multiple properties requires identification of a 
Pareto front, in which the Pareto-optimal datapoints represent the best trade-off among properties. 
Here, we have used an AL strategy based on MBO to accelerate the search of the Pareto-optimal 
datapoints while utilizing minimal number of expensive DFT calculations. 
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Table 1: List of the minimum, maximum, mean, and standard deviation values of the DFT-
computed reduction potential (Ered), solvation free energy (Gsolv) and absorption wavelength (λabs) 
of the 1400 BzNSN molecule dataset

Property Minimum Maximum Mean Standard 
Deviation

Ered (V vs Li/Li+) 1.541 3.378 2.32 0.320
Gsolv (eV) -1.190 -0.293 -0.664 0.151
λabs (nm) 293.76 487.49 357.429 37.453

2. Multi-objective Bayesian Optimization:
Multi-objective Bayesian Optimization (MBO) is a class of multi-objective optimization in which 
a surrogate model, e.g., Gaussian Process Regression (GPR, See Computational Details section), 
is used to search for the optimal candidates based on an improvement metrics such as expected 
improvement (EI, see Computational Details section). By defining how the EI of a multi-objective 
function may be evaluated, several methods have been proposed in the recent literature. In one 
approach by Knowles, called ParEGO, N objectives are aggregated into a single objective via 
parametrized scalarizing weight factors and a single-objective EI is then used for the resulting 
single-objective function [49]. Further modifications of ParEGO for improved computational speed 
and efficiency were also proposed by Liu et al. [50] and Zhang et al. [51]. Recently, Häse and 
colleagues introduced a new lexicographical approach to combine multiple objectives into one, in 
which the contribution from each objective is based on its hierarchical order of importance[52]. In 
the case where objective aggregation is not preferred, either multiple-objective EI or multiple 
single-objective EIs must be evaluated with respect to a Pareto front. For example, Keane derives 
a 2-objective EI equation that computes the probability of augmenting the current Pareto front so 
that a new dominating solution can be determined [53]. The magnitude of improvement is then 
calculated with respect to the closest point on the current Pareto front. In another approach, the 
improvement metrics is defined by the S-metric or hypervolume increment to the Pareto front and 
can be computed using EI in the hypervolume formulation [54,55]. In general, multi-objective EI 
equations are mathematically complex and may not be easily expanded to large number of 
objectives (Nobjective>2). A possible approach to circumvent such difficulty is to employ multiple 
single-objective EI equations. As shown by Jeong and Obayashi, for every candidate, an EI will 
be computed for each objective, and the resulting set of EIs is treated as fitness values for selecting 
the optimal candidate [56]. Beyond MBO, it is important to mention that Jablonka and co-workers 
recently proposed a novel multi-objective active learning algorithm that optimizes toward the 
Pareto front by directly using the GPR-predicted mean and uncertainty values [47].  In this work, 
we employ a similar approach to Jeong and Obayashi’s method, in which the EIs for different 
objectives are computed independently followed by the construction of a Pareto front in the EI 
space. The main advantage of our approach lies in the efficient implementation that enables 
evaluation of multi-dimensional Pareto front in large datasets (3D Pareto front and up to 1 million 
datapoints in this work).

The overall scheme for our MBO workflow is shown in Figure 2. Similar to our recently 
described single-objective BO scheme for identifying molecules with a desired oxidation potential 
[44], the preprocessing step (green) consists of feature generation for the entire candidate library   
followed by random selection of  10 BzNSN molecules. The molecular properties of interest, Ered, 
Gsolv, and λabs, are computed using DFT simulations and used as initial dataset for training of the 
GPR models (red). Then, GPR-predicted properties and uncertainties of the remaining candidates 
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are used to calculate three sets of EI values, where each set corresponds to a property. The 
candidate(s) with the Pareto-optimal EI combination will be chosen for the next round of DFT 
simulations, and the cycle repeats. Perhaps, the main differences between single-objective and 
MBO lie in the training of different GPR models for different properties and the use of EI and 
Pareto front evaluation to determine subsequent training data. These specific components, i.e., 
feature generation from SMILES strings, GPR model training, and candidate selection from multi-
dimensional EI will be discussed next. 

Figure 2: Active learning workflow for molecule discovery from Candidate Library (BzNSN molecules) via Multi-
objective Bayesian Optimization (MBO). Here, the candidates are represented using SMILES strings. PCs, μ, Σ are 
principal components, GPR-predicted mean, and GPR-predicted uncertainty, respectively. The details of DFT 
simulation, acquisition functions and Gaussian Process Regression is given in Computational Details section.

2.1 Feature generation:
To build robust ML models for property prediction, it is critical to design features/fingerprints to 
numerically represent each molecule. It is also important to recognize that the generated features 
should uniquely represent the molecule and should be easy to compute for any new molecule. 
Here, we use the RDKit cheminformatics package [48] to generate such a set of 125 features using 
various physical and chemical properties of the molecules (see Table S1 of the supplementary 
information). Based on Pearson correlation analysis, we identified that no single feature among 
the original 125 features can reliably capture the trend of the computed Ered,Gsolv, or λabs (Figure 
S2, S3 and S4). After feature normalization, we perform principal component analysis (PCA) to 
reduce the dimensionality of the feature vector. From PCA, a total of 22 principal components 
(PCs) are found to be sufficient to account for 100% variance in the data (see Figure S5 of the 
supplementary information). The graphical illustration of the chemical space of 1400 BzNSN 
dataset is also shown in Figure S6. Thus, feature vectors consisting of 22 PCs are used as inputs 
for property predictions. We note that the feature generation protocol is consistent with our recent 
study [44]. 

2.2 Gaussian process regression (GPR) models:
Gaussian process regression (GPR) is used to train separate predictive model for each of the 3 
properties in the computed dataset. The details of the GPR model are provided in the 
Computational Details section. The performance of the trained GPR models is evaluated using 
coefficient of determination (R2) and root mean square error (RMSE) as the error metrics. The 
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entire data of 1400 BzNSN molecules are split into training and test sets. To determine the optimal 
training/test ratio, we examine learning curves that are generated by systematically increasing the 
size of the training set from 10% to 90% of the total dataset. The corresponding remaining data 
are used as test sets to evaluate the performance of the model. To generate statistically meaningful 
results, 100 evaluations are performed for each training set size and the reported test RMSE values 
are calculated as the average of those 100 runs. 

The learning curves for the three properties (Ered, Gsolv, and λabs) depicting the variation of 
average test RMSE as a function of training set size are shown in Figure 3 (a)-(c). The error bars 
denote 1 standard deviation (1σ) of the average RMSE values for the 100 runs. The plots include 
the learning curves for the model trained using all the original 125 features as well as reduced 
feature vector of 22 PCs. The GPR models trained using reduced feature vector of 22 PCs result 
in similar performance as compared to the models trained using all 125 features. This shows that 
PCA is an effective method for reducing the dimensionality of the feature vector without 
compromising the accuracy of the final model. It is evident from the plot that the average test 
RMSE decreases with increase in the training set size for all the 3 properties. The test RMSE 
reaches convergence at c.a. 70% training set size resulting in average test RMSE of 77 mV for 
reduction potential, 57 meV for solvation free energy and 15 nm for absorption wavelength. The 
parity plots (i.e., GPR predicted property vs DFT computed property) comparing the performance 
of the final GPR models trained with 70% training data using 22 PCs as the feature vector are 
shown in Figure 3(d)-(f). The error bars in each parity plot represent the GPR uncertainty. The 
high R2 coefficients of 0.94, 0.87 and 0.82 on the test set for reduction potential, solvation free 
energy and absorption wavelength, respectively, indicate good accuracy of the trained GPR 
models.

Figure 3: Learning curves of the GPR models of (a) reduction potential (Ered), (b) solvation free energy (Gsolv), and (c) 
absorption wavelength (λabs) showing the root mean square error (RMSE) of the test set as a function of training data. 
The red and blue lines denote the learning curve for the GPR models trained using 22 principal components (PCs) and 
all 125 features generated using RDKit, respectively. The error bars denote the 1 standard deviation (1σ) of the average 
RMSE values for 100 runs. Parity plots showing the performance of final GPR models (using 22 PCs) of (d) reduction 
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potential (Ered), (e) solvation free energy (Gsolv), and (f) absorption wavelength (λabs) trained using train/test ratio of 
70/30%. The error bars denote GPR uncertainties. 

2.3 Candidate selection using Pareto-optimal Expected Improvements (EI)
In single objective BO, the current optimal (e.g., minimum, or maximum) value in the training set 
is used as the reference for computing the improvement metrics associated with candidates in the 
test data set. With EI formulation, the candidate with maximum EI value yields the maximum 
potential to improve over the existing reference and is selected for evaluation. In the case of MBO, 
however, the Pareto front in the training set dictates the choice of the reference value(s). All 
members of a Pareto front are considered equivalent and an improvement over any one of them 
will warrant a new Pareto front. Hence, the choice of which Pareto optimal point should be the 
reference value is a matter of strategic preference. In this work, as shown Figure 4, we choose the 
data point with maximum, non-infinite, crowding distance (see Computational Details) on the 
Pareto front of the training data set as the reference for EI evaluations (solid red circle in Figure 
4(a)).  

As the Pareto-optimal reference is identified, the improvement region over this point in the 
property space may be explored as indicated in Figure 4(b). Such reference point and GPR-
predicted mean and uncertainty values of the test set are then used to compute EI values for every 
property. Thus, we obtain a multi-dimensional improvement metrics with the same number of 
dimensions as the property space (here, it is 3 dimensions). Therefore, finding a candidate with the 
optimal improvement over the reference point in all dimensions of the property space is now 
equivalent to picking one with the maximum multi-dimensional EI value.  Then, the task is to 
identify Pareto-optimal points in the EI space. Since the number of possible Pareto-optimal 
candidates increase exponentially with respect to the number of EI dimensions and the size of data 
set, they should be strategically selected for evaluation for optimal computational efficiency.  In 
single-point selection approach shown in Figure 4(c), we choose only the Pareto-optimal candidate 
with the maximum crowding distance for DFT evaluations. Although this approach increases the 
size of the DFT-evaluated/training data set slowly, it provides consistent improvement of the GPR 
models with limited computational resources. When concurrent DFT-evaluations of multiple 
Pareto-optimal candidates are feasible, a set number of candidates may be collected via Latin 
Hypercube Sampling (LHS) [57,58,59]. As shown in Figure 4(d), in the LHS approach, the selection 
of data points on the EI Pareto front is evenly spaced in all dimensions and hence diversified. 
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Figure 4: Candidate selection scheme via Expected Improvement (EI) and Pareto front evaluations of example 
property 1 and 2. (a) Selecting the Pareto-optimal reference in the training set for EI calculations. (b) Using Gaussian 
Process Regression to predict properties of the test set. The error bars representing the uncertainties of GPR predictions 
are not to scale. Due to uncertainty, the blue line is an approximation of the pareto front. (c) and (d) Computing EI 
values of the test set and suggesting the next candidate(s) for labeling. Details of GPR, EI and crowding distances are 
given in Computational Details section. 

3. Multi-objective BO performance on the 1400 BzNSN molecule dataset:
As mentioned earlier, our multi-objective goal is to minimize the reduction potentials (Ered) and 
solvation free energies (Gsolv) while targeting the desired absorption wavelength (λabs) of 375 nm. 
For the 1400 BzNSN dataset, there are 22 datapoints/molecules that form the true Pareto front, or 
the optimal solution set as shown by solid stars in Figure 5(a). The 2D chemical structures and the 
computed properties (Ered, Gsolv, and λabs) of these Pareto-optimal molecules are summarized in 
Table 2 (IDs: 1-22). To evaluate the performance of our MBO approach, we perform 100 iterations 
(equivalent to 100 molecule properties evaluations) on the 1400 BzNSN dataset. After every 
iteration, the next molecule is suggested using the single-point selection method based on 
crowding distance as described in Figure 4(c). We also repeat the procedure 100 times, each using 
a different initial training set of 10 randomly selected data points, to obtain meaningful statistics. 

A well-known metric for evaluating the performance of MBO methods is the hypervolume 
indicator, which is the volume enclosed by connecting the Pareto-optimal points to a chosen 
reference point in the multi-objective space [47, 60]. For computing the hypervolumes, we use a 
reference point consisting of 3 components, each of which is slightly larger than the extremum 
(maximum) in each property dimension, i.e.,  >  (3.38 V),  >  (-0.29 eV),  > Ered

ref Ered
max Gsolv

ref Gsolv
max λsolv

ref
 (487 nm)[61]. As different solution sets/Pareto fronts yield different hypervolume values, they λsolv

ref
can be directly used for comparison. Typically, a higher hypervolume indicates a better set of 
Pareto optimal points, and it follows that the true Pareto front corresponds to the maximum 
hypervolume. For the 1400 BzNSN dataset, we can calculate the maximum hypervolume as the 
true Pareto front has been identified. Using maximum hypervolume as the target, the performance 

Page 11 of 25

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

of our MBO can be benchmarked against random selection. Figure 5(b) shows the hypervolume 
percentage (with respect to the maximum hypervolume) obtained by MBO and random selection 
as a function of the number of evaluations. Two observations can be made from Figure 5(b). First, 
based on shaded areas, which indicate 1 standard deviation around the mean, MBO provides more 
stable solution sets compared to random selection. Second, the Pareto-optimal molecules 
suggested by MBO reach the quality of the true Pareto front at a significantly faster pace than their 
randomly selected counterparts. Specifically, to achieve 99% of the maximum hypervolume, MBO 
only requires 74 molecule evaluations whereas random selection needs to investigate a total of 
1126 molecules on average. Therefore, our MBO approach provides at least a 15-fold 
improvement in efficiency over random selection. The distribution of the number of Pareto-
optimal molecules found in each of the 100 MBO runs is shown in Figure S7 of the supplementary 
information. Similarly, the statistics of the number of successful runs and the number evaluations 
required to find each of the 22 Pareto-optimal molecules are shown in Figure S8 and Table S2 of 
the supplementary information. 

Figure 5: (a) Distribution of the DFT computed reduction potentials (Ered), solvation free energies (Gsolv), and 
absorption wavelengths (λabs ) of 1400 BzNSN molecule dataset (solid circles). The 22 Pareto-optimal datapoints are 
marked by solid stars, while their projected counterparts are shown as empty stars. The 2D molecular structures of the 
extrema w.r.t to individual properties are shown for reference. (b) Performance comparison between MBO and random 
selection using the hypervolume percentage w.r.t the maximum hypervolume. The solid lines and shaded area 
represent the means and 1 standard deviations (1 ), respectively. The black dashed line indicates 99% of the maximum 𝜎
hypervolume. 

Table 2:  List of 2D structures and computed reduction potentials (Ered), solvation free energies (Gsolv), absorption 
wavelength (λabs) properties of the Pareto-optimal molecules found in the 1400 (1-22) BzNSN datasets.

ID Structure
Ered (V 

vs 
Li/Li+)

Gsolv 
(eV) λabs (nm) ID Structure

Ered (V 
vs 

Li/Li+)

Gsolv 
(eV) λabs (nm)

1 1.54 -0.94 379.17 2 1.64 -0.68 371.15
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3 1.65 -0.74 375.37 4 1.65 -0.75 374.71

5 1.67 -0.87 371.91 6 1.74 -0.83 377.73

7 1.75 -1.09 393.97 8 1.85 -1.16 391.44

9 1.89 -1.13 388.31 10 1.92 -0.82 373.18

11 2.05 -1.09 383.72 12 2.07 -0.94 376.13

13 2.09 -0.66 374.93 14 2.12 -0.75 374.97

15 2.13 -0.76 374.98 16 2.15 -1.11 352.01

17 2.17 -0.99 370.65 18 2.37 -0.76 357.87

19 2.39 -1.02 371.41 20 2.43 -1.19 331.07

21 2.43 -1.04 367.76 22 2.59 -1.07 366.43

4. Application of MBO on an unseen molecule dataset of 1 million BzNSNs:
To demonstrate the robustness and generalizability of the MBO approach, we applied it to a 
significantly larger and new molecular dataset. This new dataset was generated by expanding the 
molecular candidate library (similar to Figure 1(b)) with more diverse substituents (‘R’ positions) 
in the molecular scaffold. The complete list of functional groups used for generation of this large 
molecular dataset is provided in Table S3 of the supplementary information. We limit the 
maximum number of heavy atoms (non-H atoms) in the molecules to 40 to maintain reasonable 
computational cost for DFT calculations. The final dataset consists of 1 million BzNSN molecules. 
Our goal is to discover new Pareto-optimal molecules that potentially outperform the existing 22 
molecules (Table 2, IDs 1-22) with minimum number of DFT calculations. For this dataset, we 
employ the multi-point selection strategy described in Figure 4(d), in which 10 molecules are 
suggested for DFT evaluations in every MBO cycle, and a total of 10 cycles or 100 molecule 
property evaluations (DFT) are performed. Due to the higher diversity and complexity of BzNSN 
molecules in the new dataset, the evaluation of the 3 properties for each of the 100 new molecules 
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using DFT is considerably more expensive. Thus, the number of MBO cycles were limited to 10 
to strike a balance between the computational cost and the discovery of new molecules with 
improved properties. The SMILES strings, computed reduction potentials, solvation free energies 
and absorption wavelengths of the molecules are given in Table S4. 

In Figure 6(a), 100 MBO-evaluated molecules from the 1 million BzNSN dataset (red) are 
plotted together with the initial dataset of 1400 BzNSNs (blue). For ease of visualization and 
analysis, the 3 properties are also projected on individual dimension of |λabs -375|, Gsolv, and Ered 
in Figure 6 (b), (c), and (d), respectively. To accurately determine if any of the 100 molecules 
suggested by MBO yields property improvement over the 1400 BzNSN dataset, we combine them 
together and re-evaluate the Pareto-optimal molecules. If a new Pareto front is identified, it is an 
indication that molecules with more desirable properties have been discovered. Figure 6 (a-d) 
shows the new Pareto front (red enclosed area) together with the existing one (blue enclosed area) 
for comparison. Specifically, the new Pareto front consists of 19 molecules, 16 of which (red stars) 
belong to the 100-molecule set suggested by our MBO from the 1 million BzNSN dataset. The 2D 
structures and properties of those 16 molecules are tabulated in Table S5 (BzNSN 23-38, see 
Supplementary Information). Among the new Pareto-optimal molecules, two new extrema are 
identified for Ered and Gsolv in BzNSN 34 and 37, respectively, and both provide significant 
improvement over the previous desired limits (1.54 V  1.30 V, -1.19  -1.69 eV). For the third → →
objective in which λabs is targeted toward 375 nm, no improvement is found since the existing 
extremum is already near the desired value (BzNSN 15 with λabs=374.98). Importantly, we identify 
four MBO-suggested molecules from the 1 million BzNSN dataset, as shown in Figure 7 (BzNSN 
ID 26, 29, 33, and 35), that possess both lower Ered and Gsolv values compared to the entire 1400 
BzNSN dataset, while maintaining the λabs in the desirable range of 350-400 nm (|λabs-375|<=25). 
These results indicate the high efficiency and robustness of our MBO approach for identifying 
redoxmers of multiple design criteria. However, it is important to discuss the current practicality 
of our MBO-suggested solutions, especially in the case of molecular design. As seen in Figure 7 
and Table S5 in SI, many of the suggested Pareto-optimal BzNSN molecules are complex and 
therefore difficult to synthesize. To circumvent this problem and create a more seamless 
interaction with experiments, future implementation of MBO will consider synthesizability [62, 63] 
as an additional and necessary criterion. Although our MBO algorithm has been optimized to 
evaluate over 106 datapoints with N>=2 objectives efficiently, one bottleneck remains is the speed 
of property evaluations via molecular simulations. Hence, the overall efficiency of our method 
also depends on the complexity of the materials and their properties of interest. 
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Figure 6: (a) Pareto front improvement over the known 1400 BzNSN dataset via multi-objective BO (MBO) 
application on the new 1 million BzNSN molecular dataset. Projection of datapoints on 2D surface of Gsolv and Ered 
(b), Ered and |λabs-375| (c), and Gsolv and |λabs-375| (d). All molecules in the 1400 BzNSN dataset and 100 MBO-suggested 
molecules from the 1 million BzNSN dataset are shown in blue and red circles, respectively. The Pareto-optimal 
molecules of the 1400 BzNSN dataset are shown as blue stars while the red stars are the updated Pareto front when 
100 MBO-suggested molecules are added to the 1400 BzNSN dataset.   

Figure 7: 2-D chemical structures and DFT computed properties of the 4 BzNSN molecules identified by MBO from 
the 1 million BzNSN molecular dataset which possess lower reduction potential (Ered) and solvation free energies 
(Gsol) compared to the entire 1400 BzNSN dataset with absorption wavelength (λabs) in the range of 350-400 nm. 
Sixteen new Pareto-optimal molecules (see Table S5 in SI for complete list of molecules) were identified within 10 
MBO cycles from the expanded dataset of 1 million BzNSN molecules.

Conclusion
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Discovery of new and improved organic materials are essential for developing redox flow battery 
technology, and atomistic simulations and AI-based approaches can provide design guidelines to 
accelerate materials development. For non-aqueous redox flow battery (NRFB) technology, 
molecules must satisfy multiple properties such as redox windows, solubility, stability, rheology, 
conductivity, and other self-reporting/repairing properties. In this work, high-throughput DFT 
calculations were first carried out to evaluate the reduction potentials, solvation free energies, and 
absorption wavelengths of 1400 BzNSN molecules to search for the ideal anolyte redoxmers for 
NRFBs. Twenty-two Pareto-optimal BzNSN molecules that best compromise all three properties 
were identified and suggested for experimental validation. To accelerate the discovery of the 
Pareto-optimal candidates while keeping the computational cost minimal, an active learning model 
based on Multi-objective Bayesian Optimization (MBO) was developed and benchmarked on the 
1400 BzNSN molecule dataset. The results indicate at least a 15-fold efficiency improvement over 
random selection in searching the optimal molecules. Finally, when applied to a new molecular 
dataset consisting of one million BzNSNs, our MBO quickly identified 16 new Pareto-optimal 
molecules with significant property improvement over the 1400 BzNSN dataset. Our robust and 
flexible multi-objective active learning approach provides an accelerated discovery framework for 
multi-criteria functional materials.

Computational Details
Density Functional Theory (DFT) Simulations:
All DFT calculations were carried out using Gaussian 16 software [64] at wb97xd/6-31+G(d,p) 
[65,66] level of theory. The geometries of the molecules in the neutral and reduced charge states 
were optimized and frequency calculations were performed to compute the Gibbs free energies at 
298 K. The SMD continuum model [67] with acetonitrile as the solvent medium was used to 
compute the solvation free energies. The reduction potentials (Ered, Li/Li+) of the molecules were 
calculated using the change in Gibbs free energy in solution medium at 298 K upon addition of 1 
e- to the neutral molecule (∆Gred = Greduced - Gneutral) as given by equation 1. 

(1)Ered =
- △ Gred

nF -1.24 V
Here, F is the Faraday constant (eV) and n is the number of electrons added to the neutral molecule 
(n = 1). The constant value of 1.24 V is subtracted to convert the change in Gibbs free energy to 
the reduction potential (Li/Li+ reference electrode). More details about the calculation of redox 
potential can be found elsewhere [68,69,70,71].
The solvation free energies of the neutral molecules were calculated as the difference in the Gibbs 
free energies of the molecules in acetonitrile solvent medium (GMeCN) and in gas-phase (Ggas) using 
equation 2.

(2)Gsolv = (GMeCN -  Ggas)
The absorption wavelengths of the molecules were calculated by performing single-point 
calculation at the optimized geometry of the neutral molecule using time-dependent DFT (TD-
DFT) [72,73,74,75] as implemented in Gaussian 16. 

Machine Learning
Gaussian Process Regression (GPR) Models:
The GPR models [76] with Matérn kernel were trained using Scikit-learn package [77]. Based on 
our benchmark of GPR predictions on Ered, the parameter ν that controls the smoothness of the 
approximated function was chosen to be 1.5 (Figure S9). The covariance function between the two 
molecules with feature vectors x, x’ is given by equation 3
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(3)k(x, x') = (1 +
3‖x - x'‖

σl )exp( -
3‖x - x'‖

σl ) + σ2
n

Here, σl and σn are the length scale and the expected noise level in the dataset, respectively. Each 
parameter was determined using maximum likelihood estimate during model training. 
Expected Improvement (EI):
The expected improvement (EI) acquisition function was independently calculated for each 
property as given by equation 4 [42,44]

EI(x) = {(μ(x) - f(x + ))Φ(Z) + σ(x)ϕ(Z)                               σ(x) > 0
0                                                                      σ(x) = 0

(4)

Z =
μ(x) -  f(x + ) -  ϵ

σ(x)
(5)

Here, μ(x) and σ(x) are the GPR predicted mean and uncertainties, f(x+) is the best property value 
in the current training set and x+ is the feature vector of the material with best property value, (Z) 
and φ(Z) are the cumulative and probability density functions, respectively. The parameter ϵ in 
Equation 5 determines the amount exploration during optimization, and we used a constant value 
of 0.01 as it yields the optimal balance between exploration and exploitation in our dataset (Figure 
S10).
Crowding distance assignment:
The crowding distance assignment was originally developed for the NSGA-II algorithm and used 
to estimate the density of data points surrounding a particular point in the multi-objective solution 
space [78]. The crowding distance estimates the cuboid perimeter around a data point using its 
nearest neighbors as vertices. Hence, data points with larger crowding distances are more isolated. 
The crowding distance for each Pareto-optimal point i, is , which was computed using the di

crowding
following pseudo code:

- Initialize = 0 (i = 1, 2, …n Pareto-optimal points)  di
crowding

- for each objective/property m:
sort i based on its value in m ( )yi

m
if i is an extremum: 

= infinitydi
crowding

else:

di
crowding +=  

yi + 1
m - yi - 1

m

ymax
m - ymin

m

Associated Content
Supporting Information: Principal component analysis, analysis of 100 multi-objective Bayesian 
optimization (MBO) runs on the 1400 BzNSN dataset, SMILES representation and DFT computed 
properties of the 1400 BzNSN dataset, SMILES representation and DFT computed properties of 
the 100 MBO suggested molecules from the 1 million BzNSN dataset.
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