

Sandia
National
Laboratories

SAND2021-0201PE

Control volume PINNs: a method for solving inverse problems with hyperbolic PDEs

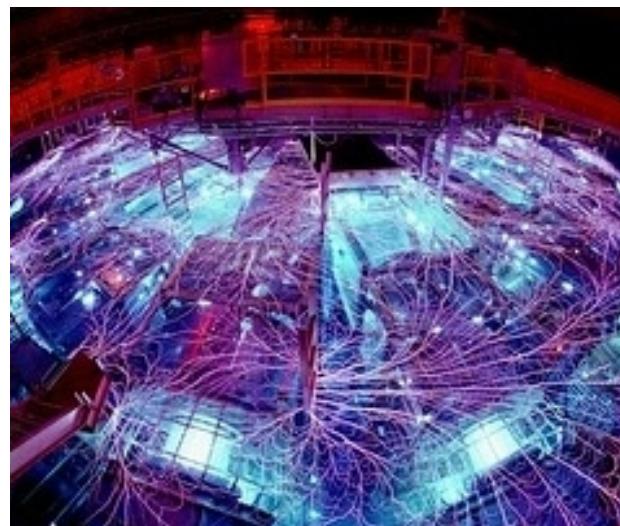


Ravi G. Patel

Center for Computing Research

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND No: 1

Materials in extreme environments



Given experimental/high fidelity simulation data from a system,

Find a mathematical model that describes the system

Experiments/simulations generate **noisy, biased, sparse** data

Hyperbolic conservation laws are suitable models for many systems

Typical hyperbolic PDE,

$$\partial_t \mathbf{u} + \nabla \cdot \mathbf{F}(\mathbf{u}) = 0 \quad x, t \in \Omega$$

$$\mathbf{u} = \mathbf{u}_0 \quad t = 0$$

$$\mathbf{F}(\mathbf{u}) \cdot \hat{\mathbf{n}} = g \quad x \in \Gamma_-$$

Inverse problems with hyperbolic conservation laws

Typical hyperbolic PDE,

$$\partial_t \mathbf{u} + \nabla \cdot \mathbf{F}(\mathbf{u}) = 0 \quad x, t \in \Omega$$

$$\mathbf{u} = \mathbf{u}_0 \quad t = 0$$

$$\mathbf{F}(\mathbf{u}) \cdot \hat{\mathbf{n}} = g \quad x \in \Gamma_-$$

Assume we are given the solution,

$$\tilde{\mathbf{u}}(x, t)$$

What is $\mathbf{F}(\mathbf{u})$?

$$\operatorname{argmin}_{\tilde{\mathbf{F}}} \|\tilde{\mathbf{u}} - \mathbf{u}\|_\chi$$

s.t. PDE

Ingredients needed:

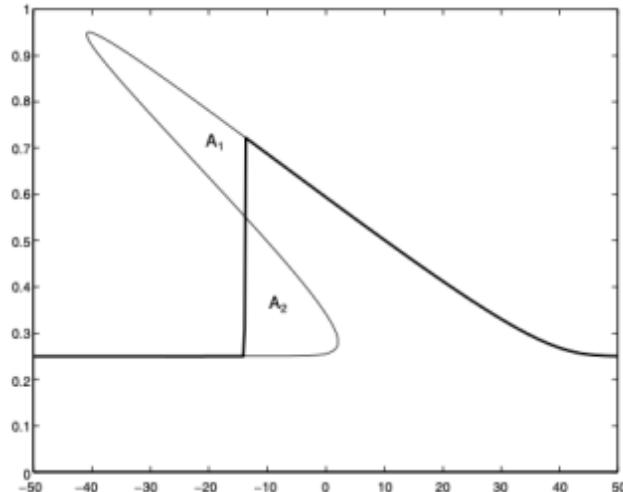
- A numerical method for the PDE
- A parameterization for $\mathbf{F}(\mathbf{u})$

Challenges,

- PDE forms discontinuities
- $\mathbf{F}(\mathbf{u})$ must produce a well-posed IBVP

Ingredients needed:

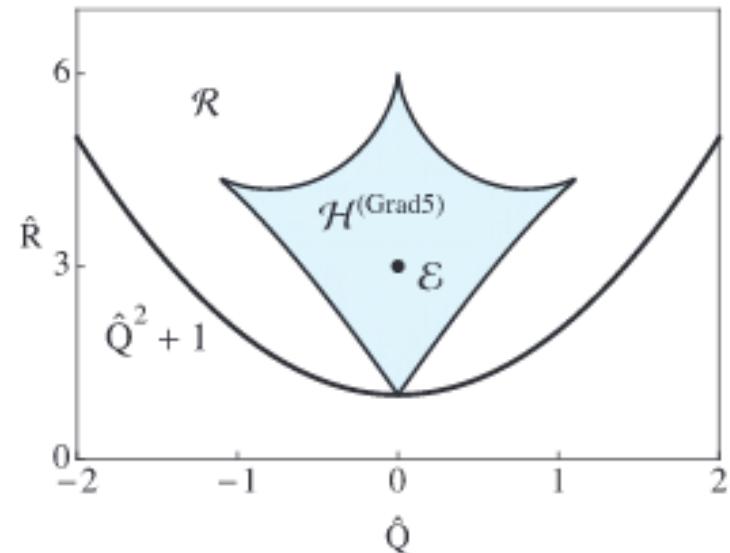
- A numerical method for the PDE
- A parameterization for $\mathbf{F}(\mathbf{u})$



Shock solution to the traffic flow equation¹

Challenges,

- PDE forms discontinuities
- $\mathbf{F}(\mathbf{u})$ must produce a well-posed IBVP



Hyperbolic region for Grad's 5 moment equations²

¹ LeVeque, *Finite Volume Methods for Hyperbolic Problems*, 2004

² Schaeffer and Torrilhon, *Commun. Comput. Phys.*, 2015

Inverse problems with hyperbolic conservation laws: Equation of state discovery

Euler equations,

$$\partial_t \rho + \partial_x \rho u = 0$$

$$\partial_t \rho u + \partial_x (\rho u^2 + p) = 0$$

$$\partial_t E + \partial_x u(E + p) = 0$$

$$E = \rho e + \frac{1}{2} \rho u^2$$

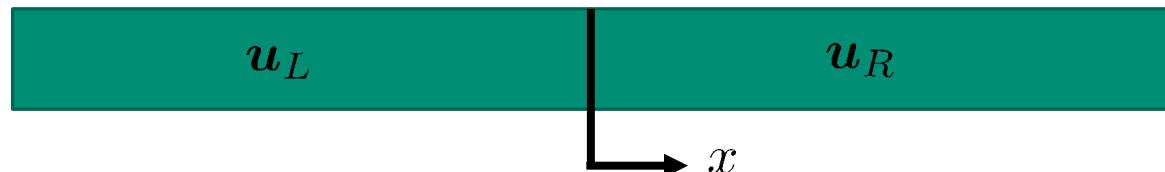
Equation of state (EOS) provides closure,

- Entropy: $s = s(\rho, e)$
- Pressure $p = -\rho^2 (\partial_\rho s) (\partial_e s)^{-1}$

We will consider solutions to Riemann problems,

$$\mathbf{u}(x, 0) = \mathbf{u}_L \quad \text{if } x < 0$$

$$\mathbf{u}(x, 0) = \mathbf{u}_R \quad \text{if } x \geq 0$$



Goal: Find $s(\rho, e)$ given the solution $(x, t), \rho u(x, t), E(x, t)$

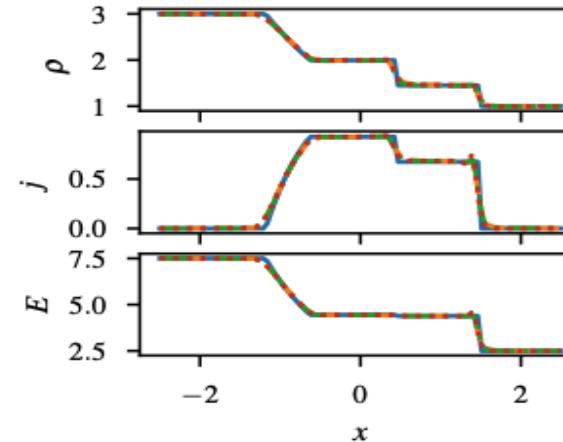
Outline

1. CVPINNs as a numerical method for hyperbolic PDEs

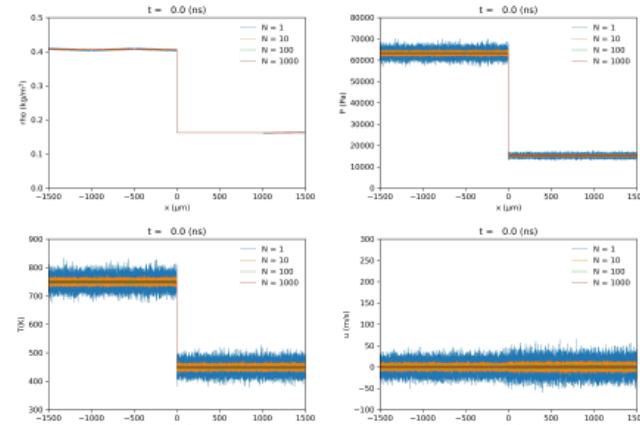
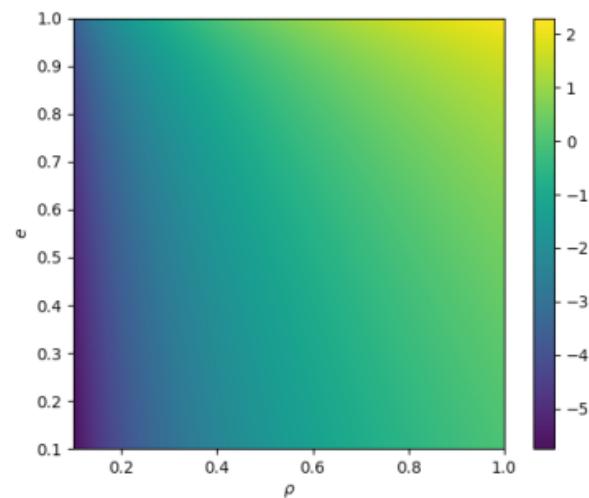
$$\partial_t \rho + \partial_x \rho u = 0$$

$$\partial_t \rho u + \partial_x (\rho u^2 + p) = 0$$

$$\partial_t E + \partial_x u(E + p) = 0$$



2. Equation of state discovery with CVPINNs



9 Physics informed neural networks¹ (PINNs) as a PDE collocation scheme

For the PDE,

$$\begin{aligned}\partial_t u + \partial_x F(u) &= 0 \quad (x, t) \in \text{interior} \\ \mathcal{B}u &= f \quad (x, t) \in \text{boundary} \\ u &= g \quad t = 0\end{aligned}$$

Let the solution be defined by a neural network,

$$u = u(x, t; \xi)$$

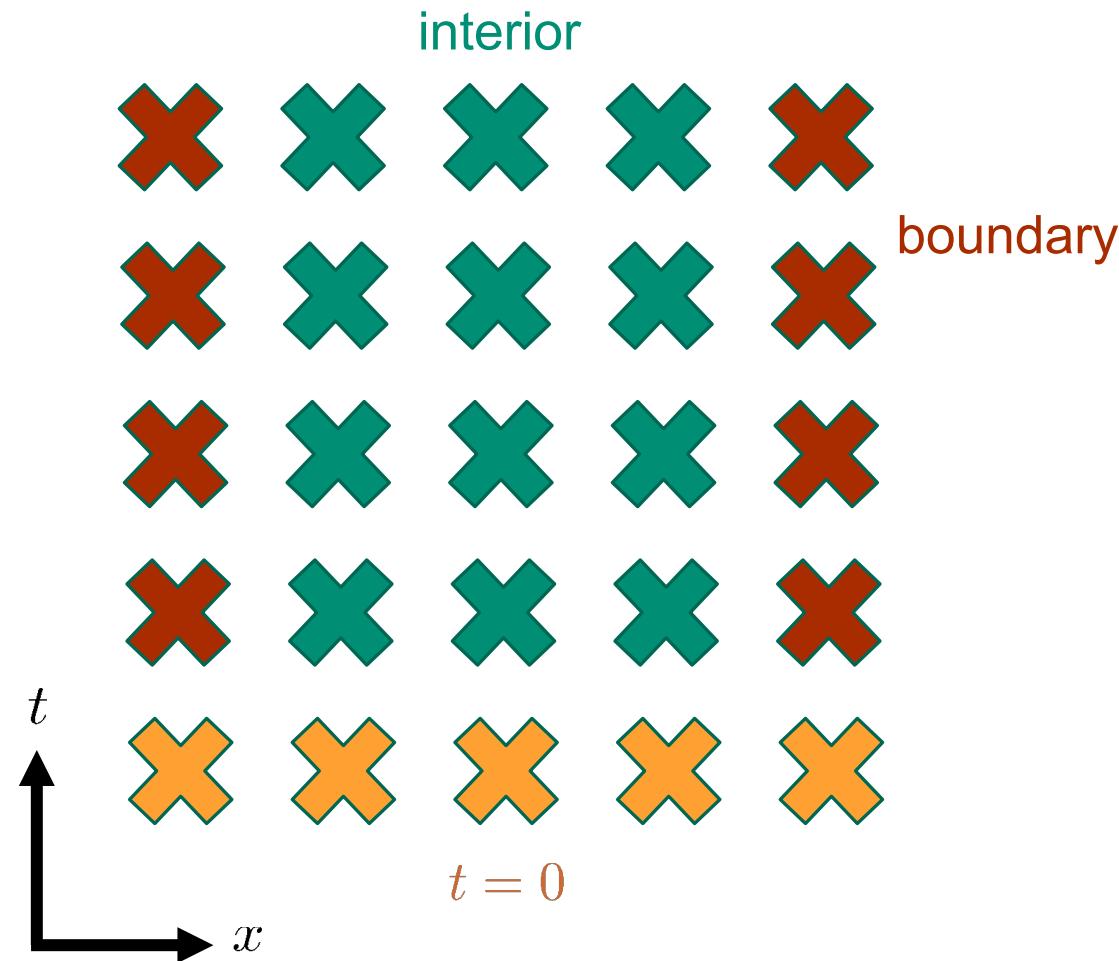
Choose collocation points in space-time

Define a residual,

$$\begin{aligned}R &= \|\partial_t u + \partial_x F(u)\|_{\ell_2(x, t)_{\text{interior}}}^2 \\ &\quad + \lambda_{BC} \|\mathcal{B}u - f\|_{\ell_2(x, t)_{\text{boundary}}}^2 \\ &\quad + \lambda_{IC} \|u - g\|_{\ell_2(x, 0)}^2\end{aligned}$$

Minimize

$$\xi = \underset{\hat{\xi}}{\operatorname{argmin}} \ R(\hat{\xi})$$



Control volume PINNs (CVPINNs)

For PDEs of the form,

$$\partial_t u + \partial_x F(u) = 0 \quad (x, t) \in \text{interior}$$

$$\mathcal{B}u = f \quad (x, t) \in \text{boundary}$$

$$u = g \quad t = 0$$

Let the solution be defined by a neural network,

$$u = u(x, t; \xi)$$

Choose mesh in space-time

Apply divergence theorem to each cell in the mesh

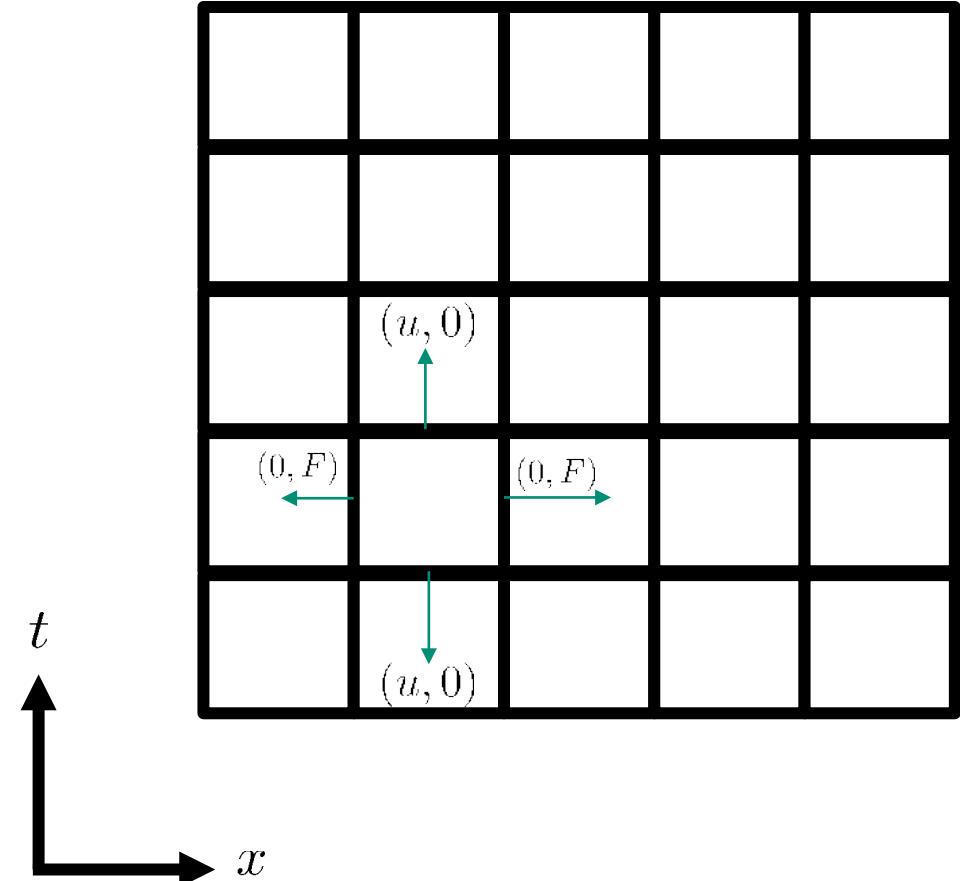
$$R_c = \int_{A_c} \nabla \cdot \begin{pmatrix} u \\ F \end{pmatrix} dA_c = \int_{l_c} \begin{pmatrix} u \\ F \end{pmatrix} \cdot dl_c$$

Approximate integrals with quadrature

Fluxes at boundaries replaced by prescribed values

Minimize residuals

$$\xi = \underset{\hat{\xi}}{\operatorname{argmin}} \sum_c R_c^2$$



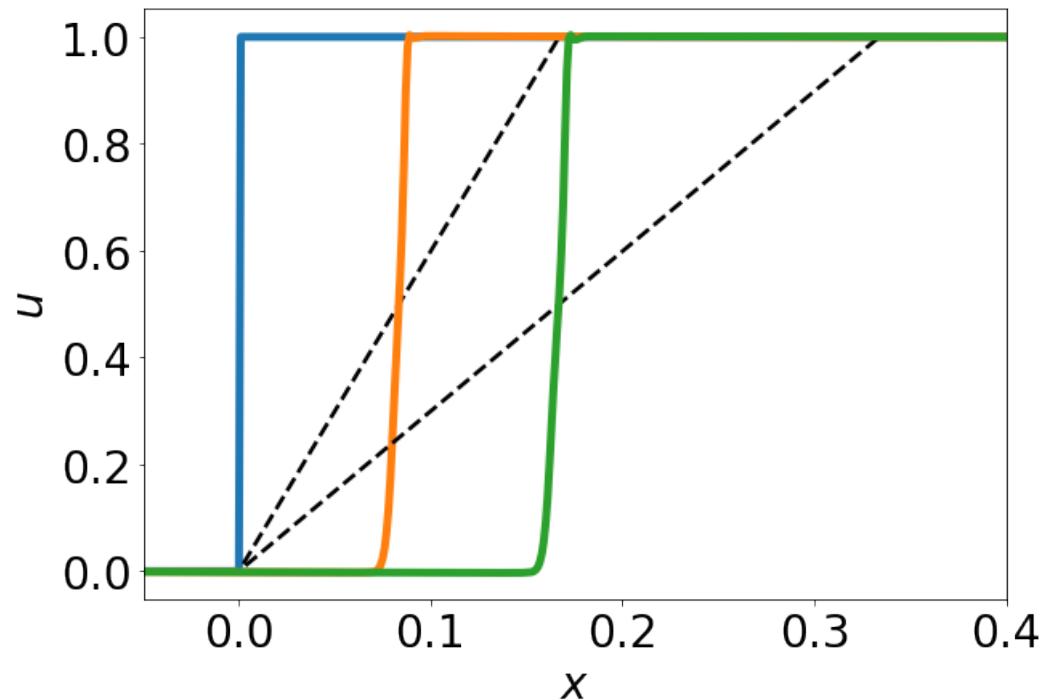
Potential issues with CVPINNs

Oscillatory behavior near the shock

Solutions to the integral form aren't unique

- We want the physically meaningful entropy solution,

$$\lim_{\nu \rightarrow 0} \partial_t u + \partial_x F(u) = \nu \partial_x^2 u$$



- Entropy solution to Burgers equation, $u_t + \frac{1}{2} \partial_x u^2 = 0$
- Unphysical solution from unregularized CVPINNs

Viscous regularization

Add von Neumann-Richtmyer viscosity to PDE¹

$$\partial_t u + \partial_x F = \alpha \partial_x |\partial_x u| \partial_x u$$

Preferential adds viscosity near strong gradients: shocks

Prevents oscillations

Recovers viscosity solution

Potentially overly diffusive

¹ Von Neumann and Richtmyer. *Journal of Applied Physics*, 1950

Entropy regularization

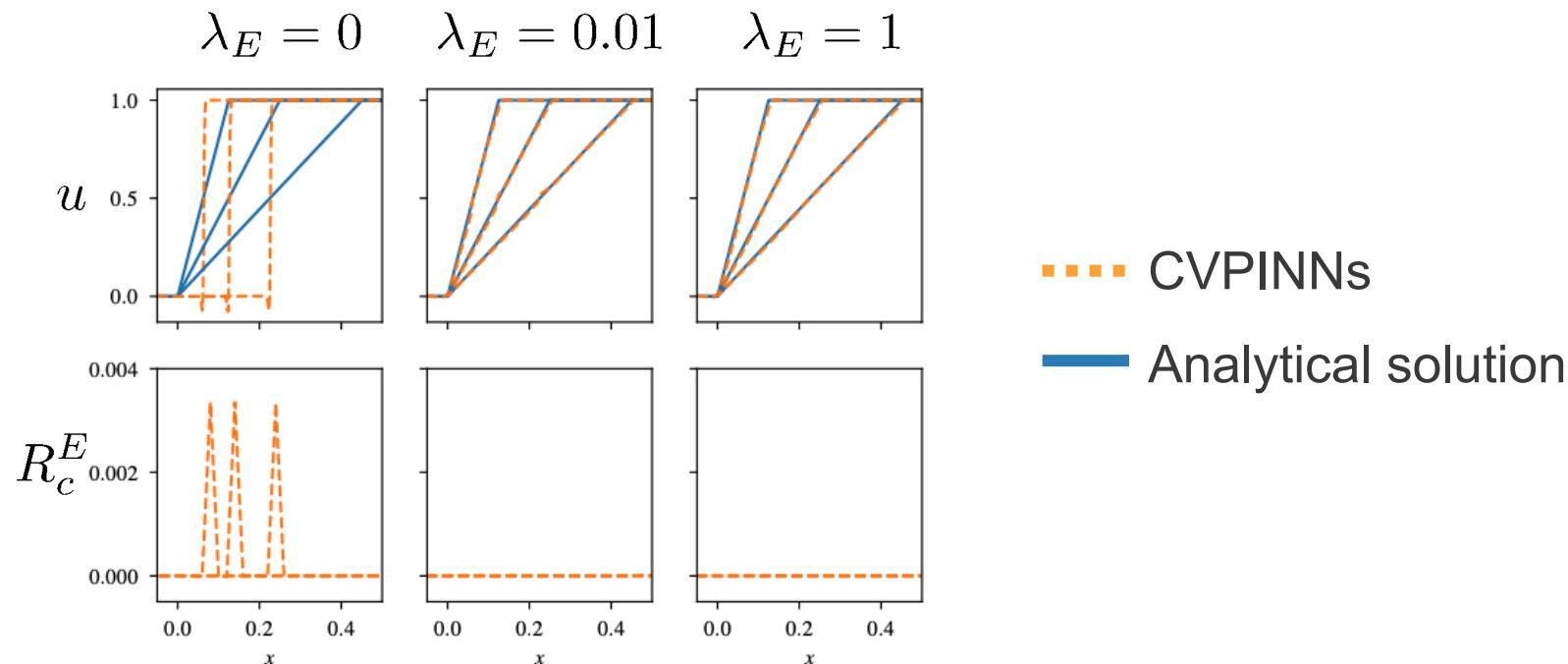
Entropy solution also obeys $\partial_t q + \partial_x \eta \leq 0$ (integral sense) for entropy pair

Add another term to the loss,

$$\sum_c R_c^2 + \lambda_E \sum_c \max(0, R_c^E)$$

Where R_c^E is the residual to the above PDIE in integral form for cell

For Burgers equation, with the neural network initialized to an unphysical solution,



TVD regularization

TVD schemes in standard discretizations prevent oscillations

For $u(x, t)$ at grid values $u^n = u(x_i, t_n)$

$$TV(u^n) = \sum_i |u_{i+1}^n - u_i^n|$$

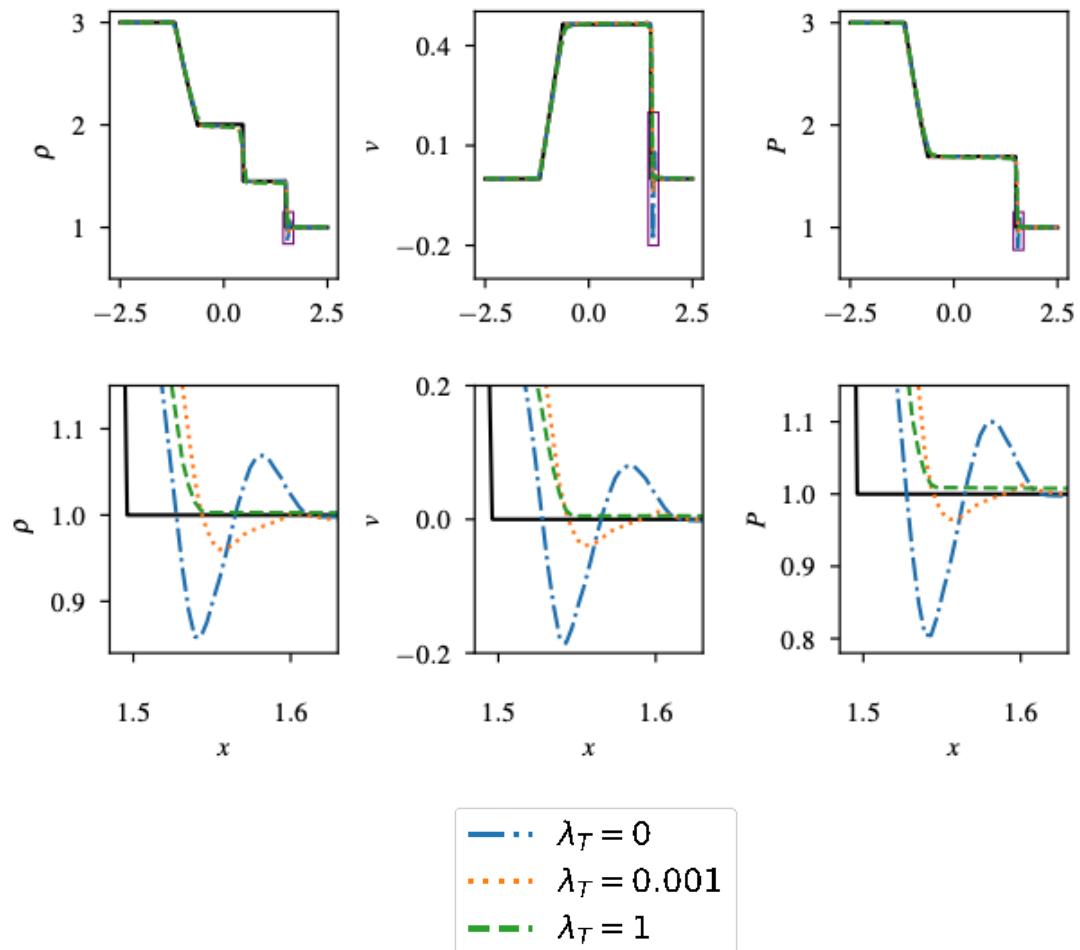
$$TV(u^{n+1}) - TV(u^n) \leq 0$$

Define a regular grid on top of the mesh and add another term to the loss:

$$\sum_c R_c^2 + \lambda_E \sum_c \max(0, R_c^E)$$

$$+ \lambda_T \sum_n \max(0, TV(u^{n+1}) - TV(u^n))$$

For Euler equations with gamma law gas,



Summary of CVPINNs regularizations

Viscous

- Prevents oscillations and prefers entropy solution

Entropy

- Preferences entropy solution

TVD

- Prevents oscillations

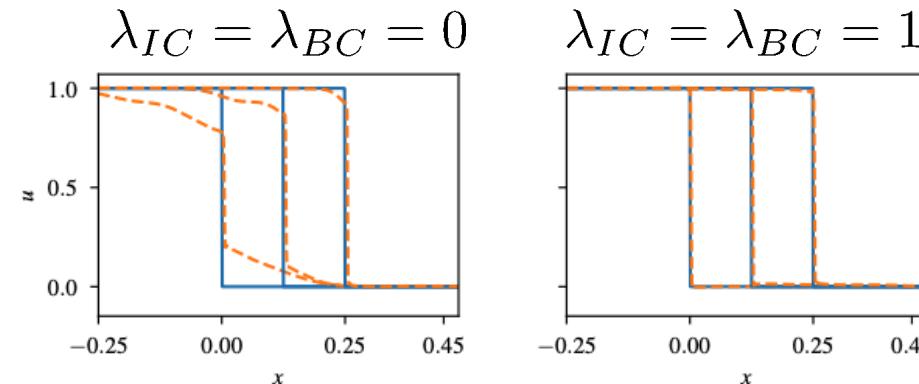
CVPINNs is less sensitive to hyperparameters than PINNs

PINNs has been used successfully for hyperbolic PDEs¹

- We observed reduced sensitivity to hyperparameters in CVPINNs
 - BC and IC penalties in PINNs
 - Entropy+TVD penalties in CVPINNs

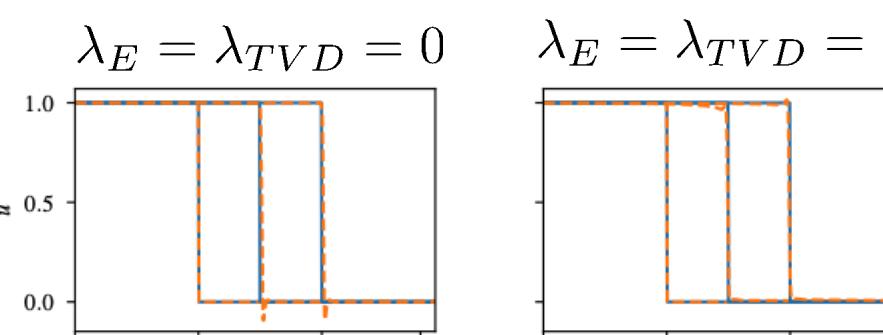
For Burgers equation,

PINNs solution



▪▪▪ PINNs/CVPINNs
— Analytical solution

CVPINNs solution



PINNs can fail to find the entropy solution without artificial viscosity

Buckley-Leverett: PDE with nonconvex flux produces solutions with mixed type waves,

$$\partial_t u + \partial_x \left(\frac{u^2}{u^2 + \frac{1}{M}(1-u)^2} \right) = 0$$

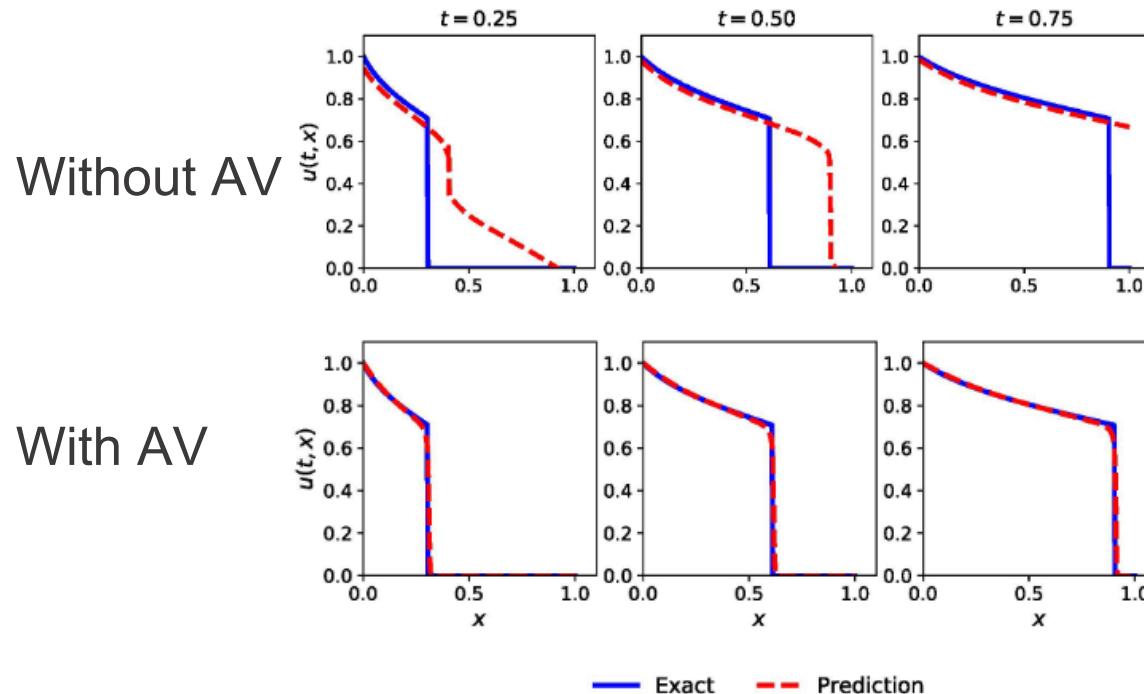
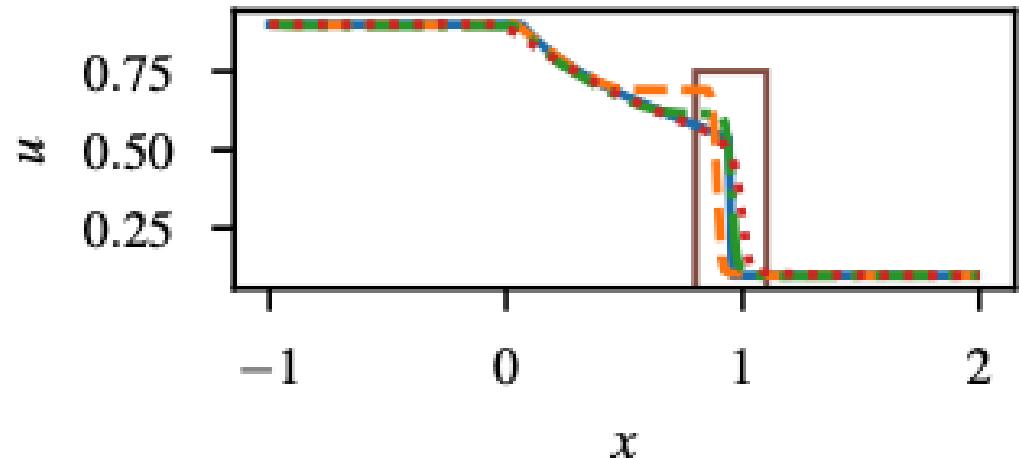
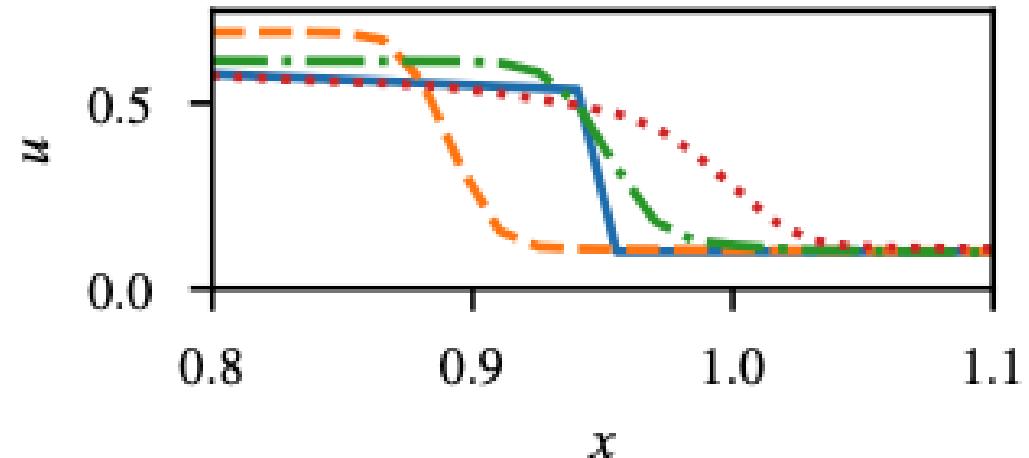


Figure reproduced from [1]

CVPINNs forward solution: Buckley-Leverett equation

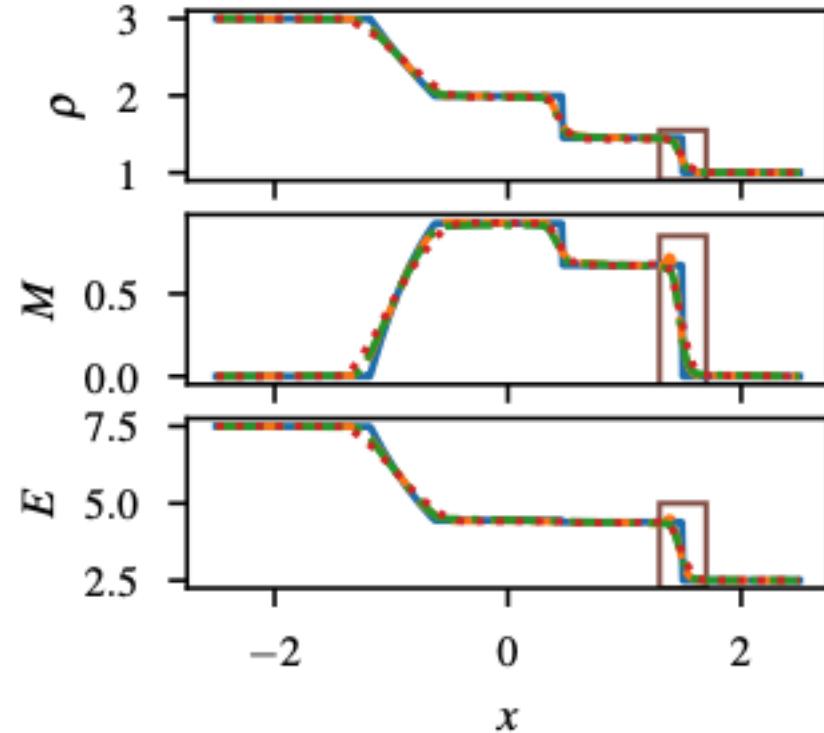


— Analytical solution
- - - No regularization

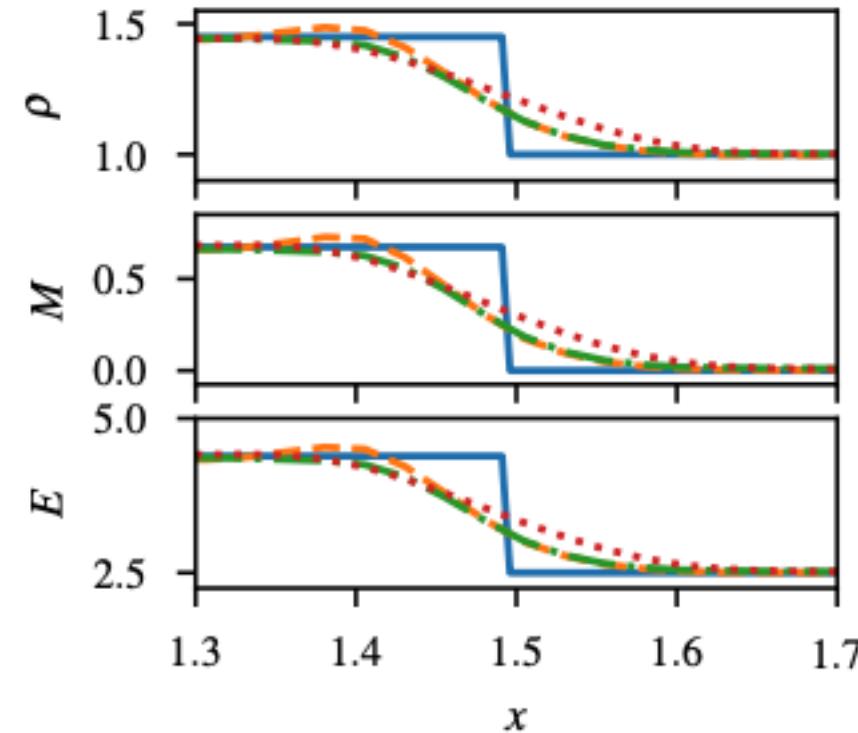


- - - Entropy+TVD
regularization
..... Viscous regularization

CVPINNs forward solution: Euler equations



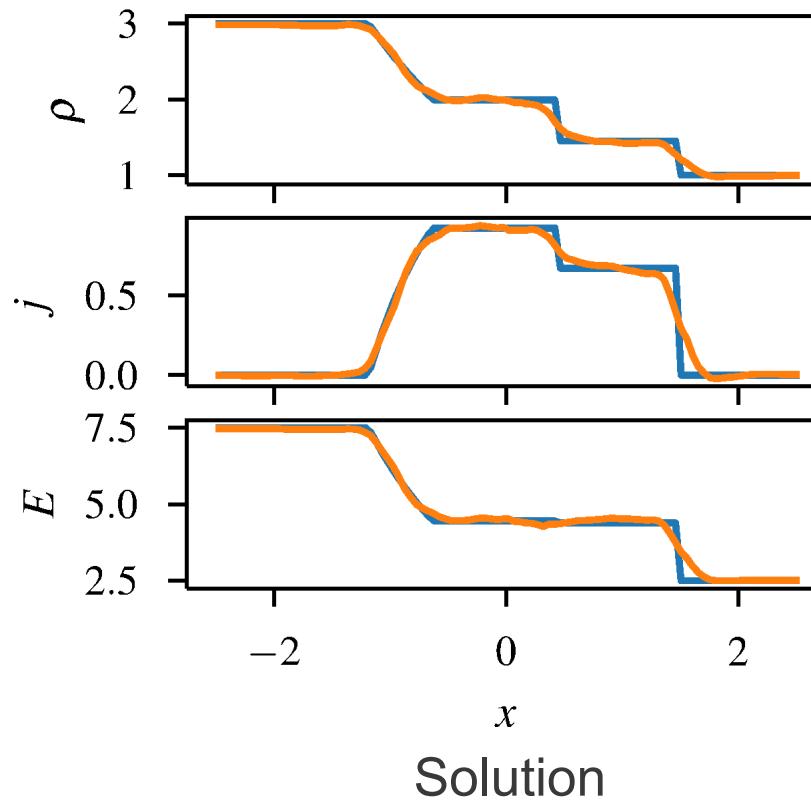
— Analytical solution
- - - No regularization



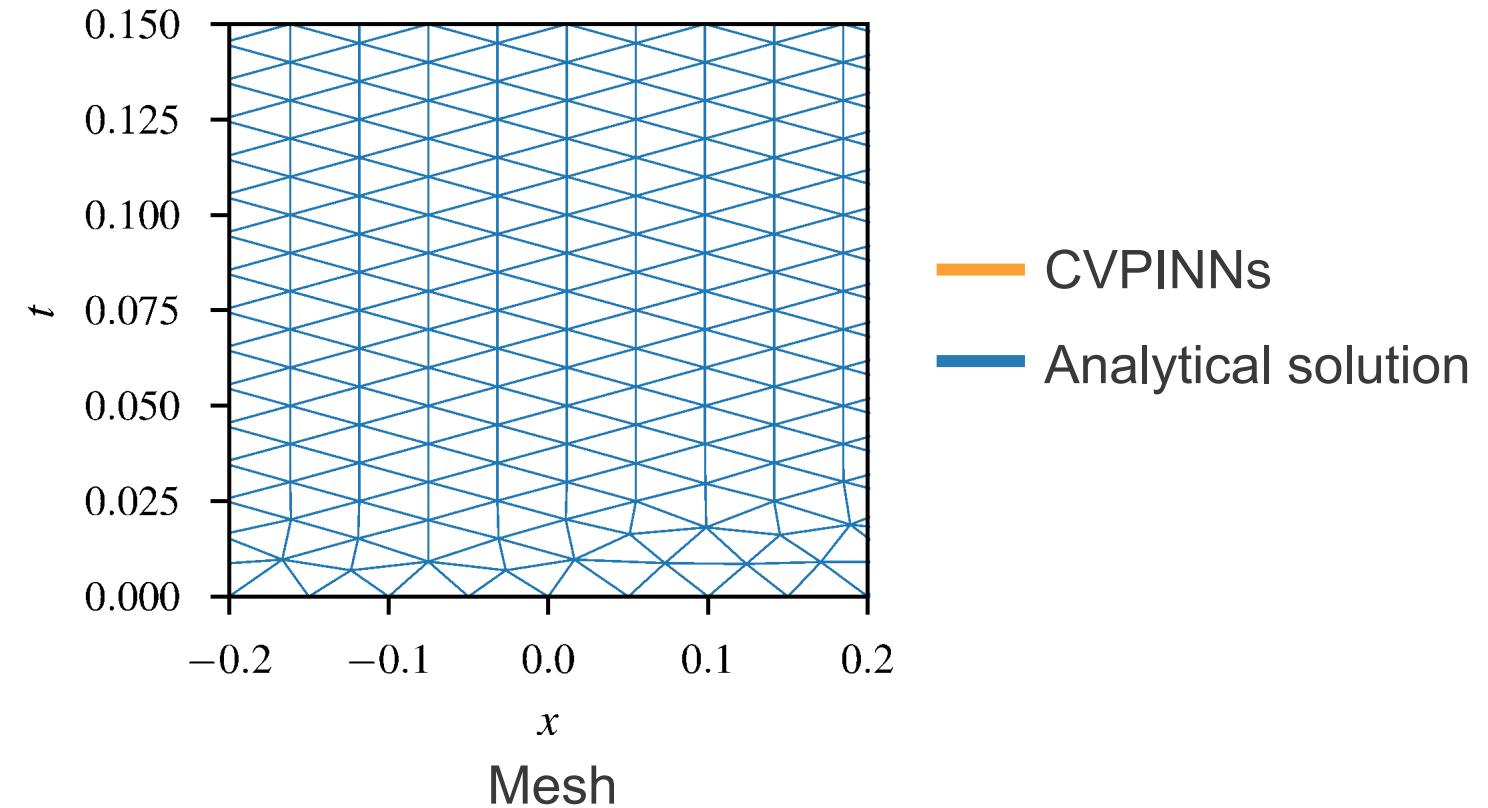
— Analytical solution
- - - Entropy+TVD regularization
- - - Viscous regularization

CVPINNs on unstructured meshes

For Euler equations with gamma law gas on triangular mesh¹,

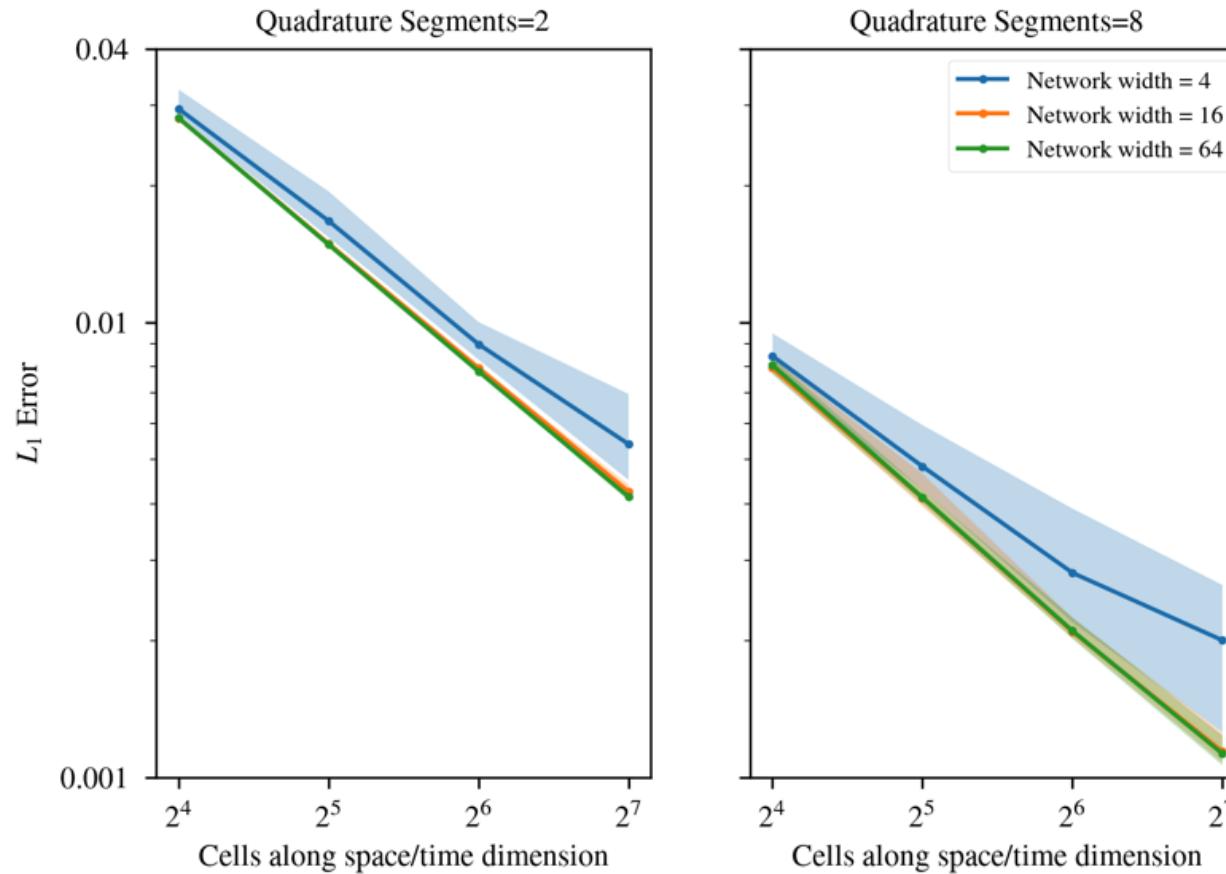


¹ pygmsh, <https://pypi.org/project/pygmsh/>



CVPINNs: L1 error for Burgers rarefaction

Mean and standard deviation computed over 10 runs



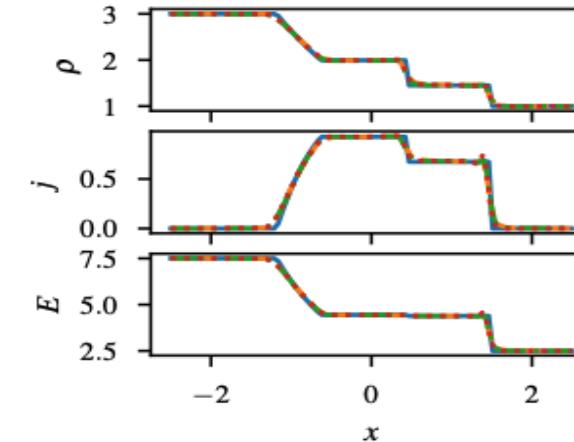
Outline

1. CVPINNs as a numerical method for hyperbolic PDEs

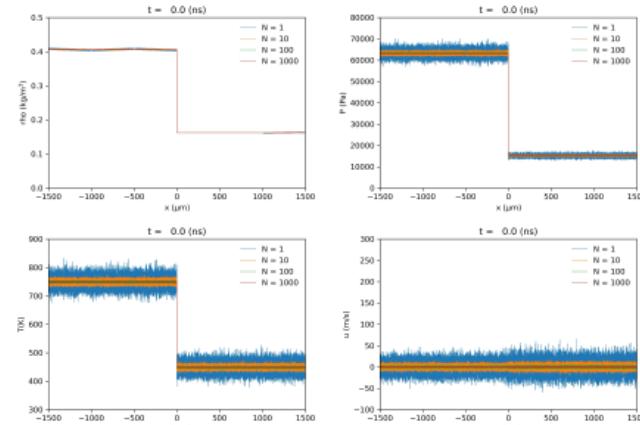
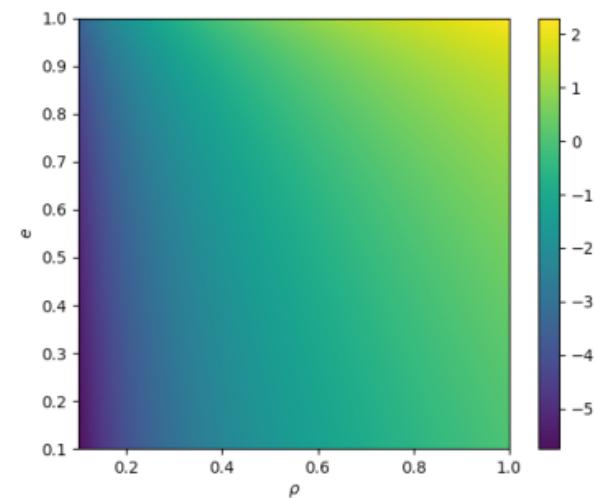
$$\partial_t \rho + \partial_x \rho u = 0$$

$$\partial_t \rho u + \partial_x (\rho u^2 + p) = 0$$

$$\partial_t E + \partial_x u(E + p) = 0$$

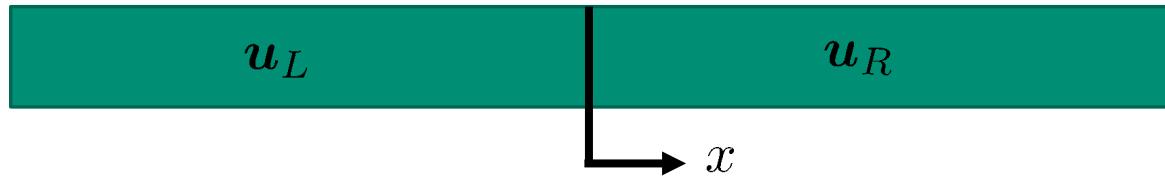


2. Equation of state discovery with CVPINNs



Equation of state discovery with CVPINNs

Find EOS given solutions to Riemann problems for Euler equations for (various)
:



Use CVPINNs and add penalty for data:

$$\partial_t \rho + \partial_x \rho u = 0$$

$$\partial_t \rho u + \partial_x (\rho u^2 + p) = 0$$

$$\partial_t E + \partial_x u (E + p) = 0$$

$$s(\rho, e; \xi_{EOS})$$

$$p = -\rho^2 (\partial_\rho s) (\partial_e s)^{-1}$$

$$\begin{aligned} L = & \sum_c R_c^2 + \lambda_E \sum_c \max(0, R_c^E) \\ & + \lambda_T \sum_n \max(0, TV(u^{n+1}) - TV(u^n)) \\ & + \lambda_D \|u - u_{data}\|_{\ell_2(x,t)_{data}} \end{aligned}$$

Minimize,

$$\xi, \xi_{EOS} = \operatorname{argmin}_{\hat{\xi}, \hat{\xi}_{EOS}} L$$

EOS parameterizations

Parameterized gamma law gas:

$$s(\rho, e) = \log(e^{1/(\gamma-1)} \rho^{-1})$$

Neural network:

$$s(\rho, e) = \mathcal{NN}(\rho, e; \xi_{EOS})$$

EOS regularization

For a physical reasonable EOS¹,

$$\partial_e s > 0 \quad \partial_e^2 s \leq 0 \quad \partial_\rho(\rho^2 \partial_\rho s) < 0$$

First and third condition guarantee hyperbolicity of Euler equations

- Necessary for well-posedness of IBVP

Choose a set of $(\rho, e)_{regularize}$

Add another term to the loss,

$$\begin{aligned} L = & \sum_c R_c^2 + \lambda_E \sum_c \max(0, R_c^E) \\ & + \lambda_T \sum_n \max(0, TV(u^{n+1}) - TV(u^n)) \\ & + \lambda_D \|u - u_{data}\|_{\ell_2(x, t)_{data}} \\ & + \lambda_R \sum_{(\rho, e)_{regularize}} [\max(0, -\partial_e s) + \max(0, \partial_e^2 s) + \max(0, \partial_\rho(\rho^2 \partial_\rho s))] \end{aligned}$$

¹ Menikoff and Plohr, *Rev. Modern Phys.*, 1989

Model power tradeoff

$$s(\rho, e) = \mathcal{NN}(\rho, e; \xi_{EOS})$$

$$s(\rho, e) = \log(e^{1/(\gamma-1)} \rho^{-1})$$

Black-box ML

Regularized ML

Parameter estimation

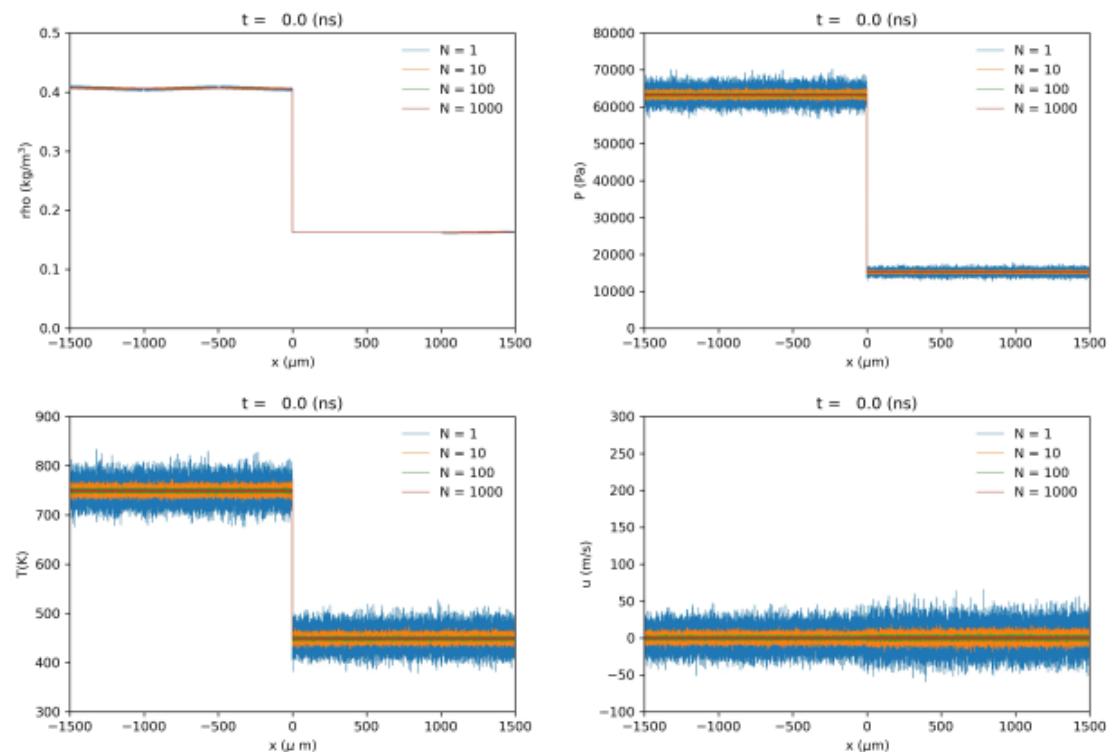
Prone to overfitting

Strong assumptions

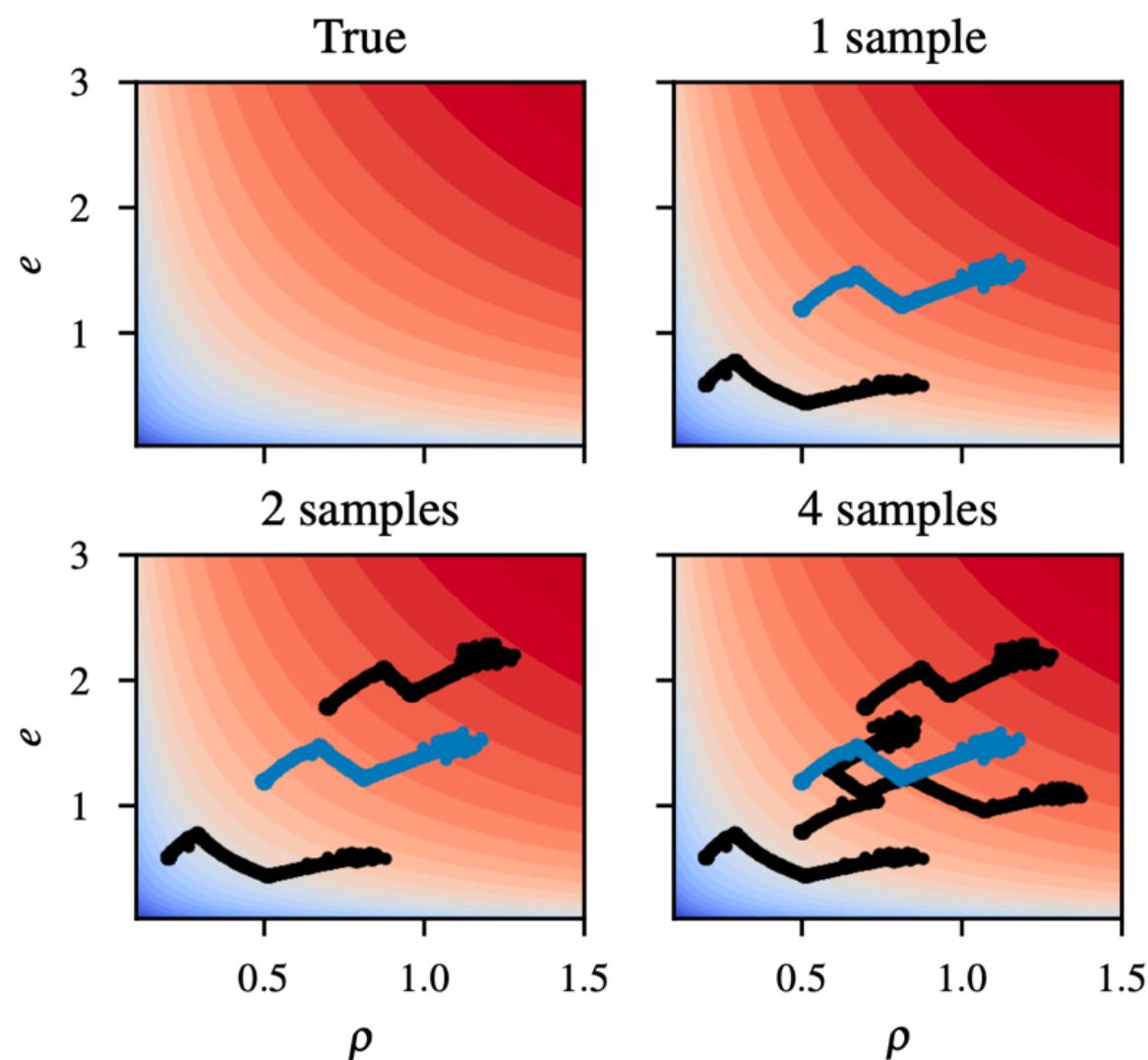
Verification with DSMC data

DSMC simulations of Sod shock problems performed in Sparta¹

- Varying density, pressure jump at t=0
- Hydrodynamic regime
- Argon gas
- Euler with gamma law gas EOS is a good model
- $s(\rho, e) = \log(e^{1/(\gamma-1)} \rho^{-1}) \quad \gamma = 5/3$
- Can compare fitted EOS with above EOS



EOS fits: parameterized gamma law gas



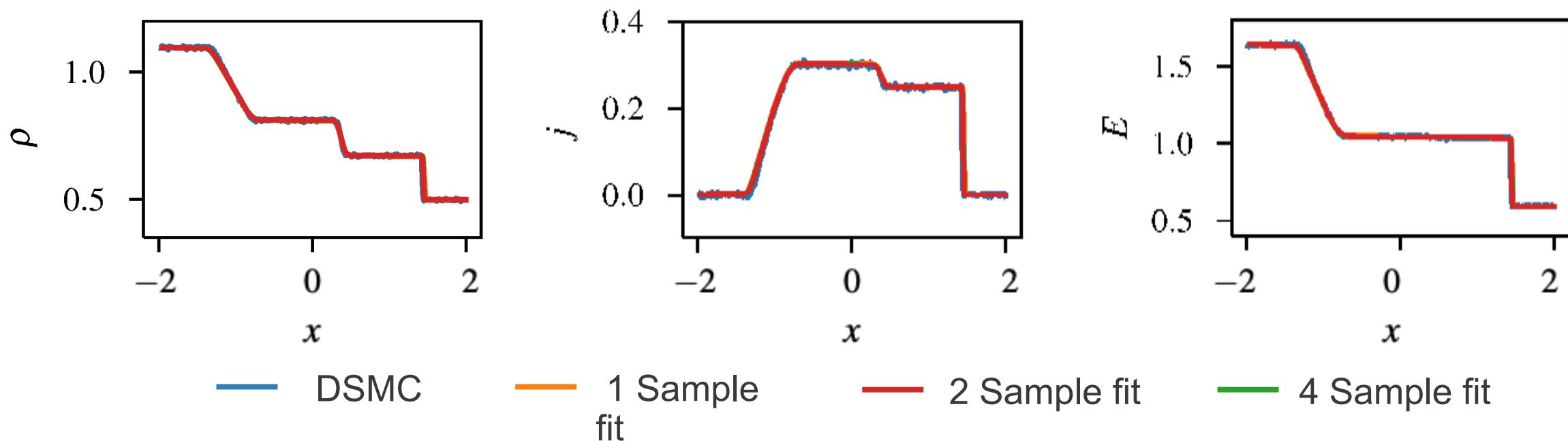
- Training data
- ✖ Elliptic regions for $u = 0$
- Test data

Samples	Error in γ
1	1.04%
2	0.74%
4	0.62%

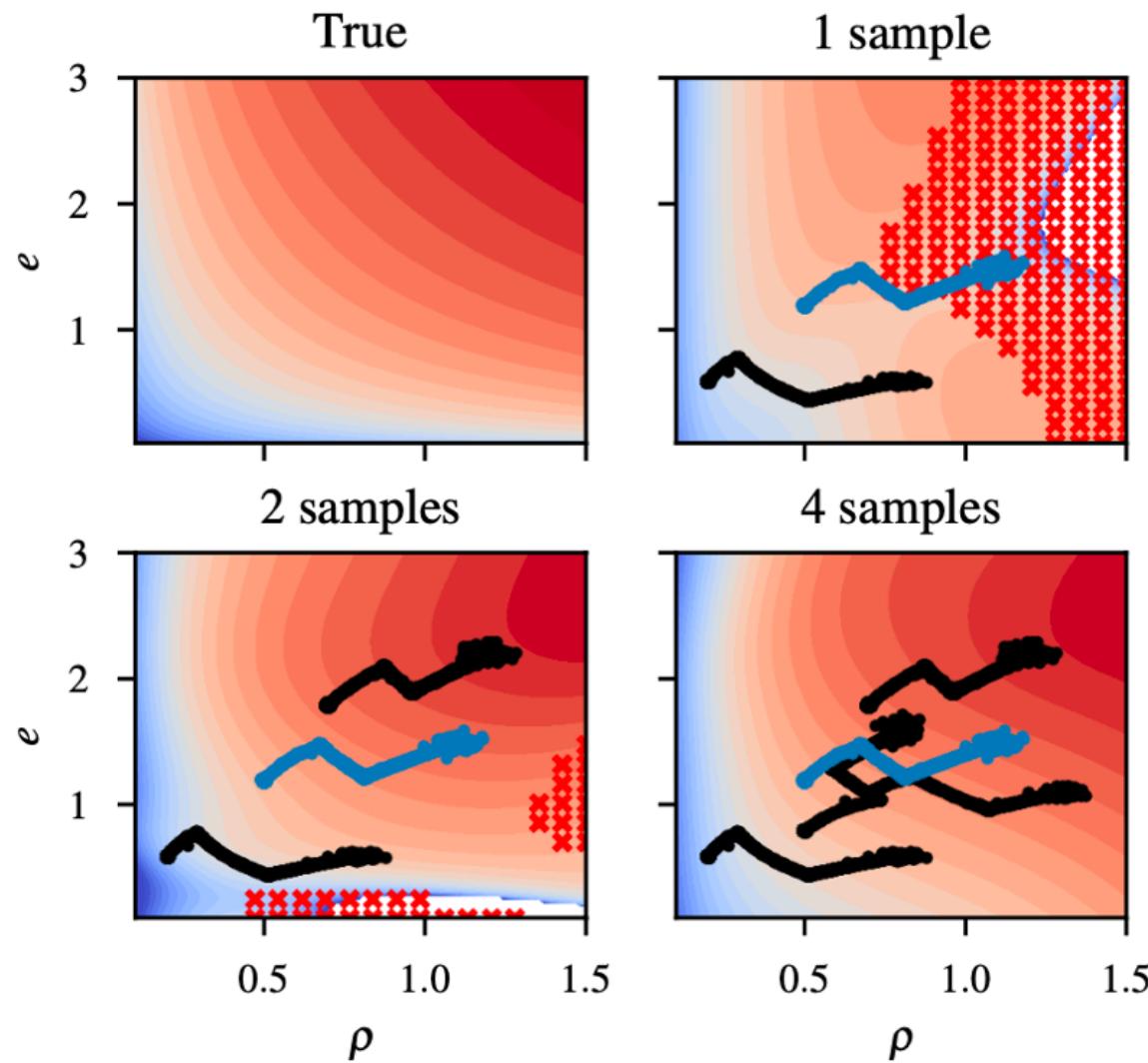
EOS fits test: Parameterized gamma law gas

Use fitted EOS's to solve new Riemann problem

- Viscous regularized finite difference (FD) code on a fine mesh



EOS fits: Neural network

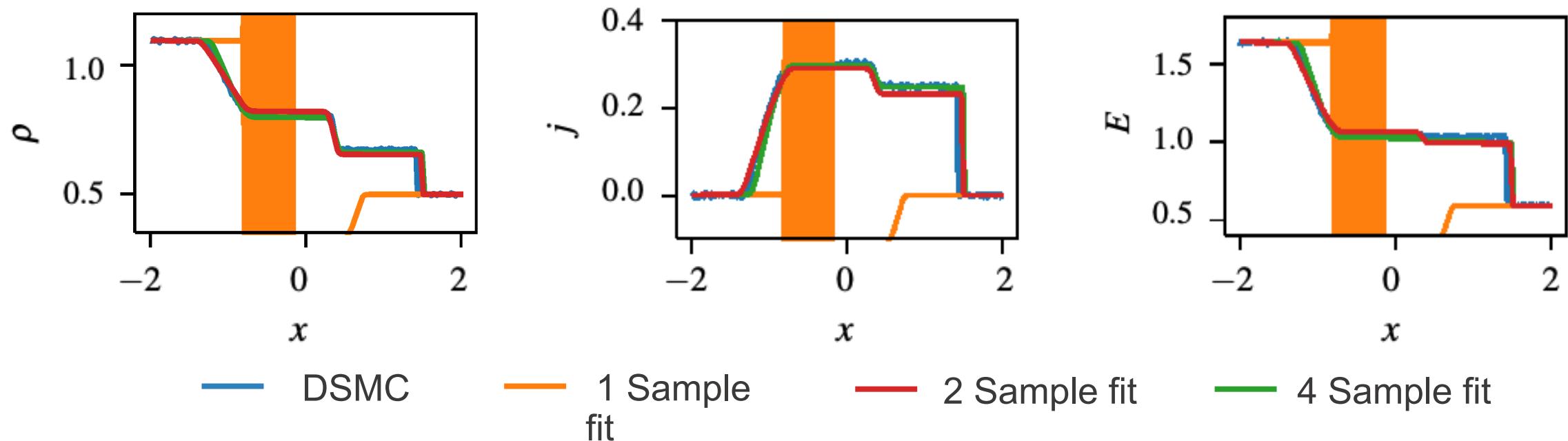


- Training data
- ✖ Elliptic regions for $u = 0$
- Test data

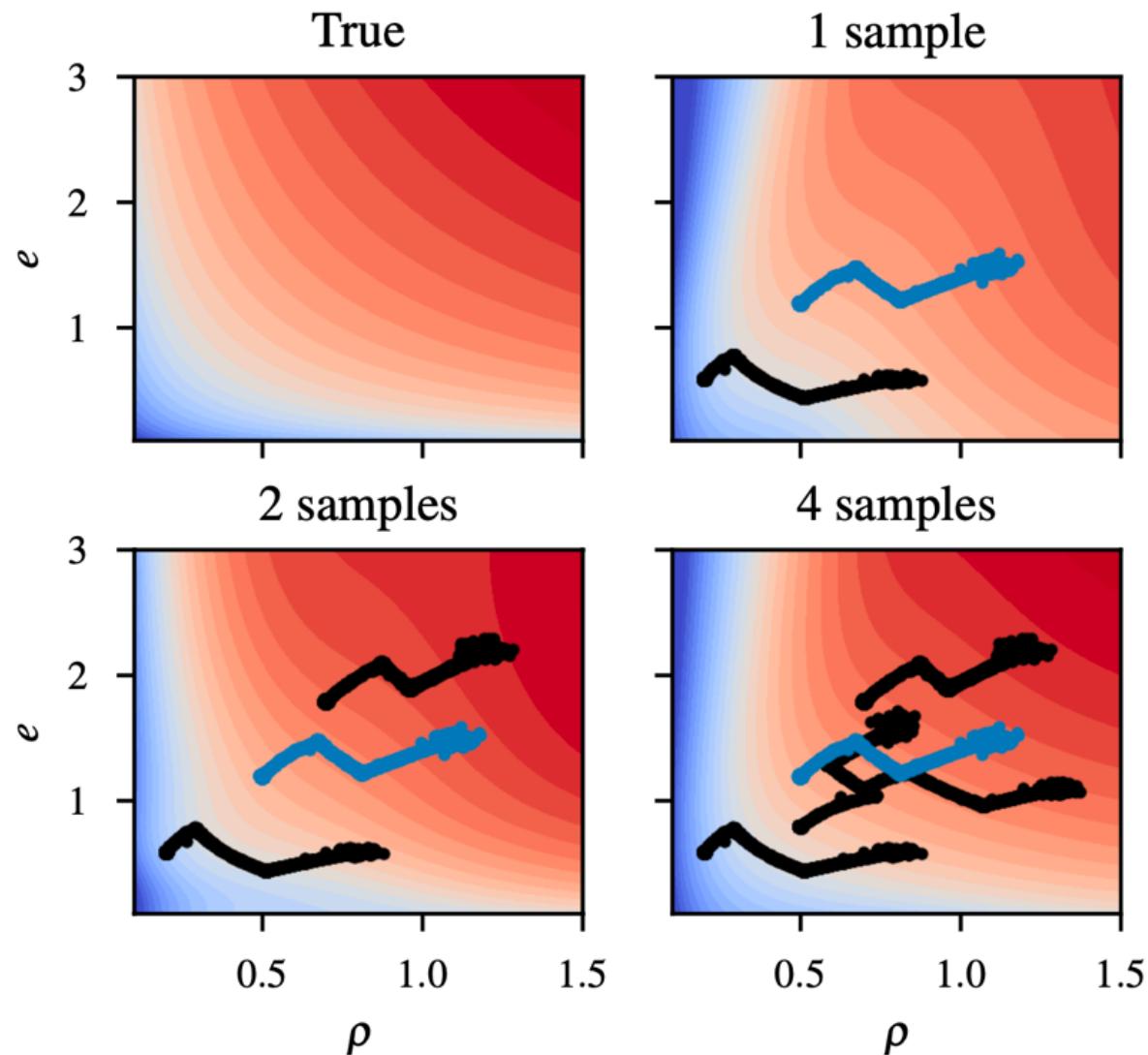
EOS fits test: Neural network

Use fitted EOS's to solve new Riemann problem

- Viscous regularized finite difference (FD) code on a fine mesh



EOS fits: Regularized neural network

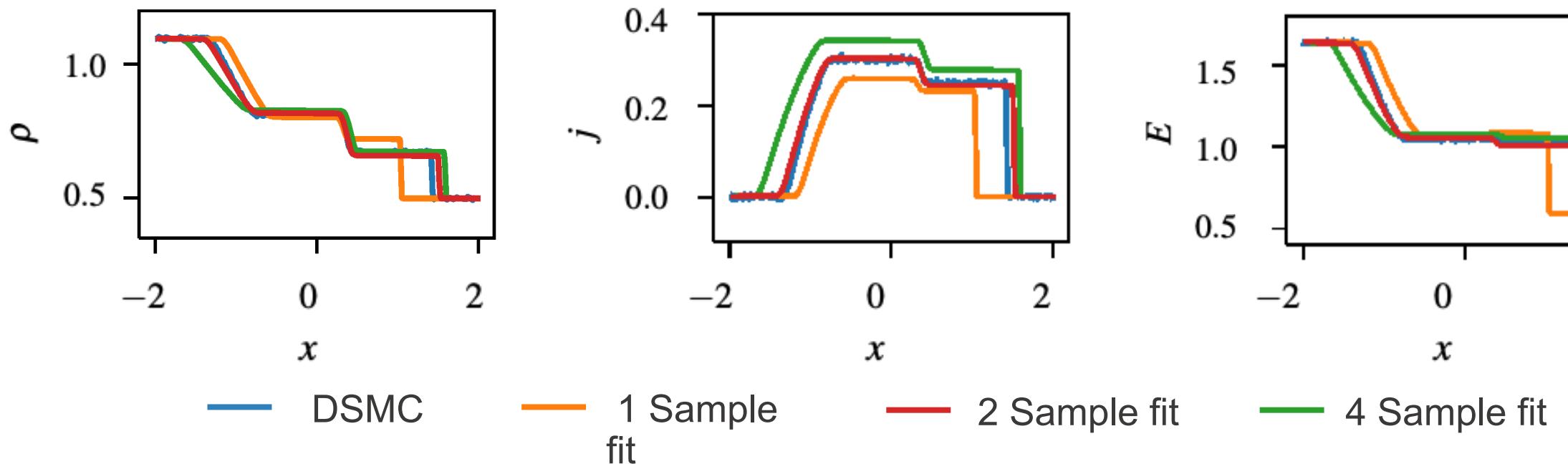


- Training data
- ✖ Elliptic regions for $u = 0$
- Test data

EOS fits test: Regularized neural network

Use fitted EOS's to solve new Riemann problem

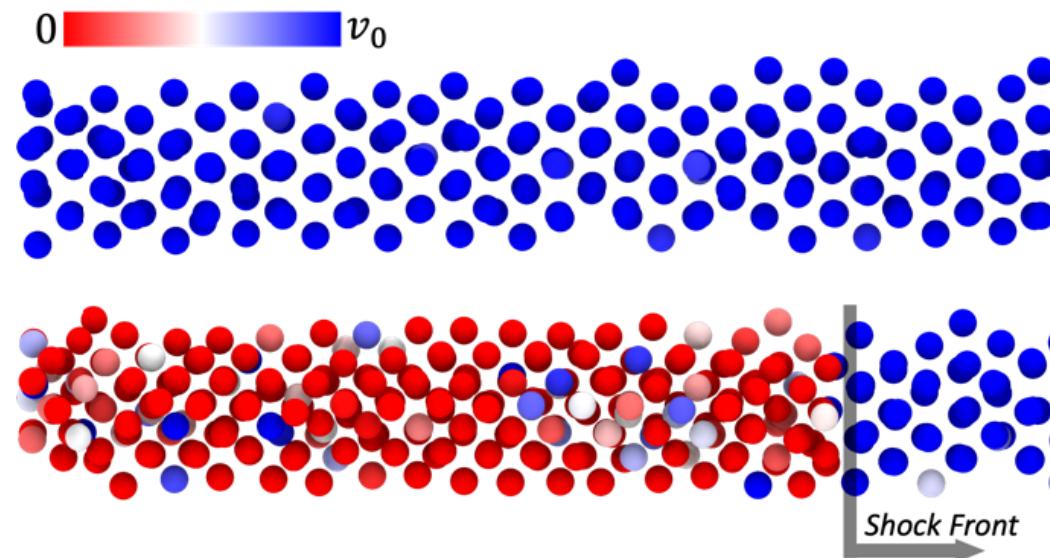
- Viscous regularized finite difference (FD) code on a fine mesh



EOS discovery application: shock hydrodynamics of copper

Perform LAMMPS¹ simulations of the reverse-ballistic impact experiment

- Various impact velocities and initial temperatures

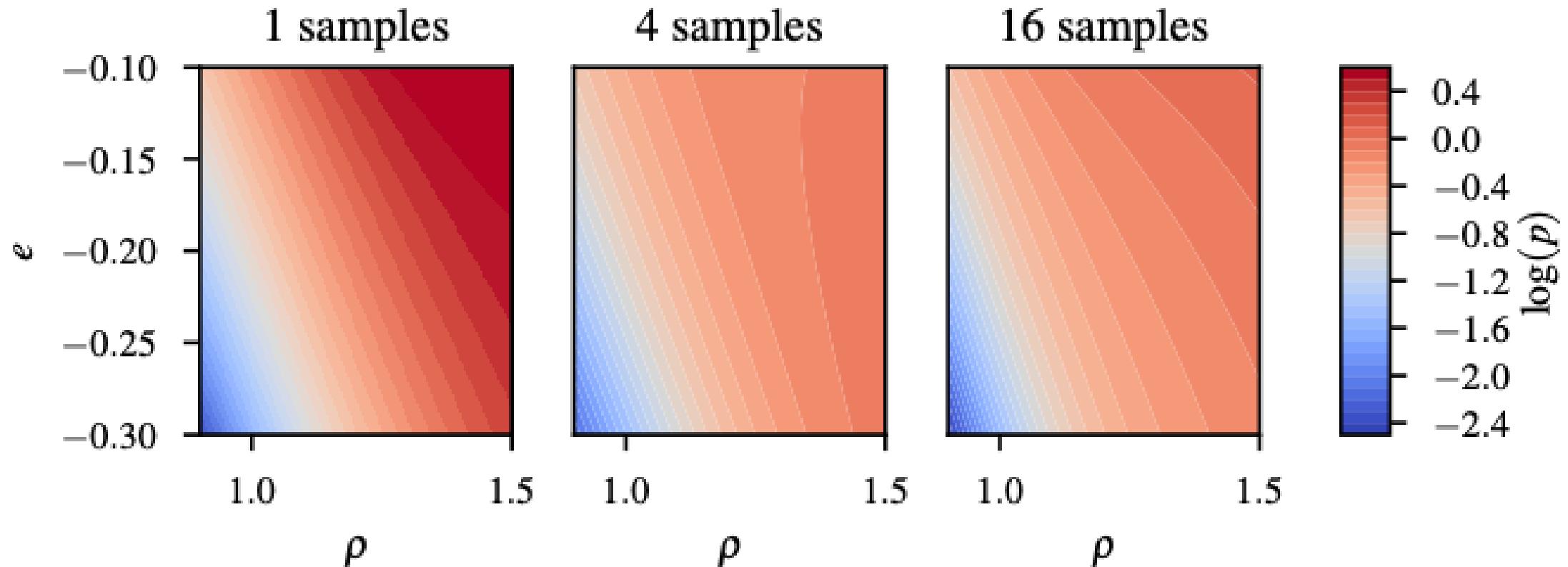


Fit an EOS to the LAMMPS data using CVPINNs

- Regularized neural network parameterization

Use fitted EOS to perform FD simulations of a new impact case and compare to LAMMPS

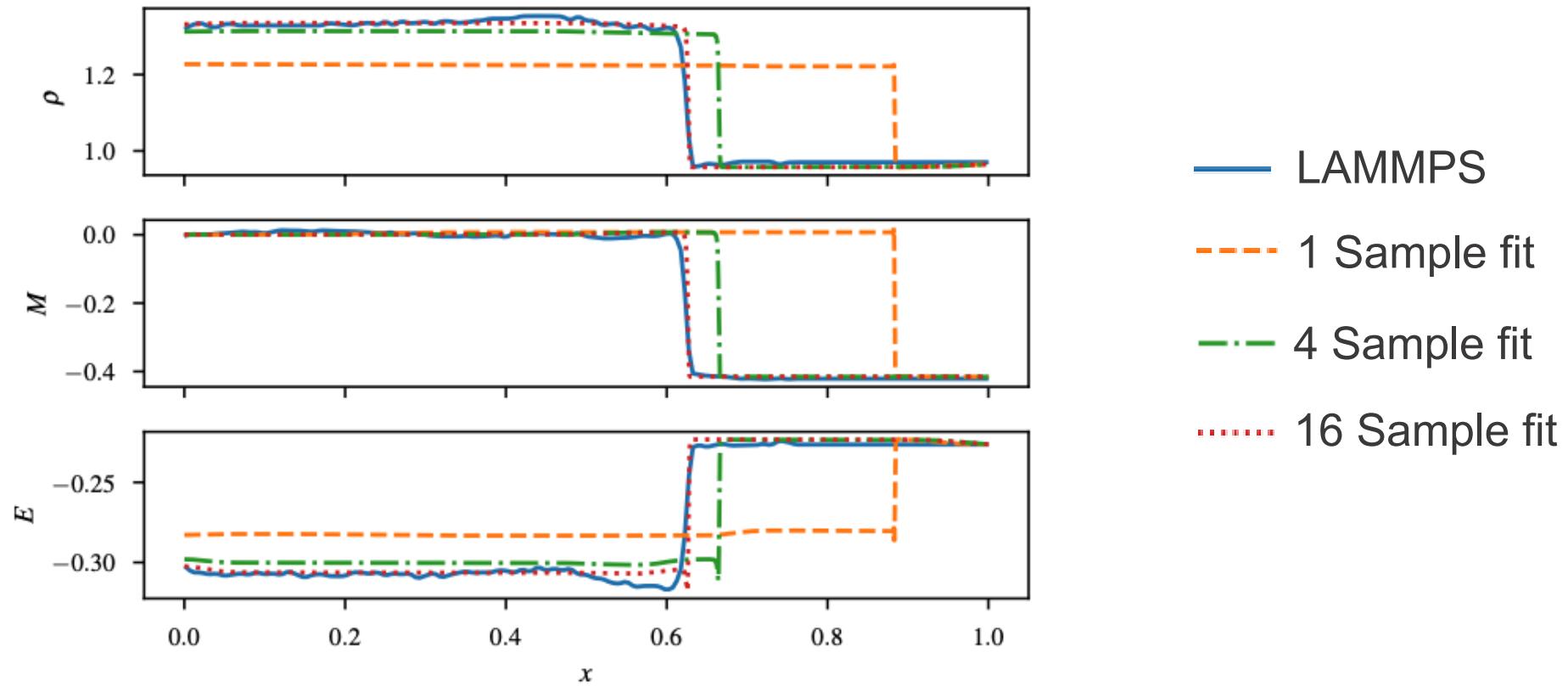
EOS fits for shocked copper



EOS fits test for shocked copper

Use fitted EOS's to solve new impact case

- Viscous regularized finite difference (FD) code on a fine mesh



Compare shocked cooper EOS to EOS's in literature

- Mie–Grüneisen¹

Compare to traditional discretizations of hyperbolic PDE's and EOS parameterizations

Extend to multidimensional problems

Extend to other PDEs

- MHD: Brio-Wu problem²
- Reactive flows: Ben-artzi problem³

¹Robinson, SAND2019-6025, 2019

²Brio and Wu, *JCP*, 1988

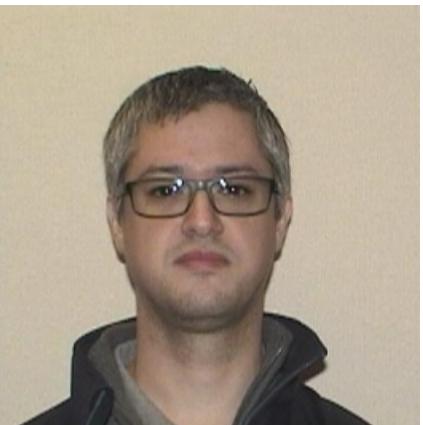
³Ben-artzi, *JCP*, 1989

Acknowledgements

Eric C. Cyr

Nat Trask

Mitch Wood



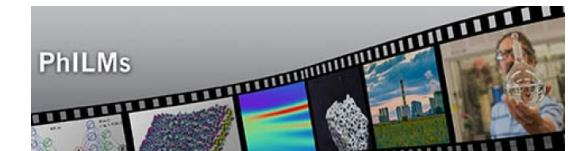
Ignacio Tomas

Indu Manickam

MK Lee

U.S. DEPARTMENT OF
ENERGY

Office of
Science



www.pnnl.gov/computing/philm

Conclusion

CVPINNs provides some benefits over PINNs for solving hyperbolic PDEs

- Less regularization needed
- For some problems, PINNs produces poor answer (Buckley-Leverett) without AV

CVPINNs can be used to solve inverse problems: EOS discovery

- Verified with DSMC simulations of the Sod problem
- Applied to extract an EOS for shocked copper
- Choice of EOS parameterization should be carefully considered
 - Parameterized gamma law gas
 - Neural network
 - Regularized neural network

Preprint:

- Patel et al. *arXiv:2012.05343*