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2 ‘ Materials in extreme environments

Given experimental/high
fidelity simulation data from a
system,

Find a mathematical model
that describes the system

Experiments/simulations
generate noisy, biased,
sparse data
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3 | Hyperbolic conservation laws are suitable models for
many systems

Typical hyperbolic PDE,
Oru+V - -F(u)=0 x,t €
U = ug t =

Fu)-n=g rel_



+ I Inverse problems with hyperbolic conservation laws

Typical hyperbolic PDE,
Oru+V - -F(u)=0 x,t €
U = Ug t=20
Fu)-n=g rel_

Assume we are given the solution,
u(x,t)

What isF(u) ?

argmin || — ul|y
F

s.t. PDE

I I Em B



s | Inverse problems with hyperbolic conservation laws

Ingredients needed: Challenges,
> A numerical method for the PDE - PDE forms discontinuities
> A parameterization fdf (u) o F(u) must produce a well-posed

IBVP



« I Inverse problems with hyperbolic conservation laws

Ingredients needed: Challenges,
> A numerical method for the PDE - PDE forms discontinuities
> A parameterization fdf (u) o F(u) must produce a well-posed
IBVP

u ; . 03 - 0 i 2
e e e T T e e e e ”
Shock solution to the traffic flow equation’ Hyperbolic region for Grad’s 5 moment
equations?

" LeVeque, Finite Volume Methods for Hyperbolic Problems, 2004
2 Schaerer and Torrilhon, Commun. Comput. Phys., 2015



7 I Inverse problems with hyperbolic conservation laws:
Equation of state discovery

Euler equations, Equation of state (EOS) provides closure,
Ocp + Oupit =0 resaen (p(; )(0us)
o — —p J. 5 e ;
O, pu + O (pu? +p) =0 g

OHE + Opu(E +p) =0

1,
E:pe+§pu

1

We will consider solutions to Riemann problems,
u(x,0) =uy ifx<0

we.0) = un it a0 D
£z

Goal: Finds(p,e) given the solutigfw, t), pu(z,t), E(z,t)



s I Outline
1. CVPINNSs as a numerical method for hyperbolic PDEs

o 2

Orp + Oppu = '
atpu+8$(pu2+p):0 — — 05

0.0

OE + Oyu(E +p) =0 -

5.0

2.5

2. Equation of state discovery with CVPINNs
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Physics informed neural networks' (PINNs) as a PDE E
collocation scheme '
i

For the PDE,
Oru + Op F(u x,t) € interior

t)
Bu = f (az t) € boundary

interior

TN

Let the solution be defined by a neural network,
u=ul{x,t;§)

Choose collocation points in space-time

Define a residual,
R — ‘ |atfu —l_ 8:I‘F(;u) ‘ |ﬁ2 (:I;:ﬁ)i'n,t&-'r‘io'r‘

—l_ )\Bcl ‘B/UJ o f| ‘EQ(m:t)bound(w‘y
+ Aicllu — QHEQ(m,O)

Minimize

& = argmin R(é)
3
T Raissi et al., arXiv:1711.10561




0 I Control volume PINNs (CVPINNSs)

For PDEs of the form,
Bou+ 0, F(u) =0 (x,1) € interior
T,

)
su=g (o) ey HEENE
uw=gq t=20
Let the solution be defined by a neural network, .....
u=u(x,t;§)
Choose mesh in space-time ....
Apply divergence theorem to each cell in the mesh 0 F) 0, F)
o (Vane [ (1) EESEE
v ] v (1) | ()

t
Approximate integrals with quadrature . . . .

Fluxes at boundaries replaced by prescribed values

Minimize residuals

& = argmin Z R?
3 c



11 | Potential issues with CVPINNs

Solutions to the integral form aren’t unique
> We want the physically meaningful entropy solution,

Oscillatory behavior near the shock '
lim Oyu + 0, F(u) = vo:u i
v—0

1.0 —T am—
0.8 |
] f,’ J,’, . H 1
N 0.6 J ===+ Entropy solution to Burgers equatiém, + ;0-u” =0 |
0.41 ,” /" == Unphysical solution from unregularized
CVPINNs
0.2 /o
0.0.—t'_1_1

0.0 0.1 0.2 0.3 0.4



2 1 Viscous regularization

Add von Neumann-Richtmyer viscosity to PDE
Ou 4 0, F = a0, |0,ul0,u
Preferential adds viscosity near strong gradients: shocks
Prevents oscillations
Recovers viscosity solution

Potentially overly diffusive

"Von Neumann and Richtmyer. Journal of Applied Physics, 1950



13 1 Entropy regularization

Entropy solution also obefsy + 0.1 < 0 (integral sense) for entropyipair

Add another term to the loss,
Z R+ \p Zmax((), RE)

WhereR” is the residual to the above PDIE in integral form for cell

For Burgers equation, with the neural network initialized to an unphysical solution,

Ap =0 Ag=0.01

Ap =1

/A
0.0 A |
]

0.004

1

n

RPo| |1}
0.002 Ih I ‘H

Iy N

THE

I i
0.000 I T e ——

e o

CVPINNs

== Analytical solution



4 I TVD regularization

géeesnﬁhc?srgiellz n r?éandard discretizations For Euler equations with gamma law gas,
For u(z,t) at grid values = u(z;, t,) 1 04 .
TV (u™) :ZW?H — u| « ] = 0.1 ]
)
| 1 -
TV (W™ — TV (u™) <0 —
2.5 0.0 2.5 =25 0.0 2.5 =25 0.0 2.5
Define a regular grid on top of the e 02 17— -
mesh and add another term to the S I v S AN
loss: o 101 'ﬂ'l_ VN R '.Z if,\‘h L0 %l. “.:',‘_"_.-“r-
o = L
Z R, + Ag Z max(0, R,) 091 i/ \/ /
— . 02 ++—— . 0.8 1
(& C
1.5 1.6 1.5 1.6 1.5 1.6
+Ar Y max(0,TV(u" ) — TV (u™)) . . :
" — - Ar=0
----- Ar=0.001
= Ar=1
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s I Summary of CVPINNs regularizations

Viscous
> Prevents oscillations and preferences entropy solution

Entropy
> Preferences entropy solution

TVD
> Prevents oscillations



it I CVPINNSs is less sensitive to hyperparameters than

PINNSs

> We observed reduced sensitivity to hyperparameters in CVPINNs
o BC and IC penalties in PINNs
o Entropy+TVD penalties in CVPINNs

For Burgers equation,

PINNSs solution

CVPINNSs solution=

1 Mao et al. CMAME, 2020

1.0

T T
—0.25 0.00 0.25

PINNs has been used successfully for hyperbolic PDEs '
i

Arc =Apc =0  Arc = Ape =1

o o8
s S

A = AMrvp =0 Agp=Aryvp =1

045 025 000 ) 025 045 PINNs/CVPINNs |

=== Analytical solution




17 ‘ PINNs can fail to find the entropy solution without artificial

viscosity
Buckley-Leverett: PDE with nonconvex flux produces solutions with mixed type waves,
2
U
2 1 2
u? 4+ 77 (1 — u)
t=0.25 =050 t=0.75
1.0 1.0 1.0
. 'fj:o:s- 1 o:s “ul u:a i
W|thout AV S 0.4 | 04 } 0.4
0.2 4 \"'-..., 0.2 | 0.2
My |
%00 0.5 10 %o 05 o "%0 0.5 1.0
1.0- 1.0+ 1.0
0.8+ 0.81 0.8
W|th AV 30-5‘ 0.6 0.6 -
S g4 0.4 0.4
0.2 0.2 0.2
%% 0.5 10 %o 05 7o “%o 05 1.0

= Exact == Prediction

Figure reproduced from [1]

" Fuks and Tchelepi, JMLMC, 2020



18 I CVPINNs forward solution: Buckley-Leverett equation

0.75 -
= .50 - | =
0.25 - I
1 | | |
~1 0 1 2
X X
—— Analytical solution —-— Entropy+TVD

L regularization
---- No regularization ... Viscous regularization



19 ‘ CVPINNs forward solution: Euler equations

= 05 - s 051 '\‘
0.0 , 0.0 - . = — i
7.8 o —— 5.0

9 5.0 N = \‘
2.5 L— =

-2 0 2 1.3 1.4 1.5 1.6 1.7
X X
—— Analytical solution —-— Entropy+TVD

L regularization
---- No regularization ... Viscous regularization



20 ‘ CVPINNs on unstructured meshes

For Euler equations with gamma law gas on triangular mesh?,

S — 0.150
S —\1L 0.125 -
1 —
' L T 0.100 -
CVPINNSs
'~ 0.5 - ~ 0.075 -
i == Analytical solution
0.0 . . . 0.050 - y
75 T——
Q5.0 A j_—_‘;_ 0.025 7
25 , e 0.000 . . .
-2 0 2 —02  —0.1 0.0 0.1 0.2
X X
Solution Mesh

T pygmsh, https://pypi.org/project/pygmsh/



21 I CVPINNSs: L1 error for Burgers rarefaction

Mean and standard deviation computed over 10 runs

L, Error

Quadrature Segments=2

0.04

0.01 -

Quadrature Segments=8

= Network width =4

—=—  Network width = 16
== Network width = 64

0.001

24

»
Cells along space/time dimension

2'?

24

» » 7
Cells along space/time dimension



2 | Qutline
1. CVPINNSs as a numerical method for hyperbolic PDEs

o 2

Orp + Oppu = '
atpu+8$(pu2+p):0 — — 05
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OE + Oyu(E +p) =0 -
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2. Equation of state discovery with CVPINNs
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23 ‘ Equation of state discovery with CVPINNSs

Find EOS given solutions to Riemann problems for Euler equations for Marious)

Use CVPINNs and add penalty for data:

Oip + Ozpu =0 LzZquL)\EZmaX(O,R;E)
Ospus + Oz (pu? +p) =0 c c
— n o n
OE + Opu(E + p) =0 + A7 Y max(0, TV (u"t) — TV (u™))
S(Pa e; §EOS) 1 4 )\DHU B UdataH£2(x,t)dam
pP=—p (8,05)(603)_
Minimize,

&, Epos = argmin L
é7éEOS



24 I EOS parameterizations

Parameterized gamma law gas:
s(p, e) = log(e"/ =1 p~h)

Neural network:

s(p,e) = NN(p,e;€ros)



» | EOS regularization

For a physical reasonable EOS',
d.s >0 025 <0 (9p(p2(9ps) <0

First and third condition guarantee hyperbolicity of Euler equations
> Necessary for well-posedness of IBVP

Choose a set (ﬁ’)p 6>Tegular7lze

Add another term to the loss,
L=) R’+\gy max(0,R))

+ A1 Z max (0, TV (u" ) — TV (u™))

—l_ AD||U’ T uda,ta,| ‘Eg(a:,t)dam
+ A\r Z ‘max (0, —9es) + max (0,92 s) + max (0,9,(p°0,3))]

(pae)regularize

' Menikoff and Plohr, Rev. Modern Phys, 1989



26 I Model power tradeoff

s(p,e) = NN(p,e;€eos)

L Black-box ML }

L Regularized ML J

s(p,e) = log(e

1/(7—1)p—1)

Parameter
estimation

<Prone to overfitting

Strong assumptions>
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27 | Verification with DSMC data

t= 0.0(ns] t= 0.0(ns)]

DSMC simulations of Sod shock problems i :XM =N
performed in Sparta’ wmel e
> Varying density, pressure jump at t=0 5 wj;
> Hydrodynamic regime | I S———
> Argon gas e T IR S T e ey e

x (pm) x {prm)

- Euler with gamma law gas EOS is a - .

good model mw v v
1 _1 _1 oo N = 1000 Foili] N = 1000
/(fY )p ) f)/ — 5/3 ) 150

© 8(107 6) — log(e

o Can compare fitted EOS with above 0
EOS . ——

200
=1500 =100 =a00 a apn 1000 1500 =1500 =100 =a00 a anh 100 1500

T(K)
imfs}
g

' Sparta, https://sparta.sandia.gov/



22 I EQOS fits: parameterized gamma law gas

True 1 sample

® Training data

% Elliptic regions for = 0

e Test data

2 samples 4 samples |

1 1.04%
2 0.74%
4 0.62%




29 I EQOS fits test: Parameterized gamma law gas

Use fitted EOS's to solve new Riemann problem
> Viscous regularized finite difference (FD) code on a fine mesh

0.4
1.0 - 1.5 7
0.2 -+
Q "~ =0 A
- 0.0 -~
0.5 05
| | | | | | | 1
—2 0 2 —2 0 2 —2 0
X X X
— DSMC — 1 Sample — 2 Sample fit — 4 Sample fit
fit
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30

EOS fits: Neural network

True

2 samples

4 samples

® Training data
% Elliptic regions foru = 0
e Testdata




31 I EOS fits test: Neural network

Use fitted EOS's to solve new Riemann problem
> Viscous regularized finite difference (FD) code on a fine mesh

04
0.2 S
—

0.0 -
| | |
2 —2 0 2 2

X X X
— DSMC — 1 Sample — 2 Sample fit — 4 Sample fit

fit



2 | EOS fits: Regularized neural network

True 1 sample

M

2 samples 4 samples % Elliptic regions foru = 0

® Training data

e Test data




3 1 EOS fits test: Regularized neural network

Use fitted EOS's to solve new Riemann problem
> Viscous regularized finite difference (FD) code on a fine mesh

1.0 1.5 -
02 A
2 ~ 10 - I
0.5 4 0.0 H
0.5 o
| | | | | | | I |
—2 0 2 —2 0 2 —2 0 2
X X X
— DSMC — 1 Sample — 2 Sample fit — 4 Sample fit

fit



14 | EOS discovery application: shock hydrodynamics of
copper

Perform LAMMPS' simulations of the reverse-ballistic impact experiment
> Various impact velocities and initial temperatures

o v,

o ® - v e o
ooesesssenesereneseseteressess
0 000002 %00 . % 050.% % %,
0°0%090%%6%e%® %0 %,%%%

o
.. ...‘
( 4 P
soees:

Shock Front

Fit an EOS to the LAMMPS data using CVPINNs
o Regularized neural network parameterization

Use fitted EOS to perform FD simulations of a new impact case and compare to LAMMPS

'LAMMPS, https://lammps.sandia.gov
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5 I EQOS fits for shocked copper

1 samples 4 samples 16 samples
~0.10 — —
0.4
0.0
~0.15 -
~0.4
~-0.8 'R
v —0.20 - —
-12 g
~0.25 —16
~2.0
-0.30 —2.4

1.0 1.5 1.0 1.5



3 | EOS fits test for shocked copper

Use fitted EOS'’s to solve new impact case
> Viscous regularized finite difference (FD) code on a fine mesh

o 1.2 -
0 — LAMMPS
0 ---- 1 Sample fit
= -02
—-— 4 Sample fit
-0.4
------- 16 Sample fit
—0.25 !
24
-0.30




37 I Future work

Compare shocked cooper EOS to EOS’s in literature
> Mie—Griineisen’

Compare to traditional discretizations of hyperbolic PDE’s and EOS parameterizations
Extend to multidimensional problems

Extend to other PDEs
> MHD: Brio-Wu problem?

- Reactive flows: Ben-artzi problem?

"Robinson, SAND2019-6025, 2019

2Brio and Wu, JCP, 1988
3Ben-artzi, JCP, 1989
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3 I Conclusion

CVPINNSs provides some benefits over PINNs for solving hyperbolic PDEs
o Less regularization needed

> For some problems, PINNs produces poor answer (Buckley-Leverett) without AV

CVPINNSs can be used to solve inverse problems: EOS discovery
> Verified with DSMC simulations of the Sod problem

> Applied to extract an EOS for shocked copper

> Choice of EOS parameterization should be carefully considered
o Parameterized gamma law gas
> Neural network
> Regularized neural network

Preprint:
o Patel et al. arXiv:2012.06343



