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Materials in extreme environments2

 Given experimental/high 
fidelity simulation data from a 
system,

 Find a mathematical model 
that describes the system

 Experiments/simulations 
generate noisy, biased, 
sparse data



Hyperbolic conservation laws are suitable models for 
many systems

 Typical hyperbolic PDE,
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Inverse problems with hyperbolic conservation laws

 Typical hyperbolic PDE,
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 Assume we are given the solution,

 What is           ?



Inverse problems with hyperbolic conservation laws5

 Ingredients needed:
◦ A numerical method for the PDE
◦ A parameterization for 

 Challenges,
◦ PDE forms discontinuities
◦           must produce a well-posed 

IBVP



Inverse problems with hyperbolic conservation laws6

 Ingredients needed:
◦ A numerical method for the PDE
◦ A parameterization for 

Hyperbolic region for Grad’s 5 moment 
equations2

Shock solution to the traffic flow equation1 

 Challenges,
◦ PDE forms discontinuities
◦           must produce a well-posed 

IBVP

1 LeVeque, Finite Volume Methods for Hyperbolic Problems, 2004
2 Schaerer and Torrilhon, Commun. Comput. Phys., 2015



Inverse problems with hyperbolic conservation laws: 
Equation of state discovery

 Euler equations,
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 Equation of state (EOS) provides closure,
◦ Entropy:
◦ Pressure:

 Goal: Find             given the solution,

 We will consider solutions to Riemann problems,



Outline
 1. CVPINNs as a numerical method for hyperbolic PDEs
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 2. Equation of state discovery with CVPINNs



Physics informed neural networks1 (PINNs) as a PDE 
collocation scheme

 For the PDE,
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 Let the solution be defined by a neural network,

 Define a residual,
 Choose collocation points in space-time

 Minimize

 1 Raissi et al., arXiv:1711.10561

 boundary

 interior



Control volume PINNs (CVPINNs)
 For PDEs of the form,
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 Choose mesh in space-time

 Let the solution be defined by a neural network,

 Apply divergence theorem to each cell in the mesh

 Approximate integrals with quadrature

 Minimize residuals

 Fluxes at boundaries replaced by prescribed values



Potential issues with CVPINNs

Oscillatory behavior near the shock
Solutions to the integral form aren’t unique

◦ We want the physically meaningful entropy solution,
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 Entropy solution to Burgers equation, 

 Unphysical solution from unregularized 
CVPINNs



Viscous regularization

 Add von Neumann-Richtmyer viscosity to PDE1

 Preferential adds viscosity near strong gradients: shocks

 Prevents oscillations

 Recovers viscosity solution

 Potentially overly diffusive
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 1 Von Neumann and Richtmyer. Journal of Applied Physics, 1950



Entropy regularization13

 Entropy solution also obeys                          (integral sense) for entropy pair  

 Add another term to the loss,

 Where        is the residual to the above PDIE in integral form for cell

 For Burgers equation, with the neural network initialized to an unphysical solution,

 CVPINNs 

 Analytical solution



TVD regularization14

 TVD schemes in standard discretizations 
prevent oscillations

 For              at grid values 

 Define a regular grid on top of the 
mesh and add another term to the 
loss:

 For Euler equations with gamma law gas,



Summary of CVPINNs regularizations

 Viscous
◦ Prevents oscillations and preferences entropy solution

 Entropy
◦ Preferences entropy solution

 TVD
◦ Prevents oscillations
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CVPINNs is less sensitive to hyperparameters than 
PINNs
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 PINNs has been used successfully for hyperbolic PDEs1

◦ We observed reduced sensitivity to hyperparameters in CVPINNs
◦ BC and IC penalties in PINNs
◦ Entropy+TVD penalties in CVPINNs

 For Burgers equation,

 1 Mao et al. CMAME, 2020

 CVPINNs solution

 PINNs solution

 PINNs/CVPINNs

 Analytical solution



PINNs can fail to find the entropy solution without artificial 
viscosity

 Buckley-Leverett: PDE with nonconvex flux produces solutions with mixed type waves,
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 Without AV

 With AV

 Figure reproduced from [1]

 1 Fuks and Tchelepi, JMLMC, 2020



CVPINNs forward solution: Buckley-Leverett equation18

 Analytical solution

 No regularization

 Entropy+TVD 
regularization

 Viscous regularization



CVPINNs forward solution: Euler equations19

 Analytical solution

 No regularization

 Entropy+TVD 
regularization

 Viscous regularization



CVPINNs on unstructured meshes20

 For Euler equations with gamma law gas on triangular mesh1,

 Solution  Mesh
 1 pygmsh, https://pypi.org/project/pygmsh/

 CVPINNs

 Analytical solution



CVPINNs: L1 error for Burgers rarefaction

 Mean and standard deviation computed over 10 runs
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Outline
 1. CVPINNs as a numerical method for hyperbolic PDEs
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 2. Equation of state discovery with CVPINNs



Equation of state discovery with CVPINNs

 Use CVPINNs and add penalty for data:
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 Find EOS given solutions to Riemann problems for Euler equations for various                 
:

 Minimize,



EOS parameterizations

 Parameterized gamma law gas: 

 Neural network:
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EOS regularization

 For a physical reasonable EOS1,
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 1 Menikoff and Plohr, Rev. Modern Phys, 1989

 First and third condition guarantee hyperbolicity of Euler equations
◦ Necessary for well-posedness of IBVP

 Choose a set of 

 Add another term to the loss,



Model power tradeoff26

Black-box ML Regularized ML

Prone to overfitting                         Strong assumptions

Parameter 
estimation



Verification with DSMC data27

 DSMC simulations of Sod shock problems 
performed in Sparta1

◦ Varying density, pressure jump at t=0
◦ Hydrodynamic regime 
◦ Argon gas
◦ Euler with gamma law gas EOS is a 

good model
◦  
◦ Can compare fitted EOS with above 

EOS

 1 Sparta, https://sparta.sandia.gov/



EOS fits: parameterized gamma law gas28

 Training data

 Test data
 Elliptic regions for 

Samples Error in γ 

1 1.04%

2 0.74%

4 0.62%



EOS fits test: Parameterized gamma law gas29

 DSMC  1 Sample 
fit

2 Sample fit 4 Sample fit

 Use fitted EOS’s to solve new Riemann problem
◦ Viscous regularized finite difference (FD) code on a fine mesh



EOS fits: Neural network30

 Training data

 Test data
 Elliptic regions for 



EOS fits test: Neural network31

 DSMC  1 Sample 
fit

2 Sample fit 4 Sample fit

 Use fitted EOS’s to solve new Riemann problem
◦ Viscous regularized finite difference (FD) code on a fine mesh



EOS fits: Regularized neural network32

 Training data

 Test data
 Elliptic regions for 



EOS fits test: Regularized neural network33

 DSMC  1 Sample 
fit

2 Sample fit 4 Sample fit

 Use fitted EOS’s to solve new Riemann problem
◦ Viscous regularized finite difference (FD) code on a fine mesh



EOS discovery application: shock hydrodynamics of 
copper

 Perform LAMMPS1 simulations of the reverse-ballistic impact experiment
◦ Various impact velocities and initial temperatures
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 1LAMMPS, https://lammps.sandia.gov

 Fit an EOS to the LAMMPS data using CVPINNs
◦ Regularized neural network parameterization 

 Use fitted EOS to perform FD simulations of a new impact case and compare to LAMMPS



EOS fits for shocked copper35



EOS fits test for shocked copper36

 Use fitted EOS’s to solve new impact case
◦ Viscous regularized finite difference (FD) code on a fine mesh

 LAMMPS

 1 Sample fit

 4 Sample fit

 16 Sample fit



Future work

 Compare shocked cooper EOS to EOS’s in literature
◦ Mie–Grüneisen1

 Compare to traditional discretizations of hyperbolic PDE’s and EOS parameterizations

 Extend to multidimensional problems

 Extend to other PDEs
◦ MHD: Brio-Wu problem2

◦ Reactive flows: Ben-artzi problem3
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 1Robinson, SAND2019-6025, 2019
 2Brio and Wu, JCP, 1988
 3Ben-artzi, JCP, 1989
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Conclusion

  CVPINNs provides some benefits over PINNs for solving hyperbolic PDEs
◦ Less regularization needed 
◦ For some problems, PINNs produces poor answer (Buckley-Leverett) without AV

 CVPINNs can be used to solve inverse problems: EOS discovery 
◦ Verified with DSMC simulations of the Sod problem
◦ Applied to extract an EOS for shocked copper
◦ Choice of EOS parameterization should be carefully considered

◦ Parameterized gamma law gas
◦ Neural network
◦ Regularized neural network

 Preprint:
◦ Patel et al. arXiv:2012.05343
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