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ABSTRACT 

SYCL is a promising programming model for heterogeneous 

computing—allowing a single-source code to target devices from 

multiple vendors. One significant task performed on these 

accelerators is a primitive operation for integer sum reduction. 

This paper presents several SYCL implementations of integer sum 

reduction—using atomic functions, shared local memory, 

vectorized memory accesses and parameterized workload sizes—

to compare the performance and maturity of SYCL against open-

source vendor-specific implementations of the same reduction. 

For a sufficiently large number of integers, tuning the parameters 

of our SYCL implementations achieves 1.4X speedup over the 

open-source implementations on an Intel UHD630 integrated 

GPU. The SYCL reduction is 3% faster than the templated 

reduction in Thrust, and 0.3% faster than the device reduction in 

CUB on an Nvidia P100 GPU. The SYCL reduction is 1.9% faster 

than the templated reduction in Thrust, and 0.4% faster than the 

device reduction in CUB on an Nvidia V100 GPU. 
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1 Introduction 

With the support of major graphics hardware vendors as well as 

personal computer vendors interested in offloading computations 

[1], Open Computing Language (OpenCL) is an open standard 

maintained by the Khronos group. OpenCL offers programming 

portability across a wide range of software and hardware for 

graphics processing units (GPUs), modern central processing units 

(CPUs), and other accelerators [2]. As opposed to the OpenCL 

programming model in which host and device codes are written in 

two languages [ 3 ], the promising SYCL standard specifies a 

cross-platform abstraction layer that enables programming of a 

heterogeneous computing system using standard C++ [4]. It can 

combine host and device codes for an application in a type-safe 

way to improve development productivity. The goals of the 

single-source programming model are to improve programming 

productivity and performance portability [5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15]. 

Reduction is a primitive operation in parallel computing. In 

this paper, we evaluate parallel implementations of the integer 

sum reduction in SYCL on GPUs. Specifically, we explain our 

implementations of the reduction using atomic functions 

(atomics), shared local memory, vectorized memory accesses, and 

parameterized workload sizes. Then, we evaluate its performance 

with respect to tunable parameters on an Intel integrated GPU and 

Nvidia discrete GPUs. In addition, we evaluate major open-source 

implementations of the reduction for performance comparison. 

The results show that it is important to tune work-group size, 

vector width, and workload size to achieve the optimal 

performance for the sum reduction on a target device. By tuning 

the parameters, we can achieve 1.4X performance speedup over 

the open-source implementations on an Intel integrated GPU. 

Compared with the open-source vendor-specific implementations 

of the reduction, our SYCL implementations with parameter 

tuning are 0.3% to 3% faster than the templated and device 

reductions on Nvidia GPUs. While the templated and device 

reductions are mature for parallel reduction on an Nvidia GPU, 

there is a potential of improving the performance of the 

framework-agnostic reduction class supported by SYCL 

compilers.  

The rest of the paper is organized as follows. In Section II, we 

contrast the SYCL and OpenCL programming models from an 

application perspective. Then, we give an overview of SYCL with 

CUDA support, and describe the scope of the reduction in our 

study. Section III explains the SYCL kernels and evaluates the 

performance of the reduction implementations on the GPUs. 

Section IV summarizes related work, and Section V concludes the 

paper. 

2 Background 

2.1  SYCL Overview 
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Figure 1: CUDA target processing in the SYCL compiler [22] 

A SYCL application is logically structured in three scopes: a 

kernel scope, a command-group scope, and an application scope. 

A kernel scope specifies a kernel, typically a compute-intensive 

function, that will be offloaded to a device (e.g., a GPU) for 

acceleration. A command-group scope specifies a unit of work 

that comprises of a kernel function and accessors to data allocated 

in global, local, or constant memory address space [1]. An 

application scope specifies all other code beyond a command-

group scope. A SYCL kernel function may be defined by the body 

of a lambda function, by a function object, or by a binary 

generated from an OpenCL kernel string. Although an OpenCL 

kernel is interoperable in the SYCL programming model, we 

implement kernels functions using lambda. 

Table 1 shows the major differences between an OpenCL 

application and a SYCL application. Searching hardware 

platforms and creating context for each platform’s device in 

OpenCL can be simplified to the instantiation of a device selector 

class in SYCL. A selector searches a device of a user’s provided 

preference (e.g., GPU) at runtime. The SYCL queue class 

encapsulates a command queue for scheduling kernels on a 

device. A kernel function in SYCL can be invoked as a lambda 

function. It is grouped into a command group object. Then, it is 

submitted to execution via a command queue. Hence, steps 6 to 

10 in OpenCL are mapped to the definition of a lambda function 

and submission of its command group to a SYCL queue. Data 

transfers between a host and a device can be implicitly realized by 

SYCL accessors. The SYCL event class deals with event 

handling. Releasing memory resources, such as a queue, a 

program, a kernel, and memory objects, can be handled by the 

SYCL runtime implicitly. Compared to the number of steps taken 

for an OpenCL application, SYCL reduces the number of 

programming steps by half with the high-level abstraction.  

2.2  SYCL with CUDA Support 

Nvidia CUDA [ 16 ], which was introduced in 2007, has 

successfully enabled the use of a GPU as a programmable 

general-purpose computing device. However, CUDA is a 

proprietary programming model for Nvidia GPUs. In contrast to 

CUDA, the OpenCL application-programming interface (API) is a 

lower-level abstraction compared to the commonly used CUDA 

API, thus requiring more time and effort to develop an OpenCL 

host program for the management of device, memory, and kernel 

execution. 

Acknowledging CUDA’s established presence in high-

performance computing, researchers have been striving for a 

portability-enhancing path for a wider set of platforms [17, 18, 19, 

20]. SYCL with CUDA support is built upon the LLVM compiler 

framework [21 ]. The experimental CUDA support is publicly 

available in the Intel branch of the LLVM repository [22].  

Figure 1 shows the flow that enables a SYCL program to 

execute on an Nvidia GPU. The details of the compiler 

infrastructure are described in [23]. The NVPTX backend, which 

generates a machine model and low-level virtual instructions 

(PTX) [ 24 ] for a source program, allows for a better 

understanding of the compiler optimizations applied to a source 

program.  

2.3  Sum Reduction 

Sum reduction is a primitive operation in parallel computing. The 

scope of our study is the unsegmented form of sum reduction. 

Taking a binary associative operator “+” and an array of “M” 

numbers as inputs, the reduction returns as output one value. 

Here, input values, output sum, and “M” are integers. Listing 1 

shows the sequential integer sum reduction as a reference.  

  int numbers[M]; 

  int sum = 0; 

  for ( int i = 0; i < M; i++ ) 

  sum += numbers[i]; 

Listing 1: The sequential integer sum reduction in C 

For the integer sum reduction, its operations can be done in 

any order due to the associativity and commutativity of integer 

additions. Hence, we can divide the reduction into independent 

partial sums, compute each partial sum in an arbitrary order, and 

produce a result by combining these partial sums. The idea can be 

generalized to reductions on vectors of arbitrary size. 

Table 1: Mapping from OpenCL to SYCL 

Step OpenCL SYCL 

1 Platform query 

Device selector class 2 Device query of a platform 

3 Create context for devices 

4 Create command queue for context Queue class 

5 Create memory objects Buffer class 

6 Create program object 

Lambda expressions 
7 Build a program 

8 Create kernel(s) 

9 Set kernel arguments 

10 
Enqueue a kernel object for execution 

Submit a SYCL kernel 

to a queue 

11 Transfer data from device to host Implicit via accessors 

12 Event handling Event class 

13 Release resources Implicit via destructor 

 

 



  

 

 

 

3 SYCL Implementations of the Sum Reduction 

Our implementations are based on the idea that the integer sum 

reduction can be divided into independent partial sums, which can 

be computed in an arbitrary order to produce a result. 

3.1  Reduction with Shared Local Memory 

Listing 2 shows the reduction in which partial sums are computed 

using a shared local memory [1]. For clarity of description, we 

omit the namespace “cl::sycl::” required for accessing SYCL 

classes, methods, variables, etc. The “parallel_for” member 

function of the SYCL handler class provides an interface to define 

and invoke a SYCL kernel function in a command group (cg). The 

“nd_item” class encapsulates information to identify local and 

global identifiers of work-items specified in a three-dimensional 

space in a work-group. In the kernel, “sum” is a SYCL accessor to 

a shared local memory for storing partial sum computed by all 

work-items in a work-group; “input” and “output” are accessors to 

global memories for integers and the sum of integers, 

respectively. The first work-item in each work-group resets the 

sum. Then, a barrier synchronizes all work-items in a work-group 

to wait for the initialization of the local sum. After atomic 

additions have been performed by all work-items in a work-group, 

the last work-item in each group atomically adds these partial 

sums to the output. The global work size (“gws”) is equal to the 

number of integers to sum (“M”) while the local work size or 

work-group size (“lws”) is a tunable parameter. 

3.2  Reduction with Vectorized Memory Accesses 

We attempt to improve the efficiency of global memory accesses 

with vectorized memory accesses. Listing 3 shows the kernel in 

SYCL-pseudocode with the number of vector lanes “N”, which is 

a power of two, ranging from 1 to a maximum value of 16. The 

kernel shown in Listing 2 can be considered as a specific case of 

this kernel where “N” equals one. Using a SYCL vector class and 

its method, each work-item fetches “N” consecutive data from 

global memory as a vector. Then, it sums up the contents of the 

vector elements and stores the result in an intermediate variable 

“r”. After atomic additions have been performed by all work-

items in a work-group, the last work-item in each group 

atomically adds the partial sum to the output. The vectorized 

memory loads reduce the global work size by a factor of “N”. The 

number of atomics over a shared local memory are also reduced 

by a factor of “N”.  

3.3  Reduction with Parameterized Workload Sizes 

As an alternative to vectorized memory accesses, we can increase 

the workload assigned to each work-item. As shown in Listing 4, 

each work-item in a work-group is assigned the workload of 

accumulating the numbers read from memory addresses “i”, 

“i+WGS”, “i+2×WGS”,…, “i+L×WGS”, where “i”, “WGS”, and 

“L” are the memory address for the first integer accessed by each 

work-item in a work-group, the work-group size, and the 

workload size assigned to each work-item, respectively. The sum 

of integers is stored in an intermediate variable “r”. After atomic 

additions have been performed by all work-items in a work-group, 

the last work-item in each group atomically adds these partial 

sums to the output. In contrast to “N” which is capped at 16, “L” 

is a power of two with the constraint that the global work size 

(i.e., “M/L”) is no less than the local work size. 

1 cgh.parallel_for<class reduce>( 

2   nd_range<1>(gws, lws), [=](nd_item<1> item) { 

3   int gid = item.get_global_id(0); 

4   int lid = item.get_local_id(0); 

5   int blk = item.get_group(0); 

6   int WGS = item.get_local_size(0); 

7   if (lid == 0) sum[0].store(0); 

8   item.barrier(access::fence_space::local_space); 

9   int start = blk * WGS * L + lid; 

10  int end = (blk+1) * WGS * L; 

11  int r = 0; 

12  for (int i = start; i < end; i = i + WGS) 

13    r += input[i]; 

14  atomic_fetch_add(sum[0], r); 

15  item.barrier(access::fence_space::local_space); 

16  if (lid == WGS-1) { 

17    int partial_sum = atomic_load(sum[0]); 

18    atomic_fetch_add(out[0], partial_sum); 

19  } 

20}); 

 

Listing 4: The SYCL kernel scope of the hierarchical reduction 
with parameterized workload size 
 

1 cgh.parallel_for<class reduce>( 

2   nd_range<1>(gws, lws),[=](nd_item<1> item) { 

3   int gid = item.get_global_id(0); 

4   int lid = item.get_local_id(0); 

5   int WGS = item.get_local_size(0); 

6   if (lid == 0) sum[0].store(0); 

7   item.barrier(access::fence_space::local_space); 

8   atomic_fetch_add(sum[0], input[gid]); 

9   item.barrier(access::fence_space::local_space); 

10  if (lid == WGS-1) { 

11    int partial_sum = atomic_load(sum[0]); 

12    atomic_fetch_add(out[0], partial_sum); 

13  } 

14}); 

 

Listing 2: The SYCL kernel scope of the hierarchical reduction 

over global and shared local memories 

 

1 cgh.parallel_for<class reduce>( 

2   nd_range<1>(gws, lws), [=](nd_item<1> item) { 

3   vec<int, N> vi; 

4   int gid = item.get_global_id(0); 

5   int lid = item.get_local_id(0); 

6   int WGS = item.get_local_size(0); 

7   vi.load(gid, input.get_pointer()); 

8   int r = vi.s0() + vi.s1() + … + vi.sN-1(); 

9   if (lid == 0) sum[0].store(0); 

10  item.barrier(access::fence_space::local_space); 

11  atomic_fetch_add(sum[0], r); 

12  item.barrier(access::fence_space::local_space); 

13  if (lid == WGS-1) { 

14    int partial_sum = atomic_load(sum[0]); 

15    atomic_fetch_add(out[0], partial_sum); 

16  } 

17}); 

 

Listing 3: The SYCL kernel scope of the hierarchical reduction 

with vectorized memory accesses 



  

 

 

 

4 Experiment 

4.1  Setup 

We evaluate the reductions on an Intel integrated GPU (UHD 

Graphics 630) and two Nvidia discrete GPUs (P100 and V100). 

The architecture of the integrated GPU is Coffee Lake GT2, 

Generation 9.5 [25]. It has 24 compute units running at 1.15 GHz. 

The maximum work-group size supported by the device driver is 

256. The P100 has 56 multiprocessors. The default application 

clock speed for the graphics is 1.189 GHz and the memory clock 

715 MHz. The V100 has 80 multiprocessors. The default 

application clock speed for the graphics is 1.312 GHz and the 

memory clock 877 MHz. The maximum work-group size 

supported by the device driver is 1024. For the BabelStream 

benchmark, the maximum memory bandwidths we observe are 

approximately 37 GB/s, 426 GB/s, and 853 GB/s on the UHD630, 

P100, and V100 GPUs, respectively. When targeting the Intel 

GPU, we build the SYCL programs with the Gold release of the 

Intel oneAPI Base Toolkit. When targeting the Nvidia GPUs, we 

build the same SYCL programs with the CUDA-enabled SYCL 

compiler. The versions of the CUDA software development kit 

are 11.0 and 11.2 for the P100 and V100 GPUs, respectively. The 

compilers’ optimization option is “-O3”.  

We measure the kernel execution time of the sum reduction on 

a device for performance evaluation. While an integrated GPU 

does not incur PCIe communication overhead, it is not designed to 

match the raw performance of a discrete GPU [25]. Hence, our 

evaluation is focused on the impacts of reduction implementations 

upon the kernel performance for each GPU. The number of 

integers to reduce on a GPU are 1048576000, approximately 4 

GB in memory size. Reduction over sufficiently large numbers 

may mitigate variances in observed kernel execution time across 

the range of work-group size. Kernel time is measured with the 

command-line profilers: the intercept layer for OpenCL 

applications [26] and the Nvidia performance profiler [27]. We 

use the average execution time of 100 invocations of a kernel for 

the reduction performance. The GPU results are verified by 

comparing them with the expected results. 

4.2  Experimental Results 
Figure 2 shows the execution time in milliseconds (ms) of the 

kernels shown in Listing 3 with respect to the work-group sizes 

and vector widths on the UHD630. The work-group size ranges 

from 16 to 256 and the vector width from 1 to the maximum value 

of 16. We omit kernel time for the work-group sizes ranging from 

1 to 8 because their execution time becomes significantly longer. 

For a given vector width, the work-group sizes ranging from 64 to 

256 see the lowest execution time. On the other hand, a vector 

width of four sees the lowest execution time for most work-group 

sizes. The execution time begins to increase when the width 

increases from 4 to 8 or from 8 to16. When the work-group size is 

64 and the vector width is 4, the minimum execution time is 114.3 

ms. When the work-group size is 16 and the vector width is 1, the 

longest execution time is 749.3 ms. Hence, tuning the work-group 

size and vector width can improve the performance by a factor of 

6.6. 

Figure 3 shows the execution time in milliseconds of the 

kernels shown in Listing 4 with respect to the work-group sizes 

and workload sizes on the UHD630. The workload size ranges 

from 1 to 32. Though the execution time decreases monotonically 

when the work-group size is 16 or 32, larger workload sizes 

increase the kernel execution time when the work-group sizes are 

over 32. We observe that the performance trend is similar to that 

shown in Figure 2. Hence, it is important to tune the two 

parameters for improving the performance. When the work-group 

size is 128 and the vector width is 4, the minimum kernel 

execution time is 110.9 ms, approximately 3% shorter than the 

minimum time shown in Figure 2. When the work-group size is 

16 and the vector width is 1, the longest execution time is 758.5 

ms. Hence, tuning the work-group size and vector width can speed 

up the performance by a factor of 6.8. 

Figure 4 shows the execution time in milliseconds of the 

 

Figure 3: Average execution time of the kernels shown in 

Listing 4 with respect to the work-group sizes and workload 

sizes (L) on the Intel UHD630 GPU 
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Figure 2: Average execution time of the kernels shown in 

Listing 3 with respect to the work-group sizes and vector 

widths (N) on the Intel UHD630 GPU 
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kernels shown in Listing 3 with respect to the work-group sizes 

and vector widths on the P100. The work-group size ranges from 

64 to 1024 so that the total number of work-group sizes is equal to 

the total number of work-group sizes selected for the Intel GPU. 

The range of the vector width is from 1 to 16. Interestingly, a 

vector width of four also sees the lowest execution time for most 

work-group sizes. On the other hand, a vector width of 16 

increases the lowest kernel execution time across the work-group 

sizes by more than 50%. When the work-group size is 512 and the 

vector width is 4, the minimum execution time is 9.197 ms. When 

the work-group size is 64 and the vector width is 1, the longest 

execution time is 41.8 ms. Hence, tuning the work-group size and 

workload size can improve the performance by a factor of 4.6.  

Figure 5 shows the execution time in milliseconds of the 

kernels shown in Listing 4 with respect to the work-group sizes 

and vector widths on the P100. The work-group size ranges from 

64 to 1024. When the work-group size is 64 and the workload size 

is 8, the minimum execution time is 9.207 ms. When the work-

group size is 64 and the workload size is 1, the longest execution 

time is 41.8 ms. Hence, tuning the work-group size and workload 

size can improve the performance by a factor of 4.5.  

Figure 6 shows the execution time in milliseconds of the 

kernels shown in Listing 3 with respect to the work-group sizes 

and vector widths on the V100 GPU. When the work-group size is 

128, 256 or 512, and the vector width is 4, the minimum 

execution time is 4.671 ms. When the work-group size is 64 and 

 

Figure 4: Average execution time of the kernels shown in 

Listing 3 with respect to the work-group sizes and vector 

widths (N) on the Nvidia P100 GPU 
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Figure 5: Average execution time of the kernels shown in 

Listing 4 with respect to the work-group sizes and workload 

sizes (L) on the Nvidia P100 GPU 
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Figure 6: Average execution time of the kernels shown in 

Listing 3 with respect to the work-group sizes and vector 

widths (N) on the Nvidia V100 GPU 
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Figure 7: Average execution time of the kernels shown in 

Listing 4 with respect to the work-group sizes and workload 

sizes (L) on the Nvidia V100 GPU 
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the vector width is 1, the longest execution time is 23.1 ms. 

Hence, tuning the work-group size and workload size can improve 

the performance by a factor of 4.9. 

Figure 7 shows the execution time in milliseconds of the 

kernels shown in Listing 4 with respect to the work-group sizes 

and workload sizes on the V100 GPU. When the work-group size 

is 64, and the workload size is 16, the minimum execution time is 

4.72 ms. When the work-group size is 64 and the vector width is 

1, the longest execution time is 23.2 ms. Hence, tuning the work-

group size and workload size can improve the performance by a 

factor of 4.9. 

4.3 Performance Comparison with Open-source 

Implementations 
We measure the performance of the sum reductions by evaluating 

open-source benchmarks and libraries. In the OpenCL reduction 

benchmark [28 ], three OpenCL kernels were developed using 

shared local memory, sub-group reduction, and work-group 

reduction, respectively. The latter two kernels require the OpenCL 

2.0 support. 

The SYCL compilers have been supporting a framework-

agnostic reduction class (reducer) that hides the implementation 

details of reductions, allowing for the specification of a reduction 

operator using a function object. The code snippet in Listing 5 

shows that the SYCL reducer performs the sum reduction by 

calling the “combine” method. The details of the reduction object 

and its usage are described in [29].  

 
1 cgh.parallel_for<class reduce>( 

2   nd_range<1>(gws, lws), reducer, [=]  

3   (nd_item<1> item, auto &sum) { 

4      int gid = item.get_global_id(0); 

5      sum.combine(input[gid]); 

6 }); 

 

Listing 5: The sum reduction using the SYCL reducer class 

 

Thrust provides templated interfaces to algorithms and data 

structures designed for high-performance heterogeneous 

computing [30]. Thrust abstractions are agnostic of any parallel 

framework. The “thrust::reduce” function in Thrust, which is 

similar to the C++ Standard Template Library’s 

“std::accumulate”, computes the sum of all the elements under a 

specified range. The code snippet in Listing 6 demonstrates how 

“thrust::reduce” computes the sum of a sequence of integers 

through a device vector. 

 
1 thrust::device_vector<int> d_input = input; 

2 sum = thrust::reduce(d_input.begin(),  

                       d_input.end(), 

                       0, thrust::plus<int>()); 

 

Listing 6: The sum reduction with Thrust 

 

CUB is a state-of-the-art library of collective primitives and 

utilities [31]. CUB is specific to CUDA C++ and its interfaces 

explicitly accommodate CUDA-specific features. CUB provides 

device-wide, parallel reductions across a sequence of data items 

residing within device-accessible memory [32]. The code snippet 

in Listing 7 shows how the reduction computes a sequence of “M” 

integers through a pre-allocated temporary storage on a GPU 

device. 

 
1 cub::DeviceReduce::Sum(d_temp_storage,  

2   temp_storage_bytes, d_input, d_sum, M); 

 

Listing 7: The sum reduction with CUB 

 

Figure 8 show the execution time in milliseconds of six 

kernels on the UHD630 when the work-group size ranges from 16 

to 256. “k1”, “k2”, and “k3” represent the three OpenCL kernels, 

respectively. “k4” constructs a SYCL reduction object for integer 

sum. For “k5” and “k6”, we select the ones that achieve minimum 

execution time in Figure 2 and Figure 3, respectively. The 

minimum execution time among the first four kernels is 516 ms, 

258.3 ms, 229.7 ms, 158 ms, and 182 ms for the five work-group 

sizes, respectively. Hence, we can obtain a performance speedup 

ranging from 1.4 (the work-group size of 128) to 3.2 (the work-

group size of 16) over the publicly available implementations. 

Because the drivers of the two Nvidia GPUs do not fully 

support OpenCL 2.0 features, we focus on the performance of the 

reductions using CUDA libraries and SYCL reducer. On the P100 

GPU, the execution time of the reduction kernels implemented 

with Thrust, CUB, and the SYCL reducer is 9.487 ms, 9.224 ms, 

and 40.4 ms, respectively. Hence, the fastest SYCL 

implementation is approximately 3% and 0.3% faster than the 

templated reduction in Thrust and the device reduction in CUB, 

respectively. On the V100 GPU, the execution time of the 

reduction kernels implemented with Thrust, CUB, and the SYCL 

reducer is 4.76 ms, 4.69 ms, and 11.62 ms, respectively. Hence, 

the fastest SYCL implementation is approximately 1.9% and 0.4% 

faster than the templated reduction in Thrust and the device 

 

Figure 8: Average execution time of the six kernels with 

respect to the work-group sizes on the Intel UHD630 GPU 
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reduction in CUB, respectively.  

The performance comparison indicates that Thrust and CUB 

are mature libraries for parallel reduction on an Nvidia GPU. 

However, there is a large optimization space for the SYCL 

reducer class. 

5 Related Work 

Previous studies characterized the performance of reductions and 

atomic functions on Nvidia GPUs [33, 34, 35]. In [31], the author 

evaluates the performance of seven reduction kernels over 4M 

numbers on an Nvidia G80 GPU. Each kernel improves the 

performance of the previous one. The kernel, which achieves the 

highest performance, has each thread sum up multiple elements in 

a shared local memory. While the block size is limited by the 

GPU to 512 threads, a block size of 128 can reach the highest 

kernel performance on the G80. In [32], the authors point out that 

tree-based algorithms are quite fast, but they suffer from too much 

synchronization because a barrier is needed for each loop 

iteration. The number of elements that a thread loads from global 

memory can be tuned to achieve a certain speed-up, but they did 

not pay attention to the tuning. In [33], the authors discover that, 

with appropriate atomic collision reduction techniques, the atomic 

implementation can outperform the non-atomics implementation, 

even for benchmarks known to have high-performance non-

atomics GPU implementations. Atomics could greatly reduce 

coding complexity as thread-private object management and 

explicit thread-communication (for the shared data objects 

protected by atomic operations) are not necessary.  

Power-of-two work-group sizes between 64 and 256 are 

recommended by the vendor to keep the utilization of an Intel 

GPU high [36]. This is consistent with our findings. While early 

study shows that a vector width of four is the preferred size on 

Intel and Nvidia GPUs [37], the performance of the reduction also 

depends on work-group sizes. When the work-group size is 16 on 

the Intel GPU and 64 on the Nvidia GPUs, a vector with eight 

elements achieves higher performance.  

While atomics should be used with caution due to the 

synchronization overhead, scientific applications can also achieve 

higher performance by parallelizing sequential executions with 

atomics on emerging accelerators [38 , 39 ]. The author of the 

OpenCL benchmark evaluates the reduction performance for a 

work-group size of 256 and 6291456 integers (24MB) on an Intel 

HD Graphics 530. We evaluate the performance impact of work-

group sizes on sufficiently large numbers of integers. As far as we 

know, the performance of the reducer class has not been published 

on GPUs of different vendors.  

6 Conclusion 

SYCL is a promising programming model for heterogenous 

computing. We explain our SYCL implementations of the integer 

sum reduction using shared local memory, atomic operations, 

vectorized memory accesses, and parametrized workload sizes. 

With the maturing SYCL compilers, we evaluate the performance 

of the reductions on the Intel and Nvidia GPUs. The results show 

that tuning work-group sizes, vector widths, and workload sizes 

are important for performance improvement for integrated and 

discrete GPUs. Compared to the performance of the OpenCL 

kernels and SYCL reducer, our SYCL implementations can 

achieve 1.4X speedup on an Intel UHD630 GPU. On an Nvidia 

P100 GPU, our implementations are 3% and 0.3% faster than the 

templated reduction in Thrust and the device reduction in CUB, 

respectively. On an Nvidia V100 GPU, our implementations are 

1.9% and 0.4% faster than the templated reduction in Thrust and 

the device reduction in CUB, respectively. Thrust and CUB are 

mature libraries for parallel reduction on an Nvidia GPU. 

However, there is a large optimization space for the SYCL 

reducer class. While the number of integers to reduce are not 

arbitrary in our implementations, the potential of performance 

improvement using the SYCL programming model will drive the 

portability path with the development of SYCL compilers. As 

future work, we will investigate the performance of SYCL 

applications that contain reduction kernels. 
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