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ABSTRACT

SYCL is a promising programming model for heterogeneous
computing—allowing a single-source code to target devices from
multiple vendors. One significant task performed on these
accelerators is a primitive operation for integer sum reduction.
This paper presents several SYCL implementations of integer sum
reduction—using atomic functions, shared local memory,
vectorized memory accesses and parameterized workload sizes—
to compare the performance and maturity of SYCL against open-
source vendor-specific implementations of the same reduction.
For a sufficiently large number of integers, tuning the parameters
of our SYCL implementations achieves 1.4X speedup over the
open-source implementations on an Intel UHD630 integrated
GPU. The SYCL reduction is 3% faster than the templated
reduction in Thrust, and 0.3% faster than the device reduction in
CUB on an Nvidia P100 GPU. The SYCL reduction is 1.9% faster
than the templated reduction in Thrust, and 0.4% faster than the
device reduction in CUB on an Nvidia V100 GPU.
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1 Introduction

With the support of major graphics hardware vendors as well as
personal computer vendors interested in offloading computations
[1], Open Computing Language (OpenCL) is an open standard
maintained by the Khronos group. OpenCL offers programming
portability across a wide range of software and hardware for
graphics processing units (GPUs), modern central processing units
(CPUs), and other accelerators [2]. As opposed to the OpenCL

programming model in which host and device codes are written in
two languages [3], the promising SYCL standard specifies a
cross-platform abstraction layer that enables programming of a
heterogeneous computing system using standard C++ [4]. It can
combine host and device codes for an application in a type-safe
way to improve development productivity. The goals of the
single-source programming model are to improve programming
productivity and performance portability [5, 6,7, 8,9, 10, 11, 12,
13, 14, 15].

Reduction is a primitive operation in parallel computing. In
this paper, we evaluate parallel implementations of the integer
sum reduction in SYCL on GPUs. Specifically, we explain our
implementations of the reduction using atomic functions
(atomics), shared local memory, vectorized memory accesses, and
parameterized workload sizes. Then, we evaluate its performance
with respect to tunable parameters on an Intel integrated GPU and
Nvidia discrete GPUs. In addition, we evaluate major open-source
implementations of the reduction for performance comparison.
The results show that it is important to tune work-group size,
vector width, and workload size to achieve the optimal
performance for the sum reduction on a target device. By tuning
the parameters, we can achieve 1.4X performance speedup over
the open-source implementations on an Intel integrated GPU.
Compared with the open-source vendor-specific implementations
of the reduction, our SYCL implementations with parameter
tuning are 0.3% to 3% faster than the templated and device
reductions on Nvidia GPUs. While the templated and device
reductions are mature for parallel reduction on an Nvidia GPU,
there is a potential of improving the performance of the
framework-agnostic reduction class supported by SYCL
compilers.

The rest of the paper is organized as follows. In Section I, we
contrast the SYCL and OpenCL programming models from an
application perspective. Then, we give an overview of SYCL with
CUDA support, and describe the scope of the reduction in our
study. Section III explains the SYCL kernels and evaluates the
performance of the reduction implementations on the GPUs.
Section IV summarizes related work, and Section V concludes the

paper.
2 Background
2.1 SYCL Overview
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Table 1: Mapping from OpenCL to SYCL

Step OpenCL SYCL
1 Platform query
2 Device query of a platform Device selector class
3 Create context for devices
4 Create command queue for context Queue class
5 Create memory objects Buffer class
6 Create program object
7 Build a program .
3 Create kemel(s) Lambda expressions
9 Set kernel arguments
10 . . Submit a SYCL kernel
Enqueue a kernel object for execution
to a queue
11 Transfer data from device to host Implicit via accessors
12 Event handling Event class
13 Release resources Implicit via destructor

A SYCL application is logically structured in three scopes: a
kernel scope, a command-group scope, and an application scope.
A kernel scope specifies a kernel, typically a compute-intensive
function, that will be offloaded to a device (e.g., a GPU) for
acceleration. A command-group scope specifies a unit of work
that comprises of a kernel function and accessors to data allocated
in global, local, or constant memory address space [1]. An
application scope specifies all other code beyond a command-
group scope. A SYCL kermnel function may be defined by the body
of a lambda function, by a function object, or by a binary
generated from an OpenCL kernel string. Although an OpenCL
kernel is interoperable in the SYCL programming model, we
implement kernels functions using lambda.

Table 1 shows the major differences between an OpenCL
application and a SYCL application. Searching hardware
platforms and creating context for each platform’s device in
OpenCL can be simplified to the instantiation of a device selector
class in SYCL. A selector searches a device of a user’s provided
preference (e.g., GPU) at runtime. The SYCL queue class
encapsulates a command queue for scheduling kernels on a
device. A kernel function in SYCL can be invoked as a lambda
function. It is grouped into a command group object. Then, it is
submitted to execution via a command queue. Hence, steps 6 to
10 in OpenCL are mapped to the definition of a lambda function
and submission of its command group to a SYCL queue. Data
transfers between a host and a device can be implicitly realized by
SYCL accessors. The SYCL event class deals with event
handling. Releasing memory resources, such as a queue, a
program, a kernel, and memory objects, can be handled by the
SYCL runtime implicitly. Compared to the number of steps taken
for an OpenCL application, SYCL reduces the number of
programming steps by half with the high-level abstraction.

2.2 SYCL with CUDA Support

Nvidia CUDA [ 16 ], which was introduced in 2007, has
successfully enabled the use of a GPU as a programmable
general-purpose computing device. However, CUDA is a
proprietary programming model for Nvidia GPUs. In contrast to
CUDA, the OpenCL application-programming interface (API) is a
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Figure 1: CUDA target processing in the SYCL compiler [22]

lower-level abstraction compared to the commonly used CUDA
API, thus requiring more time and effort to develop an OpenCL
host program for the management of device, memory, and kernel
execution.

Acknowledging CUDA’s established presence in high-
performance computing, researchers have been striving for a
portability-enhancing path for a wider set of platforms [17, 18, 19,
20]. SYCL with CUDA support is built upon the LLVM compiler
framework [21]. The experimental CUDA support is publicly
available in the Intel branch of the LLVM repository [22].

Figure 1 shows the flow that enables a SYCL program to
execute on an Nvidia GPU. The details of the compiler
infrastructure are described in [23]. The NVPTX backend, which
generates a machine model and low-level virtual instructions
(PTX) [ 24 ] for a source program, allows for a better
understanding of the compiler optimizations applied to a source
program.

2.3 Sum Reduction

Sum reduction is a primitive operation in parallel computing. The
scope of our study is the unsegmented form of sum reduction.
Taking a binary associative operator “+” and an array of “M”
numbers as inputs, the reduction returns as output one value.
Here, input values, output sum, and “M” are integers. Listing 1
shows the sequential integer sum reduction as a reference.

int numbers[M];

int sum = 0;

for ( int 1 = 0; 1 < M; 1i++ )
sum += numbers([i];

Listing 1: The sequential integer sum reduction in C

For the integer sum reduction, its operations can be done in
any order due to the associativity and commutativity of integer
additions. Hence, we can divide the reduction into independent
partial sums, compute each partial sum in an arbitrary order, and
produce a result by combining these partial sums. The idea can be
generalized to reductions on vectors of arbitrary size.



3 SYCL Implementations of the Sum Reduction

Our implementations are based on the idea that the integer sum
reduction can be divided into independent partial sums, which can
be computed in an arbitrary order to produce a result.

3.1 Reduction with Shared Local Memory

Listing 2 shows the reduction in which partial sums are computed
using a shared local memory [1]. For clarity of description, we
omit the namespace “cl::sycl::” required for accessing SYCL
classes, methods, variables, etc. The “parallel for” member
function of the SYCL handler class provides an interface to define
and invoke a SYCL kernel function in a command group (cg). The
“nd_item” class encapsulates information to identify local and
global identifiers of work-items specified in a three-dimensional
space in a work-group. In the kernel, “sum” is a SYCL accessor to
a shared local memory for storing partial sum computed by all
work-items in a work-group; “input” and “output” are accessors to
global memories for integers and the sum of integers,
respectively. The first work-item in each work-group resets the
sum. Then, a barrier synchronizes all work-items in a work-group
to wait for the initialization of the local sum. After atomic
additions have been performed by all work-items in a work-group,
the last work-item in each group atomically adds these partial
sums to the output. The global work size (“gws”) is equal to the
number of integers to sum (“M”) while the local work size or
work-group size (“Iws”) is a tunable parameter.

1 cgh.parallel for<class reduce>(

2 nd range<l>(gws, lws),[=] (nd item<l> item) {

3 int gid = item.get global id(0);

4 int 1lid = item.get local id(0);

5 int WGS = item.get local size(0);

6 if (lid == 0) sum[0].store(0);

7 item.barrier (access::fence_ space::local space);
8 atomic_ fetch add(sum[0], input[gid]);

9 item.barrier (access::fence_space::local space);
10 if (lid == WGS-1) {

11 int partial sum = atomic load(sum[0]);

12 atomic_ fetch add(out[0], partial sum);

13 1}

14});

Listing 2: The SYCL kernel scope of the hierarchical reduction
over global and shared local memories

3.2 Reduction with Vectorized Memory Accesses

We attempt to improve the efficiency of global memory accesses
with vectorized memory accesses. Listing 3 shows the kernel in
SYCL-pseudocode with the number of vector lanes “N”, which is
a power of two, ranging from 1 to a maximum value of 16. The
kernel shown in Listing 2 can be considered as a specific case of
this kernel where “N” equals one. Using a SYCL vector class and
its method, each work-item fetches “N” consecutive data from
global memory as a vector. Then, it sums up the contents of the
vector elements and stores the result in an intermediate variable
“r”. After atomic additions have been performed by all work-
items in a work-group, the last work-item in each group
atomically adds the partial sum to the output. The vectorized

1 cgh.parallel for<class reduce>(

2 nd range<l>(gws, 1lws), [=](nd item<l> item) ({
3 vec<int, N> vi;

4 int gid = item.get global id(0);

5 int lid = item.get local id(0);

6 int WGS = item.get local size(0);

7 vi.load(gid, input.get pointer());

8
9

int r = vi.sO0() + vi.sl() + .. + vi.sN-1();

if (1id == 0) sum[0].store(0);
10 item.barrier (access::fence space::local space);
11 atomic fetch add(sum[0], r);

12 item.barrier (access::fence space::local space);
13 if (lid == WGS-1) {

14 int partial sum = atomic_load(sum[0]);
15 atomic fetch add(out[0], partial sum);
16 1}
17});

Listing 3: The SYCL kernel scope of the hierarchical reduction
with vectorized memory accesses

memory loads reduce the global work size by a factor of “N”. The
number of atomics over a shared local memory are also reduced
by a factor of “N”.

3.3 Reduction with Parameterized Workload Sizes

As an alternative to vectorized memory accesses, we can increase
the workload assigned to each work-item. As shown in Listing 4,
each work-item in a work-group is assigned the workload of

1331}

accumulating the numbers read from memory addresses “i”,
“IHWGS?”, “i+2xWGS”,..., “itLxWGS”, where “i”, “WGS”, and
“L” are the memory address for the first integer accessed by each
work-item in a work-group, the work-group size, and the
workload size assigned to each work-item, respectively. The sum
of integers is stored in an intermediate variable “r”. After atomic
additions have been performed by all work-items in a work-group,
the last work-item in each group atomically adds these partial
sums to the output. In contrast to “N” which is capped at 16, “L”
is a power of two with the constraint that the global work size
(i.e., “M/L”) is no less than the local work size.

cgh.parallel for<class reduce>(
nd_range<l>(gws, lws), [=](nd_item<l> item) {
int gid = item.get global id(0);
int 1lid = item.get local id(0);
int blk = item.get group(0);
int WGS = item.get local size(0);
if (lid == 0) sum[0].store(0);
item.barrier (access::fence_space::local_ space);
int start = blk * WGS * L + 1lid;
10 int end = (blk+l) * WGS * L;
11 int r = 0;
12 for (int i = start; i < end; 1 = 1 + WGS)
13 r += input[i];
14 atomic fetch add(sum[0], r);
15 item.barrier (access::fence space::local space);
16 if (lid == WGS-1) { B -

O ~Jo Ul WwN -

17 int partial sum = atomic_load(sum[0]);
18 atomic_fetch add(out[0], partial sum);
19 }
20}) ;

Listing 4: The SYCL Kkernel scope of the hierarchical reduction
with parameterized workload size



4 Experiment

4.1 Setup

We evaluate the reductions on an Intel integrated GPU (UHD
Graphics 630) and two Nvidia discrete GPUs (P100 and V100).
The architecture of the integrated GPU is Coffee Lake GT2,
Generation 9.5 [25]. It has 24 compute units running at 1.15 GHz.
The maximum work-group size supported by the device driver is
256. The P100 has 56 multiprocessors. The default application
clock speed for the graphics is 1.189 GHz and the memory clock
715 MHz. The V100 has 80 multiprocessors. The default
application clock speed for the graphics is 1.312 GHz and the
memory clock 877 MHz. The maximum work-group size
supported by the device driver is 1024. For the BabelStream
benchmark, the maximum memory bandwidths we observe are
approximately 37 GB/s, 426 GB/s, and 853 GB/s on the UHD630,
P100, and V100 GPUs, respectively. When targeting the Intel
GPU, we build the SYCL programs with the Gold release of the
Intel oneAPI Base Toolkit. When targeting the Nvidia GPUs, we
build the same SYCL programs with the CUDA-enabled SYCL
compiler. The versions of the CUDA software development kit
are 11.0 and 11.2 for the P100 and V100 GPUs, respectively. The
compilers’ optimization option is “-O3”.

We measure the kernel execution time of the sum reduction on
a device for performance evaluation. While an integrated GPU
does not incur PCle communication overhead, it is not designed to
match the raw performance of a discrete GPU [25]. Hence, our
evaluation is focused on the impacts of reduction implementations
upon the kernel performance for each GPU. The number of
integers to reduce on a GPU are 1048576000, approximately 4
GB in memory size. Reduction over sufficiently large numbers
may mitigate variances in observed kernel execution time across
the range of work-group size. Kernel time is measured with the
command-line profilers: the intercept layer for OpenCL
applications [26] and the Nvidia performance profiler [27]. We
use the average execution time of 100 invocations of a kernel for

Kernel execution time on the integrated GPU
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Figure 2: Average execution time of the kernels shown in
Listing 3 with respect to the work-group sizes and vector
widths (N) on the Intel UHD630 GPU

the reduction performance. The GPU results are verified by
comparing them with the expected results.

4.2 Experimental Results

Figure 2 shows the execution time in milliseconds (ms) of the
kernels shown in Listing 3 with respect to the work-group sizes
and vector widths on the UHD630. The work-group size ranges
from 16 to 256 and the vector width from 1 to the maximum value
of 16. We omit kernel time for the work-group sizes ranging from
1 to 8 because their execution time becomes significantly longer.
For a given vector width, the work-group sizes ranging from 64 to
256 see the lowest execution time. On the other hand, a vector
width of four sees the lowest execution time for most work-group
sizes. The execution time begins to increase when the width
increases from 4 to 8 or from 8 to16. When the work-group size is
64 and the vector width is 4, the minimum execution time is 114.3
ms. When the work-group size is 16 and the vector width is 1, the
longest execution time is 749.3 ms. Hence, tuning the work-group
size and vector width can improve the performance by a factor of
6.6.

Figure 3 shows the execution time in milliseconds of the
kernels shown in Listing 4 with respect to the work-group sizes
and workload sizes on the UHD630. The workload size ranges
from 1 to 32. Though the execution time decreases monotonically
when the work-group size is 16 or 32, larger workload sizes
increase the kernel execution time when the work-group sizes are
over 32. We observe that the performance trend is similar to that
shown in Figure 2. Hence, it is important to tune the two
parameters for improving the performance. When the work-group
size is 128 and the vector width is 4, the minimum Kkernel
execution time is 110.9 ms, approximately 3% shorter than the
minimum time shown in Figure 2. When the work-group size is
16 and the vector width is 1, the longest execution time is 758.5
ms. Hence, tuning the work-group size and vector width can speed
up the performance by a factor of 6.8.

Figure 4 shows the execution time in milliseconds of the

Kernel execution time on the integrated GPU

800
700
600
500
400
300

200 || |

o (N Wi hossr Bossr Do
16 32 64 128 256

Work-group size

El=] m[=2 m[=4 m[=8 mL=16 mL=32

Figure 3: Average execution time of the kernels shown in
Listing 4 with respect to the work-group sizes and workload
sizes (L) on the Intel UHD630 GPU



Kernel execution time on the P100 GPU
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Figure 4: Average execution time of the kernels shown in
Listing 3 with respect to the work-group sizes and vector
widths (N) on the Nvidia P100 GPU

Kernel execution time on the V100 GPU
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Figure 6: Average execution time of the kernels shown in
Listing 3 with respect to the work-group sizes and vector
widths (N) on the Nvidia V100 GPU

kernels shown in Listing 3 with respect to the work-group sizes
and vector widths on the P100. The work-group size ranges from
64 to 1024 so that the total number of work-group sizes is equal to
the total number of work-group sizes selected for the Intel GPU.
The range of the vector width is from 1 to 16. Interestingly, a
vector width of four also sees the lowest execution time for most
work-group sizes. On the other hand, a vector width of 16
increases the lowest kernel execution time across the work-group
sizes by more than 50%. When the work-group size is 512 and the
vector width is 4, the minimum execution time is 9.197 ms. When
the work-group size is 64 and the vector width is 1, the longest
execution time is 41.8 ms. Hence, tuning the work-group size and
workload size can improve the performance by a factor of 4.6.
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Figure 5: Average execution time of the kernels shown in
Listing 4 with respect to the work-group sizes and workload
sizes (L) on the Nvidia P100 GPU
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Figure 7: Average execution time of the kernels shown in
Listing 4 with respect to the work-group sizes and workload
sizes (L) on the Nvidia V100 GPU

Figure 5 shows the execution time in milliseconds of the
kernels shown in Listing 4 with respect to the work-group sizes
and vector widths on the P100. The work-group size ranges from
64 to 1024. When the work-group size is 64 and the workload size
is 8, the minimum execution time is 9.207 ms. When the work-
group size is 64 and the workload size is 1, the longest execution
time is 41.8 ms. Hence, tuning the work-group size and workload
size can improve the performance by a factor of 4.5.

Figure 6 shows the execution time in milliseconds of the
kernels shown in Listing 3 with respect to the work-group sizes
and vector widths on the V100 GPU. When the work-group size is
128, 256 or 512, and the vector width is 4, the minimum
execution time is 4.671 ms. When the work-group size is 64 and



the vector width is 1, the longest execution time is 23.1 ms.
Hence, tuning the work-group size and workload size can improve
the performance by a factor of 4.9.

Figure 7 shows the execution time in milliseconds of the
kernels shown in Listing 4 with respect to the work-group sizes
and workload sizes on the V100 GPU. When the work-group size
is 64, and the workload size is 16, the minimum execution time is
4.72 ms. When the work-group size is 64 and the vector width is
1, the longest execution time is 23.2 ms. Hence, tuning the work-
group size and workload size can improve the performance by a
factor of 4.9.

4.3 Performance Comparison with Open-source

Implementations

We measure the performance of the sum reductions by evaluating
open-source benchmarks and libraries. In the OpenCL reduction
benchmark [28], three OpenCL kernels were developed using
shared local memory, sub-group reduction, and work-group
reduction, respectively. The latter two kernels require the OpenCL
2.0 support.

The SYCL compilers have been supporting a framework-
agnostic reduction class (reducer) that hides the implementation
details of reductions, allowing for the specification of a reduction
operator using a function object. The code snippet in Listing 5
shows that the SYCL reducer performs the sum reduction by
calling the “combine” method. The details of the reduction object
and its usage are described in [29].

1 cgh.parallel for<class reduce>(

2 nd_range<l>(gws, 1lws), reducer, [=]
3 (nd_item<1> item, auto &sum) {

4 int gid = item.get global id(0);
5 sum.combine (input[gid]) ;

6

b
Listing 5: The sum reduction using the SYCL reducer class

Thrust provides templated interfaces to algorithms and data
structures  designed for high-performance heterogeneous
computing [30]. Thrust abstractions are agnostic of any parallel
framework. The “thrust::reduce” function in Thrust, which is
similar to the C++ Standard Template Library’s
“std::accumulate”, computes the sum of all the elements under a
specified range. The code snippet in Listing 6 demonstrates how
“thrust::reduce” computes the sum of a sequence of integers
through a device vector.

1 thrust::device vector<int> d input = input;
2 sum = thrust::reduce(d_input.begin(),
d input.end(),
0, thrust::plus<int>());

Listing 6: The sum reduction with Thrust

CUB is a state-of-the-art library of collective primitives and
utilities [31]. CUB is specific to CUDA C++ and its interfaces
explicitly accommodate CUDA-specific features. CUB provides
device-wide, parallel reductions across a sequence of data items

residing within device-accessible memory [32]. The code snippet
in Listing 7 shows how the reduction computes a sequence of “M”
integers through a pre-allocated temporary storage on a GPU
device.

1 cub::DeviceReduce::Sum(d temp storage,
2 temp storage bytes, d input, d sum, M);

Listing 7: The sum reduction with CUB

Figure 8 show the execution time in milliseconds of six
kernels on the UHD630 when the work-group size ranges from 16
to 256. “k1”, “k2”, and “k3” represent the three OpenCL kernels,
respectively. “k4” constructs a SYCL reduction object for integer
sum. For “k5” and “k6”, we select the ones that achieve minimum
execution time in Figure 2 and Figure 3, respectively. The
minimum execution time among the first four kernels is 516 ms,
258.3 ms, 229.7 ms, 158 ms, and 182 ms for the five work-group
sizes, respectively. Hence, we can obtain a performance speedup
ranging from 1.4 (the work-group size of 128) to 3.2 (the work-
group size of 16) over the publicly available implementations.

Because the drivers of the two Nvidia GPUs do not fully
support OpenCL 2.0 features, we focus on the performance of the
reductions using CUDA libraries and SYCL reducer. On the P100
GPU, the execution time of the reduction kernels implemented
with Thrust, CUB, and the SYCL reducer is 9.487 ms, 9.224 ms,
and 404 ms, respectively. Hence, the fastest SYCL
implementation is approximately 3% and 0.3% faster than the
templated reduction in Thrust and the device reduction in CUB,
respectively. On the V100 GPU, the execution time of the
reduction kernels implemented with Thrust, CUB, and the SYCL
reducer is 4.76 ms, 4.69 ms, and 11.62 ms, respectively. Hence,
the fastest SYCL implementation is approximately 1.9% and 0.4%
faster than the templated reduction in Thrust and the device
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Figure 8: Average execution time of the six kernels with
respect to the work-group sizes on the Intel UHD630 GPU



reduction in CUB, respectively.

The performance comparison indicates that Thrust and CUB
are mature libraries for parallel reduction on an Nvidia GPU.
However, there is a large optimization space for the SYCL
reducer class.

5 Related Work

Previous studies characterized the performance of reductions and
atomic functions on Nvidia GPUs [33, 34, 35]. In [31], the author
evaluates the performance of seven reduction kernels over 4M
numbers on an Nvidia G80 GPU. Each kernel improves the
performance of the previous one. The kernel, which achieves the
highest performance, has each thread sum up multiple elements in
a shared local memory. While the block size is limited by the
GPU to 512 threads, a block size of 128 can reach the highest
kernel performance on the G80. In [32], the authors point out that
tree-based algorithms are quite fast, but they suffer from too much
synchronization because a barrier is needed for each loop
iteration. The number of elements that a thread loads from global
memory can be tuned to achieve a certain speed-up, but they did
not pay attention to the tuning. In [33], the authors discover that,
with appropriate atomic collision reduction techniques, the atomic
implementation can outperform the non-atomics implementation,
even for benchmarks known to have high-performance non-
atomics GPU implementations. Atomics could greatly reduce
coding complexity as thread-private object management and
explicit thread-communication (for the shared data objects
protected by atomic operations) are not necessary.

Power-of-two work-group sizes between 64 and 256 are
recommended by the vendor to keep the utilization of an Intel
GPU high [36]. This is consistent with our findings. While early
study shows that a vector width of four is the preferred size on
Intel and Nvidia GPUs [37], the performance of the reduction also
depends on work-group sizes. When the work-group size is 16 on
the Intel GPU and 64 on the Nvidia GPUs, a vector with eight
elements achieves higher performance.

While atomics should be used with caution due to the
synchronization overhead, scientific applications can also achieve
higher performance by parallelizing sequential executions with
atomics on emerging accelerators [38, 39]. The author of the
OpenCL benchmark evaluates the reduction performance for a
work-group size of 256 and 6291456 integers (24MB) on an Intel
HD Graphics 530. We evaluate the performance impact of work-
group sizes on sufficiently large numbers of integers. As far as we
know, the performance of the reducer class has not been published
on GPUs of different vendors.

6 Conclusion

SYCL is a promising programming model for heterogenous
computing. We explain our SYCL implementations of the integer
sum reduction using shared local memory, atomic operations,
vectorized memory accesses, and parametrized workload sizes.
With the maturing SYCL compilers, we evaluate the performance
of the reductions on the Intel and Nvidia GPUs. The results show
that tuning work-group sizes, vector widths, and workload sizes

are important for performance improvement for integrated and
discrete GPUs. Compared to the performance of the OpenCL
kernels and SYCL reducer, our SYCL implementations can
achieve 1.4X speedup on an Intel UHD630 GPU. On an Nvidia
P100 GPU, our implementations are 3% and 0.3% faster than the
templated reduction in Thrust and the device reduction in CUB,
respectively. On an Nvidia V100 GPU, our implementations are
1.9% and 0.4% faster than the templated reduction in Thrust and
the device reduction in CUB, respectively. Thrust and CUB are
mature libraries for parallel reduction on an Nvidia GPU.
However, there is a large optimization space for the SYCL
reducer class. While the number of integers to reduce are not
arbitrary in our implementations, the potential of performance
improvement using the SYCL programming model will drive the
portability path with the development of SYCL compilers. As
future work, we will investigate the performance of SYCL
applications that contain reduction kernels.

ACKNOWLEDGMENTS

We appreciate the reviewers’ criticism and comments. This
research used resources of the Experimental Computing
Laboratory at Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725. The research also used
resources of the Intel DevCloud.

REFERENCES

[1]  Munshi, A., Jacobs, LS., Bean, C.P., Rado, G.T. and Suhl, H., 2007.
Khronos OpenCL Working Group. The OpenCL Specification, Version 1,
pp-271-350.

[2]  Czajkowski, T.S., Aydonat, U., Denisenko, D., Freeman, J., Kinsner, M.,
Neto, D., Wong, J., Yiannacouras, P. and Singh, D.P., 2012, August. From
OpenCL to high-performance hardware on FPGAs. In 22nd International
Conference on Field Programmable Logic and Applications (pp. 531-
534). IEEE.

[3] Stone, JE., Gohara, D. and Shi, G., 2010. OpenCL: A parallel
programming standard for heterogeneous computing systems. Computing
in science & engineering, 12(3), p.66.

[4]  https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

[5] Ke, Y., Agung, M. and Takizawa, H., 2021, January. neoSYCL: a SYCL
implementation for SX-Aurora TSUBASA. The International Conference
on High Performance Computing in Asia-Pacific Region (pp. 50-57).

[6] Deakin, T. and MclIntosh-Smith, S., 2020, April. Evaluating the
performance of HPC-style SYCL applications. In Proceedings of the
International Workshop on OpenCL (pp. 1-11).

[71 Homerding, B. and Tramm, J., 2020, April. Evaluating the Performance of
the hipSYCL Toolchain for HPC Kernels on NVIDIA V100 GPUs. In
Proceedings of the International Workshop on OpenCL (pp. 1-7).

[8]  Christgau, S. and Steinke, T., 2020, May. Porting a Legacy CUDA Stencil
Code to oneAPI. In 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (pp. 359-367). IEEE

[91 Constantinescu, D.A., Navarro, A., Corbera, F., Fernandez-Madrigal, J.A.
and Asenjo, R., 2020. Efficiency and productivity for decision making on
low-power heterogeneous CPU+ GPU SoCs. The Journal of
Supercomputing, pp.1-22.

[10] Johnston, B., Vetter, J.S. and Milthorpe, J., 2020, November. Evaluating
the Performance and Portability of Contemporary SYCL Implementations.
In 2020 TEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC) (pp. 45-56). IEEE.

[11] Job, B., Kurth, T., Clark, M.A., Kim, J., Trott, C.R., Ibanez, D.,
Sunderland, D. and Deslippe, J., 2019, November. Performance portability



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]
(23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]
[31]

[32]
[33]

[34]

of a Wilson Dslash stencil operator mini-app using Kokkos and SYCL. In
2019 IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (pp. 14-25). IEEE.

Reguly, 1.Z., 2019, November. Performance portability of multi-material
kernels. In 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC) (pp. 26-35). IEEE.

Jin, Z. and Finkel, H., 2019, November. Evaluation of Medical Imaging
Applications using SYCL. In 2019 IEEE International Conference on
Bioinformatics and Biomedicine (pp. 2259-2264). IEEE.

Afzal, A., Schmitt, C., Alhaddad, S., Grynko, Y., Teich, J., Forstner, J.
and Hannig, F., 2018, July. Solving Maxwell's Equations with Modern
C++ and SYCL: A Case Study. In 2018 IEEE 29th International
Conference on Application-specific ~ Systems, Architectures and
Processors (ASAP) (pp. 1-8). IEEE.

Da Silva, H.C., Pisani, F. and Borin, E., 2016, October. A comparative
study of SYCL, OpenCL, and OpenMP. In 2016 International Symposium
on Computer Architecture and High-Performance Computing Workshops
(SBAC-PADW) (pp. 61-66). IEEE.

Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J.,
Morton, S., Phillips, E., Zhang, Y. and Volkov, V., 2008. Parallel
computing experiences with CUDA. IEEE micro, 28(4), pp.13-27.
Harvey, M.J. and De Fabritiis, G., 2011. Swan: A tool for porting CUDA
programs to OpenCL. Computer Physics Communications, 182(4),
pp.1093-1099.

Perkins, H., 2017, May. CUDA-on-CL: a compiler and runtime for
running NVIDIA CUDA C++ 11 applications on OpenCL™ 1.2 Devices.
In Proceedings of the Sth International Workshop on OpenCL (pp. 1-4).
Sathre, Paul, Mark Gardner, and Wu-chun Feng. On the portability of
CPU-accelerated applications via automated source-to-source translation.
In Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, pp. 1-8. 2019

Babej, M. and Jaaskeldinen, P., 2020, April. HIPCL: Tool for Porting
CUDA Applications to Advanced OpenCL Platforms Through HIP. In
Proceedings of the International Workshop on OpenCL (pp. 1-3).

Lattner, C. and Adve, V., 2004, March. LLVM: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004. (pp.
75-86). IEEE.

https://github.com/intel/llvm
https://github.com/intel/llvim/blob/sycl/sycl/doc/CompilerAndRuntimeDes
ign.md

NVIDIA, NVIDIA Compute PTX: Parallel Thread Execution, Ist ed.,
NVIDIA Corporation, Santa Clara, California, October 2008

Gera, P., Kim, H., Kim, H., Hong, S., George, V. and Luk, CK., 2018,
April. Performance characterisation and simulation of intel's integrated
GPU architecture. In 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS) (pp. 139-148).
IEEE.

Ashbaugh, B., 2018, May. Debugging and Analyzing Programs Using the
Intercept Layer for OpenCL Applications. In Proceedings of the
International Workshop on OpenCL (pp. 1-2)

Bradley, T., 2012. GPU performance analysis and optimisation. NVIDIA
Corporation.

https://github.com/ekondis/cl2-reduce-bench
https://github.conv/intel/llvim/tree/sycl/sycl/doc/extensions/Reduction
Bell, N. and Hoberock, J., 2012. Thrust: A productivity-oriented library
for CUDA. In GPU computing gems Jade edition (pp. 359-371). Morgan
Kaufmann.

Merrill, D., 2015. CUB: A pattern of “collective” software design,
abstraction, and reuse for kernel-level programming. Nvidia Research.
https://nvlabs.github.io/cub/

Mark, H., 2008. Optimizing parallel reduction in CUDA. NVIDIA CUDA
SDK.

Martin, P.J., Ayuso, L.F., Torres, R. and Gavilanes, A., 2012, July.
Algorithmic strategies for optimizing the parallel reduction primitive in
CUDA. In High Performance Computing and Simulation (HPCS), 2012

[35]

(36]

[37]

[38]

[39]

International Conference on (pp. 511-519). IEEE.

Egielski, 1.J., Huang, J. and Zhang, E.Z., 2015. Massive atomics for
massive parallelism on GPUs. ACM SIGPLAN Notices, 49(11), pp.93-
103

OpenCL Developer Guide for Intel® Processor Graphics. 2019 Update 4.
Thoman, P., Kofler, K., Studt, H., Thomson, J. and Fahringer, T., 2011,
August. Automatic OpenCL device characterization: Guiding optimized
kernel design. In European Conference on Parallel Processing (pp. 438-
452). Springer, Berlin, Heidelberg.

Ramanathan, N., Wickerson, J., Winterstein, F. and Constantinides, G.A.,
2016, February. A case for work-stealing on FPGAs with OpenCL
atomics. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (pp. 48-53). ACM

Jin, Z. and Finkel, H., 2018, May. Nuclear Reactor Simulation on
OpenCL FPGA: a Case Study of RSBench. In Proceedings of the
International Workshop on OpenCL (pp. 1-9).



