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1. Introduction

Material test research reactors focus on accelerated material degradation
experiments in radiation environments and isotope production. Many material
changes within the reactor are a function of the energy dependent neutron flu-
ence received over the experiment lifetime, and to correlate neutron damage
effects on materials, the fluence must be well known. The reactors have online
flux measurements and coolant temperature rise sensors to quantify the total
reactor power level. Many experiments are equipped with radiation flux wires
to quantify the fluence of neutrons over the total experiment lifetime. Neu-
tronic analysis is also performed after irradiations to predict the neutron flux
experienced by the experiment sample. These predicted fluxes are crucial to
the derived experiment data because the predicted fluxes are highly detailed
whereas the experimental data is quite sparse. Thus it is important to compute
the predicted flux well, and to include uncertainties in the results.

The results from online power measurements, counted radiation wires, and
computational analysis are combined to determine the actual neutron fluence
that the experiment received. The data de-convolution process takes into ac-
count uncertainties from all measurement sources to determine the fluence re-
ceived by an experiment, plus the uncertainty of the result. The computational
uncertainty often dominates the total uncertainty of energy dependent fluence
because only a few flux wire measurements are available to quantify the neu-
tron spectrum. However, uncertainties from the computational analysis are not
well determinable such that expert opinion is used for uncertainty instead of
model-based uncertainty. The main difficulties in determining these uncertain-
ties comes from tracking uncertain data inputs (fuel burnup, control positions,

changing power levels, ... through computationally intensive Monte-Carlo (MC)
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calculations. In order to better understand experiments, the computational un-
certainty must be quantified.

Models of material test reactors tend to include as much detail as possible
and thus rely upon Monte-Carlo codes where the details can be modeled. Un-
certainty quantification (UQ) and sensitivity analysis (SA) methods for Monte-
Carlo codes tend to concentrate on k-eigenvalue and not reaction rates. The
Monte-Carlo-N-Particle transport code [I] is used in many research facilities,
as such, this tool is selected to perform neutronics calculations. A literature
review was performed to find an efficient method to propagate uncertainties
with MCNP. A cross-section sampling and MCNP input file sampling method
was then implemented. MCNP parsers were created to efficiently apply the se-
lected UQ techniques. The UQ method was then compared to the UAM pincell

benchmark by means of k-eigenvalue uncertainty calculations.

2. Background

2.1. Neutronic Uncertainty Quantification

2.1.1. Deterministic Methods

The first developments of UQ/SA occurred with respect to the neutron trans-
port equation under the diffusion approximation [2], which was later generalized
under the Adjoint Sensitivity Analysis Procedure (ASAP) [3]. Within a multi-
group framework, UQ/SA has been performed and implemented in production
tools. Specifically, the adjoint multi-group transport equation can be solved
with small changes in the physics kernels in both deterministic and Monte-Carlo
solutions. For continuous energy adjoint calculations the situation is different.
Group to group scattering cross-sections cannot be easily inverted because cross-
sections are represented as relations and not discrete points. By representing
the scattering matrix as discrete points, the computer memory requirements for
calculations grows to unfeasible amounts. For continuous energy codes, other

methods have been developed to propagate uncertainties.
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2.1.2. Monte-Carlo Based Methods

Effects of perturbations on a response can be directly calculated from for-
ward Monte-Carlo calculations, e.g., no need to run parametric studies for small
perturbations. In general, the perturbed parameters are nuclear data related
and the response function is the criticality eigenvalue. These calculations predict
sensitivity profiles and output uncertainties can be determined from multiplying
the magnitude of uncertainties with sensitivities.

The differential operator sampling (DOS) method [4] assumes the effect of
the perturbation being made (usually nuclear data) can be represented by a
Taylor series expansion around the mean value, generally using a 1st or 2nd
order expression. The derivative involved in the series expansion can be calcu-
lated using Monte-Carlo means. The original developments did not include all
the required steps to get generally correct answers. The fission source was not
perturbed during sampling such that a bias was introduced [5]. The method-
ology without the fission source perturbation will tend to disagree with similar
perturbation calculations [6].

The adjoint flux can in principle be calculated using Monte-Carlo methods,
though efficient methods to do so are difficult to implement for continuous in en-
ergy problems. In general to solve the problem would require an inverse random
walk from the end of the calculation to the beginning, e.g., a backwards calcula-
tion. Recently, the iterated fission probability (IFP) method [7] has been used to
determine the adjoint flux from forward monte calculations. This method relies
on the physical interpretation of the adjoint flux as an importance weighting[2];
it is the affect of a neutron introduced somewhere in phase space of a critical
system. This means during power source iterations, keeping track of what a
neutron produced in some iteration i does in a later iteration asymptotic gen-
eration n can allow for a creation of the adjoint flux. This adjoint can then
be used in typical deterministic manners using the sandwich rule to determine
sensitivities. Furthermore, it has been shown [§] that this method of adjoint

calculation is equivalent to the differential operator sampling method with fis-
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sion source perturbations. A drawback of this method is that a large computer
memory is required due to storing of many histories as well as their original
birth conditions. The memory requirement is proportional to the number of
particles kept track of in each generation and the number of latent generations
used to establish an asymptotic case.

Contribution-Linked eigenvalue sensitivity /Uncertainty estimation via Track-
length importance CHaracterization (CLUTCH) [9] is a similar to the integrated
fission probability method was recently implemented in SCALE. This method
avoids some pitfalls of the IFP method in that computer memory requirements
do not scale directly with the number of particle histories. This is accomplished
by following particle histories directly from birth to death and computing rel-
evant MC integrals once a particle dies. The methodology agrees with well
multi-group MC methods as well as the IFP [IJ].

The DOS, IFP, and CLUTCH methods are good at S/U calculations for
system wide (integral quantities) such as keg, and kinetics parameters but has
difficulties determining specific tallies like dosimeter calculations because of the
large amount of memory required to track all neutrons through generations.
The CLUTCH method has the potential to reduce memory requirements and
perform sensitivity calculations though has not been completely implemented
in any production tool.

The Total Monte-Carlo (TMC) method, first introduced to propagate nu-
clear data uncertainty through reactor physics calculations [I0] is a method to
propagate uncertainties with deterministic and MC methods. It is in essence
a general sampling method that uses a brute-force approach. Many random
inputs to a MC code are created, ran for a long time to get good MC statistics,
then uncertainties on outputs from input changes can be found by observing the
output distribution and subtracting MC uncertainties. It is an excellent method
to propagate input uncertainties through MC calculations, but takes a very long
time to perform, needing at least 500 calculations with random inputs, e.g., 500
times longer than a single run. This method is used in this work and will be

described in more detail in Sec. Bl
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The GRS method [I1] is similar to TMC where simulations are run many
times with inputs randomly selected and outputs stored for statistical analysis
to determine uncertainties. However, this method does not have the drawback
of needing to run each simulations for a long time. Rather, N simulations with
different inputs are run for a short time with a single random number seed,
then each N simulation is reran with a different random number seed (totaling
about twice the runtime of a single long calculation). The two different random
number seed simulations have identical MC (aleatoric) uncertainty distributions.
The covariance of the output sets is the epistemic uncertainty of the varying
inputs [I1] because the MC uncertainty is almost eliminated (goes to zero as
MC sample batch sizes increases). This method is used in this work and will be

described in more detail in Sec. 3.2

2.2. Nuclear Data Sampling

A main sources of uncertainty for transport and depletion calculations are
based on uncertainties of nuclear data. In general, nuclear data is created
from experimental means [12], however to resolve the quickly varying portions
of cross-sections as well as temperature dependence, evaluators create evalu-
ations [I3]. Cross-sections can also be created from a theoretical basis and
corrected with experimental results [I4]. Uncertainties in cross-sections are
complex because of correlations between different reaction channels as well as
variances in channels themselves. These uncertainties are stored in nuclear data
evaluations as covariance matrices. Recently, there has been an effort to per-
turb nuclear data directly through sampling. These created nuclear data are
then used in the transport calculation of choice to propagate the nuclear data
uncertainty. It should be noted that processing evaluating nuclear data files is
not a trivial process with many codes [I5l [16] [17] dedicated to the task.

Perturbation theory offers similar calculations with multi-group nuclear data
and has been historically the tool of choice for sensitivity and uncertainty quan-
tification, for example SCALE’s TSUNAMI [I8] uses this method. The nuclear

data sampling described is based on Monte-Carlo approaches, thus allowing the
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data to be used with any transport approximation instead of just multi-group
calculations. An unfortunate aspect of the nuclear data sampling tools are
they are either proprietary or in-house implementations, thus not easily avail-
able. Open source tools [19] to manipulate nuclear data exist, however concise,
reliable APIs to use the methods developed are not yet available. The TENDL-
2012 [20] nuclear data library published many iterations of randomly created

data and is the largest source of openly available random nuclear data.

2.2.1. Continuous Energy Covariance Based

Evaluated nuclear data comes with multi-group covariance matrices to de-
scribe cross-section uncertainties. Tools have been developed to use these covari-
ances to sample nuclear data. Nuclear Data Uncertainty Analysis (NUDANA) [21]
and KIWT [22] are two such tools. A drawback of using nuclear data covariances
is that covariances are not available for all nuclide and are not all available for all
reaction channels. Nonetheless, the available covariances can be used to sample

nuclear data.

2.2.2. Multi-Group Covariance Based

Often reactor physics codes use the multi-group approximation to make
problems tractable. Continuous data can be collapsed into suitable energy bins
by various means to create multi-group nuclear data. Nuclear data covariances
can then be used to adjust the multi-group data after collapse. The Cross Sec-
tion Uncertainty and Sensitivity Analysis (XSUSA) [23] tool implements this
method of cross-section sampling. It’s built to be create nuclear data with the

SCALE covariance matrices for use with the TSUNAMI sequence.

2.2.3. Theoretical Model Based

The TALYS Evaluated Nuclear Data Library (TENDL) [I4] is a complete nu-
clear data library based on theoretical calculations along with specific evaluated
data. The use of theoretical calculations allows for evaluations of cross sections
that have not been measured and the creation of covariance matrices that have

not been measured. The library is created to agree with benchmarked data as
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much as possible. It features many isotopes of interests and many, many more
covariances than typical libraries that rely more on experimental data. Due to
the computational nature of library creation, random nuclear data evaluations
can be made using inputs to the theoretical model rather than relying on pro-
vided nuclear data covariances. The model inputs are varied until many sets
of cross sections are made that are not rejected (e.g., agree with experimental

data).

2.2.4. ACFE Data Based

A more direct method of sampling is to use vary the ACE (A Compact
ENDF) data format that MCNP and other transport codes use. ACE data
stores nuclear data in a point-wise manner such that linear interpolations can
be made between points to create ‘continuous’ data. The Nuclear data Un-
certainty Stochastic Sampling (NUSS) tool [24] directly perturbs the pointwise
data based on multi-group nuclear data covariances. This eliminates the need
to manipulate very complex ENDF data, but requires confidence in inputted co-
variance matrices. A comparison of NUSS and theoretical model based nuclear
data perturbations was performed previously [25]. The two methods agreed well
for benchmark criticality cases. However, there are cases where the theoretical
model produced nuclear data with a non-zero skewness, which are not repre-
sented in ENDF data. These skewed data leads to skewed uncertainties which
could be important in some safety calculations. The NUSS tool was also ex-
tended [26] with better statistical methods to perform global sensitivity analysis
based on the group-wise covariances and sampled made. The new method uses a
relatively complicated sampling scheme that assumes normal distributions. The
sampling method in this paper relies on ACE data with sampling philosophies
similar to NUSS.
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3. Uncertainty Quantification Methods

3.1. Total Monte-Carlo

The Total Monte-Carlo method refers to a technique to randomly vary funda-
mental nuclear data parameters to generate many random nuclear data libraries
from theoretical models. These random data are used in many long running MC
calculations to determine the effects of nuclear data variations. The statistical
method to remove the MC statistics from output calculations can be described
by breaking up the observed uncertainty into Monte-Carlo and input uncertain-

ties,

Oob %0724"71‘2 (1)
1 N
) 2
O'g = N;USJ? (2)
]:

where ¢ indicates uncertainties, and the subscripts ob, s, i, indicate observed,
statistical, input uncertainties, and N is the total number of observations. If a
set of observations due to varying inputs can be made along with the associated
MC uncertainty, the input uncertainty can be determined using Eq. .

A large (500-1000) set of random inputs are generated to create a large
set of outputs. Within an MC calculation, each run should have sufficiently
low relative MC uncertainty (e.g., o5 ~ 0.05) such that the total uncertainty
observed from the large set of outputs is predominately from epistemic input
uncertainties. This method, though easy to implement for most code frame-
works, increases calculation time by 500-1000 times that of a single run. This
runtime is rather large for personal workstations but quite possible on modern
high performance computers where 1000s of processors are available for a single
user.

TMC has the added benefit of determining the full covariance of the re-
sponse [27]. This can be quite useful when performing spectrum adjustments.

Error estimates of the TMC results can be calculating using a bootstrap

method. The basic procedure is to take random samples of the random inputs
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with replacement. The total number of random samples of the original samples
to take should be equal to the original number of samples [28]. The tmc method
is then applied to the new sampled inputs along with the corresponding outputs.
This whole procedure is repeated many times to create a vector of uncertainty
estimates. Confidence intervals can then be calculated by sorting the vector and

calculating the lower and upper cutoffs based on a desired confidence interval.

3.2. GRS

The GRS method relies on the statistical distribution of MC outputs in order
to determine input uncertainty. By taking two sets of random simulations, two
distributions with the same uncertainties are found. The covariance of these
distributions is the input uncertainty because statistical errors are the same
in both sets and are removed by the covariance operation. In a mathematical
sense, given a model, Y = X (U), with input set U that is randomly varied, the

average output p, is,

p = E[E[Y|U],

which given the results of iterated expectations (sometimes called law of

total expectation),

with variance, o2 as,

o? = Var(E[Y|U]).

The square-root of the variance gives the uncertainty of the inputs on the
outputs. However, with a single MC run, a very large number of particles would
need to be ran (like in TMC) to reduce MC statistics. However, when two sets
of MC runs are made with two different random number seeds, two sets of
outputs, Y,Y’ are created that are conditionally independent and identically

distributed, e.g., on average the outputs are the same but comparing individual

10
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20 results will show differences (u = E[Y] = E[Y’]). By using this fact and the
following form of the expectation of the two outputs multiplied, the variance of
the mean output can be related to the covariance between the two output sets.

The expectation of the two outputs multiplied is,

E[YY'] = E[E[YY'|U]],
= E[E[Y|U] - E[Y'|U]],
= E[E[Y|U] - E[Y|U]],

= E[E[Y[U]]. (3)

Inserting Eq. into the definition of covariance,

Cov[Y,Y'] = E[YY'] — E[Y]E[Y],
= E[E[Y|UP’] - E[Y]%,
= Var(E[Y|U[]), (4)

255 shows that the covariance between the two output sets is the variance of
the desired mean output given input uncertainties U. This formulation cancels
out (or averages) the MC uncertainties such that only the input uncertainties
remain. This method avoids Eq. (1)) so criteria for 2 are not required, though
MC uncertainties should be reasonably sized and enough particles ran to ensure

%0 SOUrcCe convergence.

Covariance information cannot be generated from the GRS method because
the method targets the mean variance (diagonal of the covariance) and not
covariance information. A bootstrapping uncertainty estimator is also not valid
because the GRS method requires unique samples. However different estimators

x5 could be used such as jack-knifing, but this is not explored in this work.

11
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4. Sampling Methods

4.1. Nuclear Data Sampling

Randomly generated cross-section files available within TENDL are an excel-
lent resource, however random evaluations for all cross-sections are not available
and evaluated covariances are not used when generating the data. While the
latter is considered a positive feature of TENDL random data, it is not fully ac-
cepted that generated data from fundamental parameters is the correct method
of making nuclear data. The ability to generate random data with SCALE
based covariance data is a positive feature to overcome issues when data is not
available and to sample data based on evaluated distributions. A deficiency in
this method of sampling is that the covariance data must be available for the
reaction and nuclide of interest to actually sample data. Furthermore, sampling
from ENDF formatted covariances directly has a benefit of sampling from any
ENDF based data as well as from covariance data that has not yet made it to
official SCALE releases.

ASAPyE| is a tool that was created in this work to perform data sampling
from ACE files using SCALE covariance data or ENDF data via NJOY to
address the above issues. This tool is similar to the NUSS tool described in
Sec. except it uses the newest SCALE covariance data or newest ENDF
data, written in python, and available for use. It also features the ability to
use any group structure and/or any user flux weighting functions for covariance
collapsing from ENDF sources. The sampling procedures also uses lognormal
sampling along with the ability to use any sampling function as long as the

percent point function is available.

4.2. ACE Data Manipulations

The A Compact ENDF file (ACE) format is used for nuclear data within
MCNP and other Monte-Carlo codes. It contains all relevant data from ENDF

Thttps://github.com/veeshy /ASAPy /releases/tag/v1.0

12
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files, support random access of data, and specifies all cross-sections on the same
unionized energy grid. The ACE data is a formatted data file and readers are
available, though writers tend to only translate ENDF data to ACE, with no
general method to manipulate the ACE data directly. The ACE data reader
within OpenMC [29] was used to read in ACE files. A writer was created based
on the structure of ACE files. All data is represented in contiguous arrays, so
that if the original data is known (from reading the ACE data), that data can
be searched for within the ACE file and replaced with new values as long as
the exact same energy grid is specified. This method of adjusting ACE data is
implemented in ASAPy. A few nuances when dealing with different data will
be discussed.

Cross-Section Perturbation: Nuclear data sampling occurs using multi-
group methods while ACE data is stored in a continuous format. Perturbation
factors are generated based on taking a ratio of sampled cross-sections and
multi-group average cross-sections. These perturbation factors are then ap-
plied to the continuous cross-sections by mapping the multi-group structure
on the continuous structure. This method can cause difficulties in sampling
data when a group boundary happens to occur in a region where the flux or
variance changes rapidly. This usually manifests itself in ill-formed covariance
information.

ENDF Sum Rules: Many ENDF reactions are subsets of other reactions,
so when one cross-section is sampled, others might need to be adjusted for
consistency. This is performed within ASAPy by keeping track of all MTs
adjusted and comparing against sum rules. Table [I] shows the relevant sum
rules from the ENDF manual [13].

U Data: ENDF data allows for inclusion of total, average number delayed,
and prompt fission neutrons. MCNP only uses the total values within ACE
files, so only these are modified.

Fission x Spectrum: The distribution of energy of neutrons born from
fission depends on the incident neutron energy. As such, ACE data file stores

several tables for a few incident neutron energies. ENDF covariance data does

13
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not have covariance data for each incident neutron so the covariance data within
the ENDF file is applied to all incident neutron energy distributions. The dis-
tributions are also stored as probability and cumulative distribution functions
(PDF and CDF). To sample these, the PDF is perturbed then the CDF is
adjusted based on the PDF perturbations then the CDF is re-normalized by
adding up the original PDF and perturbation factors to ensure the CDF sums
to 1.

4.8. Cowvariance Data

The most comprehensive resource for covariance data is distributed within
SCALE 6.2 [I§]. It combines covariance data from several nuclear data sources
and experiments. The SCALE based data was generated using a typical LWR
flux that include a thermal, epi-thermal, and fast region. A fine 252-group
and coarse b6-group structure is available within SCALE. An older 44-group
structure exists but contains old data that is not recommended for use. The
covariance data can be converted from the internal SCALE binary format to a
ASCII format using the SCALE tool AmpxCOVConverter. The resulting data
file contains data for material numbers and their relevant reactions correlated
with one another. The standard deviations of the specified reactions are given
in the relevant group structure followed by the actual correlation matrix. A
covariance parser was created within ASAPy to convert the ASCII file to a
more general HDF5 store with a hierarchy based on: ’/matl/mtl/mat2/mt2’
corresponding to data correlating matl MT1 with mat 2 MT2. Often mat 1
and mat 2 are the same, and MT1 and MT2 are the same, specifying self-
correlation. Any group structure can be accommodated by the parser such that
new evaluations can be easily used within ASAPy.

Covariance data also exists in ENDF files and these covariances can be used
to create any group structure as well as use any weighting flux to create co-
variance matrices to sample with. ENDF data can be parsed with NJOY [15]
to generate covariance data. ASAPy implements NJOY input writers along

with ENDF readers to minimize the amount of user input to generate covari-
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ance data. The minimum input is a path to an ENDF file and the reaction
MT numbers to generate covariance data for. A BOXER format reader was
also generated in order to read the BOXER formatted covariance files into the
previously described HDF5 format.

The covariance data comes in multi-group format which must be mapped to
relevant continuous energy bins in ACE data. After sampling data within the
multi-group structure, the data is divided by the multi-group mean cross-section
to calculate a relative cross-section. These cross-sections are mapped onto the
continuous energy group bins then multiplied by the ACE data to generate a
sample of data. Two assumptions made are that the group-mean values within
the data are very similar to the mean values within the ACE data and that the
data within an energy bin are fully-correlated with one another.

No data is shipped with ASAPy, ENDF data is freely available and SCALE

data is available with appropriate licenses.

4.4. Nuclear Data Sampling Techniques

A slight deficiency in the ENDF format is the inability for evaluators to
convey what type of distribution covariance data should take. Often physi-
cal parameters like cross-sections cannot take negative values, but assuming
normal distributions are assigned to reported covariances, negative values are
possible. An approach often taken is to discard negative data, biasing the sam-
pling scheme. Another method is to assume the distributions are log-normal,
which always has positive values. However, without knowing what distributions
the covariance data were specified for, errors can occur when large relative er-
rors are present with strong negative correlations [30] due to not transforming
the normal-cov to lognormal-cov. In this work, ENDF covariance data is trans-
formed to log-normal covariance data then log-normal sampling is performed
ensuring no negative samples are taken.

Nuclear data has strong correlations between energy groups so when sam-

pling data, the full covariance of the data must be taken into account. Multivariate-

normal distributions allow for sampling of such data. Given a desired covariance
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matrix, C, that is semi-positive definite, and mean values, u, a multi-variate
sample, X; can be generated as follows. First draw uncorrelated values from
the mean using a standard-normal distribution, N and place the means in a

diagonal matrix,

then perform a singular value decomposition of the covariance,
C=USYV, (4)

where U and V' are orthogonal matrices, and S is a diagonal matrix containing

the singular values of C. A sample can then be drawn as
X; = p+ 2;8%%

This method is implemented in Scipy [31] within ‘np.random.multivariate_normal’.
One may also use eigen or Cholesky decomposition instead of singular value de-
composition with similar results.

ENDF based nuclear data sometimes is published with non-semi-positive-
definite covariances. In this case the correlation data R must be manipulated

to draw samples. An eigen-decomposition of the correlation matrix is made,
R=QAQ,

where @) contains the eigenvectors of R, and A contains the eigenvalues on the
diagonal. The negative eigenvalues are set to a small positive number (1e-8) to
form A then the original eigenvectors are multiplied back in to form an adjusted
correlation matrix, ]:E,
R=QAQ .

The correlation matrix is used due to smaller spreads in eigenvalues, however
often the small eigenvalues imposed on the matrix cause numerical difficulties
when converting the correlation matrix to a covariance matrix so the above
procedure may need to be repeated on the converted covariance matrix.

A second method based on a partial Cholesky decomposition [32] that gen-

erates a positive semi-definite matrix that equals the original matrix minus an
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MT  Description MTs in Sum

1 Incident Neutron Total cross 2, 4, 5, 11, 16-18, 22-26, 28-37,
41-42, 44-45, 102-117

4 Total of neutron levels 50-91

18 Total fission 19-21, 38
103  Total of proton levels 600-649
104 Total of deuteron levels 650-699
105  Total of triton levels 700-749
106  Total of 3He levels 750-799
107  Total of alpha levels 800-849

Table 1: ENDF Sum Rules

error term was also implemented for correcting non semi-positive definite ma-
trices.

A non-semi positive definite correlation example is the correlation matrix for
(n,7) cross-section of ¥4W within ENDFB/VIIIL. The eigen-decomposition and
partial Cholesky algorithms were applied to generate 500 samples and the cor-
relation matrices are shown in Fig. |1} where it can be seen that both algorithms
perform well compared to the original correlation matrix.

0 50 100 150 200 250

0 50 100 150 200 250
0 10 o
50 08
100 06
150 04
200 02
250 00

Figure 1: Correlation matrices from (left) the evaluated data file (middle) eigen-decomposition

sampling (right) partial Cholesky decomposition sampling
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4.5. MCNP Input Sampling

mcACE is a tool developed to perform UQ using MC methods. It is used to
manipulate MCNP input files to create random perturbations based on changing
any line given variables to change and distributions to sample from. It also
handles data post-processing, data transfer, MCNP/ORIGEN coupling, and
performs statistics on relevant results. ORIGEN coupling is not discussed in
this paper but it is available in the code to help propagate uncertainties through

time. The typical flow of mcACE is shown in Fig. 2}

MCNP and MCNP Data Parsing Burnup

Tally Map CS) —— ‘Greate sub-step fluxes for bumuﬂ ol
Burmup Info co.create_weighted_fluxes,
» Time steps
» Power
« Step type
(LE/CE)
« Substeps

CSV with:
cell_id, mat_id, tally_id, volume
for burnable materials t
MCNP Input(s)

Greate MCNP (HDF) Store
Update base MCNP Input with

as materials database
co.menp_input_scrapper.py
latest time step + add reaction
rate talies

update_mcnp._input.py

Creale ORIGEN library
for each bumable material

poter co.couple_input.p

Create ORIGEN Inputs.
for each burnable material
co.origen_input.py

‘material vectors—

ua info

Update MGNP Store with
new material vectors
read_origen_outputs.py

+ Type
(GRS/TMC/FTMC/none)
¢ When (After: JES——

How to Vary the Inputs B ‘

. ;
« Burnable Material e N

Vary the Input Sampling | Perform Or U i
me.make_mcnp_stat Inputs.py| | cotime store. iLuQm i
L, | Wermaize taiies based on power L ;

me.normalize_menp.py

e M L waltime
; Col]e
| ApplyuQsewptoinputs | o COUPLE
| mc.make_menp_stat_inputs. |
| append_statistic_method |

Compute GRS, THC
or FTMC statistics
me.me_stat_methods.p

Tiew timestep?>——no—»(end )

Greate MGNP HPG PBS

Create Tally (HDF) Store

Parse each mctal in parallel
me.make_hs_parallel.py

Combine all hs into one on

me.make_menp_pbs.py

Key:
« co - coupleorigen library
« mc - MCNPTallyReader library
« Dotted connector - optional step

single processor
me.combine_hdfS.py

Figure 2: mcACE Flow Diagram

The goal of mcACE was to apply to many reactor designs rather than only
work with a single reactor. This goal necessitated writing a program that could
understand MCNP syntax. Particularly, MCNP cell lines can be parsed for cell
numbers, material numbers, densities, and volumes; MCNP problem lines can
be parsed for material numbers and materials. More subtle MCNP features
are also handled such as MCNP single line comments (C comment), end of line
comments (valid line $ comment), and both types of continuation lines (lines
starting with 5 spaces and lines following a &). This allows for reading as well

as writing back MCNP files that can be ran with MCNP directly. The whole
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input file is parsed into a python class that allows access to the MCNP title,
cell, surface, and problem blocks. Find and replace functions help sampling
procedures vary inputs.

Any parameter in the MCNP input can be sampled using the mcACE in-
put. This is similar to MCNP-PSTUDY [33], however more general samplers
are available. Given the original line and a properly formatted version of that
line, sampling can be performed. An example to vary density is shown in Fig. [1]
where the first line is the original MCNP line in pseudo-code format, and the
second line is the original line with the ‘density’ number replaced with a python
string formatter with index 0. The index 0 corresponds to the position in the
‘sampling_scheme’ list. The ‘sampling_scheme’ allows for many sampling func-
tions like uniform, normal, latin-normal, repeating the last sampled value, giv-
ing an exact value for a simple find/replace, or a user generated math function.
This interface provides good flexibility to sample MCNP files. The mcACE in-
put allows for repeated sampling blocks so sets of parameters can be varied as

needed.

Listing 1: Sample mcACE MCNP Line Sampling SNippet

mcnp_lines=cellnum matnum density surf cards imp:n=1,

lines_to_vary_with=cellnum matnum {0:.6f} surf cards imp:n=1,

sampling_scheme=latin ,

sampling_values=0.1 0.05,

4.6. MCNP Tally Reader

MCNP prints relevant outputs to ‘.o¢ files, and optionally ‘.mctal’ files. The
‘.0’ files contain a wealth of information, particularly about statistics and prob-
lem run information as well as relevant outputs like tallies and eigenvalue. The
‘mctal’” files contain a subset of the information in the ‘.0’ files but the infor-
mation is very structured, allowing for efficient readers to be created. mcACE

implements an ‘.mctal’ reader to read eigenvalues, problem information, and
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most tallies (i.e., F#:particle, FC, E, T, C, FM, DE/DF, and SD), missing is a
mesh-tally reader though one could be added. MCNP ‘.0’ files can also be read
for information that is not present in a ‘.mctal’ file such as kinetics parameters

and sensitivity coefficients.

4.7. mcACE Storage

The UQ process implemented generates a large amount of output depend-
ing on the relevant output parameters. In a typical run with 500 MCNP in
eigenvalue mode, 5 tallies with 100 energy bins would result in 2.5e5 outputs to
track. In a burnup calculation that uses a 238-group structure and 100 unique
materials, a minimum of 11.9e6 outputs must be tracked. Storing this data in
typical text files or csv’s is not efficient and error prone. mcACE opts to use
the HDF5 storage format along with Pandas [34] dataframes to store data as
tables in HDF5 format. After relevant outputs are parsed for each MCNP run,
all of the similar results are combined into a dataframe with multiple index as
tally info as needed and a run number index, with columns as energy bins or
other specific names such as ‘keff. This format also makes it easier to perform

statistics on the outputs.

5. Verification and Application

5.0.1. Godiva Figenvalue

The Godiva core is a well known benchmark model / experimental validation
core. It is a bare spherical mass of HEU that has a well quantified uranium mate-
rial vector and critical dimensions. It’s also a simple reactor core to analyze due
to it’s fast spectrum. The MCNP-IFP method was used to calculate sensitivi-
ties for several reaction MTs. Covariances were provided by ASAPy to calculate
the total uncertainty on eigenvalue from reaction rates via the sandwich rule.
The mcACE UQ process using TMC and ASAPy generated cross-sections was
performed using 1000 runs. Table [2] shows good agreement for all studied re-

action MTs, all values agree within uncertainty. MCNP-IFP uncertainty was
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Correlation ~ Reaction Unc. (pcm) 95% o MCNP-IFP
Uncorrelated  (n,7) 479.4 13.3 482.3
(nf) + () 4935  13.3 ;
(n,f) 121.2 3.3 119.8
v 221.1 5.5 218.5
Fission x 167.4 5.0 169.3
Correlated (n,y) 838.8 24.4 848.9
(n,f) + (n,y) 883.3 25.1 -
(n,f) 269.5 6.8 269.4
v 546.0 13.9 544.1
Fission x 269.0 12.7 276.2

Table 2: Comparing Godiva Uncertainties using ASAPy to MCNP-IFP

not propagated. This result shows that the TMC method agrees well with the
IFP theory in terms of eigenvalue uncertainties. This indirectly shows the GRS
method also agrees well with IFP theory in that it agrees well with TMC cal-
culations, which will be shown in Sec. Reaction rate uncertainties could

not currently be calculated within MCNP for further verifications.

5.0.2. UAM Pincell Fluz and Reaction Rates

To verify the GRS implementation the TMC (Total Monte-Carlo) method
is used as the ‘true’ result. Furthermore, convergence studies are performed
to determine how many runs are needed for GRS cases. The relative errors
reported are the uncertainties in the output quantities from input uncertainty,
and not the typical MCNP related statistical error. The relative errors of each
value are compared by plotting the relative error of the GRS method to the
TMC method. If the two methods agree, a point will be on the y=x line.

The UAM Pincell Benchmark [35] at hot-zero power was modeled according
to the specifications in Fig. The TMC cases were ran with 7500 particles
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/ cycle for 15000 active cycles, the GRS cases used 40 cycles (187.5 times less
total particles ran because GRS requires twice as many model runs). In Fig.

it can be seen that in general, GRS agrees well with TMC.

~ moderator - Parameter Value
; i Unit cell pitch, [mm] 18.75
E E Fuel pellet diameter, [mm)] 12.1158
! ) ! Fuel pellet material U0,
! fulpln ! Fuel density, [g/cm’] 10.42
' i Fuel enrichment, [w/o] 2.93
E B ! Cladding outside diameter, [mm] 14.3002
' i Cladding thickness, [mm] 0.9398
i i Cladding material Zircaloy-2
i ' Cladding density, [g/cm’] 6.55
""""""""""" Gap material He
P - pitch of the unit cell Moderator material H,0
Parameter / Reactor condition HZP HFP
Fuel temperature, [K] 552.833 900
Cladding temperature, [K] 552.833 600
Moderator (coolant) temperature, [K] 552.833 557
Moderator (coolant) density, [kg/m’] 753.978 460.72
Reactor power ,[MWt] 3.293 3293
Void fraction (%) 40

Figure 3: UAM Pincell Dimensions [35]

5.1. Practical Example with Advanced Test Reactor

The Advanced Test Reactor (ATR) [36] is a high powered, high flux material
test reactor used for isotope production, fuel qualification, material irradiations,
and other experiments. Often the irradiation history of an experiment can be
determined through purely experimental means like determining the fission rate
of a fueled sample via microscopy or calculating activity via radiation detectors.
Other times flux wires must be used along with computer models to determine
the irradiation history. When computer models are needed, an estimate of the
uncertainty of the relevant computation is important. To show the usefulness

of TMC and GRS methods on a real world model, the uncertainty of the flux

in an experiment within the ATR was calculated.

The energy dependent flux within graphite shown is very important in de-

termining spectral adjustments based on experiment flux wires. Each model
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Figure 4: TMC and GRS Relative Uncertainties

ran has a unique U-235 data library created from TENDL-12 ENDF files [20].
The predicted GRS relative errors (shown in Fig. [5]) for the 148.75x case shows
reasonable agreement (mosth within 20%) with the TMC values. Grouping of
TMC values near the y-axis (x=0) that TMC failed to predict the input er-
rors because of relatively large MC standard deviations or large MC variance
to observed variance ratios in the calculated values. This shows that the GRS
method is able to predict relative output uncertainties where the TMC method
fails. This does not show that the GRS method predicts a similar value to TMC
in those cases if TMC were able to predict a value, though it’s a reasonable con-
clusion because the two agree well when TMC is applicable.

The speedup for the GRS method for energy dependent flux is not as great
as global values like eigenvalue. Excellent agreement between the TMC and the
GRS cases occur when 12.9x less particles are used in GRS than TMC. The
37.19x less particle case has slightly more spread in results but all values where

comparable agree with 20%.

6. Conclusions

A process was developed to quantify uncertainty of any output with an es-
tablished Monte-Carlo neutronic code (MCNP) without any source code modi-

fication and built into a new code called mcACE. A review of relevant method
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was performed and a combination of sampling techniques and statistical meth-
ods were identified to perform uncertainty quantification of relevant outputs for
reactor calculations. Comparisons of the selected statistical methods, GRS and
TMC were made to confirm their ability to predict similar outputs. GRS showed
an decrease of at least 10x computational time relative to TMC when calculating
uncertainties of fine-group fluxes in small regions of a reactor model. For larger
regions or more global values, 100x or more speedup is possible. The TMC
method was shown to also compare well with traditional sensitivity methods
when applied to k-eigenvalue calculations.

ASAPy was created to sample ACE data based on ENDF and SCALE co-
variances using normal and log-normal distributions. ASAPy can generate co-
variance from ENDF data for any group structure and any spectrum weight.
Data is generated as ACE files and methods were developed to update MCNP
data tables so that the ACE Files can be used. Generated cross-sections were
verified to produce similar uncertainties in the Godiva reactor as adjoint based
methods.

Finally the TMC and GRS methods were applied to a real-world model of
the Advanced Test Reactor to successfully calculate an energy dependent flux
within an experimental location. The two methods agreed well again, with the
GRS method being at least 10x faster.

Future work would should include further code-to-code verifications and new
nuclear data sampling treatments. In particular, comparisons of reaction rate
uncertainties from other codes and energy dependent flux uncertainties are of
interest. Sampling methods with built-in sensitivity calculation methods [26]
could also be used to add calculations of sensitivity profiles. Sampling methods

with decreased sampling requirements [37] could also be implemented.
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