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Abstract

Within material test reactor calculations, energy dependent flux and reaction

rate uncertainties are typically not quantified when performing as-run analyses

to determine the neutron field experienced by the experiment. When high fi-

delity Monte-Carlo codes are used in such analyses, straight forward methods

to calculated output uncertainties are not available, instead expert opinion is

used to postulate computational uncertainties. New methods to propagate un-

certainties through these high fidelity simulations are available when sufficient

computational power is available. A tool is developed for sampling any part of

an MCNP input from random distributions to determine output uncertainties

based on those inputs. Another tool is developed to sample nuclear data cross-

section in ACE format using multi-group nuclear data covariances. The Total

Monte-Carlo Method and GRS are implemented and compared to one another

as well as MCNP sensitivity and uncertainity calculations. The methods were

applied to the Godiva critical sphere k-eigenvalue, the UAM pincell benchmark

energy dependent flux and reaction rates, and the Advanced Test Reactor en-

ergy dependent flux within an experimental location. The two methods agree

well, with GRS allowing for an order of magnitude speedup for reaction rate un-

certainty calculations and several orders of magnitude for eigenvalue uncertainty
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calculations.

Keywords: uncertainty quantification, material test reactors, nuclear data
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1. Introduction

Material test research reactors focus on accelerated material degradation

experiments in radiation environments and isotope production. Many material

changes within the reactor are a function of the energy dependent neutron flu-

ence received over the experiment lifetime, and to correlate neutron damage5

effects on materials, the fluence must be well known. The reactors have online

flux measurements and coolant temperature rise sensors to quantify the total

reactor power level. Many experiments are equipped with radiation flux wires

to quantify the fluence of neutrons over the total experiment lifetime. Neu-

tronic analysis is also performed after irradiations to predict the neutron flux10

experienced by the experiment sample. These predicted fluxes are crucial to

the derived experiment data because the predicted fluxes are highly detailed

whereas the experimental data is quite sparse. Thus it is important to compute

the predicted flux well, and to include uncertainties in the results.

The results from online power measurements, counted radiation wires, and15

computational analysis are combined to determine the actual neutron fluence

that the experiment received. The data de-convolution process takes into ac-

count uncertainties from all measurement sources to determine the fluence re-

ceived by an experiment, plus the uncertainty of the result. The computational

uncertainty often dominates the total uncertainty of energy dependent fluence20

because only a few flux wire measurements are available to quantify the neu-

tron spectrum. However, uncertainties from the computational analysis are not

well determinable such that expert opinion is used for uncertainty instead of

model-based uncertainty. The main difficulties in determining these uncertain-

ties comes from tracking uncertain data inputs (fuel burnup, control positions,25

changing power levels, . . . through computationally intensive Monte-Carlo (MC)
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calculations. In order to better understand experiments, the computational un-

certainty must be quantified.

Models of material test reactors tend to include as much detail as possible

and thus rely upon Monte-Carlo codes where the details can be modeled. Un-30

certainty quantification (UQ) and sensitivity analysis (SA) methods for Monte-

Carlo codes tend to concentrate on k-eigenvalue and not reaction rates. The

Monte-Carlo-N-Particle transport code [1] is used in many research facilities,

as such, this tool is selected to perform neutronics calculations. A literature

review was performed to find an efficient method to propagate uncertainties35

with MCNP. A cross-section sampling and MCNP input file sampling method

was then implemented. MCNP parsers were created to efficiently apply the se-

lected UQ techniques. The UQ method was then compared to the UAM pincell

benchmark by means of k-eigenvalue uncertainty calculations.

2. Background40

2.1. Neutronic Uncertainty Quantification

2.1.1. Deterministic Methods

The first developments of UQ/SA occurred with respect to the neutron trans-

port equation under the diffusion approximation [2], which was later generalized

under the Adjoint Sensitivity Analysis Procedure (ASAP) [3]. Within a multi-45

group framework, UQ/SA has been performed and implemented in production

tools. Specifically, the adjoint multi-group transport equation can be solved

with small changes in the physics kernels in both deterministic and Monte-Carlo

solutions. For continuous energy adjoint calculations the situation is different.

Group to group scattering cross-sections cannot be easily inverted because cross-50

sections are represented as relations and not discrete points. By representing

the scattering matrix as discrete points, the computer memory requirements for

calculations grows to unfeasible amounts. For continuous energy codes, other

methods have been developed to propagate uncertainties.

3
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2.1.2. Monte-Carlo Based Methods55

Effects of perturbations on a response can be directly calculated from for-

ward Monte-Carlo calculations, e.g., no need to run parametric studies for small

perturbations. In general, the perturbed parameters are nuclear data related

and the response function is the criticality eigenvalue. These calculations predict

sensitivity profiles and output uncertainties can be determined from multiplying60

the magnitude of uncertainties with sensitivities.

The differential operator sampling (DOS) method [4] assumes the effect of

the perturbation being made (usually nuclear data) can be represented by a

Taylor series expansion around the mean value, generally using a 1st or 2nd

order expression. The derivative involved in the series expansion can be calcu-65

lated using Monte-Carlo means. The original developments did not include all

the required steps to get generally correct answers. The fission source was not

perturbed during sampling such that a bias was introduced [5]. The method-

ology without the fission source perturbation will tend to disagree with similar

perturbation calculations [6].70

The adjoint flux can in principle be calculated using Monte-Carlo methods,

though efficient methods to do so are difficult to implement for continuous in en-

ergy problems. In general to solve the problem would require an inverse random

walk from the end of the calculation to the beginning, e.g., a backwards calcula-

tion. Recently, the iterated fission probability (IFP) method [7] has been used to75

determine the adjoint flux from forward monte calculations. This method relies

on the physical interpretation of the adjoint flux as an importance weighting[2];

it is the affect of a neutron introduced somewhere in phase space of a critical

system. This means during power source iterations, keeping track of what a

neutron produced in some iteration i does in a later iteration asymptotic gen-80

eration n can allow for a creation of the adjoint flux. This adjoint can then

be used in typical deterministic manners using the sandwich rule to determine

sensitivities. Furthermore, it has been shown [8] that this method of adjoint

calculation is equivalent to the differential operator sampling method with fis-

4
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sion source perturbations. A drawback of this method is that a large computer85

memory is required due to storing of many histories as well as their original

birth conditions. The memory requirement is proportional to the number of

particles kept track of in each generation and the number of latent generations

used to establish an asymptotic case.

Contribution-Linked eigenvalue sensitivity/Uncertainty estimation via Track-90

length importance CHaracterization (CLUTCH) [9] is a similar to the integrated

fission probability method was recently implemented in SCALE. This method

avoids some pitfalls of the IFP method in that computer memory requirements

do not scale directly with the number of particle histories. This is accomplished

by following particle histories directly from birth to death and computing rel-95

evant MC integrals once a particle dies. The methodology agrees with well

multi-group MC methods as well as the IFP [9].

The DOS, IFP, and CLUTCH methods are good at S/U calculations for

system wide (integral quantities) such as keff, and kinetics parameters but has

difficulties determining specific tallies like dosimeter calculations because of the100

large amount of memory required to track all neutrons through generations.

The CLUTCH method has the potential to reduce memory requirements and

perform sensitivity calculations though has not been completely implemented

in any production tool.

The Total Monte-Carlo (TMC) method, first introduced to propagate nu-105

clear data uncertainty through reactor physics calculations [10] is a method to

propagate uncertainties with deterministic and MC methods. It is in essence

a general sampling method that uses a brute-force approach. Many random

inputs to a MC code are created, ran for a long time to get good MC statistics,

then uncertainties on outputs from input changes can be found by observing the110

output distribution and subtracting MC uncertainties. It is an excellent method

to propagate input uncertainties through MC calculations, but takes a very long

time to perform, needing at least 500 calculations with random inputs, e.g., 500

times longer than a single run. This method is used in this work and will be

described in more detail in Sec. 3.1.115
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The GRS method [11] is similar to TMC where simulations are run many

times with inputs randomly selected and outputs stored for statistical analysis

to determine uncertainties. However, this method does not have the drawback

of needing to run each simulations for a long time. Rather, N simulations with

different inputs are run for a short time with a single random number seed,120

then each N simulation is reran with a different random number seed (totaling

about twice the runtime of a single long calculation). The two different random

number seed simulations have identical MC (aleatoric) uncertainty distributions.

The covariance of the output sets is the epistemic uncertainty of the varying

inputs [11] because the MC uncertainty is almost eliminated (goes to zero as125

MC sample batch sizes increases). This method is used in this work and will be

described in more detail in Sec. 3.2.

2.2. Nuclear Data Sampling

A main sources of uncertainty for transport and depletion calculations are

based on uncertainties of nuclear data. In general, nuclear data is created130

from experimental means [12], however to resolve the quickly varying portions

of cross-sections as well as temperature dependence, evaluators create evalu-

ations [13]. Cross-sections can also be created from a theoretical basis and

corrected with experimental results [14]. Uncertainties in cross-sections are

complex because of correlations between different reaction channels as well as135

variances in channels themselves. These uncertainties are stored in nuclear data

evaluations as covariance matrices. Recently, there has been an effort to per-

turb nuclear data directly through sampling. These created nuclear data are

then used in the transport calculation of choice to propagate the nuclear data

uncertainty. It should be noted that processing evaluating nuclear data files is140

not a trivial process with many codes [15, 16, 17] dedicated to the task.

Perturbation theory offers similar calculations with multi-group nuclear data

and has been historically the tool of choice for sensitivity and uncertainty quan-

tification, for example SCALE’s TSUNAMI [18] uses this method. The nuclear

data sampling described is based on Monte-Carlo approaches, thus allowing the145
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data to be used with any transport approximation instead of just multi-group

calculations. An unfortunate aspect of the nuclear data sampling tools are

they are either proprietary or in-house implementations, thus not easily avail-

able. Open source tools [19] to manipulate nuclear data exist, however concise,

reliable APIs to use the methods developed are not yet available. The TENDL-150

2012 [20] nuclear data library published many iterations of randomly created

data and is the largest source of openly available random nuclear data.

2.2.1. Continuous Energy Covariance Based

Evaluated nuclear data comes with multi-group covariance matrices to de-

scribe cross-section uncertainties. Tools have been developed to use these covari-155

ances to sample nuclear data. Nuclear Data Uncertainty Analysis (NUDANA) [21]

and KIWI [22] are two such tools. A drawback of using nuclear data covariances

is that covariances are not available for all nuclide and are not all available for all

reaction channels. Nonetheless, the available covariances can be used to sample

nuclear data.160

2.2.2. Multi-Group Covariance Based

Often reactor physics codes use the multi-group approximation to make

problems tractable. Continuous data can be collapsed into suitable energy bins

by various means to create multi-group nuclear data. Nuclear data covariances

can then be used to adjust the multi-group data after collapse. The Cross Sec-165

tion Uncertainty and Sensitivity Analysis (XSUSA) [23] tool implements this

method of cross-section sampling. It’s built to be create nuclear data with the

SCALE covariance matrices for use with the TSUNAMI sequence.

2.2.3. Theoretical Model Based

The TALYS Evaluated Nuclear Data Library (TENDL) [14] is a complete nu-170

clear data library based on theoretical calculations along with specific evaluated

data. The use of theoretical calculations allows for evaluations of cross sections

that have not been measured and the creation of covariance matrices that have

not been measured. The library is created to agree with benchmarked data as

7
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much as possible. It features many isotopes of interests and many, many more175

covariances than typical libraries that rely more on experimental data. Due to

the computational nature of library creation, random nuclear data evaluations

can be made using inputs to the theoretical model rather than relying on pro-

vided nuclear data covariances. The model inputs are varied until many sets

of cross sections are made that are not rejected (e.g., agree with experimental180

data).

2.2.4. ACE Data Based

A more direct method of sampling is to use vary the ACE (A Compact

ENDF) data format that MCNP and other transport codes use. ACE data

stores nuclear data in a point-wise manner such that linear interpolations can185

be made between points to create ‘continuous’ data. The Nuclear data Un-

certainty Stochastic Sampling (NUSS) tool [24] directly perturbs the pointwise

data based on multi-group nuclear data covariances. This eliminates the need

to manipulate very complex ENDF data, but requires confidence in inputted co-

variance matrices. A comparison of NUSS and theoretical model based nuclear190

data perturbations was performed previously [25]. The two methods agreed well

for benchmark criticality cases. However, there are cases where the theoretical

model produced nuclear data with a non-zero skewness, which are not repre-

sented in ENDF data. These skewed data leads to skewed uncertainties which

could be important in some safety calculations. The NUSS tool was also ex-195

tended [26] with better statistical methods to perform global sensitivity analysis

based on the group-wise covariances and sampled made. The new method uses a

relatively complicated sampling scheme that assumes normal distributions. The

sampling method in this paper relies on ACE data with sampling philosophies

similar to NUSS.200
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3. Uncertainty Quantification Methods

3.1. Total Monte-Carlo

The Total Monte-Carlo method refers to a technique to randomly vary funda-

mental nuclear data parameters to generate many random nuclear data libraries

from theoretical models. These random data are used in many long running MC205

calculations to determine the effects of nuclear data variations. The statistical

method to remove the MC statistics from output calculations can be described

by breaking up the observed uncertainty into Monte-Carlo and input uncertain-

ties,

σob ≈ σ2
s + σ2

i (1)

σ2
s =

1

N

N∑
j=1

σ2
s,j , (2)

where σ indicates uncertainties, and the subscripts ob, s, i, indicate observed,210

statistical, input uncertainties, and N is the total number of observations. If a

set of observations due to varying inputs can be made along with the associated

MC uncertainty, the input uncertainty can be determined using Eq. (1).

A large (500-1000) set of random inputs are generated to create a large

set of outputs. Within an MC calculation, each run should have sufficiently215

low relative MC uncertainty (e.g., σs ≈ 0.05) such that the total uncertainty

observed from the large set of outputs is predominately from epistemic input

uncertainties. This method, though easy to implement for most code frame-

works, increases calculation time by 500-1000 times that of a single run. This

runtime is rather large for personal workstations but quite possible on modern220

high performance computers where 1000s of processors are available for a single

user.

TMC has the added benefit of determining the full covariance of the re-

sponse [27]. This can be quite useful when performing spectrum adjustments.

Error estimates of the TMC results can be calculating using a bootstrap225

method. The basic procedure is to take random samples of the random inputs

9
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with replacement. The total number of random samples of the original samples

to take should be equal to the original number of samples [28]. The tmc method

is then applied to the new sampled inputs along with the corresponding outputs.

This whole procedure is repeated many times to create a vector of uncertainty230

estimates. Confidence intervals can then be calculated by sorting the vector and

calculating the lower and upper cutoffs based on a desired confidence interval.

3.2. GRS

The GRS method relies on the statistical distribution of MC outputs in order

to determine input uncertainty. By taking two sets of random simulations, two235

distributions with the same uncertainties are found. The covariance of these

distributions is the input uncertainty because statistical errors are the same

in both sets and are removed by the covariance operation. In a mathematical

sense, given a model, Y = X(U), with input set U that is randomly varied, the

average output µ, is,240

µ = IE[IE[Y |U ]],

which given the results of iterated expectations (sometimes called law of

total expectation),

µ = IE[Y ],

with variance, σ2 as,

σ2 = Var(IE[Y |U ]).

The square-root of the variance gives the uncertainty of the inputs on the

outputs. However, with a single MC run, a very large number of particles would245

need to be ran (like in TMC) to reduce MC statistics. However, when two sets

of MC runs are made with two different random number seeds, two sets of

outputs, Y, Y ′ are created that are conditionally independent and identically

distributed, e.g., on average the outputs are the same but comparing individual

10
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results will show differences (µ = IE[Y ] = IE[Y ′]). By using this fact and the250

following form of the expectation of the two outputs multiplied, the variance of

the mean output can be related to the covariance between the two output sets.

The expectation of the two outputs multiplied is,

IE[Y Y ′] = IE[IE[Y Y ′|U ]],

= IE[IE[Y |U ] · IE[Y ′|U ]],

= IE[IE[Y |U ] · IE[Y |U ]],

= IE[IE[Y |U ]2]. (3)

Inserting Eq. (3) into the definition of covariance,

Cov[Y, Y ′] = IE[Y Y ′]− IE[Y ]IE[Y ′],

= IE[IE[Y |U ]2]− IE[Y ]2,

= Var(IE[Y |U |]), (4)

shows that the covariance between the two output sets is the variance of255

the desired mean output given input uncertainties U . This formulation cancels

out (or averages) the MC uncertainties such that only the input uncertainties

remain. This method avoids Eq. (1) so criteria for σ2
s are not required, though

MC uncertainties should be reasonably sized and enough particles ran to ensure

source convergence.260

Covariance information cannot be generated from the GRS method because

the method targets the mean variance (diagonal of the covariance) and not

covariance information. A bootstrapping uncertainty estimator is also not valid

because the GRS method requires unique samples. However different estimators

could be used such as jack-knifing, but this is not explored in this work.265
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4. Sampling Methods

4.1. Nuclear Data Sampling

Randomly generated cross-section files available within TENDL are an excel-

lent resource, however random evaluations for all cross-sections are not available

and evaluated covariances are not used when generating the data. While the270

latter is considered a positive feature of TENDL random data, it is not fully ac-

cepted that generated data from fundamental parameters is the correct method

of making nuclear data. The ability to generate random data with SCALE

based covariance data is a positive feature to overcome issues when data is not

available and to sample data based on evaluated distributions. A deficiency in275

this method of sampling is that the covariance data must be available for the

reaction and nuclide of interest to actually sample data. Furthermore, sampling

from ENDF formatted covariances directly has a benefit of sampling from any

ENDF based data as well as from covariance data that has not yet made it to

official SCALE releases.280

ASAPy1 is a tool that was created in this work to perform data sampling

from ACE files using SCALE covariance data or ENDF data via NJOY to

address the above issues. This tool is similar to the NUSS tool described in

Sec. 2.2.4, except it uses the newest SCALE covariance data or newest ENDF

data, written in python, and available for use. It also features the ability to285

use any group structure and/or any user flux weighting functions for covariance

collapsing from ENDF sources. The sampling procedures also uses lognormal

sampling along with the ability to use any sampling function as long as the

percent point function is available.

4.2. ACE Data Manipulations290

The A Compact ENDF file (ACE) format is used for nuclear data within

MCNP and other Monte-Carlo codes. It contains all relevant data from ENDF

1https://github.com/veeshy/ASAPy/releases/tag/v1.0
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files, support random access of data, and specifies all cross-sections on the same

unionized energy grid. The ACE data is a formatted data file and readers are

available, though writers tend to only translate ENDF data to ACE, with no295

general method to manipulate the ACE data directly. The ACE data reader

within OpenMC [29] was used to read in ACE files. A writer was created based

on the structure of ACE files. All data is represented in contiguous arrays, so

that if the original data is known (from reading the ACE data), that data can

be searched for within the ACE file and replaced with new values as long as300

the exact same energy grid is specified. This method of adjusting ACE data is

implemented in ASAPy. A few nuances when dealing with different data will

be discussed.

Cross-Section Perturbation: Nuclear data sampling occurs using multi-

group methods while ACE data is stored in a continuous format. Perturbation305

factors are generated based on taking a ratio of sampled cross-sections and

multi-group average cross-sections. These perturbation factors are then ap-

plied to the continuous cross-sections by mapping the multi-group structure

on the continuous structure. This method can cause difficulties in sampling

data when a group boundary happens to occur in a region where the flux or310

variance changes rapidly. This usually manifests itself in ill-formed covariance

information.

ENDF Sum Rules: Many ENDF reactions are subsets of other reactions,

so when one cross-section is sampled, others might need to be adjusted for

consistency. This is performed within ASAPy by keeping track of all MTs315

adjusted and comparing against sum rules. Table 1 shows the relevant sum

rules from the ENDF manual [13].

ν̄ Data: ENDF data allows for inclusion of total, average number delayed,

and prompt fission neutrons. MCNP only uses the total values within ACE

files, so only these are modified.320

Fission χ Spectrum: The distribution of energy of neutrons born from

fission depends on the incident neutron energy. As such, ACE data file stores

several tables for a few incident neutron energies. ENDF covariance data does

13
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not have covariance data for each incident neutron so the covariance data within

the ENDF file is applied to all incident neutron energy distributions. The dis-325

tributions are also stored as probability and cumulative distribution functions

(PDF and CDF). To sample these, the PDF is perturbed then the CDF is

adjusted based on the PDF perturbations then the CDF is re-normalized by

adding up the original PDF and perturbation factors to ensure the CDF sums

to 1.330

4.3. Covariance Data

The most comprehensive resource for covariance data is distributed within

SCALE 6.2 [18]. It combines covariance data from several nuclear data sources

and experiments. The SCALE based data was generated using a typical LWR

flux that include a thermal, epi-thermal, and fast region. A fine 252-group335

and coarse 56-group structure is available within SCALE. An older 44-group

structure exists but contains old data that is not recommended for use. The

covariance data can be converted from the internal SCALE binary format to a

ASCII format using the SCALE tool AmpxCOVConverter. The resulting data

file contains data for material numbers and their relevant reactions correlated340

with one another. The standard deviations of the specified reactions are given

in the relevant group structure followed by the actual correlation matrix. A

covariance parser was created within ASAPy to convert the ASCII file to a

more general HDF5 store with a hierarchy based on: ’/mat1/mt1/mat2/mt2’

corresponding to data correlating mat1 MT1 with mat 2 MT2. Often mat 1345

and mat 2 are the same, and MT1 and MT2 are the same, specifying self-

correlation. Any group structure can be accommodated by the parser such that

new evaluations can be easily used within ASAPy.

Covariance data also exists in ENDF files and these covariances can be used

to create any group structure as well as use any weighting flux to create co-350

variance matrices to sample with. ENDF data can be parsed with NJOY [15]

to generate covariance data. ASAPy implements NJOY input writers along

with ENDF readers to minimize the amount of user input to generate covari-

14
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ance data. The minimum input is a path to an ENDF file and the reaction

MT numbers to generate covariance data for. A BOXER format reader was355

also generated in order to read the BOXER formatted covariance files into the

previously described HDF5 format.

The covariance data comes in multi-group format which must be mapped to

relevant continuous energy bins in ACE data. After sampling data within the

multi-group structure, the data is divided by the multi-group mean cross-section360

to calculate a relative cross-section. These cross-sections are mapped onto the

continuous energy group bins then multiplied by the ACE data to generate a

sample of data. Two assumptions made are that the group-mean values within

the data are very similar to the mean values within the ACE data and that the

data within an energy bin are fully-correlated with one another.365

No data is shipped with ASAPy, ENDF data is freely available and SCALE

data is available with appropriate licenses.

4.4. Nuclear Data Sampling Techniques

A slight deficiency in the ENDF format is the inability for evaluators to

convey what type of distribution covariance data should take. Often physi-370

cal parameters like cross-sections cannot take negative values, but assuming

normal distributions are assigned to reported covariances, negative values are

possible. An approach often taken is to discard negative data, biasing the sam-

pling scheme. Another method is to assume the distributions are log-normal,

which always has positive values. However, without knowing what distributions375

the covariance data were specified for, errors can occur when large relative er-

rors are present with strong negative correlations [30] due to not transforming

the normal-cov to lognormal-cov. In this work, ENDF covariance data is trans-

formed to log-normal covariance data then log-normal sampling is performed

ensuring no negative samples are taken.380

Nuclear data has strong correlations between energy groups so when sam-

pling data, the full covariance of the data must be taken into account. Multivariate-

normal distributions allow for sampling of such data. Given a desired covariance

15
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matrix, C, that is semi-positive definite, and mean values, µ, a multi-variate

sample, Xi can be generated as follows. First draw uncorrelated values from

the mean using a standard-normal distribution, N and place the means in a

diagonal matrix,

xi = N [µ = 0, σ = 1],

then perform a singular value decomposition of the covariance,

C = USV, (4)

where U and V are orthogonal matrices, and S is a diagonal matrix containing

the singular values of C. A sample can then be drawn as

Xi = µ+ xiS
0.5v

This method is implemented in Scipy [31] within ‘np.random.multivariate normal’.

One may also use eigen or Cholesky decomposition instead of singular value de-

composition with similar results.

ENDF based nuclear data sometimes is published with non-semi-positive-

definite covariances. In this case the correlation data R must be manipulated

to draw samples. An eigen-decomposition of the correlation matrix is made,

R = QΛQ−1,

where Q contains the eigenvectors of R, and Λ contains the eigenvalues on the

diagonal. The negative eigenvalues are set to a small positive number (1e-8) to

form Λ̃ then the original eigenvectors are multiplied back in to form an adjusted

correlation matrix, R̃,

R̃ = QΛ̃Q−1.

The correlation matrix is used due to smaller spreads in eigenvalues, however

often the small eigenvalues imposed on the matrix cause numerical difficulties385

when converting the correlation matrix to a covariance matrix so the above

procedure may need to be repeated on the converted covariance matrix.

A second method based on a partial Cholesky decomposition [32] that gen-

erates a positive semi-definite matrix that equals the original matrix minus an

16
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MT Description MTs in Sum

1 Incident Neutron Total cross 2, 4, 5, 11, 16-18, 22-26, 28-37,

41-42, 44-45, 102-117

4 Total of neutron levels 50-91

18 Total fission 19-21, 38

103 Total of proton levels 600-649

104 Total of deuteron levels 650-699

105 Total of triton levels 700-749

106 Total of 3He levels 750-799

107 Total of alpha levels 800-849

Table 1: ENDF Sum Rules

error term was also implemented for correcting non semi-positive definite ma-390

trices.

A non-semi positive definite correlation example is the correlation matrix for

(n, γ) cross-section of 184W within ENDFB/VIII. The eigen-decomposition and

partial Cholesky algorithms were applied to generate 500 samples and the cor-

relation matrices are shown in Fig. 1, where it can be seen that both algorithms395

perform well compared to the original correlation matrix.

Figure 1: Correlation matrices from (left) the evaluated data file (middle) eigen-decomposition

sampling (right) partial Cholesky decomposition sampling

17
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4.5. MCNP Input Sampling

mcACE is a tool developed to perform UQ using MC methods. It is used to

manipulate MCNP input files to create random perturbations based on changing

any line given variables to change and distributions to sample from. It also400

handles data post-processing, data transfer, MCNP/ORIGEN coupling, and

performs statistics on relevant results. ORIGEN coupling is not discussed in

this paper but it is available in the code to help propagate uncertainties through

time. The typical flow of mcACE is shown in Fig. 2.

Figure 2: mcACE Flow Diagram

The goal of mcACE was to apply to many reactor designs rather than only405

work with a single reactor. This goal necessitated writing a program that could

understand MCNP syntax. Particularly, MCNP cell lines can be parsed for cell

numbers, material numbers, densities, and volumes; MCNP problem lines can

be parsed for material numbers and materials. More subtle MCNP features

are also handled such as MCNP single line comments (C comment), end of line410

comments (valid line $ comment), and both types of continuation lines (lines

starting with 5 spaces and lines following a &). This allows for reading as well

as writing back MCNP files that can be ran with MCNP directly. The whole

18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



input file is parsed into a python class that allows access to the MCNP title,

cell, surface, and problem blocks. Find and replace functions help sampling415

procedures vary inputs.

Any parameter in the MCNP input can be sampled using the mcACE in-

put. This is similar to MCNP-PSTUDY [33], however more general samplers

are available. Given the original line and a properly formatted version of that

line, sampling can be performed. An example to vary density is shown in Fig. 1,420

where the first line is the original MCNP line in pseudo-code format, and the

second line is the original line with the ‘density’ number replaced with a python

string formatter with index 0. The index 0 corresponds to the position in the

‘sampling scheme’ list. The ‘sampling scheme’ allows for many sampling func-

tions like uniform, normal, latin-normal, repeating the last sampled value, giv-425

ing an exact value for a simple find/replace, or a user generated math function.

This interface provides good flexibility to sample MCNP files. The mcACE in-

put allows for repeated sampling blocks so sets of parameters can be varied as

needed.

Listing 1: Sample mcACE MCNP Line Sampling SNippet

mcnp l ines=cel lnum matnum dens i ty s u r f cards imp : n=1,

l i n e s t o v a r y w i t h=cel lnum matnum { 0 : . 6 f } s u r f cards imp : n=1,

sampling scheme=l a t i n ,

sampl ing va lue s =0.1 0 . 05 ,

4.6. MCNP Tally Reader430

MCNP prints relevant outputs to ‘.o‘ files, and optionally ‘.mctal’ files. The

‘.o’ files contain a wealth of information, particularly about statistics and prob-

lem run information as well as relevant outputs like tallies and eigenvalue. The

‘.mctal’ files contain a subset of the information in the ‘.o’ files but the infor-

mation is very structured, allowing for efficient readers to be created. mcACE435

implements an ‘.mctal’ reader to read eigenvalues, problem information, and

19
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most tallies (i.e., F#:particle, FC, E, T, C, FM, DE/DF, and SD), missing is a

mesh-tally reader though one could be added. MCNP ‘.o’ files can also be read

for information that is not present in a ‘.mctal’ file such as kinetics parameters

and sensitivity coefficients.440

4.7. mcACE Storage

The UQ process implemented generates a large amount of output depend-

ing on the relevant output parameters. In a typical run with 500 MCNP in

eigenvalue mode, 5 tallies with 100 energy bins would result in 2.5e5 outputs to

track. In a burnup calculation that uses a 238-group structure and 100 unique445

materials, a minimum of 11.9e6 outputs must be tracked. Storing this data in

typical text files or csv’s is not efficient and error prone. mcACE opts to use

the HDF5 storage format along with Pandas [34] dataframes to store data as

tables in HDF5 format. After relevant outputs are parsed for each MCNP run,

all of the similar results are combined into a dataframe with multiple index as450

tally info as needed and a run number index, with columns as energy bins or

other specific names such as ‘keff‘. This format also makes it easier to perform

statistics on the outputs.

5. Verification and Application

5.0.1. Godiva Eigenvalue455

The Godiva core is a well known benchmark model / experimental validation

core. It is a bare spherical mass of HEU that has a well quantified uranium mate-

rial vector and critical dimensions. It’s also a simple reactor core to analyze due

to it’s fast spectrum. The MCNP-IFP method was used to calculate sensitivi-

ties for several reaction MTs. Covariances were provided by ASAPy to calculate460

the total uncertainty on eigenvalue from reaction rates via the sandwich rule.

The mcACE UQ process using TMC and ASAPy generated cross-sections was

performed using 1000 runs. Table 2 shows good agreement for all studied re-

action MTs, all values agree within uncertainty. MCNP-IFP uncertainty was

20
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Correlation Reaction Unc. (pcm) 95% σ MCNP-IFP

Uncorrelated (n,γ) 479.4 13.3 482.3

(n,f) + (n,γ) 493.5 13.3 -

(n,f) 121.2 3.3 119.8

ν̄ 221.1 5.5 218.5

Fission χ 167.4 5.0 169.3

Correlated (n,γ) 838.8 24.4 848.9

(n,f) + (n,γ) 883.3 25.1 -

(n,f) 269.5 6.8 269.4

ν̄ 546.0 13.9 544.1

Fission χ 269.0 12.7 276.2

Table 2: Comparing Godiva Uncertainties using ASAPy to MCNP-IFP

not propagated. This result shows that the TMC method agrees well with the465

IFP theory in terms of eigenvalue uncertainties. This indirectly shows the GRS

method also agrees well with IFP theory in that it agrees well with TMC cal-

culations, which will be shown in Sec. 5.0.2. Reaction rate uncertainties could

not currently be calculated within MCNP for further verifications.

5.0.2. UAM Pincell Flux and Reaction Rates470

To verify the GRS implementation the TMC (Total Monte-Carlo) method

is used as the ‘true’ result. Furthermore, convergence studies are performed

to determine how many runs are needed for GRS cases. The relative errors

reported are the uncertainties in the output quantities from input uncertainty,

and not the typical MCNP related statistical error. The relative errors of each475

value are compared by plotting the relative error of the GRS method to the

TMC method. If the two methods agree, a point will be on the y=x line.

The UAM Pincell Benchmark [35] at hot-zero power was modeled according

to the specifications in Fig. 3. The TMC cases were ran with 7500 particles
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/ cycle for 15000 active cycles, the GRS cases used 40 cycles (187.5 times less480

total particles ran because GRS requires twice as many model runs). In Fig. 4

it can be seen that in general, GRS agrees well with TMC.

Figure 3: UAM Pincell Dimensions [35]

5.1. Practical Example with Advanced Test Reactor

The Advanced Test Reactor (ATR) [36] is a high powered, high flux material

test reactor used for isotope production, fuel qualification, material irradiations,485

and other experiments. Often the irradiation history of an experiment can be

determined through purely experimental means like determining the fission rate

of a fueled sample via microscopy or calculating activity via radiation detectors.

Other times flux wires must be used along with computer models to determine

the irradiation history. When computer models are needed, an estimate of the490

uncertainty of the relevant computation is important. To show the usefulness

of TMC and GRS methods on a real world model, the uncertainty of the flux

in an experiment within the ATR was calculated.

The energy dependent flux within graphite shown is very important in de-

termining spectral adjustments based on experiment flux wires. Each model495
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Figure 4: TMC and GRS Relative Uncertainties

ran has a unique U-235 data library created from TENDL-12 ENDF files [20].

The predicted GRS relative errors (shown in Fig. 5) for the 148.75x case shows

reasonable agreement (mosth within 20%) with the TMC values. Grouping of

TMC values near the y-axis (x=0) that TMC failed to predict the input er-

rors because of relatively large MC standard deviations or large MC variance500

to observed variance ratios in the calculated values. This shows that the GRS

method is able to predict relative output uncertainties where the TMC method

fails. This does not show that the GRS method predicts a similar value to TMC

in those cases if TMC were able to predict a value, though it’s a reasonable con-

clusion because the two agree well when TMC is applicable.505

The speedup for the GRS method for energy dependent flux is not as great

as global values like eigenvalue. Excellent agreement between the TMC and the

GRS cases occur when 12.9x less particles are used in GRS than TMC. The

37.19x less particle case has slightly more spread in results but all values where

comparable agree with 20%.510

6. Conclusions

A process was developed to quantify uncertainty of any output with an es-

tablished Monte-Carlo neutronic code (MCNP) without any source code modi-

fication and built into a new code called mcACE. A review of relevant method
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Figure 5: Various Runtimes Predicting Graphite Flux Using GRS
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was performed and a combination of sampling techniques and statistical meth-515

ods were identified to perform uncertainty quantification of relevant outputs for

reactor calculations. Comparisons of the selected statistical methods, GRS and

TMC were made to confirm their ability to predict similar outputs. GRS showed

an decrease of at least 10x computational time relative to TMC when calculating

uncertainties of fine-group fluxes in small regions of a reactor model. For larger520

regions or more global values, 100x or more speedup is possible. The TMC

method was shown to also compare well with traditional sensitivity methods

when applied to k-eigenvalue calculations.

ASAPy was created to sample ACE data based on ENDF and SCALE co-

variances using normal and log-normal distributions. ASAPy can generate co-525

variance from ENDF data for any group structure and any spectrum weight.

Data is generated as ACE files and methods were developed to update MCNP

data tables so that the ACE Files can be used. Generated cross-sections were

verified to produce similar uncertainties in the Godiva reactor as adjoint based

methods.530

Finally the TMC and GRS methods were applied to a real-world model of

the Advanced Test Reactor to successfully calculate an energy dependent flux

within an experimental location. The two methods agreed well again, with the

GRS method being at least 10x faster.

Future work would should include further code-to-code verifications and new535

nuclear data sampling treatments. In particular, comparisons of reaction rate

uncertainties from other codes and energy dependent flux uncertainties are of

interest. Sampling methods with built-in sensitivity calculation methods [26]

could also be used to add calculations of sensitivity profiles. Sampling methods

with decreased sampling requirements [37] could also be implemented.540
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