

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-668949

A Representative Democracy to Reduce Interdependency in a Multi-Model Ensemble

B. M. Sanderson, R. Knutti, P. M. Caldwell

March 24, 2015

Journal of Climate

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

¹ **A Representative Democracy to reduce interdependency in a
² multi-model ensemble**

³ BENJAMIN M. SANDERSON *

National Center for Atmospheric Research, Boulder CO

⁴ RETO KNUTTI

Institute for Atmospheric and Climate Science, ETH, Zurich, Switzerland

⁵ PETER CALDWELL

Lawrence Livermore National Laboratory, Livermore CA

*Corresponding author address: Benjamin Sanderson, National Center for Atmospheric Research, 1850 Table Mesa Dr, Boulder CO, 80305, USA
E-mail: bsander@ucar.edu

ABSTRACT

7 The collection of Earth System Models available in the CMIP5 archive represents, at least to
8 some degree, a sample of uncertainty of future climate evolution. The presence of duplicated
9 code as well as shared forcing and validation data in the multiple models in the archive
10 raises at least three potential problems; biases in the mean and variance, the overestimation
11 of sample size and the potential for spurious correlations to emerge in the archive due to
12 model replication. Analytical evidence is presented to demonstrate that the distribution
13 of models in the CMIP5 archive is not consistent with a random sample, and a weighting
14 scheme is proposed to reduce some aspects of model co-dependency in the ensemble. A
15 method is proposed for selecting diverse and skillful subsets of models in the archive which
16 could be used for impact studies in cases where physically consistent joint projections of
17 multiple variables (and their temporal and spatial characteristics) are required.

1. Introduction

Today's Earth System Models (ESMs) are great testament to collaborative scientific thinking. Millions of lines of computer code represent the pinnacle of understanding of the intricate coupled interactions of the Earth's land, oceanic, cryospheric, and atmospheric systems. Unlike the more simple atmospheric models of the past, few people (if any) now understand the models in their entirety and so the models themselves have become vehicles of a scientific consensus which we use to project future climates which cannot directly be validated for decades to come. For some parts, such as the representation of the equations of fluid flow, understanding is mature and thus (relatively) uncontentious. But other components, such as the effect of a changing climate on ecosystem dynamics, are sufficiently complex that any computational code must inevitably make significant approximations in order to even represent the bulk behavior of the system in any tractable fashion.

A given model is thus more than a computer program, it is a collection of axioms and beliefs about which processes might be important for evaluating how our environment might change, and how those processes should be represented, and as such, each model is a self-consistent entity. The challenge arises, however, when one wishes to combine the results of many models to attain some more comprehensive understanding of the uncertainties present in their individual implementation. Given a set of models of the climate system, assessing the value of adding another model clearly requires a consideration of whether the model is fit for purpose (e.g. the validity of its axioms, forcing data and tuning protocols). We would argue also that it is important to assess if the model provides new information; to measure how independent is the new model from those in the original set. In an extreme case, adding an exact duplicate of a model already in the set would not add value, rather it would bias any combination of model results towards the results of the duplicated model (Caldwell et al. 2014).

The latest Coupled Model Inter-comparison Project (CMIP5, Taylor et al. 2012) is the largest archive of climate data the world has seen to date. Such Multi Model Ensembles

45 (MMEs) have often been referred to as ‘ensembles of opportunity’ (Tebaldi and Knutti
46 2007), because the range of models represent some sample of the systematic choices which
47 developers face in the course of representing the climate system in the form of computer
48 code. But, as has been noted before (Knutti 2010), this sample is far from perfect.

49 Firstly, the models available may vary in their ability to resolve certain processes which
50 might be observed in the Earth System. For any given process, a researcher may find relevant
51 observations to rank models for their purposes but the output of the ESMs is sufficiently
52 high dimensional that any ranking is unlikely to be universal (Santer et al. 2009). In contrast
53 to weather forecast models, ESMs can also rarely be validated out of sample and so there
54 remains a risk that empirical components of ESMs can be calibrated using the only available
55 observations, and although this might be a pragmatic approach it leaves little opportunity
56 for assessing and contrasting model performance (Sanderson and Knutti 2012).

57 A second problem lies in the lack of independence of models, where independence is not
58 meant in a statistical sense but in a more loose sense of models sharing ideas for parame-
59 terizations and simplifications or sharing actual computer code, and therefore being biased
60 in similar ways relative to reality. At the time of writing, 61 models are listed in the Earth
61 System Grid database. This doesn’t necessarily mean that each of these models provides an
62 independent estimate of future climate change. Indeed, some of these co-dependencies are
63 trivial and can be accounted for by considering models submitted with different resolutions
64 (for example, MPI-ESM-MR and MPI-ESM-LR, see Knutti et al. 2013). Most institutions
65 also produce model variants with a range of different configurations, with options for inter-
66 active atmospheric chemistry or carbon cycle (CMCC-CESM and CMCC-CM, for example).
67 Finally, different institutions can share model components, for example the FIO-ESM model
68 shares its atmosphere, ocean, sea ice and land surface code with CCSM4, but adds a surface
69 ocean wave parameterization. Submodel replication is common throughout the ensemble,
70 for example in the models considered for this study over 25 percent use some variant of
71 the Community Atmosphere Model (CAM3, CAM3.5, CAM4 or CAM5) to represent atmo-

72 spheric processes. The GFDL MOM ocean model is similarly popular (MOM2.2, MOM4.0
73 and MOM4.1). Table 2 shows a broad illustration of shared model components in the CMIP5
74 models considered for this study.

75 This extensive model replication in the CMIP5 and its predecessors is not a problem
76 *per se*, in fact it seems natural to copy successful parts and build on the work of others,
77 and it requires enormous effort to develop entirely new model components. Hence, each
78 institution understandably focuses on certain aspects but copies other components. But
79 model replication presents a number of issues for model ensemble analysis. The first is
80 simply a matter of representation: the Assessment Reports of the Intergovernmental Panel
81 on Climate Change (IPCC) have often used the multi-model mean of the CMIP ensembles
82 to represent a consensus view of model projections of future climate, but clearly this mean
83 will be biased towards models which are highly replicated within the ensemble. Similarly,
84 model agreement on the sign or magnitude of a change in future climate is often taken to
85 imply confidence in a result (Tebaldi et al. 2011, Knutti and Sedáček 2013), but if models
86 are highly replicated within the ensemble, such agreement becomes less significant.

87 Another issue lies in the possible effect of replicated models in studies which attempt to
88 constrain aspects of future climate change. If a researcher discovers a correlation between
89 an observable quantity and some unknown climate parameter in a multi-model ensemble
90 (such as in Fasullo and Trenberth 2012 or Qu and Hall 2013), the statistical significance of
91 that correlation would be inflated if some points are repeated. This argument is developed
92 in Caldwell et al. (2014) who show that although a data-mining approach will yield more
93 strong correlations between Climate Sensitivity and potentially observable fields than one
94 would expect to see by chance in CMIP5, this may be attributable in part to model co-
95 dependencies.

96 This is the second in a series of papers examining interdependency in the CMIP ensem-
97 bles. In Sanderson et al. (submitted), we developed a distance metric which enabled both
98 models and observations to be represented as points in a multi-dimensional space. We then

99 showed that model properties could be interpolated within this space, allowing a resampling
100 of model properties in a manner which was less sensitive to model replication and could take
101 into account a measure of performance in reproducing observations. However, the approach
102 of Sanderson et al. (submitted) is also unable to provide full spatial and temporal variations
103 in quantities. For example, a farmer may not want an estimate of the change in average
104 rainfall, but a set of representative summers with full spatial and temporal information, and
105 the corresponding temperature, sunshine and wind data. For such cases it may be better
106 to use the raw or bias corrected model output directly, but that requires selecting a set of
107 models to use.

108 It has been proposed before that subsets of larger ensembles may produce more sta-
109 tistically robust results, Evans et al. (2013) investigated this concept using subsets of a
110 multi-physics ensemble of weather forecasting models. Perhaps the simplest approach to
111 achieve this might be to take a single model from each institution, but there are numerous
112 issues with this. Firstly, although there are often similarities between models published by
113 single institutions, such a crude approach would eliminate cases where significantly different
114 models were produced by the same group. There are several examples of the latter case,
115 the GISS-E2 model, for example is published with two structurally different oceans. Fur-
116 thermore, several groups (CESM, GFDL, UKMO amongst others) publish both a ‘bleeding
117 edge’ model and a legacy model to the archive, where there might be significant structural
118 changes between the releases. Finally, an institution-based pruning approach would not help
119 identify models from different institutions which share a large fraction of their code.

120 It could be argued that one could account for many of these problems through careful con-
121 sideration of model lineages, by documenting the basic parameterizations shared by different
122 models or by assessing the fraction of common code between different models. This, how-
123 ever, would be a considerable undertaking - and the results would require a comprehensive
124 understanding of each model’s code. Firstly, although some models document and publish
125 their code-base in full before submitting simulations to the CMIP archive, this practice is far

126 from universal. A model could in theory be defined by summarizing the parameterizations,
127 their values and other structural assumptions which have been employed in that model, but
128 assessing the relative importance of each of those parameterizations in terms of model clima-
129 tology or response to external forcing would require good prior intuition of the relationships
130 between the parameterizations and the process to be studied, which might be possible in
131 some but not necessarily all cases. Such an approach would clearly be worthwhile, and could
132 greatly aid in the interpretation of differences in climate change projections, but it would be
133 a monumental undertaking.

134 An alternative approach is to utilize output from the models themselves to establish
135 codependencies. This approach has been demonstrated with some promise by Masson and
136 Knutti (2011) and Masson and Knutti (2013), who used inter-model distances derived from
137 spatial patterns of climatological temperature and precipitation to establish a hierarchical
138 clustering of models which resembles a tree showing structural relationships one might expect
139 from considering model lineages. As noted in Masson and Knutti (2011) and Sanderson et al.
140 (submitted), the distribution of inter-model distances shows recognizable structure, with
141 models from the same institution and models with common heritage generally exhibiting
142 similar patterns of mean state bias. However, the aforementioned studies did not establish
143 any quantitative assessment of inter-model distance, which we attempt to address here.

144 To this end, we formalize an approach to use model similarity information to select models
145 based on their skill and independence. This does not eliminate model inter-dependency, but
146 allows us to select a subset of models where the most glaring examples of model replication
147 are no longer present. In Section 2.a, we establish a method for identifying near-neighbors
148 in a climate model ensemble, in Section 2.d, we use model similarity information to produce
149 a weighting scheme which accounts for both model skill and model interdependence. Section
150 2.e shows how this framework can be used to select a subset of models from an archive of
151 climate models. Finally, Section 3.b demonstrates this method using the CMIP5 multi-model
152 archive.

153 **2. Method**

154 *2.a. Processing model output*

155 In this study, as in our accompanying paper Sanderson et al. (submitted), we produce a
156 matrix of inter-model distances in an EOF space derived from 30 year mean climatological
157 output from each model's historical simulation conducted for CMIP5. The details of the
158 construction of the distance matrix are identical to that of Sanderson et al. (submitted).

159 We use the 'historical' and 'rcp85' experiments, and the 'r1i1p1' simulations in each case.

160 In the special case of CCSM4, we also consider the sensitivity of the technique to internal
161 variability by repeating the analysis with all available simulations in the CMIP5 archive
162 (r1i1p1, r1i2p1, r1i2p2, r2i1p1, r3i1p1, r4i1p1, r5i1p1 and r6i1p1 for the historical runs and
163 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 and r6i1p1 for the RCP8.5 simulations).

164 The input data for this study is both processed, and used to conduct an EOF analysis
165 in a similar fashion to Sanderson et al. (submitted). Minor differences in the inter-model
166 distances occur because the former study considers both CMIP3 and CMIP5 models, which
167 slightly changes the exact form of the EOFs. For each model, a number of monthly, gridded
168 diagnostic variables are considered to represent the climatology of the model. For each avail-
169 able model in the CMIP3 and CMIP5 ensembles, monthly climatologies are obtained from a
170 single historical simulation by averaging monthly mean fields for the time period 1970-2000.
171 Data is obtained for five 2 dimensional fields (surface air temperature (TAS), total precipita-
172 tion (PR), outgoing top-of-atmosphere shortwave radiative flux (RSUT), outgoing longwave
173 top-of-atmosphere flux (RLUT), sea level pressure (PSL)) and two three-dimensional fields
174 (atmospheric temperature (T) and relative humidity (RH)). Three dimensional fields are
175 zonally averaged. Corresponding observational monthly mean climatologies are obtained by
176 averaging available years for each field type, as shown in Table 1.

177 Data from each model and dataset are regridded onto a 2.5 by 3.75 degree latitude
178 longitude grid, and zonal vertical fields are regridded onto a 2.5 degree latitude grid at 17

179 pressure levels. For each variable, values are area weighted. Vertically resolved fields are
 180 also weighted by the pressure difference between the top and bottom of the corresponding
 181 level. In order to usefully concatenate the multivariate field for EOF analysis, the variables
 182 must be normalized for each to represent a similar amount of variance in the multi-model
 183 ensemble. We normalize each observable field using values obtained from the observations.
 184 For 2 dimensional fields, we calculate the inter-monthly variance of tropical grid-cells and
 185 take the average over the tropics to obtain a single normalization factor for each variable.
 186 For 3 dimensional fields, we take the inter-monthly variance of zonally averaged fields in the
 187 tropics between 700 and 400 hPa, and then average the variances over the spatial domain to
 188 obtain the normalization factor. Normalization factors are calculated from the observations
 189 only, and the fields from each model are divided by the same factor (shown in Table 1).
 190 Each field is then reformulated into a single vector. If any elements of the vector in any
 191 single model or in the observations are missing, those particular elements are removed from
 192 all models. Each field vector is then normalized by the number of remaining elements, and
 193 the 2d and 3d fields are concatenated into a single vector length n (where $n=358,248$ when
 194 all fields are utilized). Each of the m vectors are combined to form a matrix X^{20c} (size m
 195 by n , where m is 36, comprising 36 CMIP5 model vectors). The ensemble mean value is
 196 calculated by averaging the m rows of the matrix, and this is subtracted from each row to
 197 yield the anomaly matrix ΔX^{20c} , such that

$$\Delta X^{20c} = X^{20c} - \overline{X^{20c}} \quad (1)$$

198 The analysis is also repeated with a number of different subsets of the entire set of
 199 variables. In these cases, the matrix ΔX^{20c} is formed using only that subset, and the
 200 analysis continues in the same fashion.

201 The process is repeated to produce a similar matrix to represent the climate change
 202 between the historical simulation (1970-2000) and the RCP8.5 simulation (2070-2100). In
 203 this second analysis, the anomaly between the two 30 year periods is taken to form the

204 matrix ΔX^{21c} . The future analysis is also repeated with a number of different subsets of the
205 entire set of variables. In these cases, the matrix ΔX^{21c} is formed using only that subset,
206 and the analysis continues in the same fashion.

207 *2.b. Principal Component Analysis*

208 We conduct a principal component analysis on the resulting matrix formed by combining
209 the climatology vectors from each participating model, such that the EOF loadings define a
210 t -dimensional space (where t is the truncation length of the Principal Component Analysis)
211 in which inter-model and observation-model Euclidean distances may be defined. The use
212 of the EOF pre-filter combines fields which are trivially correlated (such as adjacent grid-
213 cells) into a single mode. The results of the analysis do change in a subtle fashion with
214 truncation length, and we discuss this sensitivity further in Section 3.c.1, but for the initial
215 analysis we use a truncation length of $t = 9$. This truncation length effectively provides
216 enough degrees of freedom to represent some subtle differences between related models in
217 the resulting distance metric, but not so many as to introduce excessive random noise into
218 the calculation.

219 The PCA analysis on any ΔX can be performed by singular value decomposition and
220 truncated to t modes, such that:

$$\Delta X^{20c} = U^{20c} \lambda^{20c} V^{20cT}, \quad (2)$$

221 for the present day case (20c), and

$$\Delta X^{21c} = U^{21c} \lambda^{21c} V^{21cT}, \quad (3)$$

222 for the future case (21c). U^{20c} and U^{21c} (sized m by t) are matrices of model loadings,
223 V^{20c} and V^{21c} (sized n by t) are spatial patterns of ensemble variability while λ^{20c} and λ^{21c}
224 (sized t by t) are diagonal matrices representing the variances associated with each mode.

225 The inter-model distances can then be measured in a Euclidean sense in the loadings
 226 matrices U^{20c} and U^{21c} , such that the distances between 2 models i and j can be expressed
 227 as:

$$\delta_{ij}^{20c} = \left(\sum_{l=1}^t (U^{20c}(i, l) - U^{20c}(j, l))^2 \right)^{1/2}, \quad (4)$$

228 for the present day and

$$\delta_{ij}^{21c} = \left(\sum_{l=1}^t (U^{21c}(i, l) - U^{21c}(j, l))^2 \right)^{1/2}, \quad (5)$$

229 for the future. Model-observation distances $\delta_{i(obs)}^{20c}$ which can obviously only be calculated
 230 for the present day case are created using a climatological vector from an observational
 231 dataset X^{obs} prepared in the same fashion as X^{20c} :

$$\Delta X_{(obs)n}^{20c} = X_{(obs)} - \overline{X^{20c}} \quad (6)$$

232 where $\overline{X^{20c}}$ is the multi-model mean of X^{20c} , length n . This observational anomaly vector
 233 can be projected onto V^{20c} to form an observational loading vector $U_{(obs)}$ (length t). The
 234 distance between each model and the observations can be then calculated in a similar fashion:

$$\delta_{i(obs)}^{20c}(i) = \left(\sum_{l=1}^t (U^{20c}(i, l) - U_{(obs)}^{20c}(l))^2 \right)^{1/2}, \quad (7)$$

235 Finally, we calculate the variability expected in an initial condition ensemble by taking
 236 $n_{ic} = 8$ (historical) or $n_{ic} = 6$ (future) member CCSM4 ensemble for both the historical
 237 simulation and RCP8.5. In each case, the data is processed in the same fashion as for the
 238 multi-model case to create an n_{ic} by n matrix, X_{ic}^{20c} and X_{ic}^{21c} . We then take anomalies from
 239 the CMIP5 ensemble mean:

$$\Delta X_{ic}^{20c} = X_{ic}^{20c} - \overline{X^{20c}}, \quad (8)$$

240 and

$$\Delta X_{ic}^{21c} = X_{ic}^{21c} - \bar{X}^{21c}. \quad (9)$$

241 These can also be projected onto V^{20c} and V^{21c} to form loading vectors $U_{(ic)}^{20c}$ and $U_{(ic)}^{21c}$ (size
 242 n_{ic} by t). The distance between initial condition ensemble members can be then calculated
 243 as before for the multi-model case.

244 *2.c. Forming Random ensembles*

245 In order to compare inter-model distances in the CMIP5 archive with distances expected
 246 by chance, we create a set of 10^5 matrices of random data with the same dimensions as U^{20c}
 247 and U^{21c} (where m is 36). Each random distribution represents inter-point distances for all
 248 possible pair-wise combinations m points (703 distances, in this case). Our results are not
 249 sensitive to further increasing the number of random cases.

250 Each row of one of these random matrices is populated with draws from a Gaussian
 251 PDF with variance equal to that from the rows of U^{20c} and U^{21c} (all of the rows have equal
 252 variance in each case). As a result, data in these random matrices is independent in directions
 253 corresponding to both the EOF number and the model number. We desire matrices with an
 254 independent model dimension in order to test the likelihood that CMIP5 output was drawn
 255 from a set of independent models. Having independence in the field direction is appropriate
 256 because the columns of U^{20c} and U^{21c} are independent by construction.

257 Our assumption that the t dimensional normal distribution is representative of an in-
 258 dependent ensemble of climate projections is subject to some caveats; we are making the
 259 effective assumption that a normal distribution of models in the space defined by U^{20c} or U^{21c}
 260 is plausible, and that there are no parts of that space which might represent an unphysical
 261 climate state. There are some justifications for this assumption; the random distributions
 262 are compared with the loading matrices U^{20c} and U^{21c} , which are themselves orthogonal
 263 basis sets defined by multi-model variability. As such, we are making the assumption that

264 if there are physical relationships between variables in the model output data (say between
265 adjacent grid-cells or between surface temperature and outgoing longwave radiation for ex-
266 ample), then any correlation between these would be represented as a single mode in the
267 EOF analysis. Thus, any linear relationships which exist in the original data are effectively
268 preserved in the random ensemble also. However, a strong nonlinear relationship between
269 two variables in the CMIP5 archive could not be represented in a single EOF mode, and
270 might be represented in two or more modes. In this case, then there would be some of
271 the space which should physically off-limits. Hence, by using normally distributed data to
272 define the random ensembles and their associated length scale for inter-point distances, we
273 make the assumption that multi-model variability can be appropriately described by a linear
274 basis set. Although one could potentially consider designing a random sample which fitted a
275 high-dimensional distribution to the existing ensemble to account for nonlinear relationships
276 between modes, the increase in complexity, the lack of samples in the original ensemble and
277 the necessary subjective parameterization of such a distribution means this is impractical
278 for the present study.

279 *2.d. Weighting for Uniqueness*

280 In this section, we seek to use the relationships derived in the Section 2.b to define
281 a weighting scheme which would effectively down-weight closely related model pairs the
282 ensemble, which we can assess using the expectation values for near neighbor distances in
283 the random ensembles proposed in Section 2.c. Our scheme should also provide the capability
284 to down-weight models which exhibit low fidelity in a desirable metric.

285 The limiting cases of such a scheme are easy to define. We consider the models, as
286 before, to be represented as points in a space defined by the loadings of the model in an
287 ensemble-wide EOF analysis. In the extreme case, if the distance between two models is
288 exactly zero then the models are considered identical and each member of the pair should be
289 given half the weight that they would otherwise have (equivalently, a statement that adding

290 an identical model to an existing ensemble member should not change the results).

291 We propose a simple functional form for model similarity which satisfies the requirements

292 for a given model pair $[i, j]$, separated by a distance δ_{ij}^{20c} or δ_{ij}^{21c} :

$$S(\delta_{ij}^{20c}) = e^{-\left(\frac{\delta_{ij}^{20c}}{D_u}\right)^2} \quad (10)$$

$$S(\delta_{ij}^{21c}) = e^{-\left(\frac{\delta_{ij}^{21c}}{D_u}\right)^2}, \quad (11)$$

293 where D_u is a free parameter, a ‘radius of similarity’, such that model pairs separated by
294 less than this value are considered similar. The distance is squared so that the metric tends
295 to unity for values $<< D_u$. The smallest reasonable value for D_u would be the expected
296 distance between two identical models exhibiting different realizations of internal model
297 variability, given this represents a case where the model structure is identical. As D_u is
298 increased from this value, increasingly distant pairs of models are considered similar. In the
299 extreme case, as D_u approaches the largest inter-point distances (i.e. the largest values of
300 δ_{ij}^{20c} or δ_{ij}^{21c}) in the ensemble, then only the models with the largest biases would exhibit a
301 value of S of close to unity and all other members would be down-weighted.

302 In Section 2.c, we derived D_u empirically by considering the nearest neighbors one would
303 expect to find by chance in a t dimensional normal distribution of equal population, variance
304 and dimensionality as U . This is achieved in practice by considering the randomly generated
305 distributions from the Section 2.a. We define D_u to be the 50th percentile of nearest-neighbor
306 distances in the 10^5 randomly generated ensembles.

307 One can thus obtain a value for the effective repetition of model i in the ensemble:

$$R_u(i)^{20c} = 1 + \sum_{j \neq i}^m S(\delta_{ij}^{20c}) \quad (12)$$

$$R_u(i)^{21c} = 1 + \sum_{j \neq i}^m S(\delta_{ij}^{21c}), \quad (13)$$

308 for the the past and future cases respectively, where m is the total number of models.
 309 We then propose a uniqueness weighting for model i by taking the inverse of the number of
 310 models similar to i :

$$w_u(i)^{20c} = (R_u(i)^{20c})^{-1} \quad (14)$$

$$w_u(i)^{21c} = (R_u(i)^{21c})^{-1}. \quad (15)$$

311 for the the past and future cases respectively. If desired, a weighting scheme could also
 312 consider model quality, a model should be given increasingly less weight the further that
 313 model lies from the point representing the observations in the EOF space. In the limiting
 314 case, the model weight should tend to zero as the distance of the model to the observations
 315 tends to infinity. These attributes are satisfied by the following construction for w_q , the
 316 model quality weighting:

$$w_q(i) = e^{-\left(\frac{\delta_{i(obs)}^{20c}}{D_q}\right)^2}, \quad (16)$$

317 where $\delta_{i(obs)}^{20c}$ is the Euclidean distance between the EOF loading for model i and the
 318 loading of the observed climatology projected onto the same EOF basis set. This is only
 319 calculated for the historical data where observations are available. D_q is a ‘radius of model
 320 quality’, and is a free parameter in the weighting scheme. As $D_q \rightarrow +\infty$, then $w_q \rightarrow 1$
 321 for all models, and the quality weighting has no distinguishing effect. As the value of D_q
 322 is reduced, models closer to the observations are increasingly up-weighted. The smallest
 323 reasonable value for D_q would be the smallest observational bias seen in the ensemble (i.e.
 324 $\min(\delta_{i(obs)})$). In the extreme case as $D_q \rightarrow 0$, the majority of the weight is placed on the
 325 single best performing model.

326 To explore the sensitivity to this parameter, we consider two values for D_q : a ‘wide’
 327 choice where D_q is equal to the mean inter-model distance in the CMIP5 ensemble and a

328 ‘narrow’ choice which is half of this value. Expressing D_q in terms of the CMIP variance
329 has the disadvantage that the variance itself can be influenced by both model quality and
330 reproduction, but this decision is a matter of practicality. We present the values of D_q as
331 subjective, effectively as a statement that relative skill, rather than any absolute measure,
332 should define whether we accept or reject a model. In effect, the ‘wide’ case describes a
333 situation where only the models with the largest biases in the ensemble are down-weighted,
334 while in the narrow case a distinction is made between the ‘average’ and ‘best’ performers. It
335 might be desirable to let internal or natural variability define D_q , but as we show in Section
336 3.a, this would lead to a situation where $\delta_{i(obs)}^{20c} \gg D_q$ for all i , which given Equation 16,
337 would place the majority of the weight on the model with the lowest value of $\delta_{i(obs)}^{20c}$.

338 *2.e. Eliminating interdependent models*

339 If the researcher’s goal is simply to produce a multi-model average which is less susceptible
340 to bias by model replication, then simply weighting each model by the appropriate value of
341 w_u would suffice. This approach could be used directly for calculating a central estimate of
342 combined multi-model projections.

343 However, some issues associated with model co-dependence cannot be solved by weight-
344 ing alone. For example, the potential bias associated with regression-based predictions of
345 unknown climate parameters can only be addressed by removing the interdependent mod-
346 els. This can be achieved in a pure statistical fashion (see Caldwell et al. 2014) but the
347 interpretation of such constructions is not always intuitive.

348 We propose here a less formal approach which should be readily reproducible for a variety
349 of purposes where it is desired to remove the most blatant model codependencies. Our
350 method is a step-wise model elimination, where the models with the highest co-dependencies
351 are removed first.

352 The simplest approach here would be to recursively remove a member of the closest near-
353 neighbor pair until the remaining ensemble conforms to a plausible random distribution in

354 the n dimensional EOF space. Since better models are replicated more, however, such an
 355 approach preferentially eliminates the models clustering closer to observations while models
 356 with large biases would be preserved. This has a significant detrimental effect on the mean
 357 performance of the remaining ensemble. Instead, we propose a strategy which considers both
 358 model performance and model independence when creating an ensemble subset.

359 Firstly, we introduce a bulk quantity which describes the ensemble characteristics, the
 360 ‘independent ensemble quality score’:

$$S_m^{20c} = \sum_i^m w_u^{20c}(i)w_q(i) \quad (17)$$

$$S_m^{21c} = \sum_i^m w_u^{21c}(i)w_q(i), \quad (18)$$

361 for historical and future cases, where w_u^{20c} , w_u^{21c} and w_q are described in Section 2.d
 362 as the individual model weights corresponding to model i . Using the product of the two
 363 weights is a subjective decision, and other functional forms could potentially be explored.
 364 However, as we now demonstrate, this simple combination of the uniqueness and quality
 365 weights addresses our goals to remove the influence of exactly replicated models and of very
 366 poor models.

367 This can be illustrated as follows for the historical simulation: If an independent model
 368 is added to the ensemble, $w_u^{20c}(i)$ equals 1 for model i , and so S_m will increase by the model
 369 quality score, $w_q(i)$. The increase is large for a high performing model, and approaches zero
 370 for a very poor model. However, if two identical models i and j are added to the ensemble
 371 together $w_u^{20c}(i)$ and $w_u^{20c}(j)$ each equal 0.5, and so S_N will still only increase by $w_q(i)$.

372 If we start with an N member ensemble, we eliminate a single member by considering
 373 the maximum possible ensemble quality score for each combination of $N - 1$ members.
 374 The excluded model j is removed from the ensemble and the process is repeated until an
 375 appropriate stopping criterion has been reached. We can assess the effective number of
 376 models remaining at any point by considering the ‘number of effective models’, for both

377 historical and future cases:

$$n_{eff}^{20c} = \sum_i^m w_u^{20c}(i) \quad (19)$$

$$n_{eff}^{21c} = \sum_i^m w_u^{21c}(i), \quad (20)$$

378 each representing the sum of the uniqueness weights for the remaining models in the
379 ensemble.

380 The approach outlined here is quantitative but subjective, with a number of free param-
381 eters. In order to demonstrate its utility, we consider a case study of the CMIP5 ensemble,
382 where we can objectively demonstrate that we can use the algorithm to produce a sub-
383 set of CMIP5 models which provides comparable model diversity, improved mean model
384 performance and reduced model replication in comparison to the original model sample.

385 3. Results

386 3.1. CMIP5 Ensemble Properties

387 The initial dataset from which we draw our conclusion is the matrix of pairwise distances
388 between models in the CMIP-5 archive, δ^{20c} and δ^{21c} which are calculated from U^{20c} and U^{21c}
389 matrices. This matrix is represented graphically in Figure 1 for the all-variable case using
390 both present day climatological fields calculated from 1970 to 2000 in historical simulations,
391 and the anomalies from those fields in the RCP8.5 simulation between 2070 and 2100. In
392 both cases, recognizable structure relating to model genealogy is visible in the inter-model
393 distance field.

394 We can compare, in a bulk sense, the distribution of distances in the matrices to that one
395 might expect from a purely random distribution. The distributions for the CMIP5 derived
396 matrix and the random distributions are plotted in Figures 2(a) and (b) for a number of
397 different variable choices.

398 The random distributions have the same variance as the original CMIP5 distributions by
399 design because each dimension of the random psuedo-ensembles is normally distributed with
400 the same variance as the original CMIP5 case in each dimension of U_{20c} and U_{21c} . Because we
401 consider a large number of pseudo-random normally distributed ensembles, we can produce
402 best estimates and confidence intervals for the distribution of inter-model distances one
403 would expect if the models were normally distributed in the space defined by U_{20c} and U_{21c} .
404 If the CMIP5 distribution falls outside of this range, this implies that the models in CMIP5
405 are distributed in a non-normal fashion in the space.

406 We find there are some significant deviations in the CMIP5 distribution from what one
407 would expect in a purely random case. Firstly, there are a number of model pairs which lie
408 closer to each other in the EOF space than ever occurs by chance in the random samples (less
409 than 50 percent of the expected mean inter-point distance for the random case). However,
410 there is also an absence of models at intermediate distances (between 50 and 90 percent of
411 the mean inter-point distance), relative to the random distributions. This indicates that
412 the distribution of CMIP5 models in the EOF space has a rather heterogeneous, clustered
413 distribution - with families of closely related models lying close together but with significant
414 voids in-between model clusters. These features are especially clear in the future case, where
415 the distances are measured in terms of (2070-2100) anomalies from the (1970-2000) climate
416 mean state. We also show the histogram of inter-model distances in initial condition CCSM4
417 ensemble, demonstrating that inter-model distances due to internal model variability alone
418 are an order of magnitude smaller than the mean inter-model distances seen in the CMIP5
419 archive.

420 The responsible model pairs can be explicitly plotted. Figure 3(a) shows model pairs
421 which are closer together than the expected nearest-neighbor distances in the random dis-
422 tributions, using all variables. Many of these samples correspond to identical models from
423 the same institution submitted at a different resolution (IPSL-CM5A-MR/LR, MPI-ESM-
424 LR/MR for example). Other model pairs relate to changes in model configuration which

425 do not influence the set of atmospheric diagnostics considered here (HadGEM2-AO and
426 HadGEM2-ES for example share the same atmospheric, ocean and ice models, but the for-
427 mer lacks treatment of the carbon cycle which has little effect in these concentration driven
428 simulations). Finally, there are some cases where models from two institutions share a large
429 fraction of code-base, and this is reflected in their proximity in EOF space (HadGEM2-AO
430 and ACCESS1-0 or FIO-ESM and BNU-ESM, for example). Several other model pairs are
431 plotted with dotted lines. These, to a lesser degree, still occur closer together than one might
432 expect by chance (for the models joined by a black line, one such pair would be expected by
433 chance in a 36 member ensemble). These connections can also be related to common model
434 components (for example, NorESM and CCSM4 share atmosphere and land surface, MPI-
435 ESM and CMCC-CSM5 share atmospheric code). We also include the observational point
436 in the same analysis in Figure 3(a), which shows that none of the models in the CMIP5
437 archive are considered closer to the observations than would be expected by chance. In
438 the later part of the study, where we prune similar models from the archive, this give us
439 some confidence that similar models are not being removed because they are all converging
440 on the 'true' climate. We can repeat the analysis for future changes in the same variables
441 (Figure 3(b)), which show a similar close relationships to present day case. Using specific
442 fields produces similar (but non-identical) relationships (Figure 3(c-e)). The all-variables
443 case shows that all close relationships would be expected from a genealogical perspective.
444 However, when one uses single variables (PR especially), there are some unexpected results
445 (e.g. MIROC and CAM5 are considered close). We attribute this to the difficulty of repre-
446 senting inter-model precipitation variability in a low dimensional basis set (although models
447 from different centers may in some cases share parameterizations).

448 *3.b. Stepwise model elimination*

449 There are various arguments to support the hypothesis that the CMIP5 ensemble is
450 biased by the inclusion of common components, some of which are featured more frequently

451 than others. One can make this argument from a consideration of the models themselves (see
452 Introduction and Table 2), or by examining the spatial distribution of models in orthogonal
453 dimensions derived from model output. We have proposed a method of model removal
454 which maximizes a metric reflecting both model diversity and fidelity. The iterative model
455 elimination process is illustrated for the CMIP5 ensemble in Figure 4.

456 The plot shows the consecutive removal of models from the set of 36 considered in this
457 study until a single model remains. The process is demonstrated by eliminating interde-
458 pendent models as judged by the simulation of present day climatology. The model quality
459 weights w_q are obtained using the mean state climatology from the models as compared to
460 the observations. Model uniqueness is calculated as in Section 2.e after each iteration.

461 We demonstrate the sequence of model removal in Figure 4 (for present day similarities,
462 all variables and a ‘wide’ quality radius). The figures show the order in which models
463 are removed from the archive to achieve the maximum independent ensemble quality. If
464 the removed model is closer than D_u (a function of the number of models remaining) to
465 any other remaining model, then that model is shown to merge with its nearest neighbor.
466 However, if the model is further than D_u from any other model, the model branch is shown
467 as terminating in the diagram.

468 We have not yet fully discussed an appropriate point to stop trimming models. This
469 question is ultimately subjective, and the conclusion is somewhat dependent on the specific
470 needs of the researcher. However, Figure 5 shows some changing characteristics of the
471 remaining ensemble as the ensemble size is decreased, and these can be used to recommend
472 ensemble subsets for different scenarios. In essence, a first phase of eliminating models just
473 removes redundant data, a second improves the characteristics of the ensemble by removing
474 poor models and partly redundant ones. Going beyond that potentially worsens the ensemble
475 mean bias representation.

476 Figure 5(a) shows how n_{eff} varies as models are removed from the archive as described
477 in Section 2.e. The actual number is dependent on the choice of D_u , the radius of similarity.

478 Two choices of D_u are illustrated, using either the 50th percentile of nearest-neighbor dis-
479 tances in the set of 10^5 random ensembles (as was used in Section 2.d) or, for comparison,
480 the 90th percentile. Using all the models in the archive, n_{eff} is 15.5 using the larger value
481 for D_u , or 22.5 using the smaller value (using present day climatology metrics of similarity).
482 The removal of the first 10 models has little effect on n_{eff} (especially using the larger value
483 of D_u). The removal of the remaining models results in a monotonic decrease in n_{eff} .

484 As was indicated by Figure 5(a), most of the early model eliminations have little effect on
485 n_{eff} . Figure 4 shows that many of the initial removals represent models (CCSM4 to CESM1-
486 BGC, HadGEM2-ES to HadGEM2-AO, GFDL-ESM2M to GFDL-ESM2G) which are largely
487 structurally identical, at least in terms of their long term atmospheric climatology - differing
488 only in the presence of an active carbon cycle which would not influence the diagnostics
489 used in this study. It is thus largely random which member of the pair is eliminated. In
490 this regime, there is a strong inverse relationship between model quality weights (w_q) and
491 uniqueness weights (w_u), as shown in Figure 6(a).

492 The second broad class of eliminations is models with strong connections, often from
493 the same institutions but with some differing components. In these cases, the model with
494 the higher value quality weighting (w_q) is generally preserved (for instance, GISS-E2-H and
495 GISS-E2-R which differ in their ocean components). In this regime, the inverse relationship
496 between the model quality weight and uniqueness weights is weaker (Figure 6(b)), as the
497 clear duplicates have already been removed. Note that the uniqueness weights now refer to
498 uniqueness within the remaining subset, and not within the full CMIP5 archive.

499 The final stages of removal (approximately the final 20 models) do result in a reduction in
500 the number of effective models, illustrated by the termination of the model path. As shown
501 in Figure 5(b), in this regime - the distribution of inter-model distances are now consistent
502 with what one might expect from a purely random sample. Each family of closely related
503 models is now represented, to a large extent, by its own 'champion'. Figure 6(c) shows that
504 when only 10 models remain, the relationship between w_u and w_q is rather weak, with all

505 remaining models having comparable uniqueness weights.

506 Our value judgment for an appropriate stopping criterion is thus dependent on the ap-
507 plication. If one wishes to only remove near-identical models, one should stop trimming
508 when the number of effective models n_{eff} begins to significantly decrease. However, if one
509 wishes to produce the best-performing ensemble mean simulation of the mean state, it is
510 more logical to also remove the worst performing models such that the RMSE error of the
511 sub-ensemble mean is minimized.

512 *3.c. Sensitivity to initial choices*

513 The algorithm as described in Section 2.e requires several assumptions and we explore
514 the sensitivity of the results to those choices in this section. Figure 7 shows the models
515 which are retained in the analysis with a range of different initial variable and parameter
516 choices. In each case, the analysis is repeated and there is a stepwise removal of models
517 based on maximising the ensemble quality score. On each line of the plot, we show which
518 models remain when the smallest inter-point distance in the remaining archive is first greater
519 than 50% (unfilled symbols) or 10% (filled symbols) of purely random distributions of the
520 same population, variance and dimensionality (regions marked by mid grey and dark dray
521 shading in Figure 4). Thus, we can explore the sensitivity of the retained models to our
522 initial assumptions.

523 Firstly, there is the choice of which variables are used to derive the inter-model distance
524 matrix. To address this, we repeat the analysis with a variety of individual fields, as well
525 as the multivariate example discussed in the previous section. The analysis is repeated for
526 zonal mean temperature and humidity (TQ), gridded precipitation (PR), gridded Top of
527 Atmosphere shortwave and longwave fluxes (TOA), Gridded surface air temperature (TAS)
528 and all variables combined (ALL). Secondly, we explore the ‘radius of model quality’ D_q
529 introduced in Equation 16. The analysis is repeated for two values, a ‘wide’ value where
530 D_q is equal to the mean inter-model distance in the CMIP5 ensemble and a ‘narrow’ choice

531 which is half of this value. The latter ‘narrow’ case effectively increases the role of the
532 model quality metric, such that models with a low quality score are removed earlier in the
533 algorithm, unlike in the ‘wide’ case, where highly interdependent models are removed first.
534 Finally, we construct the model uniqueness weightings w_u using the inter-model distances
535 derived from the 30 year mean 1970-2000 present day data in the ‘present’ case, but use the
536 anomaly between 2070-2100 and 1970-2000 for the ‘future’ case.

537 We find that variable choice has little impact on the final choice of model subsets. Al-
538 though in some cases, the choice of model from a given institution can change, the overall
539 number of models retained is similar for each of the variable choices. The use of the ‘narrow’
540 radius of model quality, however, significantly decreases the number of retained models with
541 respect to the ‘wide’ value. This can be explained by considering that the narrow setting
542 increases the ratio of the model quality weighting for models lying close to the observations,
543 and those far away. In the ‘narrow’ regime, the ensemble quality score is best maximised
544 by removing the poorly performing models earlier in the analysis, and thus after the inter-
545 dependent remaining models have been removed, the number of remaining unique models is
546 smaller than in the ‘wide’ case.

547 3.c.1) EOF TRUNCATION CHOICES

548 Some subjective decisions are required in the interpretation and subsequent usage of the
549 PCA conducted in Section 2.a, and we discuss these at greater length here. In previous
550 studies like Masson and Knutti (2011), the inter-model distances were calculated without
551 the PCA stage, simply calculating distances in the space defined by the anomaly matrices,
552 ΔX^{20c} and ΔX^{21c} . For the purposes of this study, and its companion studies (Sanderson
553 et al. submitted), it is necessary to decrease the dimensionality (and co-dependence) of the
554 data in order to establish prior expectations of near-neighbor distances.

555 In this study, as in Sanderson et al. (submitted), the inter-model distances are calculated
556 with the truncated set of 9 modes. The resulting inter-model distance matrix calculated with

557 U^{20c} truncated to 9 modes has a 0.93 correlation with the matrix one would calculate using
558 the full-field matrix ΔX^{20c} , but using the orthogonal basis set allows us to form random
559 matrices with which to compare the results (Figure 2).

560 For smaller values of t , only the leading patterns of model difference are retained, which
561 results in large inter-model distances between different model families (e.g. CESM and GFDL
562 models) and very small distances between models in the same family (e.g. CESM-CAM5 and
563 CESM-CAM4). With such few degrees of freedom, very small intermodel distances cannot
564 be ruled out by chance in the random ensembles, and so no models can be excluded from the
565 ensemble (see Figure 8 for truncation values of 3 or less. The analysis produces very similar
566 results, and the minimum number of retained models, for values of t between 8 and 12 (see
567 Figure 8), with relatively little sensitivity to variable choice (not shown). For values of t of 15
568 or greater, the higher order modes increasingly represent subtle and often noisy differences
569 between models in the archive, which inflates the distance between the near-neighbors in the
570 ensemble. Hence, once again we see fewer models ruled out.

571 To test the sensitivity of the inter-model distance matrix to variable choice, we also repeat
572 the EOF analysis with a number of different subsets of diagnostic variables. The resulting
573 correlation depends significantly on which exact variable is retained. The inter-model dis-
574 tances calculated using gridded surface temperature only ('TAS') are highly correlated with
575 the multi-variate case ($R=0.95$, untruncated). Top of atmosphere radiative fluxes (RAD,
576 $R=0.85$ untruncated), Total Precipitation (PR, $R=0.66$ untruncated), and zonally averaged
577 vertical temperature and humidity (QT, $R=0.42$ untruncated) are increasingly poorly cor-
578 related with the full field multi-variate case. This implies that some fields, such as surface
579 temperature have sufficient information to render a multi-variate approach unnecessary.

580 With a truncation length of 9, which we used for the bulk of this study, the resulting
581 distance matrix remains highly correlated to the full field distance matrix, but the influence
582 of covariant fields and models is reduced (see Caldwell et al. 2014 for an extensive discussion
583 of these issues).

584 *3.d. Ensemble Mean Performance*

585 The results of Section 3.b suggest that eliminating the strongest interdependent models to
586 leave a plausibly random distribution would leave between 10 and 25 of the 36 CMIP5 models
587 considered here (depending on variable and parameter choices). Trimming the ensemble to
588 its more independent subset does not worsen the fidelity of the climatological mean result,
589 and removing the poorer performing outliers (models with large biases) can actually improve
590 it, as we show in this section.

591 We can first examine how the multi-model mean of present day climatology compares
592 against observations. Figure 5(c) considers the Root Mean Square Errors (RMSE) of various
593 weighted and unweighted multi-model means calculated using the same multi-variate climate
594 state vectors described in Section 2.a and the observations listed in Table 1. We illustrate
595 this using the ‘ALL’ variable case, with the ‘wide’ radius of model quality and present
596 day derived inter-model distances. We also compare with the average RMSE seen when a
597 completely random sample (without replacement) of the same size is taken, as compared to
598 the detailed technique outlined in Section 3.b.

599 If one considers only the far left of the plot, where all 36 models are retained, weighting
600 the models by uniqueness actually increases the RMSE. This is largely to be expected - as we
601 have seen in Figure 6(a) that the best performing models have the lowest uniqueness weights.
602 It also suggests that a mean of the CMIP5 ensemble is already weakly weighted towards the
603 better performing models. If we explicitly weight the model mean towards models which lie
604 closer to the observations in the EOF space, the RMSE can be reduced significantly.

605 As the first 10 (highly interdependent) models are removed from the archive, the simple
606 mean RMSE increases slightly while the random draw RMSE remains constant, likely be-
607 cause the high-performing models have less representation when the duplicates have been
608 pruned. The uniqueness weighted mean also becomes more similar to the simple mean case
609 (u_w is now more consistent across the ensemble). Between 28 and 12 models remaining, the
610 simple RMSE decreases significantly and when 20 models remain, the subset outperforms the

611 RMSE of the random sample. The lowest RMSE values occur with between 12 and 5 models
612 remaining. Removing any further models increases the RMSE of the simple multi-model
613 mean. With 5 or fewer models remaining, all models have a high value of both w_u and w_q ,
614 so weighting by uniqueness or quality has little effect. In all cases, any further removal of
615 models (below 5) significantly increases the RMSE, a fact which is likely attributable to the
616 Cauchy-Schwartz inequality (Annan and Hargreaves 2011).

617 4. Discussion and Conclusions

618 The present study considers how one might remove potential biases which might arise
619 from shared components in the CMIP5 archive of climate models, and its predecessors. We
620 also propose some simple diagnostics which might be used to identify interdependent models
621 using model diagnostic output, and a possible strategy to choose a model subset to maintain
622 model diversity without replication and to incorporate model quality information into this
623 decision.

624 This study represents a proof of concept; the choice of diagnostics used in this study are
625 of course arbitrary, to some degree, though the results of which models are interdependent do
626 seem to be relatively resilient to changes in variable and time period (see Figure 3, Pennell
627 and Reichler 2011 and Knutti et al. 2013). However, we do assume that a model's mean state
628 climatology can be used to assess both its skill and independence. Clearly, if our final goal
629 is to assess the plausibility of a model's future simulations then the mean state simulation
630 is not a perfect assessment of model skill, although it could be argued that it is a necessary
631 condition and as such a weighting strategy based on present day climatology can be justified
632 in the absence of any additional information.

633 Certainly, which model exhibits the highest quality score is very much dependent on the
634 specific metrics in which the researcher might be interested (Santer et al. 2009), and it is
635 far beyond the scope of this study to conduct an exhaustive comparison of possible model

636 metrics. In this study, we have focussed primarily on diagnostic output from the atmospheric
637 model, and our results are thus liable to be most sensitive to common component in that
638 model. As such, the results of this study should be interpreted as illustrative of a potential
639 method for reducing the effects model interdependency, and not as a prescriptive list of
640 models which should be used for future studies. Most studies based on CMIP5 could easily
641 use such a framework, but the value judgements of future researchers should be embedded
642 into the choice of metric used to assess model similarity and quality.

643 We assess the likelihood of near-neighbor models occurring by chance using a large num-
644 ber of random distributions of the same dimensionality as the truncated orthogonal set of
645 EOF loadings we derive from the original ensemble. The random sample is not a proxy for
646 the space which might be attainable by the real climate, rather it is a proxy for the distri-
647 bution of models represented in an orthogonal basis set defined by multi-model variability.
648 As such, we are making the assumption that if there are physical relationships between vari-
649 ables in the model output data (say between surface temperature and outgoing longwave
650 radiation), then any correlation between these would be represented as a single mode in the
651 EOF analysis. However, if there exists a strong nonlinear relationship between two variables
652 in the CMIP5 archive then this relationship could not be represented in a single EOF mode,
653 and might be represented in two or more modes. In this case, then the distribution of models
654 in the space could be more complex than a simple Gaussian. One could imagine designing
655 a random sample which fitted a high-dimensional distribution to the CMIP5 ensemble to
656 account for such nonlinearities, but the increase in complexity, the lack of samples in the
657 original ensemble and the neccessary parameterization of such a distribution means this is
658 impractical.

659 We also assume, by drawing random samples using the variance defined by the original
660 ensemble, that none of the CMIP5 members can be ruled out *a priori*. One could imagine a
661 situation where an arbitrarily poor model was included in the ensemble which would increase
662 the variance represented in each mode such that any realistic models would look self similar

663 and would be down weighted by the uniqueness weighting. Therefore, the method only
664 makes sense if there is some level of base confidence that none of the models in the archive
665 are completely unrepresentative of the true system. But, we would argue that this is true
666 of any analysis which uses the CMIP5 archive and that even a simple multi-model mean is
667 subject to a sanity check of the participating models.

668 Caveats aside, this study illustrates some interesting characteristics of the CMIP5 archive
669 and potential issues which might arise from treating this archive as a random sample of
670 possible climate models. There is extensive replication of model code in the archive, primarily
671 within institutions but also in some cases between institutions (see Table 2). This should
672 come as little surprise, a quick examination of AOGCM makeup in the CMIP5 models
673 indicates that some individual components are used by over 25 percent of the archive. But,
674 we show in this study (like in Masson and Knutti 2011 and others) that many of those
675 similarities can be identified also through a simple analysis of model output. A more detailed
676 discussion of shared model components is given in the supplementary material of Knutti et al.
677 (2013).

678 Similarities in diagnostic output are not always predictable from a consideration of model
679 construction alone. One can find examples of cases with significant changes in code-base,
680 but with minor changes in diagnostic similarity. For example, CCSM4 and CESM1-CAM5
681 have significantly different aerosol schemes, dynamics, cloud microphysics and yet our results
682 show the two models as very strongly related when considering the distribution of inter-model
683 distances. This indicates that tuning strategies and non-atmospheric components may play
684 a significant role in diagnostic model similarity, even when primarily atmospheric output is
685 used to assess inter-model distance. This implies that although the diagnostic output is a
686 useful indicator of model similarities, those similarities may not be a function of shared code
687 alone. The climateprediction.net (Stainforth et al. 2005) and QUMP (Murphy et al. 2007)
688 experiments, for example show that considerable diversity in model behavior is achievable
689 through parameter perturbation alone with an identical codebase.

690 There are several possible additional factors which might influence diagnostic similarity.

691 Firstly, the tendency for various generations of models from a single institution to exhibit
692 strong similarities in spite of extensive model component changes (see Figure 2 in Sanderson
693 and Knutti 2012 with reference to CESM, GFDL or Hadley Centre models) indicates that
694 some elements of model calibration tend to cluster models from a given modeling center. The
695 reasons for this clustering have multiple possible candidates which could lie in institutional
696 policy or regional focus (institutions might be more concerned with their model's performance
697 in the region's climate). Standard metrics used to judge model performance during the model
698 development process or preferred observational datasets may also vary from institution to
699 institution. Secondly, models rarely change all components at the same time, so we would
700 posit that evaluating when a model is 'new' is a subjective matter. Finally, the CMIP5
701 protocol allows for some flexibility in the way that models implement external forcings - so
702 different groups, even with identical models, can choose to represent the historical and future
703 boundary conditions in different ways to produce differences in the simulated climate. Knutti
704 et al. (2013) see similar relationships in control simulations, but one cannot exclude the
705 possibility that the control simulations themselves might also include common assumptions
706 on boundary conditions.

707 In summary, we confirm earlier arguments that models are not independent, some are

708 essentially duplicates, and the effective number of independent models based on this method
709 is less than half of the actual number of models, consistent with earlier studies (Jun et al.
710 2008, Annan and Hargreaves 2011, Sanderson and Knutti 2012). Some models are closer to
711 observations than others (Gleckler et al. 2008, Knutti and Sedáček 2013). We believe that our
712 method, and results do not strongly hinge on the way in which one interprets the ensemble
713 as 'truth centered' (Knutti 2010), 'indistinguishable from truth' (Annan and Hargreaves
714 2011, Rougier et al. 2013) or neither (Sanderson and Knutti 2012, Bishop and Abramowitz
715 2013). One could imagine a hypothetical ensemble following any of these frameworks, and
716 by duplicating some of its members, bias would be introduced in the ensemble distribution.

717 By evaluating our ensemble subset performance in terms of ensemble mean performance, we
718 do not necessarily advocate a truth centered ensemble, as the ensemble mean would also be
719 the best estimate of future change in the indistinguishable case.

720 There are of course different ways to account for model performance and interdependence.
721 In the companion paper (Sanderson et al. submitted), we proposed a method to produce
722 probabilistic estimates that are largely insensitive to model duplicates and can consider
723 model performance. However, when high dimensional data and/or spatially and temporally
724 consistent fields are required (e.g., for impact models), a fully probabilistic method becomes
725 unwieldy and might even hinder the development of tractable impact analyses (Dessai and
726 Hulme 2004). Bishop and Abramowitz (2013) also proposes an alternative technique where
727 models in the archive are subject to a linear transformation, where the weighted mean of
728 transformed models is calculated to be optimally close to an observed climate. This transfor-
729 mation and weighting can then be extrapolated for future projections. This method has the
730 advantage that the resulting transformed models have independent errors, and weight future
731 projections by climatological skill. However, the transformed models are not, themselves
732 physically self-consistent and there is a potential for simulations to be over-fitted to histor-
733 ical data in a manner which could potentially result in overconfident future projections. In
734 comparison, the method we present here preserves a subset of self-consistent physical models
735 (for both present day and future projections), and although they might not be independent
736 in the strict sense of orthogonality, this subset can be simply used for almost any application
737 or analysis.

738 We thus propose that there is significant utility in spanning the potential uncertainty
739 in future climate by representing spread with an appropriate subset of models. This study
740 introduces weights which assess model uniqueness and model climatology fidelity. We find
741 that the two were inversely related such that the models with the best simulations of the
742 present day climate were also least unique. A part of this is possibly due to the fact that
743 models have been calibrated by the observations, and will thus appear to cluster around

744 those observations (and each other). But, a closer examination reveals that a large fraction
745 of the high-scoring models' lack of uniqueness can be explained by other models which have
746 duplicated some, or all of their code. When these duplicates are removed, this strong inverse
747 relationship is weakened (but not entirely eliminated).

748 This property of the ensemble is clearly to some extent contingent on the choice of
749 metrics used, but it does raise a potentially interesting property of the ensemble; that the
750 best performing models might also be the most promiscuous. This situation implies that
751 the ensemble as a whole is already strongly weighted towards the better performing models.
752 We show that if the models are weighted to reward their uniqueness, then the RMSE of
753 the ensemble mean is increased. Thus, through a mechanism of quasi natural selection, the
754 climate community has created an ensemble of models which has already up-weighted its
755 climatologically best performing members. In other words, relying on model democracy is
756 to some degree upweighting skilled model structures without deliberately thinking about it
757 or discussing it, by the mechanism of duplication of well-proven code.

758 This could be seen as an argument in support of keeping the entire ensemble when
759 performing an analysis, and at least some justification that the multi-model mean result is
760 a defensible best estimate. But, it is at best an accidental property that is not guaranteed
761 to remain in future ensembles, and may not at all be visible for more specific questions or
762 metrics. Whether a model is extensively duplicated is not a pure function of its quality or
763 fidelity. A sub-model with open source code and few restrictions on its use is more likely to
764 be utilized by another group than another model with a closed-source policy. However, a
765 model which is jointly used by a large number of groups also has a large development pool
766 invested in improving that model. Duplication within institutions depends also on funding
767 and the available computing resources. One could make the argument that the CMIP5
768 ensemble distribution and the social and intellectual landscape of the climate community
769 are surely related, but certainly not in any simple fashion.

770 A question also remains of whether the original CMIP5 ensemble is sufficient to assess

771 systematic uncertainty in future climate change. This question could easily form a study
772 in itself, but our results are somewhat informative in this matter. Firstly, the number of
773 truly independent models in the archive is significantly less than the number of submitted
774 models, when gauged by model output. Hence, adding another model to the existing archive
775 has most value if the developers introduce novel components and assumptions. It is true
776 that exploring different configurations of existing components through sub-model exchange
777 or parameter perturbation can certainly modify model behavior, and we would argue that
778 such experiments should continue in order to fully explore the inherent uncertainties in the
779 existing model set.

780 However, this uncertainty is conditional on the number of independent models available
781 to us, and establishing whether the current set is sufficient is a question which might not
782 be a useful, because there is not a convenient space in which systematic model assumptions
783 can be defined. For example, the current CMIP5 ensemble might have n fundamentally
784 different convection schemes, each with its own advantages and biases, but nobody would
785 argue that this constituted a “full set”. Where there is approximation and parameterization,
786 there are potentially limitless ways to address this. And because nobody can know the
787 behavior of the $n + 1^{th}$ model, the question of ensemble adequacy cannot be answered in
788 a strict sense. Within the ensemble we have, we can tractably experiment with subsetting
789 to assess how many models are required to have confidence in the distribution of future
790 climate change formed by the full set, but we can never know if the $n + 1^{th}$ model will adopt
791 different assumptions or resolve a new process to place its projection outside of the existing
792 distribution.

793 We argue that a joint consideration of model similarity and quality metrics allows the
794 researcher to make use of a more quantitatively defensible sample of simulations available in
795 the CMIP archives, either through weighting or by model elimination (in itself, an extreme
796 form of weighting) to produce a best estimate of combined model projections. Our approach
797 for achieving this can be controlled with a small number of subjective but clearly defined

798 parameters, which can potentially mitigate some of the arbitrary sampling issues which
799 arise from relying on model democracy, and can be tailored to specific questions by choosing
800 appropriate metrics and datasets.

801 It should be noted in this discussion that the CMIP5 archive is not a full representation
802 of the uncertainty space for GCM projections. Rather, it is a collection of intended ‘best
803 possible models’, the final iterations of their respective tuning processes as model developers
804 calibrate their parameterization choices to best represent the observed climate properties
805 which they find most important, although there may be other acceptable configurations
806 (Mauritsen et al. 2012). Clearly, these choices and targets will vary from model to model, but
807 the fact that there are implicitly a near-infinite number of rejected parameter configurations
808 for each model must be remembered when trying to interpret the significance of the spread
809 of simulations in the archive. In a practical sense, we ignore these rejected configurations
810 because we do not have access to them. In addition, there is some evidence to suggest
811 that the model diversity one can attain by structural changes significantly exceeds that of
812 parameter changes in currently available Perturbed Parameter ensembles (Yokohata et al.
813 2013). Nevertheless, it should be remembered that both the CMIP5 ensemble (and by
814 definition our subsets of that ensemble) is already a subset of all possible model configurations
815 which have been chosen by model developers.

816 There are some cases where we would argue it is essential to eliminate interdependent
817 models, such as when a correlation found in the multi-model ensemble is used as a constraint
818 on a climate parameter (such as for climate sensitivity in Fasullo and Trenberth 2012, or for
819 high latitude surface albedo feedbacks in Hall and Qu 2006). The presence of closely related,
820 or even identical models in the archive would tend to artificially inflate the significance
821 of any correlation simply because identical models would exhibit similar values for both
822 the predictor and for the unknown quantity (Caldwell et al. 2014). Removing the obvious
823 interdependent models as shown in this study would certainly be better than assessing a
824 correlation based on the entire archive, but a method for achieving this in a strict statistical

825 sense is presented in Caldwell et al. (2014).

826 There is a danger that as models improve, the better models have the potential to con-
827 verge on the ‘true’ climate state, which might lead to their elimination if interdependent
828 models are removed. We show in Figure 3 that this is unlikely to be the case for CMIP5,
829 given none of the models lie close enough to the observations to be influenced by the unique-
830 ness weighting. However, one could imagine if a small group of models make a real advance
831 which removes a long-standing systematic bias (for example, as some models begin to ex-
832 plicitly resolve convection), then it would be necessary to accept a higher level of similarity
833 among the better performing models (i.e. the uniqueness weighting u_w could no longer be
834 independent of the skill weighting u_s).

835 Proposing a subset of models to consider for a less biased analysis could be seen as overly
836 prescriptive, but our aim is not to focus on the exact set of models which should be used
837 for future studies, rather to establish a framework in which researchers could make their
838 selection based upon metrics which are most relevant to their question. We would argue
839 that although the collection of models which arise from the ‘ensemble of opportunity’ is
840 often seen as sacrosanct, the democratic policy of one-model, one-vote is no longer a logical
841 one in the increasingly complex family tree of models available to the researcher. A subset
842 of 10-20 models that are reasonably independent and perform well for the criteria that are
843 judged to be relevant is very likely to be more skillful than the full ensemble. Giving equal
844 weight to all models which have completed a simulation of interest is, albeit implicitly,
845 adopting a weighting scheme which rewards model components which are highly replicated.
846 This weighting scheme might fortuitously have the property of rewarding the most skilled
847 components but, we would argue, this property should be demonstrated and the decision
848 how to incorporate it should be made consciously.

849 5. Acknowledgments

850 We acknowledge the World Climate Research Programme's Working Group on Coupled
851 Modeling, which is responsible for CMIP, and we thank the climate modeling groups for
852 producing and making available their model output. For CMIP the U.S. Department of
853 Energy's Program for Climate Model Diagnosis and Inter-comparison provides coordinating
854 support and led development of software infrastructure in partnership with the Global Or-
855 ganization for Earth System Science Portals. Portions of this study were supported by the
856 Office of Science (BER), US Department of Energy, Cooperative Agreement No DE-FC02-
857 97ER62402. The National Center for Atmospheric Research is sponsored by the National
858 Science Foundation. We would also like to thank our anonymous reviewers for their extensive
859 and insightful comments.

860

861 REFERENCES

862 Adler, R., et al., 2003: The version 2 global precipitation climatology project (GPCP)
863 monthly precipitation analysis (1979-present). *Journal of Hydrometeorology*, **4 (6)**, 1147–
864 1167.

865 Annan, J. and J. Hargreaves, 2011: Understanding the CMIP3 Multimodel Ensemble. *Jour-
866 nal of Climate*, **24 (16)**, 4529–4538.

867 Aumann, H. H., et al., 2003: Airs/amsu/hsb on the aqua mission: Design, science objectives,
868 data products, and processing systems. *IEEE TRANSACTIONS ON GEOSCIENCE AND
869 REMOTE SENSING*, **41 (2)**, 253.

870 Bishop, C. H. and G. Abramowitz, 2013: Climate model dependence and the replicate earth
871 paradigm. *Climate Dynamics*, **41 (3-4)**, 885–900.

872 Brohan, P., J. Kennedy, I. Harris, S. Tett, and P. Jones, 2006: Uncertainty estimates in
873 regional and global observed temperature changes: a new dataset from 1850. *J. Geophys.*
874 *Res.*, **111 (D12)**, D12106.

875 Caldwell, P. M., C. S. Bretherton, M. D. Zelinka, S. A. Klein, B. D. Santer, and B. M.
876 Sanderson, 2014: Statistical significance of climate sensitivity predictors obtained by data
877 mining. *Geophysical Research Letters*, **41 (5)**, 1803–1808.

878 Dessai, S. and M. Hulme, 2004: Does climate adaptation policy need probabilities? *Climate*
879 *policy*, **4 (2)**, 107–128.

880 Evans, J. P., F. Ji, G. Abramowitz, and M. Ekström, 2013: Optimally choosing small
881 ensemble members to produce robust climate simulations. *Environmental Research Letters*,
882 **8 (4)**, 044050.

883 Fasullo, J. T. and K. E. Trenberth, 2012: A less cloudy future: The role of subtropical
884 subsidence in climate sensitivity. *Science*, **338 (6108)**, 792–794.

885 Gleckler, P., K. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. *J.*
886 *Geophys. Res.*, **113**, D06104.

887 Hall, A. and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback
888 in future climate change. *Geophys. Res. Lett.*, **33**, L03502, doi:10.1029/2005GL025127.

889 Jun, M., R. Knutti, and D. W. Nychka, 2008: Local eigenvalue analysis of CMIP3 climate
890 model errors. *Tellus A*, **60 (5)**, 992–1000.

891 Knutti, R., 2010: The end of model democracy? *Climatic Change*, **102 (3-4)**, 395–404.

892 Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation
893 CMIP5 and how we got there. *Geophysical Research Letters*, **40 (6)**, 1194–1199.

894 Knutti, R. and J. Sedáček, 2013: Robustness and uncertainties in the new CMIP5 climate
895 model projections. *Nature Climate Change*, **3 (4)**, 369–373.

896 Masson, D. and R. Knutti, 2011: Climate model genealogy. *Geophys. Res. Lett.*, **38** (8),
897 L08 703.

898 Masson, D. and R. Knutti, 2013: Predictor screening, calibration, and observational con-
899 straints in climate model ensembles: An illustration using climate sensitivity. *Journal of*
900 *Climate*, **26** (3), 887–898.

901 Mauritsen, T., et al., 2012: Tuning the climate of a global model. *Journal of Advances in*
902 *Modeling Earth Systems*, **4** (3), M00A01.

903 Murphy, J., B. Booth, M. Collins, G. Harris, D. Sexton, and M. Webb, 2007: A methodology
904 for probabilistic predictions of regional climate change from perturbed physics ensembles.
905 *Philosophical Transactions A*, **365** (1857), 1993.

906 NASA, 2011: CERES EBAF Data Sets. Available online, URL http://eosweb.larc.nasa.gov/PRODOCS/ceres/level4_ebaf_table.html.

908 Pennell, C. and T. Reichler, 2011: On the effective number of climate models. *Journal of*
909 *Climate*, **24** (9), 2358–2367.

910 Qu, X. and A. Hall, 2013: On the persistent spread in snow-albedo feedback. *Climate Dy-*
911 *namics*, 1–13.

912 Rougier, J., M. Goldstein, and L. House, 2013: Second-order exchangeability analysis for
913 multimodel ensembles. *Journal of the American Statistical Association*, **108** (503), 852–
914 863.

915 Sanderson, B., R. Knutti, and P. Caldwell, submitted: Addressing interdependency in a
916 multi-model ensemble by interpolation of model properties. *Journal of Climate*.

917 Sanderson, B. M. and R. Knutti, 2012: On the interpretation of constrained climate
918 model ensembles. *Geophysical Research Letters*, **39** (16), L16 708, doi:DOI:10.1029/
919 2012GL052665.

920 Santer, B., et al., 2009: Incorporating model quality information in climate change detection and attribution studies. *Proceedings of the National Academy of Sciences*, **106** (35),
921 14 778–14 783.

923 Stainforth, D. A., et al., 2005: Uncertainty in predictions of the climate response to rising
924 levels of greenhouse gases. *Nature*, **433** (7024), 403–406.

925 Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of cmip5 and the experi-
926 ment design. *Bulletin of the American Meteorological Society*, **93** (4), 485–498.

927 Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future
928 climate projections. *Geophys. Res. Lett.*, **38**, L23 701, doi:10.1029/2011GL049863.

929 Tebaldi, C. and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate
930 projections. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and*
931 *Engineering Sciences*, **365** (1857), 2053–2075.

932 Yokohata, T., et al., 2013: Reliability and importance of structural diversity of climate model
933 ensembles. *Climate Dynamics*, **41** (9-10), 2745–2763.

934 **List of Tables**

935 1	Observational Datasets used as ‘observations throughout. * ”The data used	
936	in this effort were acquired as part of the activities of NASA’s Science Mission	
937	Directorate, and are archived and distributed by the Goddard Earth Sciences	
938	(GES) Data and Information Services Center (DISC).”	40
939 2	Submodel components for the 38 CMIP5 models considered in this study.	41

TABLE 1. Observational Datasets used as ‘observations throughout. * ”The data used in this effort were acquired as part of the activities of NASA’s Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC).”

Field	Source	Reference	Years	Global normalization
TS	HadCRUT3	Brohan et al. (2006)	1970-2000	$2.09 \text{ } K$
PR	GPCP	Adler et al. (2003)	1979-2001	$30.1 \text{ } Wm^{-2}$
RSUT	CERES-EBAF	NASA (2011)	2000-2005	$25.8 \text{ } Wm^{-2}$
RLUT	CERES-EBAF	NASA (2011)	2000-2005	$3.32 \text{ } mm/day$
T	AIRS*	Aumann et al. (2003)	2002-2010	$0.28 \text{ } K$
RH	AIRS*	Aumann et al. (2003)	2002-2010	12.12 %

TABLE 2. Submodel components for the 38 CMIP5 models considered in this study.

Model	Atmosphere	Land	Ocean	Ice	Source
NorESM1-ME	CAM4	CLM4	MICOM-HAMOCC	CICE	https://verc.enes.org/ISENES2/models/earthsystem-models/ncc/noresm
NorESM1-M	CAM4	CLM4	MICOM-HAMOCC	CICE	https://verc.enes.org/ISENES2/models/earthsystem-models/ncc/noresm
MRI-CGCM3	MRI-AGCM3	HAL	MRI-COM3		http://www.mri-jma.go.jp/Publ/Technical/DATA/VOL_64/index_en.html
MP1-ESM-MR	ECHAM6	JSBACH	MPIOM		http://www.mpimet.mpg.de/en/science/models/mip1-esm.html
MP1-ESM-LR	ECHAM6	JSBACH	MPIOM		http://www.enes.org/models/earthsystem-models/mip1-m/mip1-esm
MIROC5	FIRCGC-AGCM	MATSIRO	CCSR-COCO	Bitz/Lipscomb	http://www.wcrp-climate.org/wgcm/WGCM15/presentations/21Oct/KIMOTO_Japan.pdf
MIROC-ESM-CHEM	FIRCGC-AGCM	MATSIRO	CCSR-COCO	Bitz/Lipscomb	http://www.wcrp-climate.org/wgcm/WGCM15/presentations/21Oct/KIMOTO_Japan.pdf
MIROC-ESM	FIRCGC-AGCM	MATSIRO	CCSR-COCO	Bitz/Lipscomb	http://www.wcrp-climate.org/wgcm/WGCM15/presentations/21Oct/KIMOTO_Japan.pdf
IPSL-CM5B-LR	LMDZ (CM4)	ORCHIDEE	NEMO-OPA	NEMO-LIM	http://icmc.ipsl.fr/index.php/icmc-models/icmc-ipsl-cm5
IPSL-CM5A-MR	LMDZ	ORCHIDEE	NEMO-OPA	NEMO-LIM	http://icmc.ipsl.fr/index.php/icmc-models/icmc-ipsl-cm5
IPSL-CM5A-LR	LMDZ	ORCHIDEE	NEMO-OPA	NEMO-LIM	http://icmc.ipsl.fr/index.php/icmc-models/icmc-ipsl-cm5
INMCM4	INMCM	INMCM	INMCM	INMCM	http://link.springer.com/article/10.1134%2FES00014338
IAP-FGOALS-g2	GAMIL 2.0	CLM3	LICOM2	CICE4-LASG	http://link.springer.com/article/10.1007%2Fsd00376-012-2140-6
HadGEM2-ES	HadGAM2 (N96L38)	TRIFFID	HadGOM2		http://cms.neas.ac.uk/wik/UM/Configurations/HadGEM2
HadGEM2-CC	HadGAM2 (N96L60)	TRIFFID	HadGOM2		http://cms.neas.ac.uk/wik/UM/Configurations/HadGEM2
HadGEM2-AO	HadGAM2 (N96L38)	MOSES2	HadGOM2		http://data.giss.nasa.gov/modelE/ar5/
GISS-E2-R	GISS	GISS	Russell		http://www.gfdl.noaa.gov/earth-system-model
GISS-E2-H	GISS	GISS	HYCOM	HYCOM	http://www.gfdl.noaa.gov/earth-system-model
GFDL-ESM2M	GFDL-AM2.1	LM3	MOM4.1	SIS	http://www.gfdl.noaa.gov/earth-system-model
GFDL-ESM2G	GFDL-AM2.1	LM3	GOLD	SIS	http://www.gfdl.noaa.gov/earth-system-model
GFDL-CM3	GFDL-AM3	LM3	MOM4.1	SIS	http://www.gfdl.noaa.gov/earth-system-model
FIO-ESM	CAM3.5	CLM3	POP2	CICE4	http://www.wcrp-climate.org/wgcm/WGCM15/presentations/21Oct/WANG_WGCM.pdf
CanESM2	AGCM4	CLASS	NCAR		http://www.wcrp-climate.org/wgcm/WGCM15/presentations/21Oct/WANG_WGCM.pdf
CSIRO-Mk3-6-0	Gordon	CABLE	MOM2.2	SIS	http://www.bom.gov.au/anci/docs/2013/Jeffrey_hres.pdf
CNRM-CM5	ARPEGE-Climate	ISBA	NEMO-OPA	GELATO	http://www.cnrm-game.fr/sipip.php?article126&lang=en
CMCC-CMS	ECHAM5	SILVA	OPA8.2	LIM	http://www.wcrp-climate.org/wgcm/WGCM16/Bellucci_CMCC.pdf
CMCC-CM	ECHAM5	SILVA	OPA8.2	LIM	http://www.cnccit/models/cmcc-cm
CESM1-CAM5	CAM5	CLM4	POP2	CICE4	http://www2.cesm.ucar.edu/models
CESM1-BGC	CAM4	CLM4	POP2	CICE4	http://www2.cesm.ucar.edu/models
CESM4	CAM4	CLM4	POP2	CICE4	http://www2.cesm.ucar.edu/models
BNU-ESM	CAM3.5	CLM/BNU	MOM4.1	CICE4.1	http://www.wcrp-climate.org/wgcm/WGCM15/presentations/21Oct/WANG_WGCM.pdf
BCC-CSM1-1-M	BCC-AGCM 2.1	CLM3	MOM4	SIS	http://link.springer.com/article/10.1007%2Fsd00376-014-3041-7
BCC-CSM1-1	BCC-AGCM 2.1	CLM3	MOM4	GFDL SIS	http://link.springer.com/article/10.1007%2Fsd00376-014-3041-7
ACCESS1-3	UKMO GA1.0	CABLE v1.8	MOM4.1	CICE4.1	https://wiki.esri.au/display/ACCESS/Home
ACCESS1-0	HadGEM2 r1.1	MOSES	MOM4.1	CICE4.1	http://www.cawcr.gov.au/publications/technicalreports/CTR-059.pdf

940 List of Figures

941 1 A graphical representation of the inter-model distance matrix for CMIP5 cal- 46
942 culated for ALL variables using (a) 1970-2000 monthly mean climatological
943 fields as defined in Table 1 and (b) changes in the aforementioned fields be-
944 tween (1970-2000) and (2070-2100). Each row and column represents a single
945 climate model (or observation). Each box represents a pair-wise combination,
946 where warm colors indicate a greater distance. Distances are measured as a
947 fraction of the mean inter-model distance in CMIP5.

948 2 Histograms of CMIP5 inter-model euclidean distances in the EOF loading 47
949 space derived from (a) 1970-2000 monthly mean climatological fields as de-
950 fined in Table 1 and (b) changes in the aforementioned fields between (1970-
951 2000) and (2070-2100), as compared to a sample of 10^5 histograms calculated
952 from randomly sampled distributions. Gray bars show the histogram of inter-
953 model distances in the CMIP5 ensemble in an EOF space constructed with all
954 available variables, while other colors show distances constructed with only a
955 subset of variables; Surface Temperature (TAS), Top of Atmosphere Short-
956 wave and Longwave fluxes (TOA), Total Precipitation (PR) and zonal mean
957 temperature and humidity (TQ). The yellow bars indicate the distribution
958 using all variables from the CCSM4 initial condition ensemble. The box and
959 whisker plots show the range of bin values observed in the random distribu-
960 tions showing the 10th, 50th and 90th percentiles of the distribution.

961 3 An illustration of inter-model and observation-model distances in an EOF
962 space defined by (a) 1970-2000 simulated climatology for ‘ALL’ variables and
963 (b) the anomaly between 1970-2000 and 2070-2100 under the RCP8.5 scenario
964 for ‘ALL’ variables. Plots are repeated for individual variables, Top of Atmo-
965 sphere shortwave and longwave fluxes (c), Precipitation (d) and Surface Air
966 Temperature (e). Inter-model lines illustrate where the inter-model distance
967 is less than 50% (dotted) or 90% (solid) of nearest inter-point distances in
968 a randomly generated distribution of with the same dimensionality, variance
969 and population. 48

970 4 An illustration of the stepwise model elimination procedure outlined in Sec-
971 tion 2.e as applied to the 36 models from the CMIP5 ensemble, using model
972 similarity information from the present day (1970-2000) climatology for ‘ALL’
973 variables and the ‘wide’ quality radius. The full set of models are shown on the
974 left of each plot, and the order of model removal is shown on the bottom axis
975 with the left-most model removed first. If the number of effective models n_{eff}
976 decreases by less than 0.5, then the removed model is shown merging with its
977 nearest neighbor in EOF space. If the number of effective models decreases
978 by more than 0.5, the line is shown as ending - indicating the removal of that
979 model family from the ensemble. Background shading indicates whether the
980 smallest inter-point distance in EOF space using the remaining archive is less
981 than 90% (light grey), 50% (mid grey) or 10% (dark grey) of purely random
982 distributions of the same population, variance and dimensionality. 49

983 5 Plots illustrating the stepwise model elimination following the procedure in
984 Section 2.e. Calculations are conducted using model similarity metrics derived
985 from both present day climatology and from future climate change under
986 RCP8.5. (a) The number of effective models as a function of the number
987 of actual models remaining in the ensemble. The percentile cutoff is the
988 fraction of nearest neighbor distances seen in purely random ensembles used
989 to define the radius of similarity D_u in Equation 10. (b) The nearest-neighbor
990 distance as a function of the number of models remaining. For comparison, the
991 10th, 50th and 90th percentile of nearest neighbor distances in purely random
992 ensembles of the same dimensionality and variance are shown. (c) RMSE
993 of weighted and unweighted multi-model means as a function of remaining
994 models. 50

995 6 A plot demonstrating how model uniqueness weights and model quality weights
996 change as models are eliminated in the sequence shown in Figure 4, for (a)
997 36, (b) 20 and (c) 10 models remaining. 51

998 7 A plot showing suggested subsets of CMIP5 given model quality scores and
999 co-dependencies derived in a number of ways. Each line in the figure repeats
1000 the analysis leading to figure 4 with different assumptions. Plotted are the
1001 remaining models where the smallest inter-point distance in EOF space using
1002 the remaining archive is greater than 10% (unfilled symbols) or 50% (filled
1003 symbols) of purely random distributions of the same population, variance and
1004 dimensionality (regions marked by mid grey and dark dray shading in Figure
1005 4). The analysis is conducted with zonal mean temperature and humidity
1006 (TQ), gridded precipitation (PR), gridded Top of Atmosphere shortwave and
1007 longwave fluxes (TOA), Gridded surface air temperature (TAS) and all vari-
1008 ables combined (ALL). D_q , the radius of model quality is set to ‘wide’ or
1009 ‘narrow’ (the latter increasing the role of model quality metrics in model
1010 elimination). w_u , the model uniqueness weighting is shown calculated with
1011 the future RCP8.5 data, or the present day data. Numbers at the bottom of
1012 the plot indicate the number of retained models for the two conditions where
1013 the minimum remaining intermodel distance is greater than the 10th or 50th
1014 percentile of random smallest inter-model distances. 52

1015 8 A plot as in figure 7 showing suggested subsets of CMIP5 with different trun-
1016 cation lengths for the EOF analysis. Plotted are the remaining models where
1017 the smallest inter-point distance in EOF space using the remaining archive is
1018 greater than 50% (unfilled symbols) or 10% (filled symbols) of purely random
1019 distributions of the same population, variance and dimensionality (regions
1020 marked by mid grey and dark dray shading in Figure 4). 53

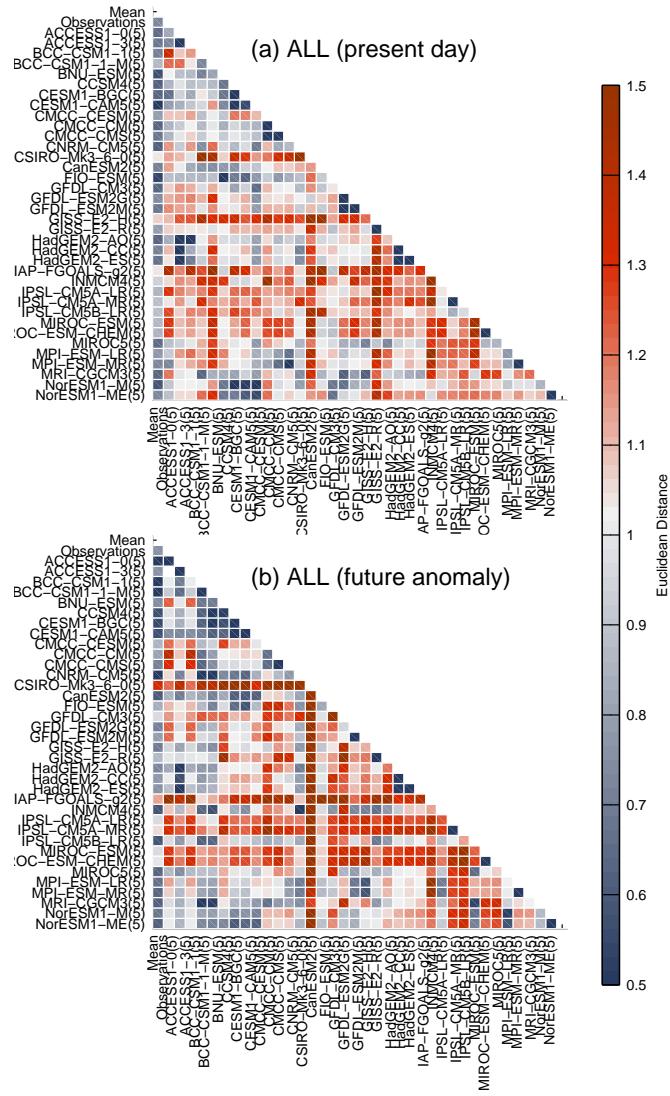


FIG. 1. A graphical representation of the inter-model distance matrix for CMIP5 calculated for ALL variables using (a) 1970-2000 monthly mean climatological fields as defined in Table 1 and (b) changes in the aforementioned fields between (1970-2000) and (2070-2100). Each row and column represents a single climate model (or observation). Each box represents a pairwise combination, where warm colors indicate a greater distance. Distances are measured as a fraction of the mean inter-model distance in CMIP5.

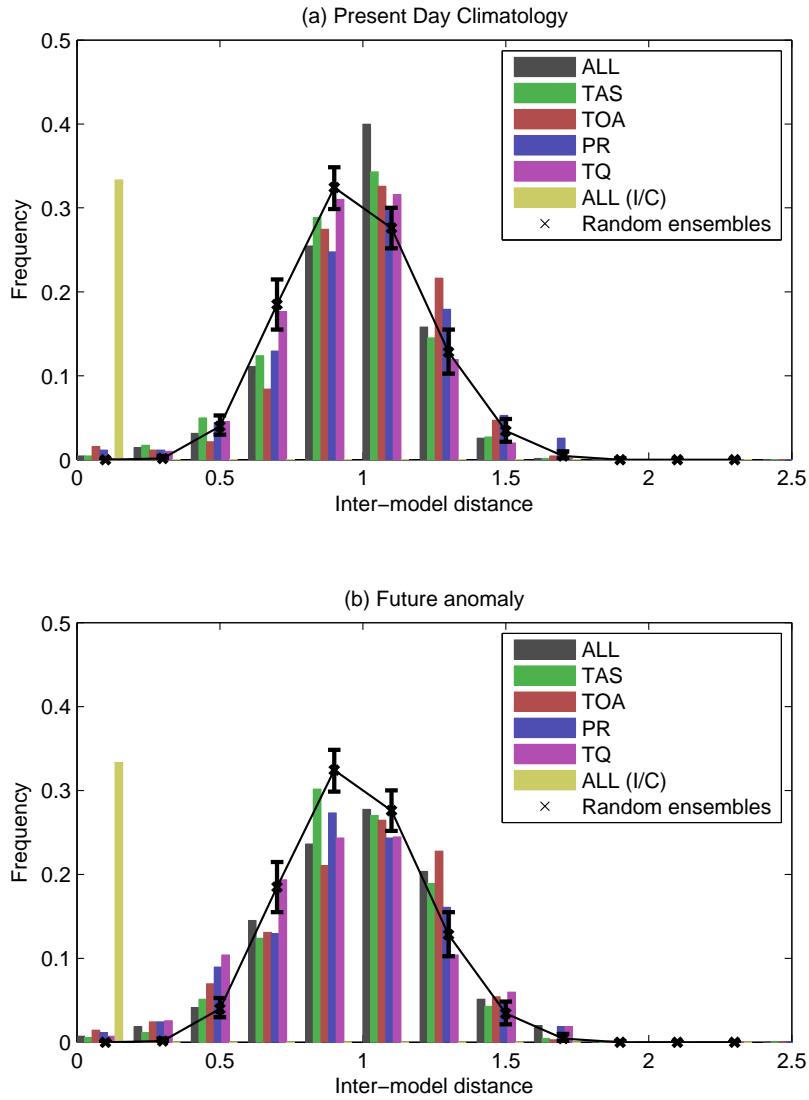


FIG. 2. Histograms of CMIP5 inter-model Euclidean distances in the EOF loading space derived from (a) 1970-2000 monthly mean climatological fields as defined in Table 1 and (b) changes in the aforementioned fields between (1970-2000) and (2070-2100), as compared to a sample of 10^5 histograms calculated from randomly sampled distributions. Gray bars show the histogram of inter-model distances in the CMIP5 ensemble in an EOF space constructed with all available variables, while other colors show distances constructed with only a subset of variables; Surface Temperature (TAS), Top of Atmosphere Shortwave and Longwave fluxes (TOA), Total Precipitation (PR) and zonal mean temperature and humidity (TQ). The yellow bars indicate the distribution using all variables from the CCSM4 initial condition ensemble. The box and whisker plots show the range of bin values observed in the random distributions showing the 10th, 50th and 90th percentiles of the distribution.

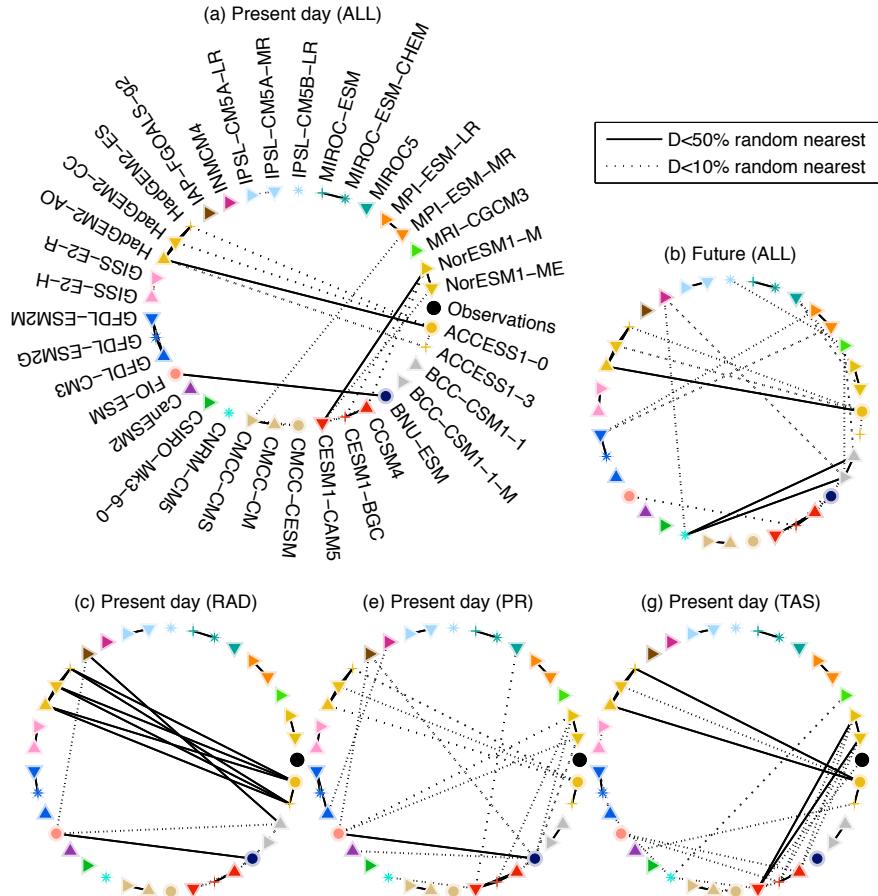


FIG. 3. An illustration of inter-model and observation-model distances in an EOF space defined by (a) 1970-2000 simulated climatology for ‘ALL’ variables and (b) the anomaly between 1970-2000 and 2070-2100 under the RCP8.5 scenario for ‘ALL’ variables. Plots are repeated for individual variables, Top of Atmosphere shortwave and longwave fluxes (c), Precipitation (d) and Surface Air Temperature (e). Inter-model lines illustrate where the inter-model distance is less than 50% (dotted) or 90% (solid) of nearest inter-point distances in a randomly generated distribution of with the same dimensionality, variance and population.

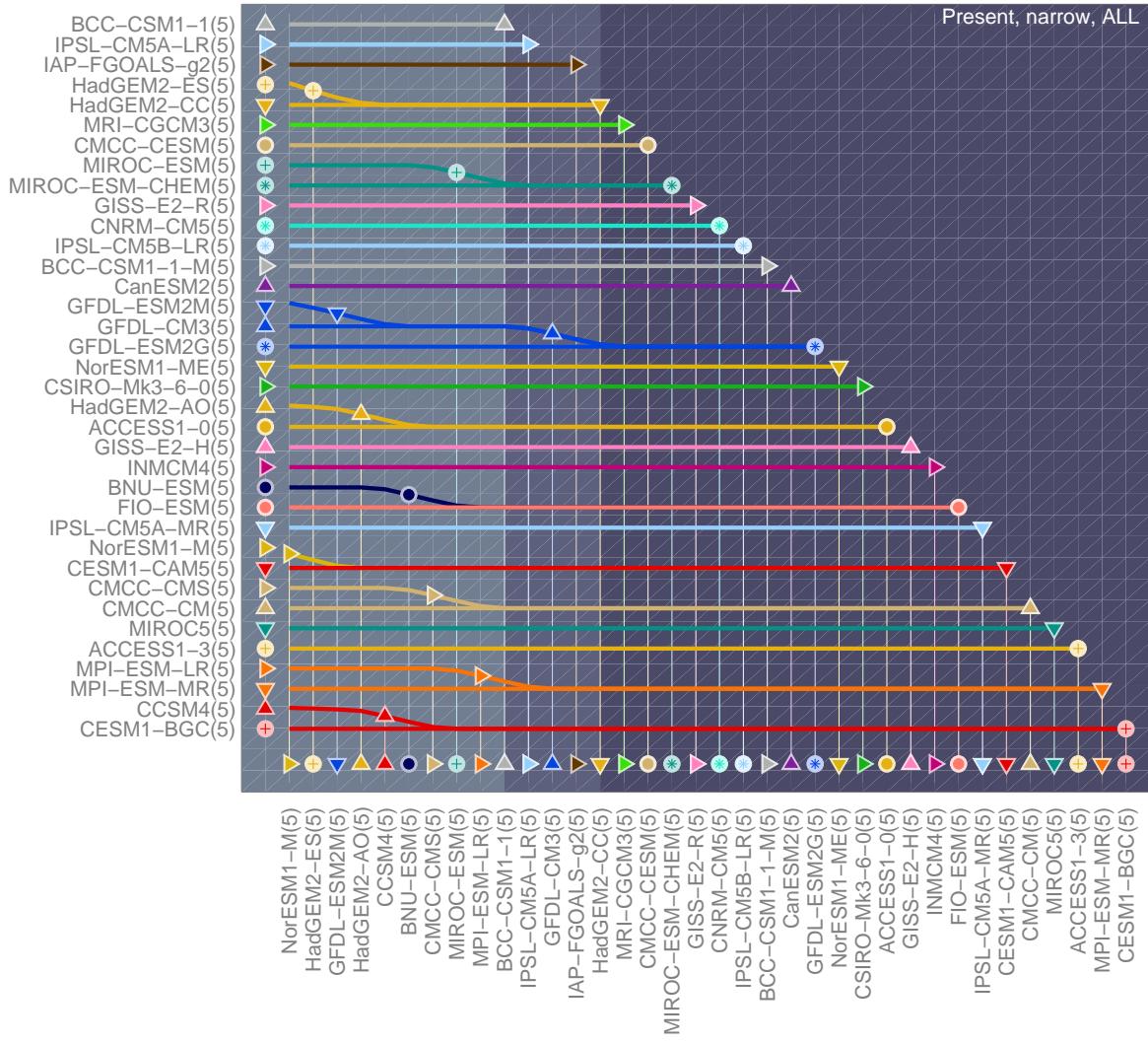


FIG. 4. An illustration of the stepwise model elimination procedure outlined in Section 2.e as applied to the 36 models from the CMIP5 ensemble, using model similarity information from the present day (1970-2000) climatology for ‘ALL’ variables and the ‘wide’ quality radius. The full set of models are shown on the left of each plot, and the order of model removal is shown on the bottom axis with the left-most model removed first. If the number of effective models n_{eff} decreases by less than 0.5, then the removed model is shown merging with its nearest neighbor in EOF space. If the number of effective models decreases by more than 0.5, the line is shown as ending - indicating the removal of that model family from the ensemble. Background shading indicates whether the smallest inter-point distance in EOF space using the remaining archive is less than 90% (light grey), 50% (mid grey) or 10% (dark grey) of purely random distributions of the same population, variance and dimensionality.

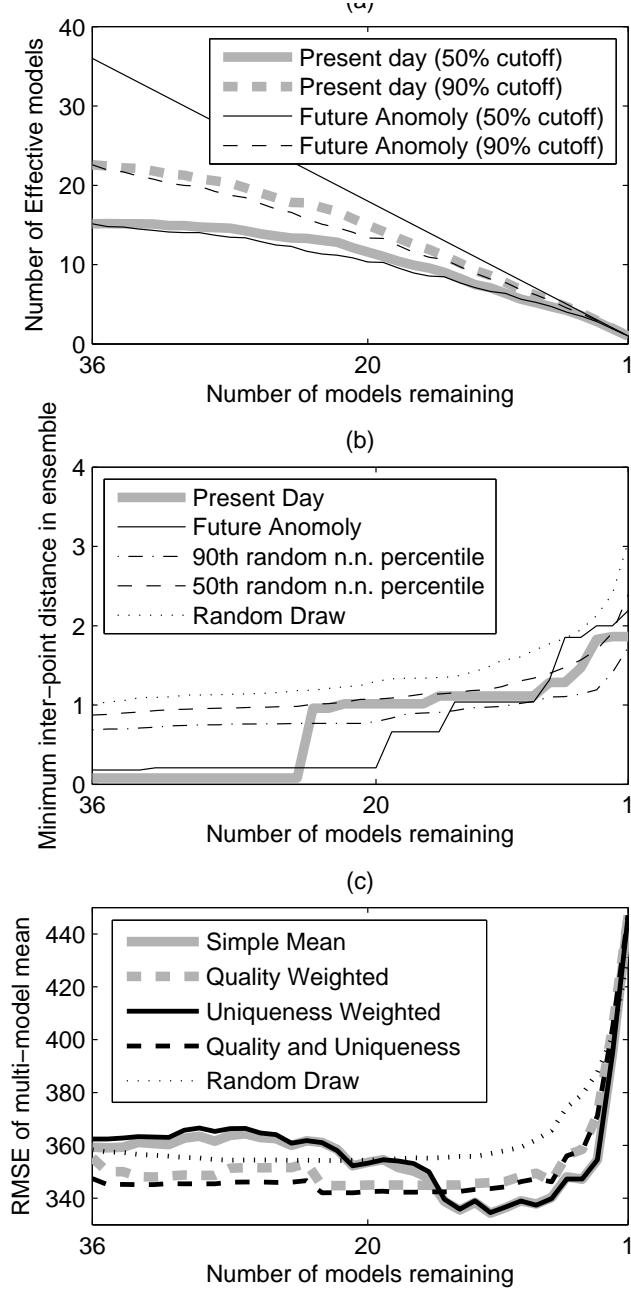


FIG. 5. Plots illustrating the stepwise model elimination following the procedure in Section 2.e. Calculations are conducted using model similarity metrics derived from both present day climatology and from future climate change under RCP8.5. (a) The number of effective models as a function of the number of actual models remaining in the ensemble. The percentile cutoff is the fraction of nearest neighbor distances seen in purely random ensembles used to define the radius of similarity D_u in Equation 10. (b) The nearest-neighbor distance as a function of the number of models remaining. For comparison, the 10th, 50th and 90th percentile of nearest neighbor distances in purely random ensembles of the same dimensionality and variance are shown. (c) RMSE of weighted and unweighted multi-model means as a function of remaining models.

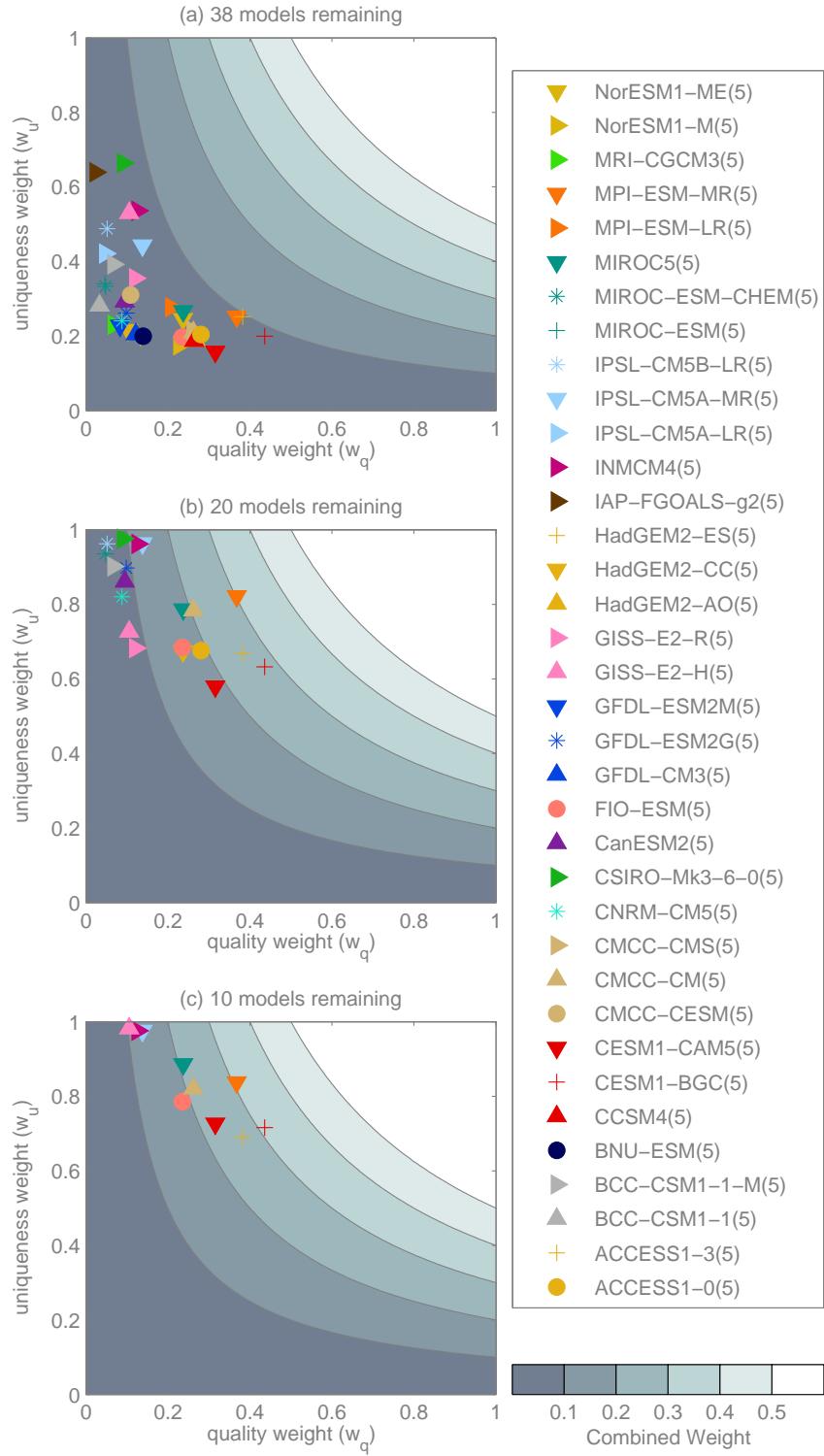


FIG. 6. A plot demonstrating how model uniqueness weights and model quality weights change as models are eliminated in the sequence shown in Figure 4, for (a) 36, (b) 20 and (c) 10 models remaining.

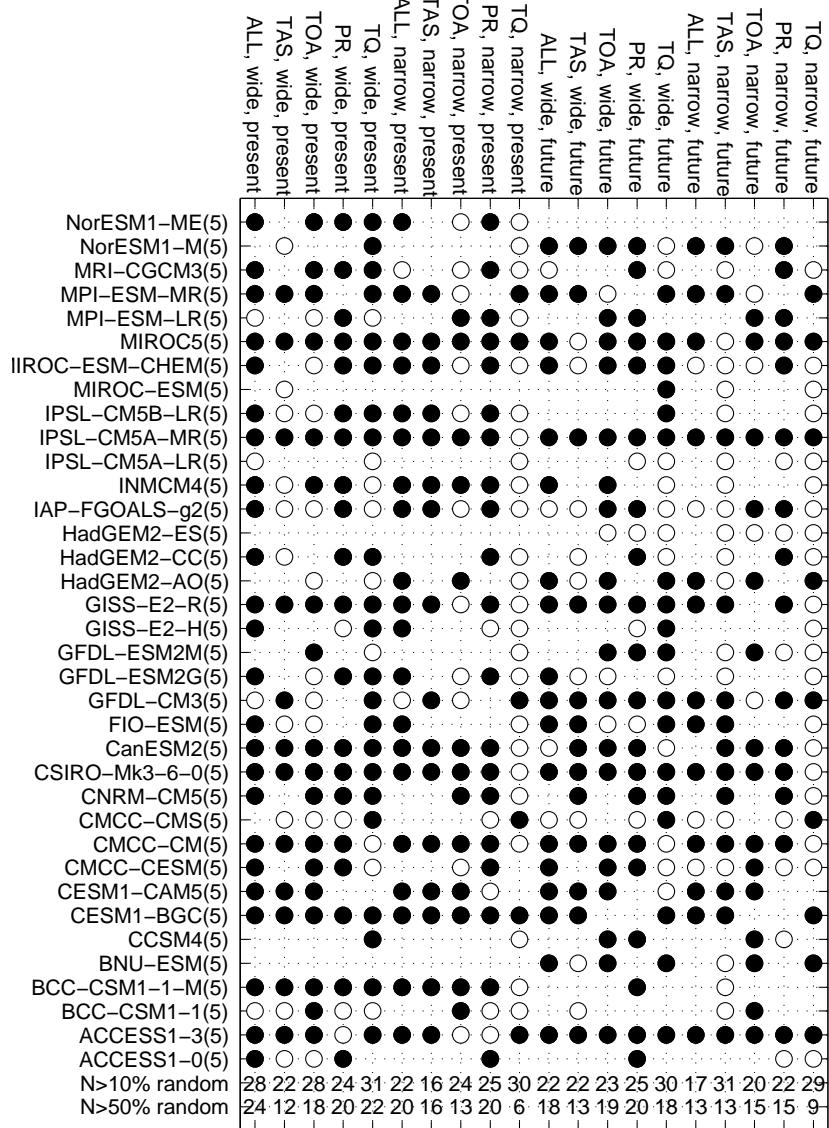


FIG. 7. A plot showing suggested subsets of CMIP5 given model quality scores and co-dependencies derived in a number of ways. Each line in the figure repeats the analysis leading to figure 4 with different assumptions. Plotted are the remaining models where the smallest inter-point distance in EOF space using the remaining archive is greater than 10% (unfilled symbols) or 50% (filled symbols) of purely random distributions of the same population, variance and dimensionality (regions marked by mid grey and dark dray shading in Figure 4). The analysis is conducted with zonal mean temperature and humidity (TQ), gridded precipitation (PR), gridded Top of Atmosphere shortwave and longwave fluxes (TOA), Gridded surface air temperature (TAS) and all variables combined (ALL). D_q , the radius of model quality is set to ‘wide’ or ‘narrow’ (the latter increasing the role of model quality metrics in model elimination). w_u , the model uniqueness weighting is shown calculated with the future RCP8.5 data, or the present day data. Numbers at the bottom of the plot indicate the number of retained models for the two conditions where the minimum remaining inter-model distance is greater than the 10th or 50th percentile of random smallest inter-model distances.

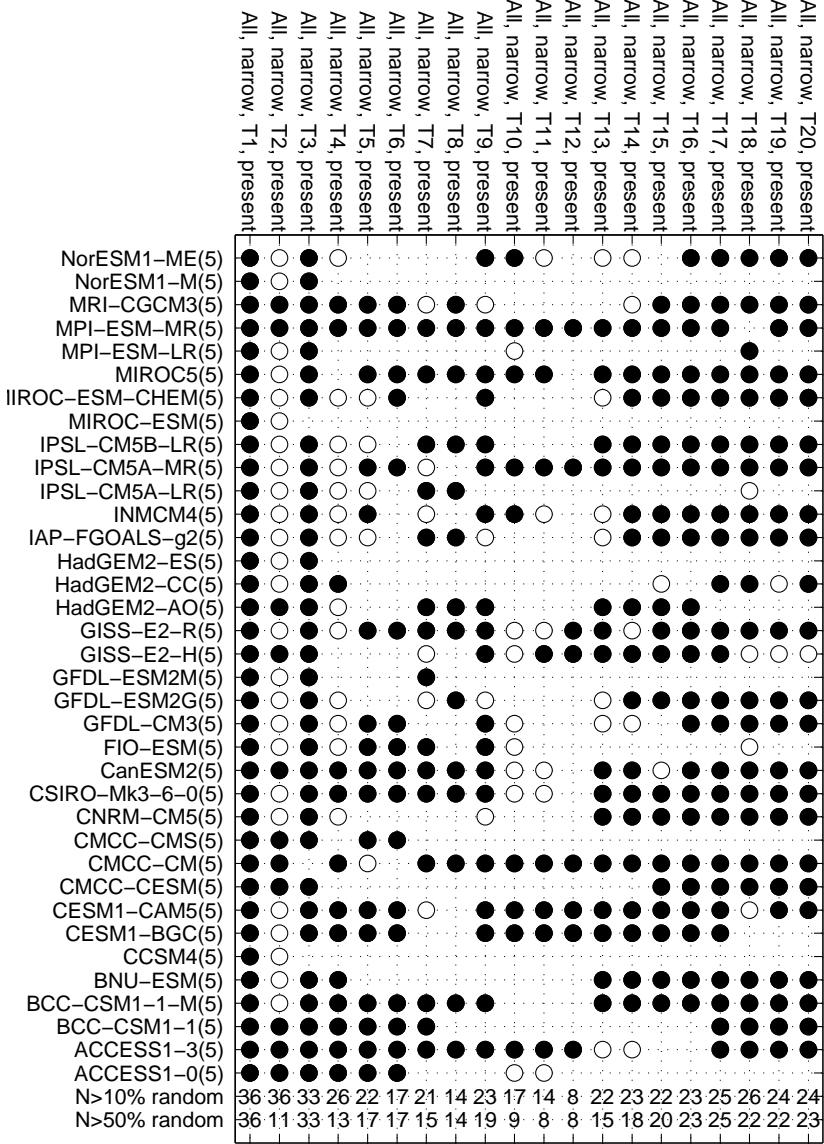


FIG. 8. A plot as in figure 7 showing suggested subsets of CMIP5 with different truncation lengths for the EOF analysis. Plotted are the remaining models where the smallest inter-point distance in EOF space using the remaining archive is greater than 50% (unfilled symbols) or 10% (filled symbols) of purely random distributions of the same population, variance and dimensionality (regions marked by mid grey and dark dray shading in Figure 4).