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ABSTRACT6

The collection of Earth System Models available in the CMIP5 archive represents, at least to7

some degree, a sample of uncertainty of future climate evolution. The presence of duplicated8

code as well as shared forcing and validation data in the multiple models in the archive9

raises at least three potential problems; biases in the mean and variance, the overestimation10

of sample size and the potential for spurious correlations to emerge in the archive due to11

model replication. Analytical evidence is presented to demonstrate that the distribution12

of models in the CMIP5 archive is not consistent with a random sample, and a weighting13

scheme is proposed to reduce some aspects of model co-dependency in the ensemble. A14

method is proposed for selecting diverse and skillful subsets of models in the archive which15

could be used for impact studies in cases where physically consistent joint projections of16

multiple variables (and their temporal and spatial characteristics) are required.17
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1. Introduction18

Today’s Earth System Models (ESMs) are great testament to collaborative scientific19

thinking. Millions of lines of computer code represent the pinnacle of understanding of the20

intricate coupled interactions of the Earth’s land, oceanic, cryospheric, and atmospheric21

systems. Unlike the more simple atmospheric models of the past, few people (if any) now22

understand the models in their entirety and so the models themselves have become vehicles23

of a scientific consensus which we use to project future climates which cannot directly be24

validated for decades to come. For some parts, such as the representation of the equations25

of fluid flow, understanding is mature and thus (relatively) uncontentious. But other com-26

ponents, such as the effect of a changing climate on ecosystem dynamics, are sufficiently27

complex that any computational code must inevitably make significant approximations in28

order to even represent the bulk behavior of the system in any tractable fashion.29

A given model is thus more than a computer program, it is a collection of axioms and30

beliefs about which processes might be important for evaluating how our environment might31

change, and how those processes should be represented, and as such, each model is a self-32

consistent entity. The challenge arises, however, when one wishes to combine the results of33

many models to attain some more comprehensive understanding of the uncertainties present34

in their individual implementation. Given a set of models of the climate system, assessing35

the value of adding another model clearly requires a consideration of whether the model is36

fit for purpose (e.g. the validity of its axioms, forcing data and tuning protocols). We would37

argue also that it is important to assess if the model provides new information; to measure38

how independent is the new model from those in the original set. In an extreme case, adding39

an exact duplicate of a model already in the set would not add value, rather it would bias40

any combination of model results towards the results of the duplicated model (Caldwell et al.41

2014).42

The latest Coupled Model Inter-comparison Project (CMIP5, Taylor et al. 2012) is the43

largest archive of climate data the world has seen to date. Such Multi Model Ensembles44
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(MMEs) have often been referred to as ‘ensembles of opportunity’ (Tebaldi and Knutti45

2007), because the range of models represent some sample of the systematic choices which46

developers face in the course of representing the climate system in the form of computer47

code. But, as has been noted before (Knutti 2010), this sample is far from perfect.48

Firstly, the models available may vary in their ability to resolve certain processes which49

might be observed in the Earth System. For any given process, a researcher may find relevant50

observations to rank models for their purposes but the output of the ESMs is sufficiently51

high dimensional that any ranking is unlikely to be universal (Santer et al. 2009). In contrast52

to weather forecast models, ESMs can also rarely be validated out of sample and so there53

remains a risk that empirical components of ESMs can be calibrated using the only available54

observations, and although this might be a pragmatic approach it leaves little opportunity55

for assessing and contrasting model performance (Sanderson and Knutti 2012).56

A second problem lies in the lack of independence of models, where independence is not57

meant in a statistical sense but in a more loose sense of models sharing ideas for parame-58

terizations and simplifications or sharing actual computer code, and therefore being biased59

in similar ways relative to reality. At the time of writing, 61 models are listed in the Earth60

System Grid database. This doesn’t necessarily mean that each of these models provides an61

independent estimate of future climate change. Indeed, some of these co-dependencies are62

trivial and can be accounted for by considering models submitted with different resolutions63

(for example, MPI-ESM-MR and MPI-ESM-LR, see Knutti et al. 2013). Most institutions64

also produce model variants with a range of different configurations, with options for inter-65

active atmospheric chemistry or carbon cycle (CMCC-CESM and CMCC-CM, for example).66

Finally, different institutions can share model components, for example the FIO-ESM model67

shares its atmosphere, ocean, sea ice and land surface code with CCSM4, but adds a surface68

ocean wave parameterization. Submodel replication is common throughout the ensemble,69

for example in the models considered for this study over 25 percent use some variant of70

the Community Atmosphere Model (CAM3, CAM3.5, CAM4 or CAM5) to represent atmo-71
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spheric processes. The GFDL MOM ocean model is similarly popular (MOM2.2, MOM4.072

and MOM4.1). Table 2 shows a broad illustration of shared model components in the CMIP573

models considered for this study.74

This extensive model replication in the CMIP5 and its predecessors is not a problem75

per se, in fact it seems natural to copy successful parts and build on the work of others,76

and it requires enormous effort to develop entirely new model components. Hence, each77

institution understandably focuses on certain aspects but copies other components. But78

model replication presents a number of issues for model ensemble analysis. The first is79

simply a matter of representation: the Assessment Reports of the Intergovernmental Panel80

on Climate Change (IPCC) have often used the multi-model mean of the CMIP ensembles81

to represent a consensus view of model projections of future climate, but clearly this mean82

will be biased towards models which are highly replicated within the ensemble. Similarly,83

model agreement on the sign or magnitude of a change in future climate is often taken to84

imply confidence in a result (Tebaldi et al. 2011, Knutti and Sedáček 2013), but if models85

are highly replicated within the ensemble, such agreement becomes less significant.86

Another issue lies in the possible effect of replicated models in studies which attempt to87

constrain aspects of future climate change. If a researcher discovers a correlation between88

an observable quantity and some unknown climate parameter in a multi-model ensemble89

(such as in Fasullo and Trenberth 2012 or Qu and Hall 2013), the statistical significance of90

that correlation would be inflated if some points are repeated. This argument is developed91

in Caldwell et al. (2014) who show that although a data-mining approach will yield more92

strong correlations between Climate Sensitivity and potentially observable fields than one93

would expect to see by chance in CMIP5, this may be attributable in part to model co-94

dependencies.95

This is the second in a series of papers examining interdependency in the CMIP ensem-96

bles. In Sanderson et al. (submitted), we developed a distance metric which enabled both97

models and observations to be represented as points in a multi-dimensional space. We then98
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showed that model properties could be interpolated within this space, allowing a resampling99

of model properties in a manner which was less sensitive to model replication and could take100

into account a measure of performance in reproducing observations. However, the approach101

of Sanderson et al. (submitted) is also unable to provide full spatial and temporal variations102

in quantities. For example, a farmer may not want an estimate of the change in average103

rainfall, but a set of representative summers with full spatial and temporal information, and104

the corresponding temperature, sunshine and wind data. For such cases it may be better105

to use the raw or bias corrected model output directly, but that requires selecting a set of106

models to use.107

It has been proposed before that subsets of larger ensembles may produce more sta-108

tistically robust results, Evans et al. (2013) investigated this concept using subsets of a109

multi-physics ensemble of weather forecasting models. Perhaps the simplest approach to110

achieve this might be to take a single model from each institution, but there are numerous111

issues with this. Firstly, although there are often similarities between models published by112

single institutions, such a crude approach would eliminate cases where significantly different113

models were produced by the same group. There are several examples of the latter case,114

the GISS-E2 model, for example is published with two structurally different oceans. Fur-115

thermore, several groups (CESM, GFDL, UKMO amongst others) publish both a ‘bleeding116

edge’ model and a legacy model to the archive, where there might be significant structural117

changes between the releases. Finally, an institution-based pruning approach would not help118

identify models from different institutions which share a large fraction of their code.119

It could be argued that one could account for many of these problems through careful con-120

sideration of model lineages, by documenting the basic parameterizations shared by different121

models or by assessing the fraction of common code between different models. This, how-122

ever, would be a considerable undertaking - and the results would require a comprehensive123

understanding of each model’s code. Firstly, although some models document and publish124

their code-base in full before submitting simulations to the CMIP archive, this practice is far125
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from universal. A model could in theory be defined by summarizing the parameterizations,126

their values and other structural assumptions which have been employed in that model, but127

assessing the relative importance of each of those parameterizations in terms of model clima-128

tology or response to external forcing would require good prior intuition of the relationships129

between the parameterizations and the process to be studied, which might be possible in130

some but not necessarily all cases. Such an approach would clearly be worthwhile, and could131

greatly aid in the interpretation of differences in climate change projections, but it would be132

a monumental undertaking.133

An alternative approach is to utilize output from the models themselves to establish134

codependencies. This approach has been demonstrated with some promise by Masson and135

Knutti (2011) and Masson and Knutti (2013), who used inter-model distances derived from136

spatial patterns of climatological temperature and precipitation to establish a hierarchical137

clustering of models which resembles a tree showing structural relationships one might expect138

from considering model lineages. As noted in Masson and Knutti (2011) and Sanderson et al.139

(submitted), the distribution of inter-model distances shows recognizable structure, with140

models from the same institution and models with common heritage generally exhibiting141

similar patterns of mean state bias. However, the aforementioned studies did not establish142

any quantitative assessment of inter-model distance, which we attempt to address here.143

To this end, we formalize an approach to use model similarity information to select models144

based on their skill and independence. This does not eliminate model inter-dependency, but145

allows us to select a subset of models where the most glaring examples of model replication146

are no longer present. In Section 2.a, we establish a method for identifying near-neighbors147

in a climate model ensemble, in Section 2.d, we use model similarity information to produce148

a weighting scheme which accounts for both model skill and model interdependence. Section149

2.e shows how this framework can be used to select a subset of models from an archive of150

climate models. Finally, Section 3.b demonstrates this method using the CMIP5 multi-model151

archive.152
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2. Method153

2.a. Processing model output154

In this study, as in our accompanying paper Sanderson et al. (submitted), we produce a155

matrix of inter-model distances in an EOF space derived from 30 year mean climatological156

output from each model’s historical simulation conducted for CMIP5. The details of the157

construction of the distance matrix are identical to that of Sanderson et al. (submitted).158

We use the ‘historical’ and ’rcp85’ experiments, and the ‘r1i1p1’ simulations in each case.159

In the special case of CCSM4, we also consider the sensitivity of the technique to internal160

variability by repeating the analysis with all available simulations in the CMIP5 archive161

(r1i1p1, r1i2p1, r1i2p2, r2i1p1, r3i1p1, r4i1p1, r5i1p1 and r6i1p1 for the historical runs and162

r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 and r6i1p1 for the RCP8.5 simulations).163

The input data for this study is both processed, and used to conduct an EOF analysis164

in a similar fashion to Sanderson et al. (submitted). Minor differences in the inter-model165

distances occur because the former study considers both CMIP3 and CMIP5 models, which166

slightly changes the exact form of the EOFs. For each model, a number of monthly, gridded167

diagnostic variables are considered to represent the climatology of the model. For each avail-168

able model in the CMIP3 and CMIP5 ensembles, monthly climatologies are obtained from a169

single historical simulation by averaging monthly mean fields for the time period 1970-2000.170

Data is obtained for five 2 dimensional fields (surface air temperature (TAS), total precipita-171

tion (PR), outgoing top-of-atmosphere shortwave radiative flux (RSUT), outgoing longwave172

top-of-atmosphere flux (RLUT), sea level pressure (PSL)) and two three-dimensional fields173

(atmospheric temperature (T) and relative humidity (RH)). Three dimensional fields are174

zonally averaged. Corresponding observational monthly mean climatologies are obtained by175

averaging available years for each field type, as shown in Table 1.176

Data from each model and dataset are regridded onto a 2.5 by 3.75 degree latitude177

longitude grid, and zonal vertical fields are regridded onto a 2.5 degree latitude grid at 17178
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pressure levels. For each variable, values are area weighted. Vertically resolved fields are179

also weighted by the pressure difference between the top and bottom of the corresponding180

level. In order to usefully concatenate the multivariate field for EOF analysis, the variables181

must be normalized for each to represent a similar amount of variance in the multi-model182

ensemble. We normalize each observable field using values obtained from the observations.183

For 2 dimensional fields, we calculate the inter-monthly variance of tropical grid-cells and184

take the average over the tropics to obtain a single normalization factor for each variable.185

For 3 dimensional fields, we take the inter-monthly variance of zonally averaged fields in the186

tropics between 700 and 400 hPa, and then average the variances over the spatial domain to187

obtain the normalization factor. Normalization factors are calculated from the observations188

only, and the fields from each model are divided by the same factor (shown in Table 1).189

Each field is then reformulated into a single vector. If any elements of the vector in any190

single model or in the observations are missing, those particular elements are removed from191

all models. Each field vector is then normalized by the number of remaining elements, and192

the 2d and 3d fields are concatenated into a single vector length n (where n=358,248 when193

all fields are utilized). Each of the m vectors are combined to form a matrix X20c (size m194

by n, where m is 36, comprising 36 CMIP5 model vectors). The ensemble mean value is195

calculated by averaging the m rows of the matrix, and this is subtracted from each row to196

yield the anomaly matrix ∆X20c, such that197

∆X20c = X20c −X20c. (1)

The analysis is also repeated with a number of different subsets of the entire set of198

variables. In these cases, the matrix ∆X20c is formed using only that subset, and the199

analysis continues in the same fashion.200

The process is repeated to produce a similar matrix to represent the climate change201

between the historical simulation (1970-2000) and the RCP8.5 simulation (2070-2100). In202

this second analysis, the anomaly between the two 30 year periods is taken to form the203
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matrix ∆X21c. The future analysis is also repeated with a number of different subsets of the204

entire set of variables. In these cases, the matrix ∆X21c is formed using only that subset,205

and the analysis continues in the same fashion.206

2.b. Principal Component Analysis207

We conduct a principal component analysis on the resulting matrix formed by combining208

the climatology vectors from each participating model, such that the EOF loadings define a209

t-dimensional space (where t is the truncation length of the Principal Component Analysis)210

in which inter-model and observation-model Euclidean distances may be defined. The use211

of the EOF pre-filter combines fields which are trivially correlated (such as adjacent grid-212

cells) into a single mode. The results of the analysis do change in a subtle fashion with213

truncation length, and we discuss this sensitivity further in Section 3.c.1, but for the initial214

analysis we use a truncation length of t = 9. This truncation length effectively provides215

enough degrees of freedom to represent some subtle differences between related models in216

the resulting distance metric, but not so many as to introduce excessive random noise into217

the calculation.218

The PCA analysis on any ∆X can be performed by singular value decomposition and219

truncated to t modes, such that:220

∆X20c = U20cλ20cV 20cT , (2)

for the present day case (20c), and221

∆X21c = U21cλ21cV 21cT , (3)

for the future case (21c). U20c and U21c (sized m by t) are matrices of model loadings,222

V 20c and V 21c (sized n by t) are spatial patterns of ensemble variability while λ20c and λ21c223

(sized t by t) are diagonal matrices representing the variances associated with each mode.224
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The inter-model distances can then be measured in a Euclidean sense in the loadings225

matrices U20c and U21c, such that the distances between 2 models i and j can be expressed226

as:227

δ20cij =

(
t∑

l=1

(
U20c(i, l)− U20c(j, l)

)2)1/2

, (4)

for the present day and228

δ21cij =

(
t∑

l=1

(
U21c(i, l)− U21c(j, l)

)2)1/2

, (5)

for the future. Model-observation distances δ20ci(obs) which can obviously only be calculated229

for the present day case are created using a climatological vector from an observational230

dataset Xobs prepared in the same fashion as X20c:231

∆X20c
(obs)n = X(obs) −X20c (6)

where X20c is the multi-model mean of X20c, length n. This observational anomaly vector232

can be projected onto V 20c to form an observational loading vector U(obs) (length t). The233

distance between each model and the observations can be then calculated in a similar fashion:234

δ20ci(obs)(i) =

(
t∑

l=1

(
U20c(i, l)− U20c

(obs)(l)
)2)1/2

, (7)

Finally, we calculate the variability expected in an initial condition ensemble by taking235

nic = 8 (historical) or nic = 6 (future) member CCSM4 ensemble for both the historical236

simulation and RCP8.5. In each case, the data is processed in the same fashion as for the237

multi-model case to create an nic by n matrix, X20c
ic and X21c

ic . We then take anomalies from238

the CMIP5 ensemble mean:239

∆X20c
ic = X20c

ic −X20c, (8)

and240
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∆X21c
ic = X21c

ic −X21c. (9)

These can also be projected onto V 20c and V 21c to form loading vectors U20c
(ic) and U21c

(ic) (size241

nic by t). The distance between initial condition ensemble members can be then calculated242

as before for the multi-model case.243

2.c. Forming Random ensembles244

In order to compare inter-model distances in the CMIP5 archive with distances expected245

by chance, we create a set of 105 matrices of random data with the same dimensions as U20c
246

and U21c (where m is 36). Each random distribution represents inter-point distances for all247

possible pair-wise combinations m points (703 distances, in this case). Our results are not248

sensitive to further increasing the number of random cases.249

Each row of one of these random matrices is populated with draws from a Gaussian250

PDF with variance equal to that from the rows of U20c and U21c (all of the rows have equal251

variance in each case). As a result, data in these random matrices is independent in directions252

corresponding to both the EOF number and the model number. We desire matrices with an253

independent model dimension in order to test the likelihood that CMIP5 output was drawn254

from a set of independent models. Having independence in the field direction is appropriate255

because the columns of U20c and U21c are independent by construction.256

Our assumption that the t dimensional normal distribution is representative of an in-257

dependent ensemble of climate projections is subject to some caveats; we are making the258

effective assumption that a normal distribution of models in the space defined by U20c or U21c
259

is plausible, and that there are no parts of that space which might represent an unphysical260

climate state. There are some justifications for this assumption; the random distributions261

are compared with the loading matrices U20c and U21c, which are themselves orthogonal262

basis sets defined by multi-model variability. As such, we are making the assumption that263
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if there are physical relationships between variables in the model output data (say between264

adjacent grid-cells or between surface temperature and outgoing longwave radiation for ex-265

ample), then any correlation between these would be represented as a single mode in the266

EOF analysis. Thus, any linear relationships which exist in the original data are effectively267

preserved in the random ensemble also. However, a strong nonlinear relationship between268

two variables in the CMIP5 archive could not be represented in a single EOF mode, and269

might be represented in two or more modes. In this case, then there would be some of270

the space which should physically off-limits. Hence, by using normally distributed data to271

define the random ensembles and their associated length scale for inter-point distances, we272

make the assumption that multi-model variability can be appropriately described by a linear273

basis set. Although one could potentially consider designing a random sample which fitted a274

high-dimensional distribution to the existing ensemble to account for nonlinear relationships275

between modes, the increase in complexity, the lack of samples in the original ensemble and276

the necessary subjective parameterization of such a distribution means this is impractical277

for the present study.278

2.d. Weighting for Uniqueness279

In this section, we seek to use the relationships derived in the Section 2.b to define280

a weighting scheme which would effectively down-weight closely related model pairs the281

ensemble, which we can assess using the expectation values for near neighbor distances in282

the random ensembles proposed in Section 2.c. Our scheme should also provide the capability283

to down-weight models which exhibit low fidelity in a desirable metric.284

The limiting cases of such a scheme are easy to define. We consider the models, as285

before, to be represented as points in a space defined by the loadings of the model in an286

ensemble-wide EOF analysis. In the extreme case, if the distance between two models is287

exactly zero then the models are considered identical and each member of the pair should be288

given half the weight that they would otherwise have (equivalently, a statement that adding289

12



an identical model to an existing ensemble member should not change the results).290

We propose a simple functional form for model similarity which satisfies the requirements291

for a given model pair [i, j], separated by a distance δ20cij or δ21cij :292

S(δ20cij ) = e
−
(
δ20c
ij
Du

)2

(10)

S(δ21cij ) = e
−
(
δ21c
ij
Du

)2

, (11)

where Du is a free parameter, a ‘radius of similarity’, such that model pairs separated by293

less than this value are considered similar. The distance is squared so that the metric tends294

to unity for values << Du. The smallest reasonable value for Du would be the expected295

distance between two identical models exhibiting different realizations of internal model296

variability, given this represents a case where the model structure is identical. As Du is297

increased from this value, increasingly distant pairs of models are considered similar. In the298

extreme case, as Du approaches the largest inter-point distances (i.e. the largest values of299

δ20cij or δ21cij ) in the ensemble, then only the models with the largest biases would exhibit a300

value of S of close to unity and all other members would be down-weighted.301

In Section 2.c, we derived Du empirically by considering the nearest neighbors one would302

expect to find by chance in a t dimensional normal distribution of equal population, variance303

and dimensionality as U . This is achieved in practice by considering the randomly generated304

distributions from the Section 2.a. We define Du to be the 50th percentile of nearest-neighbor305

distances in the 105 randomly generated ensembles.306

One can thus obtain a value for the effective repetition of model i in the ensemble:307

Ru(i)20c = 1 +
m∑
j 6=i

S(δ20cij ) (12)

Ru(i)21c = 1 +
m∑
j 6=i

S(δ21cij ), (13)
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for the the past and future cases respectively, where m is the total number of models.308

We then propose a uniqueness weighting for model i by taking the inverse of the number of309

models similar to i:310

wu(i)20c =
(
Ru(i)20c

)−1
(14)

wu(i)21c =
(
Ru(i)21c

)−1
. (15)

for the the past and future cases respectively. If desired, a weighting scheme could also311

consider model quality, a model should be given increasingly less weight the further that312

model lies from the point representing the observations in the EOF space. In the limiting313

case, the model weight should tend to zero as the distance of the model to the observations314

tends to infinity. These attributes are satisfied by the following construction for wq, the315

model quality weighting:316

wq(i) = e
−
(
δ20c
i(obs)
Dq

)2

, (16)

where δ20ci(obs) is the Euclidean distance between the EOF loading for model i and the317

loading of the observed climatology projected onto the same EOF basis set. This is only318

calculated for the historical data where observations are available. Dq is a ‘radius of model319

quality’, and is a free parameter in the weighting scheme. As Dq → +∞, then wq → 1320

for all models, and the quality weighting has no distinguishing effect. As the value of Dq321

is reduced, models closer to the observations are increasingly up-weighted. The smallest322

reasonable value for Dq would be the smallest observational bias seen in the ensemble (i.e.323

min(δi(obs))). In the extreme case as Dq → 0, the majority of the weight is placed on the324

single best performing model.325

To explore the sensitivity to this parameter, we consider two values for Dq: a ‘wide’326

choice where Dq is equal to the mean inter-model distance in the CMIP5 ensemble and a327
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‘narrow’ choice which is half of this value. Expressing Dq in terms of the CMIP variance328

has the disadvantage that the variance itself can be influenced by both model quality and329

reproduction, but this decision is a matter of practicality. We present the values of Dq as330

subjective, effectively as a statement that relative skill, rather than any absolute measure,331

should define whether we accept or reject a model. In effect, the ‘wide’ case describes a332

situation where only the models with the largest biases in the ensemble are down-weighted,333

while in the narrow case a distinction is made between the ‘average’ and ‘best’ performers. It334

might be desirable to let internal or natural variability define Dq, but as we show in Section335

3.a, this would lead to a situation where δ20ci(obs) >> Dq for all i, which given Equation 16,336

would place the majority of the weight on the model with the lowest value of δ20ci(obs).337

2.e. Eliminating interdependent models338

If the researcher’s goal is simply to produce a multi-model average which is less susceptible339

to bias by model replication, then simply weighting each model by the appropriate value of340

wu would suffice. This approach could be used directly for calculating a central estimate of341

combined multi-model projections.342

However, some issues associated with model co-dependence cannot be solved by weight-343

ing alone. For example, the potential bias associated with regression-based predictions of344

unknown climate parameters can only be addressed by removing the interdependent mod-345

els. This can be achieved in a pure statistical fashion (see Caldwell et al. 2014) but the346

interpretation of such constructions is not always intuitive.347

We propose here a less formal approach which should be readily reproducible for a variety348

of purposes where it is desired to remove the most blatant model codependencies. Our349

method is a step-wise model elimination, where the models with the highest co-dependencies350

are removed first.351

The simplest approach here would be to recursively remove a member of the closest near-352

neighbor pair until the remaining ensemble conforms to a plausible random distribution in353
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the n dimensional EOF space. Since better models are replicated more, however, such an354

approach preferentially eliminates the models clustering closer to observations while models355

with large biases would be preserved. This has a significant detrimental effect on the mean356

performance of the remaining ensemble. Instead, we propose a strategy which considers both357

model performance and model independence when creating an ensemble subset.358

Firstly, we introduce a bulk quantity which describes the ensemble characteristics, the359

‘independent ensemble quality score’:360

S20c
m =

m∑
i

w20c
u (i)wq(i) (17)

S21c
m =

m∑
i

w21c
u (i)wq(i), (18)

for historical and future cases, where w20c
u , w21c

u and wq are described in Section 2.d361

as the individual model weights corresponding to model i. Using the product of the two362

weights is a subjective decision, and other functional forms could potentially be explored.363

However, as we now demonstrate, this simple combination of the uniqueness and quality364

weights addresses our goals to remove the influence of exactly replicated models and of very365

poor models.366

This can be illustrated as follows for the historical simulation: If an independent model367

is added to the ensemble, w20c
u (i) equals 1 for model i, and so Sm will increase by the model368

quality score, wq(i). The increase is large for a high performing model, and approaches zero369

for a very poor model. However, if two identical models i and j are added to the ensemble370

together w20c
u (i) and w20c

u (j) each equal 0.5, and so SN will still only increase by wq(i).371

If we start with an N member ensemble, we eliminate a single member by considering372

the maximum possible ensemble quality score for each combination of N − 1 members.373

The excluded model j is removed from the ensemble and the process is repeated until an374

appropriate stopping criterion has been reached. We can assess the effective number of375

models remaining at any point by considering the ‘number of effective models’, for both376
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historical and future cases:377

n20c
eff =

m∑
i

w20c
u (i) (19)

n21c
eff =

m∑
i

w21c
u (i), (20)

each representing the sum of the uniqueness weights for the remaining models in the378

ensemble.379

The approach outlined here is quantitative but subjective, with a number of free param-380

eters. In order to demonstrate its utility, we consider a case study of the CMIP5 ensemble,381

where we can objectively demonstrate that we can use the algorithm to produce a sub-382

set of CMIP5 models which provides comparable model diversity, improved mean model383

performance and reduced model replication in comparison to the original model sample.384

3. Results385

3.a. CMIP5 Ensemble Properties386

The initial dataset from which we draw our conclusion is the matrix of pairwise distances387

between models in the CMIP-5 archive, δ20c and δ21c which are calculated from U20c and U21c
388

matrices. This matrix is represented graphically in Figure 1 for the all-variable case using389

both present day climatological fields calculated from 1970 to 2000 in historical simulations,390

and the anomalies from those fields in the RCP8.5 simulation between 2070 and 2100. In391

both cases, recognizable structure relating to model genealogy is visible in the inter-model392

distance field.393

We can compare, in a bulk sense, the distribution of distances in the matrices to that one394

might expect from a purely random distribution. The distributions for the CMIP5 derived395

matrix and the random distributions are plotted in Figures 2(a) and (b) for a number of396

different variable choices.397
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The random distributions have the same variance as the original CMIP5 distributions by398

design because each dimension of the random psuedo-ensembles is normally distributed with399

the same variance as the original CMIP5 case in each dimension of U20c and U21c. Because we400

consider a large number of pseudo-random normally distributed ensembles, we can produce401

best estimates and confidence intervals for the distribution of inter-model distances one402

would expect if the models were normally distributed in the space defined by U20c and U21c.403

If the CMIP5 distribution falls outside of this range, this implies that the models in CMIP5404

are distributed in a non-normal fashion in the space.405

We find there are some significant deviations in the CMIP5 distribution from what one406

would expect in a purely random case. Firstly, there are a number of model pairs which lie407

closer to each other in the EOF space than ever occurs by chance in the random samples (less408

than 50 percent of the expected mean inter-point distance for the random case). However,409

there is also an absence of models at intermediate distances (between 50 and 90 percent of410

the mean inter-point distance), relative to the random distributions. This indicates that411

the distribution of CMIP5 models in the EOF space has a rather heterogeneous, clustered412

distribution - with families of closely related models lying close together but with significant413

voids in-between model clusters. These features are especially clear in the future case, where414

the distances are measured in terms of (2070-2100) anomalies from the (1970-2000) climate415

mean state. We also show the histogram of inter-model distances in initial condition CCSM4416

ensemble, demonstrating that inter-model distances due to internal model variability alone417

are an order of magnitude smaller than the mean inter-model distances seen in the CMIP5418

archive.419

The responsible model pairs can be explicitly plotted. Figure 3(a) shows model pairs420

which are closer together than the expected nearest-neighbor distances in the random dis-421

tributions, using all variables. Many of these samples correspond to identical models from422

the same institution submitted at a different resolution (IPSL-CM5A-MR/LR, MPI-ESM-423

LR/MR for example). Other model pairs relate to changes in model configuration which424
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do not influence the set of atmospheric diagnostics considered here (HadGEM2-AO and425

HadGEM2-ES for example share the same atmospheric, ocean and ice models, but the for-426

mer lacks treatment of the carbon cycle which has little effect in these concentration driven427

simulations). Finally, there are some cases where models from two institutions share a large428

fraction of code-base, and this is reflected in their proximity in EOF space (HadGEM2-AO429

and ACCESS1-0 or FIO-ESM and BNU-ESM, for example). Several other model pairs are430

plotted with dotted lines. These, to a lesser degree, still occur closer together than one might431

expect by chance (for the models joined by a black line, one such pair would be expected by432

chance in a 36 member ensemble). These connections can also be related to common model433

components (for example, NorESM and CCSM4 share atmosphere and land surface, MPI-434

ESM and CMCC-CSM5 share atmospheric code). We also include the observational point435

in the same analysis in Figure 3(a), which shows that none of the models in the CMIP5436

archive are considered closer to the observations than would be expected by chance. In437

the later part of the study, where we prune similar models from the archive, this give us438

some confidence that similar models are not being removed because they are all converging439

on the ’true’ climate. We can repeat the analysis for future changes in the same variables440

(Figure 3(b)), which show a similar close relationships to present day case. Using specific441

fields produces similar (but non-identical) relationships (Figure 3(c-e)). The all-variables442

case shows that all close relationships would be expected from a genealogical perspective.443

However, when one uses single variables (PR especially), there are some unexpected results444

(e.g. MIROC and CAM5 are considered close). We attribute this to the difficulty of repre-445

senting inter-model precipitation variability in a low dimensional basis set (although models446

from different centers may in some cases share parameterizations).447

3.b. Stepwise model elimination448

There are various arguments to support the hypothesis that the CMIP5 ensemble is449

biased by the inclusion of common components, some of which are featured more frequently450
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than others. One can make this argument from a consideration of the models themselves (see451

Introduction and Table 2), or by examining the spatial distribution of models in orthogonal452

dimensions derived from model output. We have proposed a method of model removal453

which maximizes a metric reflecting both model diversity and fidelity. The iterative model454

elimination process is illustrated for the CMIP5 ensemble in Figure 4.455

The plot shows the consecutive removal of models from the set of 36 considered in this456

study until a single model remains. The process is demonstrated by eliminating interde-457

pendent models as judged by the simulation of present day climatology. The model quality458

weights wq are obtained using the mean state climatology from the models as compared to459

the observations. Model uniqueness is calculated as in Section 2.e after each iteration.460

We demonstrate the sequence of model removal in Figure 4 (for present day similarities,461

all variables and a ‘wide’ quality radius). The figures show the order in which models462

are removed from the archive to achieve the maximum independent ensemble quality. If463

the removed model is closer than Du (a function of the number of models remaining) to464

any other remaining model, then that model is shown to merge with its nearest neighbor.465

However, if the model is further than Du from any other model, the model branch is shown466

as terminating in the diagram.467

We have not yet fully discussed an appropriate point to stop trimming models. This468

question is ultimately subjective, and the conclusion is somewhat dependent on the specific469

needs of the researcher. However, Figure 5 shows some changing characteristics of the470

remaining ensemble as the ensemble size is decreased, and these can be used to recommend471

ensemble subsets for different scenarios. In essence, a first phase of eliminating models just472

removes redundant data, a second improves the characteristics of the ensemble by removing473

poor models and partly redundant ones. Going beyond that potentially worsens the ensemble474

mean bias representation.475

Figure 5(a) shows how neff varies as models are removed from the archive as described476

in Section 2.e. The actual number is dependent on the choice of Du, the radius of similarity.477
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Two choices of Du are illustrated, using either the 50th percentile of nearest-neighbor dis-478

tances in the set of 105 random ensembles (as was used in Section 2.d) or, for comparison,479

the 90th percentile. Using all the models in the archive, neff is 15.5 using the larger value480

for Du, or 22.5 using the smaller value (using present day climatology metrics of similarity).481

The removal of the first 10 models has little effect on neff (especially using the larger value482

of Du). The removal of the remaining models results in a monotonic decrease in neff .483

As was indicated by Figure 5(a), most of the early model eliminations have little effect on484

neff . Figure 4 shows that many of the initial removals represent models (CCSM4 to CESM1-485

BGC, HadGEM2-ES to HadGEM2-AO, GFDL-ESM2M to GFDL-ESM2G) which are largely486

structurally identical, at least in terms of their long term atmospheric climatology - differing487

only in the presence of an active carbon cycle which would not influence the diagnostics488

used in this study. It is thus largely random which member of the pair is eliminated. In489

this regime, there is a strong inverse relationship between model quality weights (wq) and490

uniqueness weights (wu), as shown in Figure 6(a).491

The second broad class of eliminations is models with strong connections, often from492

the same institutions but with some differing components. In these cases, the model with493

the higher value quality weighting (wq) is generally preserved (for instance, GISS-E2-H and494

GISS-E2-R which differ in their ocean components). In this regime, the inverse relationship495

between the model quality weight and uniqueness weights is weaker (Figure 6(b)), as the496

clear duplicates have already been removed. Note that the uniqueness weights now refer to497

uniqueness within the remaining subset, and not within the full CMIP5 archive.498

The final stages of removal (approximately the final 20 models) do result in a reduction in499

the number of effective models, illustrated by the termination of the model path. As shown500

in Figure 5(b), in this regime - the distribution of inter-model distances are now consistent501

with what one might expect from a purely random sample. Each family of closely related502

models is now represented, to a large extent, by its own ‘champion’. Figure 6(c) shows that503

when only 10 models remain, the relationship between wu and wq is rather weak, with all504
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remaining models having comparable uniqueness weights.505

Our value judgment for an appropriate stopping criterion is thus dependent on the ap-506

plication. If one wishes to only remove near-identical models, one should stop trimming507

when the number of effective models neff begins to significantly decrease. However, if one508

wishes to produce the best-performing ensemble mean simulation of the mean state, it is509

more logical to also remove the worst performing models such that the RMSE error of the510

sub-ensemble mean is minimized.511

3.c. Sensitivity to initial choices512

The algorithm as described in Section 2.e requires several assumptions and we explore513

the sensitivity of the results to those choices in this section. Figure 7 shows the models514

which are retained in the analysis with a range of different initial variable and parameter515

choices. In each case, the analysis is repeated and there is a stepwise removal of models516

based on maximising the ensemble quality score. On each line of the plot, we show which517

models remain when the smallest inter-point distance in the remaining archive is first greater518

than 50% (unfilled symbols) or 10% (filled symbols) of purely random distributions of the519

same population, variance and dimensionality (regions marked by mid grey and dark dray520

shading in Figure 4). Thus, we can explore the sensitivity of the retained models to our521

initial assumptions.522

Firstly, there is the choice of which variables are used to derive the inter-model distance523

matrix. To address this, we repeat the analysis with a variety of individual fields, as well524

as the multivariate example discussed in the previous section. The analysis is repeated for525

zonal mean temperature and humidity (TQ), gridded precipitation (PR), gridded Top of526

Atmosphere shortwave and longwave fluxes (TOA), Gridded surface air temperature (TAS)527

and all variables combined (ALL). Secondly, we explore the ‘radius of model quality’ Dq528

introduced in Equation 16. The analysis is repeated for two values, a ‘wide’ value where529

Dq is equal to the mean inter-model distance in the CMIP5 ensemble and a ‘narrow’ choice530
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which is half of this value. The latter ‘narrow’ case effectively increases the role of the531

model quality metric, such that models with a low quality score are removed earlier in the532

algorithm, unlike in the ‘wide’ case, where highly interdependent models are removed first.533

Finally, we construct the model uniqueness weightings wu using the inter-model distances534

derived from the 30 year mean 1970-2000 present day data in the ‘present’ case, but use the535

anomaly between 2070-2100 and 1970-2000 for the ‘future’ case.536

We find that variable choice has little impact on the final choice of model subsets. Al-537

though in some cases, the choice of model from a given institution can change, the overall538

number of models retained is similar for each of the variable choices. The use of the ‘narrow’539

radius of model quality, however, significantly decreases the number of retained models with540

respect to the ‘wide’ value. This can be explained by considering that the narrow setting541

increases the ratio of the model quality weighting for models lying close to the observations,542

and those far away. In the ‘narrow’ regime, the ensemble quality score is best maximised543

by removing the poorly performing models earlier in the analysis, and thus after the inter-544

dependent remaining models have been removed, the number of remaining unique models is545

smaller than in the ‘wide’ case.546

3.c.1) EOF truncation choices547

Some subjective decisions are required in the interpretation and subsequent usage of the548

PCA conducted in Section 2.a, and we discuss these at greater length here. In previous549

studies like Masson and Knutti (2011), the inter-model distances were calculated without550

the PCA stage, simply calculating distances in the space defined by the anomaly matrices,551

∆X20c and ∆X21c. For the purposes of this study, and its companion studies (Sanderson552

et al. submitted), it is neccessary to decrease the dimensionality (and co-dependence) of the553

data in order to establish prior expectations of near-neighbor distances.554

In this study, as in Sanderson et al. (submitted), the inter-model distances are calculated555

with the truncated set of 9 modes. The resulting inter-model distance matrix calculated with556
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U20c truncated to 9 modes has a 0.93 correlation with the matrix one would calculate using557

the full-field matrix ∆X20c, but using the orthogonal basis set allows us to form random558

matrices with which to compare the results (Figure 2).559

For smaller values of t, only the leading patterns of model difference are retained, which560

results in large inter-model distances between different model families (e.g. CESM and GFDL561

models) and very small distances between models in the same family (e.g. CESM-CAM5 and562

CESM-CAM4). With such few degrees of freedom, very small intermodel distances cannot563

be ruled out by chance in the random ensembles, and so no models can be excluded from the564

ensemble (see Figure 8 for truncation values of 3 or less. The analysis produces very similar565

results, and the minimum number of retained models, for values of t between 8 and 12 (see566

Figure 8), with relatively little sensitivity to variable choice (not shown). For values of t of 15567

or greater, the higher order modes increasingly represent subtle and often noisy differences568

between models in the archive, which inflates the distance between the near-neighbors in the569

ensemble. Hence, once again we see fewer models ruled out.570

To test the sensitivity of the inter-model distance matrix to variable choice, we also repeat571

the EOF analysis with a number of different subsets of diagnostic variables. The resulting572

correlation depends significantly on which exact variable is retained. The inter-model dis-573

tances calculated using gridded surface temperature only (’TAS’) are highly correlated with574

the multi-variate case (R=0.95, untruncated). Top of atmosphere radiative fluxes (RAD,575

R=0.85 untruncated), Total Precipitation (PR, R=0.66 untruncated), and zonally averaged576

vertical temperature and humidity (QT, R=0.42 untruncated) are increasingly poorly cor-577

related with the full field multi-variate case. This implies that some fields, such as surface578

temperature have sufficient information to render a multi-variate approach unnecessary.579

With a truncation length of 9, which we used for the bulk of this study, the resulting580

distance matrix remains highly correlated to the full field distance matrix, but the influence581

of covariant fields and models is reduced (see Caldwell et al. 2014 for an extensive discussion582

of these issues).583
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3.d. Ensemble Mean Performance584

The results of Section 3.b suggest that eliminating the strongest interdependent models to585

leave a plausibly random distribution would leave between 10 and 25 of the 36 CMIP5 models586

considered here (depending on variable and parameter choices). Trimming the ensemble to587

its more independent subset does not worsen the fidelity of the climatological mean result,588

and removing the poorer performing outliers (models with large biases) can actually improve589

it, as we show in this section.590

We can first examine how the multi-model mean of present day climatology compares591

against observations. Figure 5(c) considers the Root Mean Square Errors (RMSE) of various592

weighted and unweighted multi-model means calculated using the same multi-variate climate593

state vectors described in Section 2.a and the observations listed in Table 1. We illustrate594

this using the ‘ALL’ variable case, with the ‘wide’ radius of model quality and present595

day derived inter-model distances. We also compare with the average RMSE seen when a596

completely random sample (without replacement) of the same size is taken, as compared to597

the detailed technique outlined in Section 3.b.598

If one considers only the far left of the plot, where all 36 models are retained, weighting599

the models by uniqueness actually increases the RMSE. This is largely to be expected - as we600

have seen in Figure 6(a) that the best performing models have the lowest uniqueness weights.601

It also suggests that a mean of the CMIP5 ensemble is already weakly weighted towards the602

better performing models. If we explicitly weight the model mean towards models which lie603

closer to the observations in the EOF space, the RMSE can be reduced significantly.604

As the first 10 (highly interdependent) models are removed from the archive, the simple605

mean RMSE increases slightly while the random draw RMSE remains constant, likely be-606

cause the high-performing models have less representation when the duplicates have been607

pruned. The uniqueness weighted mean also becomes more similar to the simple mean case608

(uw is now more consistent across the ensemble). Between 28 and 12 models remaining, the609

simple RMSE decreases significantly and when 20 models remain, the subset outperforms the610
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RMSE of the random sample. The lowest RMSE values occur with between 12 and 5 models611

remaining. Removing any further models increases the RMSE of the simple multi-model612

mean. With 5 or fewer models remaining, all models have a high value of both wu and wq,613

so weighting by uniqueness or quality has little effect. In all cases, any further removal of614

models (below 5) significantly increases the RMSE, a fact which is likely attributable to the615

Cauchy-Schwartz inequality (Annan and Hargreaves 2011).616

4. Discussion and Conclusions617

The present study considers how one might remove potential biases which might arise618

from shared components in the CMIP5 archive of climate models, and its predecessors. We619

also propose some simple diagnostics which might be used to identify interdependent models620

using model diagnostic output, and a possible strategy to choose a model subset to maintain621

model diversity without replication and to incorporate model quality information into this622

decision.623

This study represents a proof of concept; the choice of diagnostics used in this study are624

of course arbitrary, to some degree, though the results of which models are interdependent do625

seem to be relatively resilient to changes in variable and time period (see Figure 3, Pennell626

and Reichler 2011 and Knutti et al. 2013). However, we do assume that a model’s mean state627

climatology can be used to assess both its skill and independence. Clearly, if our final goal628

is to assess the plausibility of a model’s future simulations then the mean state simulation629

is not a perfect assessment of model skill, although it could be argued that it is a neccessary630

condition and as such a weighting strategy based on present day climatology can be justified631

in the absence of any additional information.632

Certainly, which model exhibits the highest quality score is very much dependent on the633

specific metrics in which the researcher might be interested (Santer et al. 2009), and it is634

far beyond the scope of this study to conduct an exhaustive comparison of possible model635
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metrics. In this study, we have focussed primarily on diagnostic output from the atmospheric636

model, and our results are thus liable to be most sensitive to common component in that637

model. As such, the results of this study should be interpreted as illustrative of a potential638

method for reducing the effects model interdependency, and not as a prescriptive list of639

models which should be used for future studies. Most studies based on CMIP5 could easily640

use such a framework, but the value judgements of future researchers should be embedded641

into the choice of metric used to assess model similarity and quality.642

We assess the likelihood of near-neighbor models occurring by chance using a large num-643

ber of random distributions of the same dimensionality as the truncated orthogonal set of644

EOF loadings we derive from the original ensemble. The random sample is not a proxy for645

the space which might be attainable by the real climate, rather it is a proxy for the distri-646

bution of models represented in an orthogonal basis set defined by multi-model variability.647

As such, we are making the assumption that if there are physical relationships between vari-648

ables in the model output data (say between surface temperature and outgoing longwave649

radiation), then any correlation between these would be represented as a single mode in the650

EOF analysis. However, if there exists a strong nonlinear relationship between two variables651

in the CMIP5 archive then this relationship could not be represented in a single EOF mode,652

and might be represented in two or more modes. In this case, then the distribution of models653

in the space could be more complex than a simple Gaussian. One could imagine designing654

a random sample which fitted a high-dimensional distribution to the CMIP5 ensemble to655

account for such nonlinearities, but the increase in complexity, the lack of samples in the656

original ensemble and the neccessary parameterization of such a distribution means this is657

impractical.658

We also assume, by drawing random samples using the variance defined by the original659

ensemble, that none of the CMIP5 members can be ruled out a priori. One could imagine a660

situation where an arbitrarily poor model was included in the ensemble which would increase661

the variance represented in each mode such that any realistic models would look self similar662
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and would be down weighted by the uniqueness weighting. Therefore, the method only663

makes sense if there is some level of base confidence that none of the models in the archive664

are completely unrepresentative of the true system. But, we would argue that this is true665

of any analysis which uses the CMIP5 archive and that even a simple mutli-model mean is666

subject to a sanity check of the participating models.667

Caveats aside, this study illustrates some interesting characteristics of the CMIP5 archive668

and potential issues which might arise from treating this archive as a random sample of669

possible climate models. There is extensive replication of model code in the archive, primarily670

within institutions but also in some cases between institutions (see Table 2). This should671

come as little surprise, a quick examination of AOGCM makeup in the CMIP5 models672

indicates that some individual components are used by over 25 percent of the archive. But,673

we show in this study (like in Masson and Knutti 2011 and others) that many of those674

similarities can be identified also through a simple analysis of model output. A more detailed675

discussion of shared model components is given in the supplementary material of Knutti et al.676

(2013).677

Similarities in diagnostic output are not always predictable from a consideration of model678

construction alone. One can find examples of cases with significant changes in code-base,679

but with minor changes in diagnostic similarity. For example, CCSM4 and CESM1-CAM5680

have significantly different aerosol schemes, dynamics, cloud microphysics and yet our results681

show the two models as very strongly related when considering the distribution of inter-model682

distances. This indicates that tuning strategies and non-atmospheric components may play683

a significant role in diagnostic model similarity, even when primarily atmospheric output is684

used to assess inter-model distance. This implies that although the diagnostic output is a685

useful indicator of model similarities, those similarities may not be a function of shared code686

alone. The climateprediction.net (Stainforth et al. 2005) and QUMP (Murphy et al. 2007)687

experiments, for example show that considerable diversity in model behavior is achievable688

through parameter perturbation alone with an identical codebase.689
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There are several possible additional factors which might influence diagnostic similarity.690

Firstly, the tendency for various generations of models from a single institution to exhibit691

strong similarities in spite of extensive model component changes (see Figure 2 in Sanderson692

and Knutti 2012 with reference to CESM, GFDL or Hadley Centre models) indicates that693

some elements of model calibration tend to cluster models from a given modeling center. The694

reasons for this clustering have multiple possible candidates which could lie in institutional695

policy or regional focus (institutions might be more concerned with their model’s performance696

in the region’s climate). Standard metrics used to judge model performance during the model697

development process or preferred observational datasets may also vary from institution to698

institution. Secondly, models rarely change all components at the same time, so we would699

posit that evaluating when a model is ’new’ is a subjective matter. Finally, the CMIP5700

protocol allows for some flexibility in the way that models implement external forcings - so701

different groups, even with identical models, can choose to represent the historical and future702

boundary conditions in different ways to produce differences in the simulated climate. Knutti703

et al. (2013) see similar relationships in control simulations, but one cannot exclude the704

possibility that the control simulations themselves might also include common assumptions705

on boundary conditions.706

In summary, we confirm earlier arguments that models are not independent, some are707

essentially duplicates, and the effective number of independent models based on this method708

is less than half of the actual number of models, consistent with earlier studies (Jun et al.709

2008, Annan and Hargreaves 2011, Sanderson and Knutti 2012). Some models are closer to710

observations than others (Gleckler et al. 2008, Knutti and Sedáček 2013). We believe that our711

method, and results do not strongly hinge on the way in which one interprets the ensemble712

as ‘truth centered’ (Knutti 2010), ‘indistinguishable from truth’ (Annan and Hargreaves713

2011, Rougier et al. 2013) or neither (Sanderson and Knutti 2012, Bishop and Abramowitz714

2013). One could imagine a hypothetical ensemble following any of these frameworks, and715

by duplicating some of its members, bias would be introduced in the ensemble distribution.716

29



By evaluating our ensemble subset performance in terms of ensemble mean performance, we717

do not necessarily advocate a truth centered ensemble, as the ensemble mean would also be718

the best estimate of future change in the indistinguishable case.719

There are of course different ways to account for model performance and interdependence.720

In the companion paper (Sanderson et al. submitted), we proposed a method to produce721

probabilistic estimates that are largely insensitive to model duplicates and can consider722

model performance. However, when high dimensional data and/or spatially and temporally723

consistent fields are required (e.g., for impact models), a fully probabilistic method becomes724

unwieldy and might even hinder the development of tractable impact analyses (Dessai and725

Hulme 2004). Bishop and Abramowitz (2013) also proposes an alternative technique where726

models in the archive are subject to a linear transformation, where the weighted mean of727

transformed models is calculated to be optimally close to an observed climate. This transfor-728

mation and weighting can then be extrapolated for future projections. This method has the729

advantage that the resulting transformed models have independent errors, and weight future730

projections by climatological skill. However, the transformed models are not, themselves731

physically self-consistent and there is a potential for simulations to be over-fitted to histor-732

ical data in a manner which could potentially result in overconfident future projections. In733

comparison, the method we present here preserves a subset of self-consistent physical models734

(for both present day and future projections), and although they might not be independent735

in the strict sense of orthogonality, this subset can be simply used for almost any application736

or analysis.737

We thus propose that there is significant utility in spanning the potential uncertainty738

in future climate by representing spread with an appropriate subset of models. This study739

introduces weights which assess model uniqueness and model climatology fidelity. We find740

that the two were inversely related such that the models with the best simulations of the741

present day climate were also least unique. A part of this is possibly due to the fact that742

models have been calibrated by the observations, and will thus appear to cluster around743
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those observations (and each other). But, a closer examination reveals that a large fraction744

of the high-scoring models’ lack of uniqueness can be explained by other models which have745

duplicated some, or all of their code. When these duplicates are removed, this strong inverse746

relationship is weakened (but not entirely eliminated).747

This property of the ensemble is clearly to some extent contingent on the choice of748

metrics used, but it does raise a potentially interesting property of the ensemble; that the749

best performing models might also be the most promiscuous. This situation implies that750

the ensemble as a whole is already strongly weighted towards the better performing models.751

We show that if the models are weighted to reward their uniqueness, then the RMSE of752

the ensemble mean is increased. Thus, through a mechanism of quasi natural selection, the753

climate community has created an ensemble of models which has already up-weighted its754

climatologically best performing members. In other words, relying on model democracy is755

to some degree upweighting skilled model structures without deliberately thinking about it756

or discussing it, by the mechanism of duplication of well-proven code.757

This could be seen as an argument in support of keeping the entire ensemble when758

performing an analysis, and at least some justification that the multi-model mean result is759

a defensible best estimate. But, it is at best an accidental property that is not guaranteed760

to remain in future ensembles, and may not at all be visible for more specific questions or761

metrics. Whether a model is extensively duplicated is not a pure function of its quality or762

fidelity. A sub-model with open source code and few restrictions on its use is more likely to763

be utilized by another group than another model with a closed-source policy. However, a764

model which is jointly used by a large number of groups also has a large development pool765

invested in improving that model. Duplication within institutions depends also on funding766

and the available computing resources. One could make the argument that the CMIP5767

ensemble distribution and the social and intellectual landscape of the climate community768

are surely related, but certainly not in any simple fashion.769

A question also remains of whether the original CMIP5 ensemble is sufficient to assess770
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systematic uncertainty in future climate change. This question could easily form a study771

in itself, but our results are somewhat informative in this matter. Firstly, the number of772

truly independent models in the archive is significantly less than the number of submitted773

models, when gauged by model output. Hence, adding another model to the existing archive774

has most value if the developers introduce novel components and assumptions. It is true775

that exploring different configurations of existing components through sub-model exchange776

or parameter perturbation can certainly modify model behavior, and we would argue that777

such experiments should continue in order to fully explore the inherent uncertainties in the778

existing model set.779

However, this uncertainty is conditional on the number of independent models available780

to us, and establishing whether the current set is sufficient is a question which might not781

be a useful, because there is not a convenient space in which systematic model assumptions782

can be defined. For example, the current CMIP5 ensemble might have n fundamentally783

different convection schemes, each with its own advantages and biases, but nobody would784

argue that this constituted a “full set”. Where there is approximation and parameterization,785

there are potentially limitless ways to address this. And because nobody can know the786

behavior of the n + 1th model, the question of ensemble adequacy cannot be answered in787

a strict sense. Within the ensemble we have, we can tractably experiment with subsetting788

to assess how many models are required to have confidence in the distribution of future789

climate change formed by the full set, but we can never know if the n+ 1th model will adopt790

different assumptions or resolve a new process to place its projection outside of the existing791

distribution.792

We argue that a joint consideration of model similarity and quality metrics allows the793

researcher to make use of a more quantitatively defensible sample of simulations available in794

the CMIP archives, either through weighting or by model elimination (in itself, an extreme795

form of weighting) to produce a best estimate of combined model projections. Our approach796

for achieving this can be controlled with a small number of subjective but clearly defined797
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parameters, which can potentially mitigate some of the arbitrary sampling issues which798

arise from relying on model democracy, and can be tailored to specific questions by choosing799

appropriate metrics and datasets.800

It should be noted in this discussion that the CMIP5 archive is not a full representation801

of the uncertainty space for GCM projections. Rather, it is a collection of intended ‘best802

possible models’, the final iterations of their respective tuning processes as model developers803

calibrate their parameterization choices to best represent the observed climate properties804

which they find most important, although there may be other acceptable configurations805

(Mauritsen et al. 2012). Clearly, these choices and targets will vary from model to model, but806

the fact that there are implicitly a near-infinite number of rejected parameter configurations807

for each model must be remembered when trying to interpret the significance of the spread808

of simulations in the archive. In a practical sense, we ignore these rejected configurations809

because we do not have access to them. In addition, there is some evidence to suggest810

that the model diversity one can attain by structural changes significantly exceeds that of811

parameter changes in currently available Perturbed Parameter ensembles (Yokohata et al.812

2013). Nevertheless, it should be remembered that both the CMIP5 ensemble (and by813

definition our subsets of that ensemble) is already a subset of all possible model configurations814

which have been chosen by model developers.815

There are some cases where we would argue it is essential to eliminate interdependent816

models, such as when a correlation found in the multi-model ensemble is used as a constraint817

on a climate parameter (such as for climate sensitivity in Fasullo and Trenberth 2012, or for818

high latitude surface albedo feedbacks in Hall and Qu 2006). The presence of closely related,819

or even identical models in the archive would tend to artificially inflate the significance820

of any correlation simply because identical models would exhibit similar values for both821

the predictor and for the unknown quantity (Caldwell et al. 2014). Removing the obvious822

interdependent models as shown in this study would certainly be better than assessing a823

correlation based on the entire archive, but a method for achieving this in a strict statistical824
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sense is presented in Caldwell et al. (2014).825

There is a danger that as models improve, the better models have the potential to con-826

verge on the ‘true’ climate state, which might lead to their elimination if interdependent827

models are removed. We show in Figure 3 that this is unlikely to be the case for CMIP5,828

given none of the models lie close enough to the observations to be influenced by the unique-829

ness weighting. However, one could imagine if a small group of models make a real advance830

which removes a long-standing systematic bias (for example, as some models begin to ex-831

plicitly resolve convection), then it would be neccessary to accept a higher level of similarity832

among the better performing models (i.e. the uniqueness weighting uw could no longer be833

independent of the skill weighting us).834

Proposing a subset of models to consider for a less biased analysis could be seen as overly835

prescriptive, but our aim is not to focus on the exact set of models which should be used836

for future studies, rather to establish a framework in which researchers could make their837

selection based upon metrics which are most relevant to their question. We would argue838

that although the collection of models which arise from the ‘ensemble of opportunity’ is839

often seen as sacrosanct, the democratic policy of one-model, one-vote is no longer a logical840

one in the increasingly complex family tree of models available to the researcher. A subset841

of 10-20 models that are reasonably independent and perform well for the criteria that are842

judged to be relevant is very likely to be more skillful than the full ensemble. Giving equal843

weight to all models which have completed a simulation of interest is, albeit implicitly,844

adopting a weighting scheme which rewards model components which are highly replicated.845

This weighting scheme might fortuitously have the property of rewarding the most skilled846

components but, we would argue, this property should be demonstrated and the decision847

how to incorporate it should be made consciously.848
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List of Tables934

1 Observational Datasets used as ‘observations throughout. * ”The data used935

in this effort were acquired as part of the activities of NASA’s Science Mission936

Directorate, and are archived and distributed by the Goddard Earth Sciences937

(GES) Data and Information Services Center (DISC).” 40938

2 Submodel components for the 38 CMIP5 models considered in this study. 41939
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Table 1. Observational Datasets used as ‘observations throughout. * ”The data used in
this effort were acquired as part of the activities of NASA’s Science Mission Directorate, and
are archived and distributed by the Goddard Earth Sciences (GES) Data and Information
Services Center (DISC).”
Field Source Reference Years Global normalization
TS HadCRUT3 Brohan et al. (2006) 1970-2000 2.09 K
PR GPCP Adler et al. (2003) 1979-2001 30.1 Wm−2

RSUT CERES-EBAF NASA (2011) 2000-2005 25.8 Wm−2

RLUT CERES-EBAF NASA (2011) 2000-2005 3.32 mm/day
T AIRS* Aumann et al. (2003) 2002-2010 0.28 K
RH AIRS* Aumann et al. (2003) 2002-2010 12.12 %
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List of Figures940

1 A graphical representation of the inter-model distance matrix for CMIP5 cal-941

culated for ALL variables using (a) 1970-2000 monthly mean climatological942

fields as defined in Table 1 and (b) changes in the aforementioned fields be-943

tween (1970-2000) and (2070-2100). Each row and column represents a single944

climate model (or observation). Each box represents a pair-wise combination,945

where warm colors indicate a greater distance. Distances are measured as a946

fraction of the mean inter-model distance in CMIP5. 46947

2 Histograms of CMIP5 inter-model euclidean distances in the EOF loading948

space derived from (a) 1970-2000 monthly mean climatological fields as de-949

fined in Table 1 and (b) changes in the aforementioned fields between (1970-950

2000) and (2070-2100), as compared to a sample of 105 histograms calculated951

from randomly sampled distributions. Gray bars show the histogram of inter-952

model distances in the CMIP5 ensemble in an EOF space constructed with all953

available variables, while other colors show distances constructed with only a954

subset of variables; Surface Temperature (TAS), Top of Atmosphere Short-955

wave and Longwave fluxes (TOA), Total Precipitation (PR) and zonal mean956

temperature and humidity (TQ). The yellow bars indicate the distribution957

using all variables from the CCSM4 initial condition ensemble. The box and958

whisker plots show the range of bin values observed in the random distribu-959

tions showing the 10th, 50th and 90th percentiles of the distribution. 47960
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3 An illustration of inter-model and observation-model distances in an EOF961

space defined by (a) 1970-2000 simulated climatology for ‘ALL’ variables and962

(b) the anomaly between 1970-2000 and 2070-2100 under the RCP8.5 scenario963

for ‘ALL’ variables. Plots are repeated for individual variables, Top of Atmo-964

sphere shortwave and longwave fluxes (c), Precipitation (d) and Surface Air965

Temperature (e). Inter-model lines illustrate where the inter-model distance966

is less than 50% (dotted) or 90% (solid) of nearest inter-point distances in967

a randomly generated distribution of with the same dimensionality, variance968

and population. 48969

4 An illustration of the stepwise model elimination procedure outlined in Sec-970

tion 2.e as applied to the 36 models from the CMIP5 ensemble, using model971

similarity information from the present day (1970-2000) climatology for ‘ALL’972

variables and the ‘wide’ quality radius. The full set of models are shown on the973

left of each plot, and the order of model removal is shown on the bottom axis974

with the left-most model removed first. If the number of effective models neff975

decreases by less than 0.5, then the removed model is shown merging with its976

nearest neighbor in EOF space. If the number of effective models decreases977

by more than 0.5, the line is shown as ending - indicating the removal of that978

model family from the ensemble. Background shading indicates whether the979

smallest inter-point distance in EOF space using the remaining archive is less980

than 90% (light grey), 50% (mid grey) or 10% (dark grey) of purely random981

distributions of the same population, variance and dimensionality. 49982
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5 Plots illustrating the stepwise model elimination following the procedure in983

Section 2.e. Calculations are conducted using model similarity metrics derived984

from both present day climatology and from future climate change under985

RCP8.5. (a) The number of effective models as a function of the number986

of actual models remaining in the ensemble. The percentile cutoff is the987

fraction of nearest neighbor distances seen in purely random ensembles used988

to define the radius of similarity Du in Equation 10. (b) The nearest-neighbor989

distance as a function of the number of models remaining. For comparison, the990

10th, 50th and 90th percentile of nearest neighbor distances in purely random991

ensembles of the same dimensionality and variance are shown. (c) RMSE992

of weighted and unweighted multi-model means as a function of remaining993

models. 50994

6 A plot demonstrating how model uniqueness weights and model quality weights995

change as models are eliminated in the sequence shown in Figure 4, for (a)996

36, (b) 20 and (c) 10 models remaining. 51997

44



7 A plot showing suggested subsets of CMIP5 given model quality scores and998

co-dependencies derived in a number of ways. Each line in the figure repeats999

the analysis leading to figure 4 with different assumptions. Plotted are the1000

remaining models where the smallest inter-point distance in EOF space using1001

the remaining archive is greater than 10% (unfilled symbols) or 50% (filled1002

symbols) of purely random distributions of the same population, variance and1003

dimensionality (regions marked by mid grey and dark dray shading in Figure1004

4). The analysis is conducted with zonal mean temperature and humidity1005

(TQ), gridded precipitation (PR), gridded Top of Atmosphere shortwave and1006

longwave fluxes (TOA), Gridded surface air temperature (TAS) and all vari-1007

ables combined (ALL). Dq, the radius of model quality is set to ‘wide’ or1008

‘narrow’ (the latter increasing the role of model quality metrics in model1009

elimination). wu, the model uniqueness weighting is shown calculated with1010

the future RCP8.5 data, or the present day data. Numbers at the bottom of1011

the plot indicate the number of retained models for the two conditions where1012

the minimum remaining intermodel distance is greater than the 10th or 50th1013

percentile of random smallest inter-model distances. 521014

8 A plot as in figure 7 showing suggested subsets of CMIP5 with different trun-1015

cation lengths for the EOF analysis. Plotted are the remaining models where1016

the smallest inter-point distance in EOF space using the remaining archive is1017

greater than 50% (unfilled symbols) or 10% (filled symbols) of purely random1018

distributions of the same population, variance and dimensionality (regions1019

marked by mid grey and dark dray shading in Figure 4). 531020

45



NorESM1−ME(5)
NorESM1−M(5)

MRI−CGCM3(5)
MPI−ESM−MR(5)
MPI−ESM−LR(5)

MIROC5(5)
MIROC−ESM−CHEM(5)

MIROC−ESM(5)
IPSL−CM5B−LR(5)

IPSL−CM5A−MR(5)
IPSL−CM5A−LR(5)

INMCM4(5)
IAP−FGOALS−g2(5)

HadGEM2−ES(5)
HadGEM2−CC(5)
HadGEM2−AO(5)

GISS−E2−R(5)
GISS−E2−H(5)

GFDL−ESM2M(5)
GFDL−ESM2G(5)

GFDL−CM3(5)
FIO−ESM(5)
CanESM2(5)

CSIRO−Mk3−6−0(5)
CNRM−CM5(5)
CMCC−CMS(5)

CMCC−CM(5)
CMCC−CESM(5)

CESM1−CAM5(5)
CESM1−BGC(5)

CCSM4(5)
BNU−ESM(5)

BCC−CSM1−1−M(5)
BCC−CSM1−1(5)

ACCESS1−3(5)
ACCESS1−0(5)

Observations
Mean

N
or

E
S

M
1−

M
E

(5
)

N
or

E
S

M
1−

M
(5

)
M

R
I−

C
G

C
M

3(
5)

M
P

I−
E

S
M

−
M

R
(5

)
M

P
I−

E
S

M
−

LR
(5

)
M

IR
O

C
5(

5)
M

IR
O

C
−

E
S

M
−

C
H

E
M

(5
)

M
IR

O
C

−
E

S
M

(5
)

IP
S

L−
C

M
5B

−
LR

(5
)

IP
S

L−
C

M
5A

−
M

R
(5

)
IP

S
L−

C
M

5A
−

LR
(5

)
IN

M
C

M
4(

5)
IA

P
−

F
G

O
A

LS
−

g2
(5

)
H

ad
G

E
M

2−
E

S
(5

)
H

ad
G

E
M

2−
C

C
(5

)
H

ad
G

E
M

2−
A

O
(5

)
G

IS
S

−
E

2−
R

(5
)

G
IS

S
−

E
2−

H
(5

)
G

F
D

L−
E

S
M

2M
(5

)
G

F
D

L−
E

S
M

2G
(5

)
G

F
D

L−
C

M
3(

5)
F

IO
−

E
S

M
(5

)
C

an
E

S
M

2(
5)

C
S

IR
O

−
M

k3
−

6−
0(

5)
C

N
R

M
−

C
M

5(
5)

C
M

C
C

−
C

M
S

(5
)

C
M

C
C

−
C

M
(5

)
C

M
C

C
−

C
E

S
M

(5
)

C
E

S
M

1−
C

A
M

5(
5)

C
E

S
M

1−
B

G
C

(5
)

C
C

S
M

4(
5)

B
N

U
−

E
S

M
(5

)
B

C
C

−
C

S
M

1−
1−

M
(5

)
B

C
C

−
C

S
M

1−
1(

5)
A

C
C

E
S

S
1−

3(
5)

A
C

C
E

S
S

1−
0(

5)
O

bs
er

va
tio

ns
M

ea
n

(a) ALL (present day)

NorESM1−ME(5)
NorESM1−M(5)

MRI−CGCM3(5)
MPI−ESM−MR(5)
MPI−ESM−LR(5)

MIROC5(5)
MIROC−ESM−CHEM(5)

MIROC−ESM(5)
IPSL−CM5B−LR(5)

IPSL−CM5A−MR(5)
IPSL−CM5A−LR(5)

INMCM4(5)
IAP−FGOALS−g2(5)

HadGEM2−ES(5)
HadGEM2−CC(5)
HadGEM2−AO(5)

GISS−E2−R(5)
GISS−E2−H(5)

GFDL−ESM2M(5)
GFDL−ESM2G(5)

GFDL−CM3(5)
FIO−ESM(5)
CanESM2(5)

CSIRO−Mk3−6−0(5)
CNRM−CM5(5)
CMCC−CMS(5)

CMCC−CM(5)
CMCC−CESM(5)

CESM1−CAM5(5)
CESM1−BGC(5)

CCSM4(5)
BNU−ESM(5)

BCC−CSM1−1−M(5)
BCC−CSM1−1(5)

ACCESS1−3(5)
ACCESS1−0(5)

Observations
Mean

N
or

E
S

M
1−

M
E

(5
)

N
or

E
S

M
1−

M
(5

)
M

R
I−

C
G

C
M

3(
5)

M
P

I−
E

S
M

−
M

R
(5

)
M

P
I−

E
S

M
−

LR
(5

)
M

IR
O

C
5(

5)
M

IR
O

C
−

E
S

M
−

C
H

E
M

(5
)

M
IR

O
C

−
E

S
M

(5
)

IP
S

L−
C

M
5B

−
LR

(5
)

IP
S

L−
C

M
5A

−
M

R
(5

)
IP

S
L−

C
M

5A
−

LR
(5

)
IN

M
C

M
4(

5)
IA

P
−

F
G

O
A

LS
−

g2
(5

)
H

ad
G

E
M

2−
E

S
(5

)
H

ad
G

E
M

2−
C

C
(5

)
H

ad
G

E
M

2−
A

O
(5

)
G

IS
S

−
E

2−
R

(5
)

G
IS

S
−

E
2−

H
(5

)
G

F
D

L−
E

S
M

2M
(5

)
G

F
D

L−
E

S
M

2G
(5

)
G

F
D

L−
C

M
3(

5)
F

IO
−

E
S

M
(5

)
C

an
E

S
M

2(
5)

C
S

IR
O

−
M

k3
−

6−
0(

5)
C

N
R

M
−

C
M

5(
5)

C
M

C
C

−
C

M
S

(5
)

C
M

C
C

−
C

M
(5

)
C

M
C

C
−

C
E

S
M

(5
)

C
E

S
M

1−
C

A
M

5(
5)

C
E

S
M

1−
B

G
C

(5
)

C
C

S
M

4(
5)

B
N

U
−

E
S

M
(5

)
B

C
C

−
C

S
M

1−
1−

M
(5

)
B

C
C

−
C

S
M

1−
1(

5)
A

C
C

E
S

S
1−

3(
5)

A
C

C
E

S
S

1−
0(

5)
O

bs
er

va
tio

ns
M

ea
n

(b) ALL (future anomaly)

 

 

E
uc

lid
ea

n 
D

is
ta

nc
e

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Fig. 1. A graphical representation of the inter-model distance matrix for CMIP5 calculated
for ALL variables using (a) 1970-2000 monthly mean climatological fields as defined in Table 1
and (b) changes in the aforementioned fields between (1970-2000) and (2070-2100). Each row
and column represents a single climate model (or observation). Each box represents a pair-
wise combination, where warm colors indicate a greater distance. Distances are measured
as a fraction of the mean inter-model distance in CMIP5.
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Fig. 2. Histograms of CMIP5 inter-model euclidean distances in the EOF loading space
derived from (a) 1970-2000 monthly mean climatological fields as defined in Table 1 and (b)
changes in the aforementioned fields between (1970-2000) and (2070-2100), as compared to a
sample of 105 histograms calculated from randomly sampled distributions. Gray bars show
the histogram of inter-model distances in the CMIP5 ensemble in an EOF space constructed
with all available variables, while other colors show distances constructed with only a subset
of variables; Surface Temperature (TAS), Top of Atmosphere Shortwave and Longwave fluxes
(TOA), Total Precipitation (PR) and zonal mean temperature and humidity (TQ). The
yellow bars indicate the distribution using all variables from the CCSM4 initial condition
ensemble. The box and whisker plots show the range of bin values observed in the random
distributions showing the 10th, 50th and 90th percentiles of the distribution.
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Fig. 3. An illustration of inter-model and observation-model distances in an EOF space
defined by (a) 1970-2000 simulated climatology for ‘ALL’ variables and (b) the anomaly
between 1970-2000 and 2070-2100 under the RCP8.5 scenario for ‘ALL’ variables. Plots
are repeated for individual variables, Top of Atmosphere shortwave and longwave fluxes
(c), Precipitation (d) and Surface Air Temperature (e). Inter-model lines illustrate where
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Fig. 4. An illustration of the stepwise model elimination procedure outlined in Section 2.e
as applied to the 36 models from the CMIP5 ensemble, using model similarity information
from the present day (1970-2000) climatology for ‘ALL’ variables and the ‘wide’ quality
radius. The full set of models are shown on the left of each plot, and the order of model
removal is shown on the bottom axis with the left-most model removed first. If the number
of effective models neff decreases by less than 0.5, then the removed model is shown merging
with its nearest neighbor in EOF space. If the number of effective models decreases by more
than 0.5, the line is shown as ending - indicating the removal of that model family from the
ensemble. Background shading indicates whether the smallest inter-point distance in EOF
space using the remaining archive is less than 90% (light grey), 50% (mid grey) or 10% (dark
grey) of purely random distributions of the same population, variance and dimensionality.
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Fig. 5. Plots illustrating the stepwise model elimination following the procedure in Section
2.e. Calculations are conducted using model similarity metrics derived from both present
day climatology and from future climate change under RCP8.5. (a) The number of effective
models as a function of the number of actual models remaining in the ensemble. The per-
centile cutoff is the fraction of nearest neighbor distances seen in purely random ensembles
used to define the radius of similarity Du in Equation 10. (b) The nearest-neighbor distance
as a function of the number of models remaining. For comparison, the 10th, 50th and 90th
percentile of nearest neighbor distances in purely random ensembles of the same dimension-
ality and variance are shown. (c) RMSE of weighted and unweighted multi-model means as
a function of remaining models.
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Fig. 7. A plot showing suggested subsets of CMIP5 given model quality scores and co-
dependencies derived in a number of ways. Each line in the figure repeats the analysis
leading to figure 4 with different assumptions. Plotted are the remaining models where the
smallest inter-point distance in EOF space using the remaining archive is greater than 10%
(unfilled symbols) or 50% (filled symbols) of purely random distributions of the same pop-
ulation, variance and dimensionality (regions marked by mid grey and dark dray shading in
Figure 4). The analysis is conducted with zonal mean temperature and humidity (TQ), grid-
ded precipitation (PR), gridded Top of Atmosphere shortwave and longwave fluxes (TOA),
Gridded surface air temperature (TAS) and all variables combined (ALL). Dq, the radius
of model quality is set to ‘wide’ or ‘narrow’ (the latter increasing the role of model quality
metrics in model elimination). wu, the model uniqueness weighting is shown calculated with
the future RCP8.5 data, or the present day data. Numbers at the bottom of the plot indicate
the number of retained models for the two conditions where the minimum remaining inter-
model distance is greater than the 10th or 50th percentile of random smallest inter-model
distances.
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Fig. 8. A plot as in figure 7 showing suggested subsets of CMIP5 with different trunca-
tion lengths for the EOF analysis. Plotted are the remaining models where the smallest
inter-point distance in EOF space using the remaining archive is greater than 50% (unfilled
symbols) or 10% (filled symbols) of purely random distributions of the same population,
variance and dimensionality (regions marked by mid grey and dark dray shading in Figure
4).
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