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Penn State University 
 
The Pennsylvania State University (“Subcontractor”) worked on the design of multigrid solvers 
for coupled systems of partial differential equations arising in numerical modeling of various 
applications, with a main emphasis on the design of new optimal algebraic multigrid 
interpolation.  Generally, the aim of this work was to develop geometric and algebraic multilevel 
solvers that are robust and lend themselves to efficient implementation on massively parallel 
heterogeneous computers.  The research in these areas built on previous works, focusing on the 
following topics:  
 
(1) design and analysis of algebraic coarsening algorithms for coupled PDE systems including 
Stokes equation, Maxwell equation and linear elasticity; 
(2) development of non-Galerkin coarsening techniques for the Wilson Dirac system; and  
(3) the use of this same Wilson MG solver for preconditioning the Overlap and Domain Wall 
formulations of the Dirac equation. 
 
Optimal interpolation 
 
One main research focus was on developing a new form of optimal AMG interpolation that 
directly minimizes the two-grid convergence rate and compare it with the so-called ideal form of 
interpolation that minimizes a certain weak approximation property of the coarse space.   
Various theoretical results on this optimal interpolation were derived and it was shown that for 
proper choices of the coarse variables a new generalized ideal form of interpolation is equivalent 
to the optimal form. 
 
Compatible relaxation  

Compatible relaxation type estimates for measuring the quality of the coarse grid were studied 
and a new sharp measure using the new optimal form of interpolation was derived.  This new 
approach provides a guaranteed lower bound on the convergence rate of the resulting two-grid 
method for a given grid and, hence is useful in studying various coarsening strategies for a 
variety of PDE systems. A new adaptive coarsening algorithm that uses this optimal form of 
interpolation in constructing the coarse grid was developed and implemented.  The algorithm 
was tested for scalar and PDE systems, showing promising results in all cases. 
 
Optimal Bootstrap Interpolation  

A generalized bootstrap algebraic multigrid G-BAMG setup algorithm that computes a sparse 
approximation to the optimal interpolation matrix was developed.  This optimal form of classical 
algebraic multigrid interpolation that has as its columns eigenvectors with small eigenvalues of 



the generalized eigen-problem involving the system matrix and symmetrized smoother.  The new 
algorithm uses as a main tool a multilevel eigensolver to compute approximations to these 
generalized eigenvectors.  A notable feature of the approach is that it allows for general block 
smoothers and, as such, is well suited for systems of PDEs.  It has also been demonstrated 
through numerous numerical tests that the G-BAMG method with sparse interpolation matrix 
(and spanning multiple levels) outperforms the two-grid method with the standard ideal 
interpolation (a dense matrix) for various scalar diffusion problems with highly varying diffusion 
coefficient was designed and studied. This work led to one submitted publication: 
 
arXiv:1703.10240 
Optimal interpolation and Compatible Relaxation in Classical Algebraic Multigrid 
James Brannick, Fei Cao, Karsten Kahl, Rob Falgout, Xiaozhe Hu 
Comments: 23 pages, submitted to SISC, Subjects: Numerical Analysis (math.NA) 
 
Finite Elements for the Dirac equation  

Using techniques from the edge averaged finite element technique and the virtual element 
method we designed a stable and consistent finite element discretization for the simplified 2D 
Schwinger model of quantum electrodynamics, a model problem that is typically studied when 
developing numerical algorithms for the full Dirac equation in QCD. Though the stabilization 
term used in the discretization acts as the glue for continuity, it is still computed locally for each 
element and then added to the system. Moreover, unlike the Weak Galerkin or Hybridized 
Discontinuous Galerkin methods, this new approach based on VEM does not require computing 
on an entirely different data structure (e.g., a skeleton, i.e., edges or faces), and this greatly 
simplifies the analysis and implementation.  The stabilization term guarantees the stability of the 
method on a discrete level so that the question of stability need only hold for the local VEM 
approximation space. This allows the VEM to deal with saddle-point systems such as the Dirac 
equation.  Moreover, after the splitting, there is no restriction on element. The intricacy of 
constructing element basis functions on quadrilateral or hexahedron meshes  is gone. This can be 
extremely useful as well for dimensions higher than 3, due to the difficulty in constructing a 
triangulation. A paper is currently being written that summarizes these results. 
 
Multigrid for the Dirac equation 

Bootstrap algebraic multigrid BAMG setup algorithms were developed for solving the Dirac 
equation arising in Lattice Quantum Chromodynamics (QCD).  Several topics have been studied 
in this component of project as well.  These include: (1) a variety of techniques for constructing a 
non-Galerkin coarse grid operator for the Wilson-Dirac system of equations; (2) development of 
a preconditioner for the Wilson system using the VEM discrtization of the Dirac equation; (3) 
the used of the Wilson system to precondition the Overlap discretization.  Research on Topics (1) 
and (3) led to partial results, but this work is still in progress and will continue in the next 
subcontract.  A paper is being written that summarized the results from Topic (2) and will be 
submitted to a peer reviewed journal. 
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