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DISCRETIZATION-ACCURACY CONVERGENCE FOR FULL
ALGEBRAIC MULTIGRID*

ROBERT D. FALGOUT!, THOMAS A. MANTEUFFEL!, STEPHEN F. MCCORMICK?,
AND WAYNE B. MITCHELL#*

Abstract. Full multigrid (FMG) is well known for converging to the level of discretization
accuracy in a single cycle for a wide class of partial differential equations when the multigrid hierarchy
is derived from problem geometry. When applying an FMG cycle to a hierarchy generated by
algebraic multigrid (AMG), however, this scalable convergence to discretization accuracy is usually
lost. This paper examines the cause of this loss and explores some improvements to standard AMG
interpolation that can restore single-cycle convergence to discretization accuracy.
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1. Introduction. Full multigrid (FMG) is a solver for elliptic partial differential
equations (PDE’s) that is well known for converging to discretization accuracy in a
single cycle with O(n) computational cost, where n is the number of degrees of freedom
[3, 10]. As such, FMG provides an optimal solver for elliptic PDE’s. Though FMG is
sometimes avoided in a parallel computing setting due to significant communication
cost, it is actually competitive with multigrid V-cycles in parallel when a solution
with accuracy on the order of the discretization (as opposed to some fixed tolerance)
is desired. Recent work to ameliorate communication cost for FMG further increases
its appeal as a solver for large elliptic PDE problems. Notable examples of this effort
include the segmental refinement approach described in [1] as well as previous work
optimizing the number of multigrid cycles performed on each level of an FMG cycle
to ensure discretization accuracy is obtained with the minimal amount of effort [7, 9].

Previous study of FMG typically applies the algorithm in a geomegric multi-
grid (GMG) setting. For simple problem geometries and structured meshes, GMG
algorithms can be straightforward to implement, but when meshes and other prob-
lem characteristics become more complicated, geometric methods can become pro-
hibitively difficult, and a need arises for methods that rely only on the discrete oper-
ator for a problem and not the problem geometry. Algebraic multigrid (AMG) [4, 8]
fulfills this requirement, generating a multigrid hierarchy from only the fine-grid op-
erator and delivering V-cycle convergence factors comparable to those produced by
geometric multigrid. Applying the full multigrid algorithm to a hierarchy generated
by AMG (denoted FAMG) is not well studied, however.

This paper reveals that FAMG does not generally obtain discretization accuracy
in a single cycle. Even on simple problems for which AMG has excellent V-cycle
convergence, applying an FAMG cycle can yield poor results: as problem size grows,
increasingly more V-cycles (and consequently more computational effort) are usually
required for AMG to solve the problem, with a cost that grows well beyond that of
optimal, single-cycle FMG. This limits the capabilities of AMG as a discretization-
accuracy solver. Recovering FMG-like convergence for FAMG would constitute a
major advancement for algebraic methods, making them competitive with their ge-
ometric counterparts as discretization-accuracy solvers. In addition, more complex
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algorithms (such as domain and range decomposition algorithms [2]), which are built
on top of AMG hierarchies, have little hope of scalable convergence to discretization
accuracy if the underlying AMG hierarchies do not perform well in the simpler FAMG
setting. Thus, improving AMG hierarchies so that they perform better in a discretiza-
tion accuracy sense is a crucial step towards obtaining scalable algebraic solvers for
partial differential equations.

This paper aims to explain the difference in convergence characteristics of FMG
and FAMG and to explore improvements to the standard AMG hierarchy that result
in recovering convergence to discretization accuracy for FAMG. Section 2 begins by
describing FMG and the assumptions under which it can be shown that FMG achieves
convergence to discretization accuracy in a single cycle. Section 3 recasts the key
interpolation assumption used in Section 2 in an algebraic framework by relating it
to the strong approximation property. Section 4 then examines why FAMG fails to
replicate the convergence displayed by FMG by studying a model Poisson problem.
Section 5 provides details on how standard AMG constructs interpolation, and Section
6 then presents some approaches for improving AMG interpolation in order to achieve
performance similar to FMG. Finally, section 7 discusses computational performance
benefits of the improved FAMG cycle over standard AMG V-cycles with timing results
verifying a reduction in computational cost from O(nlog(n)) to O(n).

2. FMG Convergence. An FMG cycle, illustrated in Figure 1, solves a given
problem by first solving its approximation on the coarsest grid, interpolating the
solution up to the next finer grid, and then repeating this process (solving on each
level by performing V-cycles) until a desired finest grid is reached. The number of
V-cycles used to solve on each grid level should be constant (typically one or two),
resulting in an overall O(n) cost for the cycle. An inductive proof shows that such
a cycle is capable of achieving discretization accuracy under certain assumptions on
the accuracy of interpolation between grids [6].

To see the essence of this proof consider a pair of grids in the multigrid hierarchy
with prolongation operator, P, interpolating from the coarse to fine grid. Let A"
and A%" = PTAMP be symmetric positive definite fine- and coarse-grid operators,
respectively, and let u" and u?" be fine- and coarse-grid discrete solutions to the
given problem:

Ahuh _ fh

AQhth — f2h )

The induction hypothesis states that the approximation of the solution on the coarse
grid, v2", has accuracy on the order of the grid 2k discretization:

[u?” = V2| g0 < K(20)P,

where p is the discretization order. The A*"-norm used here is the energy norm,
defined as ||w||a2n = \/(A2hw,w), where (-,-) is the discrete L? inner product. A
similar definition follows for the A"-norm. This is simply for ease of presentation,
since the argument may be made in any norm for which the assumptions presented
here hold. Now assume that interpolation has accuracy on the order of the fine-grid
discretization:



DISCRETIZATION-ACCURACY CONVERGENCE FOR FULL ALGEBRAIC MULTIGRID 3

FMG Cycle V-Cycle

0 [
o >
1 (O}
- -l
5 9

=

o

Fia. 1. Lllustration of cycle structures for FMG and a V-cycle.
(1) [u — Put|| 41 < Kah?,

where P is the interpolation operator from grid 2h to grid h and « is a positive
constant of O(1). Putting these assumptions together yields a bound on the error
present in the interpolated approximation Pv2":

[u" = Pv?*[[ a0 < [[u” = Pu®|| g0 +||Pu®® — Pv*"|| 4
— o — Pu L + e — v
< Kah? + K(2h)P
= K(a+2P)hP.

Note that the equality in the second line above follows from the Galerkin condition
(A% = PT AhP):

— A2h(u2h _ VQh)7 (u2h _ v2h)>

Thus, given a V-cycle with convergence factor p, performing log,(a + 27) = O(1)
cycles is sufficient to reduce the fine-grid error to the level of discretization accuracy:
= V][4, < KAP.

3. Strong Approximation Property. The interpolation assumption (1) relies
on the step size, h, and is therefore inherently tied to problem geometry. Under
certain assumptions, however, it can be shown that (1) is implied by the purely
algebraic bound known as the strong approximation property (SAP)[11]. The SAP is
satisfied provided that, for all u” on the fine grid, there exists v2"* on the coarse grid
such that

c

(2) [ = Py (50 <
AT [l AR]

A a2,
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where || - || is the discrete L? norm. To relate this bound back to the accuracy
of the discretization, first assume that A" comes from a first-order finite element
discretization of an H?Z-regular elliptic partial differential equation, Lu = f, with
f € L?. Then ||A"|| < ¢/h? for some constant, ¢ > 0, and |[A"u"|| = ||f"|| =
NQfIl < 11QIl - IIfl] £ B for some constant, 8 > 0, where @ is an interpolation
operator from L? to grid h (note that ) interpolates between continuous and discrete
function spaces and is assumed to be bounded). Also note that the Galerkin condition
implies that u?”, the solution of the coarse-grid system A?*u?" = PTf" provides an
optimal approximation to the fine-grid solution, u”, in the A"-norm [6]. Thus, putting
everything together yields

c
[[u" = Pu[[%, < [[u" — Pv"[[%, <

< AN < (@82 e

Thus, (1) is confirmed for first-order discretizations by assuming the SAP. This pro-
vides an algebraic framework for analyzing discretization-accuracy convergence of
FAMG.

4. Standard FAMG Convergence. When working in a geometric setting, it
is natural to construct interpolation such that assumption (1) is satisfied. In an
algebraic setting, however, enforcing this bound or an equivalent SAP as outlined
above can be much more difficult. Standard AMG hierarchies often do not exhibit
these approximation properties, preventing FAMG from obtaining the discretization-
accuracy convergence that FMG often achieves.

To demonstrate the above claims about FMG and FAMG, consider the model
problem of a Poisson equation discretized on a square with bilinear finite elements:

—“Au=f,ueQ=[-1,1] x [-1,1]
u=0, u € .

A manufactured solution, u(x,y) = (x+1)(1 —z)(y+1)(1 —y), yields right-hand side
flzyy) =2((y+1)(1 —y) + (x + 1)(1 — x)). For such a problem, standard AMG is
known to have excellent V-cycle convergence, but standard FAMG fails to converge
to discretization accuracy in a single cycle. Figure 2 shows convergence of the relative
total error,

[[vi" — ul]

]~

for FMG vs. FAMG, where u is the true solution evaluated on the fine grid and v
is the solution obtained by the nested iteration process (solving on each coarse grid
using a single V-cycle, then projecting up) plus ¢ additional V-cycles on the fine grid.
This discussion uses the discrete L? norm throughout. Note that the error shown
stalls at the level of discretization accuracy since it is measured against an analytic
solution, u. As the grid is refined (and problem size increases), FAMG yields less
accurate fine-grid solutions after the nested iteration process, thus requiring more
fine-grid V-cycles to obtain the level of discretization accuracy. Notice, however, that
FMG achieves accuracy on the order of the discretization with one (or at most two)
fine-grid V-cycle, independent of problem size.

Relative Error =
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FMG vs. FAMG Convergence, n = 64 FMG vs. FAMG Convergence, n = 128
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F1a. 2. Relative total error convergence for standard FAMG vs. FMG on n X n finite element
grids of increasing size.

For the model problem with the appropriate coloring scheme (i.e. a full coarsen-
ing, C/F splitting), the coarse grids generated in the AMG hierarchy are the same
as the coarse grids generated by GMG. The interpolation operators between grids
are also very similar between AMG and GMG. In fact, these operators only differ in
the way they choose interpolation weights near the boundary of the domain. This
subtle difference in interpolation is enough, however, to prevent AMG from satisfying
assumption (1). Figure 3 shows the interpolation error, |[u® — Pu®"||, on each level
(with 0 representing the finest level) for the GMG and AMG hierarchies. These errors
are calculated with the manufactured right-hand side, f, specified above. GMG ob-
tains exactly O(h?) convergence of the interpolation error (which is to be expected for
the given first-order discretization), while AMG fails this requirement. This indicates
that the standard AMG hierarchy also does not achieve the SAP for this problem.
The SAP can be numerically calculated by computing C' on each level of the AMG
hierarchy such that

[ — Pu® [,

(3) C=||A"|-[|(A")~" = P(PTA"P)" PT|| > || A"|| max min Qe

uh u2
This value for C is shown across the levels of the AMG hierarchy in Figure 3. The
growth in C' for finer grids indicates that C' is not constant, but grows with the grid
size, implying that the AMG hierarchy does not achieve the SAP. Thus, even though
the difference in interpolation operators between the AMG and GMG methods is
subtle (again, they differ only in the way they choose weights near the boundary
for the model problem), they exhibit very different behavior across the levels of the
hierarchy.
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F1G. 3. Interpolation error across levels of the multigrid hierarchies generated by standard AMG
vs. GMG (with 0 representing the finest level), and the value of C' as defined in (3) across multigrid
levels. Note that a smaller fine grid was used to calculate C (since this is expensive to calculate
directly), resulting in fewer multigrid levels than shown for the plot of interpolation error.
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Fic. 4. Plot of the finest-level interpolation error over the grid for GMG (top) vs. standard
AMG (bottom). The cross section is taken through the middle of the domain.

A visualization of the error, u” — Pu?", over the domain is helpful in better
understanding the nature of interpolation error for GMG vs. AMG. As seen in Figure
4, the interpolation error for GMG is small and oscillatory. This is precisely the sort
of error that is effectively removed by a V-cycle on the fine grid. For AMG, however,
there is a large smooth component to the error produced by large discrepancies near
the boundary, which pollute the entire domain. More V-cycles are required to remove
this smooth mode in the error. Thus, the above analysis suggests that an FAMG
cycle might be improved by changing AMG interpolation in some way to recover
O(h?) scaling of the interpolation error.
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5. AMG Interpolation Error. Throughout this paper, “standard” AMG refersi]
to the Ruge-Stiiben method for generating an AMG hierarchy [4, 8]. The basic princi-
ple of any multigrid scheme is that of the complimentary process of fine-grid relaxation
and coarse-grid correction. AMG assumes a relaxation scheme (such as weighted Ja-
cobi or Gauss-Seidel) for which the slowly converging error components have relatively
small residuals. So the slowly decaying error, e, which should be addressed by the
coarse-grid correction, loosely yields A"e ~ 0. This motivates AMG’s choice of in-
terpolation. Rewriting the assumption A"e ~ 0 componentwise and separating the
strongly connected coarse points from other connections yields

;i€ =~ — E ;€5 — E a;;€5,

jel; JjED;

where the a;;’s are entries from the matrix Al C; is the set of strongly connected
coarse points, and D; is the set of remaining connections. To obtain an interpolation
formula from the above heuristic, assuming that the goal is to interpolate point ¢ from
all strongly connected coarse-grid points, the contributions from D; must be collapsed
either to point ¢ or to points in C; so that e; is calculated as a weighted sum of only
the interpolary coarse-grid values:

€, = E wijej.

JeC;

The w;;’s above are referred to as interpolation weights and become the entries in the
interpolation matrix, P. Standard AMG collapses weakly connected points to point
1 and strongly connected fine points to C; to obtain the interpolation weights:

.. L Okj
Qi + Z ik S any
keDi  jrec;
)
aii + Y, Qim

meD}

(4) Wij = —

where D is the set of strongly connected fine-grid points and D" is the set of weakly
connected points. Note that AMG collapses the fine-grid connections such that the
constant vector is interpolated exactly: P12" = 1". With interpolation defined, the
remaining pieces of an AMG hierarchy follow from the usual variational property and
Galerkin condition: restriction is defined as the transpose of interpolation, R = PT,
and the coarse-grid operators are formed via A*" = PT AP,

6. Improving AMG Interpolation. In a GMG hierarchy, linear interpolation
between grids can be explicitly enforced, guaranteeing O(h?) scaling of the interpo-
lation error. In an algebraic setting, there is no notion of geometry and, as such, no
way to explicitly enforce linear interpolation. Thus, it may be necessary to leverage
algebraic information in order to emulate linear interpolation as much as possible.

In an algebraic setting, the main approach to constructing interpolation is to
ensure that the appropriate vectors lie in the range of interpolation on each level.
As mentioned in the previous section, the standard Ruge-Stiiben way of choosing
interpolation weights in AMG ensures that the constant vector is in the range. The
analysis of the Section 3 shows that this property is not sufficient for achieving good
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interpolation near the boundary. Thus, the range of interpolation must be corrected
or enriched in some way to recover good interpolation everywhere in the domain.
One approach to improving the range of interpolation is to modify the way in
which fine-grid connections are collapsed to coarse-grid points when forming interpo-
lation. Standard AMG seeks to preserve the constant vector when collapsing these
connections, but this approach may be modified to fit an arbitrary vector x, resulting

in the following formula for interpolation weights [5]:

- o kjTk
aU + Z azk Z akj/xj/
keDi  jrec,
aii+ Y Qim

meD}

() Wij = —

Note that letting x = 1 yields the Ruge-Stiiben formula for interpolation weights.

In general, the coarse grid should correct components of the error that are in the
near-kernel of A". For the model Poisson problem, the eigenvectors are known, so
let x be the eigenvector associated with the smallest eigenvalue (the sine hump) and
define interpolation according to (5). As shown in Figure 5, defining interpolation
in this way restores O(h?) convergence of the interpolation error across the multigrid
levels and yields FAMG convergence to discretization accuracy in a single cycle. In
practice, however, the near-kernel of any given operator is generally not known a
priori. A fully adaptive method like the one described in [5] could be used to find the
near-kernel, but these methods have expensive setup costs.

Interp Error vs. MG Level FAMG Convergence w/ Sine Fit

10° 102 :
-~ Order h? f ——n=64 ]
—e—AMG w/ Sine Fit i —e—n=128|"
107 | n =256
1037 ——n=512|:
5 5
= ] |
w
o 2104
2 5
f= o} £
- o«
10'5\\
10
0 2 4 6 8 10
MG Level Fine grid V-cycles

F1c. 5. Interpolation error across multigrid levels and FAMG convergence when choosing in-
terpolation to fit the sine hump.

A more efficient approach here is to use the idea of trying to fit the local kernel
at each node, that is, choose a different vector, x, at each point to satisfy (A"x); = 0.
Throughout the rest of this section, “boundary nodes” refer to nodes that are directly
adjacent to the boundary of the domain (the actual nodes on the boundary of the
domain are assumed to be eliminated from the system because of the Dirichlet condi-
tions there), and the remaining points are referred to as “interior nodes.” Note that
nodes are still identified as boundary or interior solely through algebraic information,
specifically by the row sum of the operator, A" at that node. For the model problem,
the operator, A", has row sum zero for all interior nodes, so letting x = 1 satisfies
(A"x); = 0 for all interior nodes, i. For the boundary nodes, however, the operator
does not have row sum zero, and the constant is no longer in the local kernel. A better
approach is to fit a constant vector that has been smoothed. Thus, interpolation is
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constructed on each level using (5) as the formula for the weights and choosing which
vector, X, to use at each point, 7, according to

©) N P
(M~YH1, i€ B,

where I is the set of all interior nodes, B is the set of boundary nodes, and (M ~1)¥

represents v applications of some smoother, M ~'. This has the effect of modifying

interpolation only near the boundary, which is appropriate. Recall from Section 3

that the boundary is, in fact, the only place where interpolation weights differ from

geometric multigrid for the model problem.

As shown in Figure 6, this method also restores O(h?) convergence of the inter-
polation error and convergence to discretization accuracy in a single cycle for FAMG.
As the problem size increases, however, the smoothed constant vector used at the
boundary requires more smoothing iterations in order for the method to perform well
(that is, v grows with problem size). When n = 64 (where the fine grid consists of
n X n finite elements), two Jacobi iterations were sufficient, whereas for n = 512, eight
Jacobi iterations were required to obtain good FAMG convergence. Figure 6 shows
the effect on interpolation error for different values of v.

Interp Error vs. MG Level
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FiG. 6. Interpolation error across multigrid levels and FAMG convergence when choosing in-
terpolation to fit x as defined in (6). Convergence is shown when using v = 2 smoothings and when
using v = 8 smoothings. Interpolation error is shown for v = 2,4,8 smoothings.

Taking the ideas presented above one step further, a much better choice for x
may be obtained by doing a local smoothing only on the boundary points (where
again a point is determined to be on the boundary if its row sum is nonzero). That
is, rather than applying a global smoothing M ~! on a constant vector, relax only
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when a point’s row sum is nonzero, leaving other points unchanged. Denote this
boundary-only smoother as Mg ! For the model problem, performing x = (Mg 1)”1
converges in only v = 2 boundary-Gauss-Seidel relaxations (independent of n) to a
vector x that closely approximates linear interpolation to the Dirichlet boundaries of
the model problem. Constructing interpolation using formula (5) and replacing (6)
with

1 e 1
(7) x={7 red
(MzY¥1, ieB,

yields a much more scalable method for obtaining good interpolation error. For the
model problem, performing only v = 2 applications of Mg ! was sufficient to obtain
the O(h?) interpolation error and good FAMG convergence shown in Figure 7.

107 Interp Error vs. MG Level 102 FAMG Convergence w/ Boundary Smoothing
-=-=Order h? ——n=64
—+—AMG w/ Boundary Smoothing| ] t —e-n=128|-
g n =256
: 1073} ——n=512|-
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= 5 [
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3 210
k] 5
f= [}
= o I
105\
10
0 2 4 6 8 10
MG Level Fine grid V-cycles

Fic. 7. Interpolation error across multigrid levels and FAMG convergence when choosing in-
terpolation to fit x as defined in (7) using v = 2 boundary smoothings.

The boundary smoothing technique can be used to successfully generate AMG
interpolation that achieves O(h?) interpolation error for a variety of problems. Figure
8 shows proper interpolation error scaling across multigrid levels and good FAMG
performance when using boundary smoothing for a jump-coefficient Poisson problem
with constant right-hand side, f = 1:

-V - (¢Vu)=f,ueQ=[-1,1] x [-1,1],
u=0,u€ o,

1
q(z,y) = {1000

An even more compelling example where AMG interpolation with boundary
smoothing works well is the linear elasticity problem with constant right-hand side,

f = 200:

V- (o(w) =1,
o(u) = (V-u)l + (Vu+ Vu?).

Results for this problem in Figure 9 indicate that the boundary smoothing tech-
nique may be successfully applied to systems of equations by combining it with the
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Interp Error vs. MG Level I\qggified FAMG Convergence, Jump Coefficient Problem
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F1a. 8. Interpolation error across multigrid levels and FAMG convergence when choosing in-
terpolation to fit x as defined in (7) using v = 2 boundary smoothings for the jump coefficient
problem.
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Fic. 9. Interpolation error across multigrid levels and FAMG convergence when choosing in-
terpolation to fit x as defined in (7) using v = 2 boundary smoothings for the linear elasticity
problem.

“unknown-based” approach for constructing AMG interpolation for systems, in which
interpolation is constructed separately for each variable in a block fashion [8].

It should be noted that for both the jump-coefficient and elasticity problems,
standard AMG interpolation does not scale appropriately, resulting in poor FAMG
convergence. Thus, the boundary smoothing technique provides a meaningful fix
for both of these problems. Another important consideration, however, is that both
problems used regular coarse grids and homogeneous Dirichlet boundary conditions.
Modifying the boundary conditions or using irregular coarse grids (as are often gener-
ated by AMG in general) result in worse performance for FAMG using interpolation
constructed by boundary smoothing.

In order to provide some additional, heuristic understanding of the boundary
smoothing process, one can think of this method as solving a one-dimensional sub-
problem around the boundary of the domain. Let A;, A;p, Apr, and Ap be the
matrices describing the interior-interior, interior-boundary, boundary-interior, and
boundary-boundary connections in the matrix A” respectively, then we may rewrite
Ahx = 0 in block form as:

][] o
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where x; are the interior degrees of freedom and zp are the boundary degrees of
freedom of the vector x. Note that this matrix equation has only the trivial solution
when A" is non-singular, however, if we first set x = 1, then the first block of equations
is satisfied:

because 1 is in the local kernel for all interior nodes. Now, the bottom block of
equations may similarly be used to determine an appropriate x for the boundary by
fixing 7 = 1 and solving for zg in

(9) ABZCB = _ABI]--

The boundary smoothing technique, x = (M;')"1, converges to the solution of (9).
Writing things in this way exposes some of the guiding principles for constructing the
modified interpolation described in this section. Finding a global near-kernel vector,
x, and constructing interpolation to fit this vector is effective but also expensive. For
some problems, it can be much cheaper to find multiple vectors, x, which fit local
kernels over certain subsets of the domain (like the interior or the boundary), and
constructing interpolation based on these vectors also yields good results.

7. Computational Cost of FAMG vs. AMG V-cycles. To quantify the
difference in computational cost between FAMG and AMG V-cycles, first define a
work unit (WU) as the cost of applying the operator A" on the finest grid. So
one WU has cost O(n), where n is the size of the finest grid. The cost of all the
operations performed during a multigrid cycle may then be estimated in terms of
WUs. A single V(1,1) cycle performs two relaxations (2 WU), a residual calculation
(1 WU), restriction, and interpolation (each less than 1 WU) on the finest grid for a
total cost less than 5 WU. These operations are then repeated on the coarse grids.
Assuming a coarsening factor of 4 (as in the two-dimensional model problem), the
total cost can then be estimated by summing over the levels:

log,(n)—1 7
1 1 2
=0 4

This estimate of the cost for a V-cycle can then be used to estimate the cost of an
FAMG cycle. Note that a V-cycle on grid 2h is about (1/4) the cost of a V-cycle on
grid h (again assuming a coarsening factor of 4). So, if a single V(1,1) cycle is used
to solve on each level during FAMG, then the total cost is

log,(n)—1 i
20 1 20 1 80
= > -) <= — ] = —WU.
<3WU>* <4>_<3WU>*<1_}1> 9VVU

=0

Note that a single FAMG cycle is only slightly more expensive than a single V-
cycle, but delivers convergence to discretization accuracy in one step. V-cycles often
exhibit some constant convergence factor, p, independent of n. The amount of error
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reduction required to achieve discretization accuracy for an order p discretization of a
two-dimensional problem is O(n*p/ 2), so the number of V-cycles required to achieve
discretization accuracy is

v =1ogy,,(n"?) = (p/2)10gy,(n) = O(log(n)).

This means that the total computational effort required to achieve discretization ac-
curacy using V-cycles scales like O(nlog(n)) as oppose to FAMG’s O(n) scaling.

Timing results observed for the model problem verify the scalings described above
and also demonstrate an overall speedup in solve time for FAMG over V-cycles, as
shown in Figure 10. Solve times for FAMG show the amount of time taken to perform
a single FAMG cycle (including a single V-cycle on the fine grid). Solve times for V-
cycles show the amount of time taken to perform enough V-cycles on a random initial
guess to reduce the relative total error to a level less than 1.5 times the relative total
error achieved by FAMG. Note that the FAMG cycle here uses the modified interpo-
lation described in the previous section (utilizing boundary relaxation to modify the
vector fit at the boundary) and, thus, achieves the level of discretization accuracy in a
single cycle. Additional V-cycles were required to achieve similar accuracy as problem
size increased, resulting in the expected O(nlog(n)) scaling. The V-cycles here use a
standard AMG hierarchy, though the modified AMG hierarchy yields similar V-cycle
performance.

Setup times are also included in Figure 10. The results shown demonstrate that
constructing the modified AMG hierarchy described in the previous section (using
boundary smoothing to generate a vector to fit at the boundaries) has nearly the same
cost as constructing a standard hierarchy. The only added cost when constructing
the modified hierarchy comes from performing the boundary relaxations. This cost
is O(y/n) and relatively small compared to the overall cost of a standard hierarchy
setup.

Solve Time for FAMG vs. V-cycles Setup Time for Modified vs. Standard AMG

10" sy
' )

. —Standard setup time
| —— Modified setup time

10’

== 0
- = O(nlog(n)) >
——FAMG solve time

— V-cycle solve time

10°

Time (s)

10* 10° 10°

F1G. 10. Timing results verifying the O(n) scaling for the solve time of FAMG, the O(nlog(n))
scaling for the solve time of V-cycles, and the O(n) scaling for the setup time of both standard and
modified AMG hierarchies. 95% confidence intervals are shown (calculated over 20 different timing
runs), though these intervals are very tight.

8. Conclusions. Applying a full multigrid cycle to a standard AMG hierarchy
does not generally yield a solution at the level of discretization accuracy in a sin-
gle cycle even when AMG V-cycles yield good convergence factors. Analysis of a
model Poisson problem shows that the interpolation operators produced by AMG
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are insufficient to achieve the desired discretization-accuracy convergence. Several
different approaches were described for improving AMG interpolation in order to re-
cover convergence to discretization accuracy. Fully adaptive methods, which place
the near-kernel of the operators in the range of interpolation on each level, should be
successful, but these methods have expensive setup costs. Focusing instead on fitting
the local kernels for the operator and modifying interpolation to treat points with zero
row sum differently from points with nonzero row sum shows promise as a scalable,
efficient method for recovering good FAMG convergence. This paper demonstrates
that such an approach works very well on some simple tests problems, including jump-
coeflicient Poisson and linear elasticity, and reduces the computational cost of solving
this problem to discretization accuracy using AMG from O(nlog(n)) to O(n).

This paper has not generally discussed coarsening schemes. Choosing appropriate
coarse grids will also be an important factor in obtaining discretization accuracy on
problems with more complicated geometries. Also, the discussion here has focused
on first-order discretizations. For higher-order discretizations, the problem of con-
structing interpolation sufficient to recover good FAMG convergence becomes more
complicated. Future work will address both of these topics.
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