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ABSTRACT Blockchain is the next generation of secure data management that creates near-immutable
decentralized storage. Secure cryptography created a niche for blockchain to provide alternatives to well-
known security compromises. However, design bottlenecks with traditional blockchain data structures scale
poorly with increased network usage and are extremely computation-intensive. This made the technology
difficult to combine with limited devices, like those in Internet of Things networks. In protocols like
IOTA, replacement of blockchain’s linked-list queue processing with a lightweight dynamic ledger showed
remarkable throughput performance. However, current stochastic algorithms for ledger construction suffer
distinct trade-offs between efficiency and security. This work proposed a machine-learning approach with a
multi-arm bandit that resolved these issues and was designed for auditing on limited devices. This algorithm
was tested in a reinforcement-learning environment simulating the IOTA ledger’s construction with a
decision tree. This study showed through regret analysis and experimentation that this approach was secure
against manipulation attacks while remaining energy-efficient. Although the IOTA protocol was a pioneer
for lightweight distributed ledgers, it is expected that future blockchain protocols will adopt techniques
similar to those presented in this work.

INDEX TERMS Blockchain Security, Distributed Ledger Technology, Internet of Things, Machine

Learning, Multi-arm Bandit, Regret Analysis

. INTRODUCTION

Blockchain is one of the most revolutionary methods for
securing network data with adoption that has exploded into
a variety of data management communities like government
documents [1] and financial products [2]]. Recently, Internet
of Things (IoT) devices have received attention for data secu-
rity in industries like supply-chain and consumer households.
Data gathered from these devices efficiently tracks inventory
and products at distant at third-party servers [3|]. Limited
hardware and mobility of many devices usually implies re-
duced security [4]]. Distributed data can be used in social
engineering or behavior prediction [5], so there is a need for
improved trust in the technology.

Blockchain is a potential solution with decentralized data
management. However, there are many challenges to im-
plement blockchain on IoT due to traditional blockchain’s
design decisions. The computationally-intense queue pro-
cessing of Sybil-prevention mechanisms like Proof-of-Work
(PoW) in Bitcoin [[6] create bottlenecks for transaction
throughput and network growth that directly conflicts with
the properties of IoT. Recent works offloaded computation
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with machine-learning [7, |8|] but compromise decentraliza-
tion. Only efforts that alternate ledger storage formats [9H11]]
and allow concurrency with lightweight verification can be
feasibly implemented on IoT devices. Of these, the IOTA
protocol [9]] successfully found a balance between security
and performance for IoT.

An open problem in the IOTA-related literature is the
development of lightweight and secure transaction selection
algorithms for ledger construction [[12]. The secure selection
schemes are required to approve two existing transactions
in creation of a new transaction, which decides what data
persists as ground-truth and can be vulnerable to ledger-
specific attacks. There were published papers that discussed
improvements to ledger construction by expanding on ba-
sic methods [9, |12]]. For instance, G-IOTA’s [13|] approach
proposed possibly approving a third transaction. E-IOTA
[14] built on G-IOTA by randomly varying several construc-
tion algorithms. The approach Ferraro, King, and Shorten
[15] explored used liquid modelling with IOTA’s ledger
and proposed their own hybrid scheme for high transaction
confirmation rates. Chafjiri and Mehdi Esnaashari Esfahani
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[[L6] proposed an algorithm with adaptive parameters for a
random walk through the ledger. The IOTA foundation also
developed an attack detection scheme using ledger features
[17], though it was not used in ledger construction. These
approaches were randomized to prevent adversarial gaming,
but do not remove a distinct possibility that a transaction
will go unconfirmed in the ledger. Use of complex features
in transaction selection to prevent this issue, such as using a
ledger or network state, were absent in the literature.

This paper proposes a ledger construction algorithm with
a multi-arm bandit algorithm to resolve the issue of uncon-
firmed transactions while remaining secure. The approach
also considered limited IoT devices in its design with an au-
ditable decision tree using Q-learning. Based on the author’s
understanding, this is the first blockchain protocol to actively
use machine-learning in decision-making, which is an open
problem in general blockchain research [[18||19]].

The contributions for this work include secure Reinforcement

Learning (RL) analysis for lightweight ledger construction
and a robust multi-arm bandit algorithm. Regret analysis
and simulation for performance and security guarantees
was also included. Section [[I] provided general background
related to blockchain and learning mechanisms. Section [IT]
discussed the methodology for analyzing the IOTA ledger
and its security model. Section shows the algorithm’s
effectiveness and regret analysis.

Il. BACKGROUND

Combining IoT with blockchain is crucial for data secu-
rity, but infeasible with traditional designs. Concurrency
with newer protocols’ execution presented opportunities for
lightweight machine learning in optimization and attack
avoidance.

A. IOT SECURITY AND IOTA

Internet of Things (IoT) consists of numerous heterogeneous
devices communicating to improve either consumer quality-
of-life or manufacturing efficiency. Trivial schemes of col-
lecting IoT data include traditional database systems with
network-distant servers [20]. In this scheme, a user must
accept consequences of not controlling their own data [21]].
A solution requires a secure means of recording data man-
agement activity to improve privacy. An advancement toward
this was with blockchain networks, which are computation-
intense security protocols for storing arbitrary network data
in a transaction format via a distributed ledger. There are
numerous factors that prevent collaboration of IoT and
blockchain, including: network scalability, computational de-
mand, and large ledger storage.

One methodology the blockchain industry used to address
these issues was alternative ledger structures. Recent pro-
tocols proposed generalized schemes that form a Directed
Acyclic Graph (DAG). These ledgers are fundamentally dif-
ferent but accomplish similar tasks to traditional blockchain,
so they and blockchain have been termed Distributed Ledger
Technology (DLT). A DAG ledger consists of interconnected
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single transactions that each reference one or more previous
transactions. This form factor was adopted by various DLT
networks such as Hadera Hashgraph [10], Nano [11], and
Obyte [22]]. One pioneering DLT network offering protocol
flexibility is IOTA. This protocol is an IoT-focused scheme
that emphasised direct use on IoT devices with its ledger,
called the Tangle. The Tangle’s dynamic benefits in ledger
construction and data storage make it practical for use in IoT
networks. It is important to understand how the IOTA proto-
col is groundbreaking for allowing direct IoT device usage in
DLT networks, as it presents many research opportunities for
securing distributed [oT data.

IOTA at the time of writing experienced a massive research
effort that removes a centralized coordinator for verifying
transactions [12]]. An open area of research noted by the
IOTA foundation is effective transaction selection algorithms
[12]. As transactions are selected by individual nodes and
appended to the tip of the DAG, there were no enforced
protocols for devices to confirm a certain transaction. The
class of algorithms doing this are simply called tip selection
algorithms, which are used for ledger construction.

B. REINFORCEMENT LEARNING

The general learning methodology chosen to create an intel-
ligent tip selection algorithm was Reinforcement Learning
(RL) with Q-learning [23]]. In this scheme, a learner chose an
action in the action space A € A to take for a given state in
the state space S € S of a Markov Decision Process (MDP).
Each A € S was associated with a reward value R from a
value function V, called Q-values. The optimal policy from
these Q-values, Q. is usually approximated with a machine
learner like a Multi-layer Perceptron (MLP).

A design decision considered for directly applying ma-
chine learning with blockchain was maintaining auditability.
A variety of machine learning algorithms are powerful in
approximating unknown nonlinear functions, but are difficult
for average humans and researchers to understand. The key
strength of blockchain and DLT is that anyone can verify
the account balances in the ledger, making strong security. A
Decision Tree (DT) from Conservative Q-improvement [24]]
was chosen as the base learner for this scheme. This DT
creation process decided how to grow the tree based on a
perceived increase in Q-values.

The Multi-arm Bandit (MAB) is a classic RL problem
for determining an optimal selection from a set of discrete
actions in the case of uncertain rewards. The contextual
bandit was an extension of the MAB that considers an
environment with different states of learning for S € S
[25]. The main decision-making algorithms behind a MAB
are called bandit algorithms. Bandits have been analyzed
through regret analysis for their performances and security
benefits. It was noted that several lightweight bandits were
gameable by adversaries, which was accomplished by poi-
soning rewards [26]. One work showed that bandits like e-
greedy and Upper Confidence Bound (UCB), were gameable
in O(log(n)) time [27]. One of the simplest robust bandit
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algorithms was Thompson Sampling (TS) [28]]. TS is the first
bandit algorithm that successfully balanced exploration and
exploitation with use of the beta distribution for posterior
distribution sampling. With a beta posterior distribution, TS
finds an optimal arm for K actions with shape parameters
A, = B, = 1: a = argmaxyeg{beta(Ag, Bg)}. As
the learner encounters changes in the environment through
Bernoulli rewards R € [0, 1], the update for each shape
parameter associated with the chosen action is

{Ak,Bk ifa+#k
at75t =

Ap + R, BkJr(lfR) ifa=k

The security of TS showed robustness to adversarial at-
tacks under arm manipulation [29], but [26] showed an
effective scheme to poison rewards with offline data. It is
important to understand the the vulnerabilities of TS for
creation of a robust version in Section [l

lll. METHODOLOGY

After a brief discussion of ledger construction and security,
we discuss the threat model and transaction selection be-
fore providing the algorithms. For construction of the IOTA
ledger, analysis of ideal behavior was necessary for reward
function design. Security concerns and known vulnerabili-
ties were then considered for robust decision-making. This
helped create a RL value function for ledger construction.
Finally, a multi-arm bandit algorithm was proposed for pro-
tection against reward attacks. This algorithm uses batch
processing with highlighted rewards and filtering to prevent
adversary impulse attacks from influencing learning.

A. LEDGER CONSTRUCTION AND SECURITY

The IOTA Tangle ledger is a DAG G = (V, E). Eachv € V
contains a transaction that represented an exchange of tokens
between multiple parties. Directed edge e € E represent a
cryptographic link approving a previous transaction in the
ledger. The only requirement in the IOTA protocol for a
node approving a new transaction is confirming two previous
transactions [9]]. In addition, as networking delays and dis-
connects occur, some nodes may create subgraphs of G with
differing v and e. For simplicity of analysis, these differences
were ignored to create only a single version of the ledger.
Any time a transaction is generated, the following steps are
performed:

1) A node broadcasted the new transaction x

2) Neighbor received x

3) Neighbor conducted a selection algorithm % times,
where k£ > 2 to confirm k previous transactions

4) Neighbor conducted a verification scheme to generate
k cryptographic links e € F

5) Broadcast e with x to the network

6) Network verified the integrity of the cryptographic link

It was assumed the neighbor verified the data with PoW,
though any verification scheme could be used. Between steps
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2 and 3, the node has an opportunity to analyze the ledger
state.

The ledger state viewed from a single transaction x can
be viewed as a discrete Markov chain [30]. Between each
state, the total number of unconfirmed transactions L(t¢) can
vary along with the accumulated weight of an individual
transaction W (z). L(t) can be modelled as a Poisson process
[9] with mean rate . W () is the accumulation of individual
weights of all future transactions approving x, where each
weight is proportional to the amount of work done to verify
those transactions. It was assumed W, = 1 and all future
weights are also 1 for this study.

The value |L(t)| depends highly on the tip selection al-
gorithm chosen to construct the ledger [9]]. The simplest tip
selection algorithm is called Uniform Random Tip Selection
(URTS), which randomly selected transactions with proba-
bility m Each transaction has a probability > 0 of being
selected, so URTS is guaranteed to not leave transactions
behind [9]. The stable value for URTS is [9]
kAh
k—1’ M
where h is the time taken to confirm a transaction (it is
assumed h = 1). Generally nodes choose k = 2, L(t) ~
2\ = Ligeqr- If L(t) < Ligeq; (due to k > 2), then nodes
will waste resources confirming past transactions. However,
one issue with URTS is that it can be easily gamed into
selecting transactions approving an attack on the ledger. If an
attack created some conflict in the ledger, an adversary can
create numerous empty transactions approving their attack.
When a node confirmed one of these dummy transactions, it
helps the attacker (see Fig.[T).

With these known vulnerabilities, Markov Chain Monte
Carlo (MCMC) was instead developed [9]]. With MCMC, a
weighted random walk was used to select a new transaction
at the ledger edge. MCMC started from transaction in a
window [W,2W], and a random walk was taken from a
transaction towards the unconfirmed tip edge. The parameter
(v biases selection towards transactions with higher weight
accumulated from future transaction selection (see Fig. [I).
« > ( prevents selection of transactions that would help this
type of attack be successful, called a parasite chain attack.
The probability of a random walker transitioning between
transactions z and y with z transactions in between is found
by the following:

L(t) =

exp(aWy)

P = eaplaW) .
High bias will not likely explore the Tangle for legal trans-
actions that have less weight compared to the frequently-
selected, meaning they will be selected with probability ~ 0.
As the majority of the network will produce higher weights
with legal transactions, it will outpace the attacker. This also
applies to other attacks that target cumulative weight, like

ledger splitting [9].
Information was presented to a machine learner to find
S € §S. The goal of the learner is to avoid attacks while
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FIGURE 1. Parasite Chain Attack Example

simultaneously confirming late transactions. The distribution
of transaction arrival times made from the network Poisson
process was approximated with the distribution normal mean
fitip and standard deviation oy;;,. The following was used to
represent S as a vector,

o Perceived network transaction rate A

o The difference Lg, = |Ligear — L(t)]
o Average tip time fi4p

« Tip time standard deviation o,

The actions chosen for the learner consisted of standard tip
selection algorithms. These actions were:

¢« URTS with k =2

e URTS withk =3

¢ MCMC withv =0.01, k=2

¢« MCMC withay =0.9, k=2

A learner conducting either URTS or MCMC creates either
exploratory or secure actions. Altering ¢ allows a learner to
alter the distribution of tips at the side or front edge of the
DAG [J31].

With these considerations, a reward function for ledger
construction was create. Behavior letting transactions fall
behind was inhibited while incentivizing secure actions. Ac-
tions with £ > 2 were also discouraged from selection to
only when necessary. The reward function with R € [0, 1] is

R, fitip, 0tip, M) = 0.9 — 0.05(k — 2)
- ngaﬁp + Byemce + Burrs, (3)

where L g is the number of transactions left behind,

_ |{$ € L(t) | Trec. time < (Mtip — 3% Utip)}| - |M‘
|L(2)] ’
while BJMC]\/IC and BURTS are

Lp

Byrome = 010 one * 1{|Lp| = 0}

Byrrs =0.01Lpg % ]1{|LB| > 0}

The set M 1is the set of malicious transactions associated
with any previous attack. According to most terms in (3)), an
adversary would not influence the reward. However, if uncon-
firmed transactions were spammed, L g increases and creates
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a drop in reward. This was addressed with an algorithm that
is robust to dramatic reward changes.

B. THREAT MODEL

Although one of the main benefits of using a DAG is the
increased throughput, the downside is the additional vul-
nerabilities. The overall goal of an attacker is to create an
attack transaction and convince the network it is correct.
This is well-known in blockchain literature as a double-
spend attack [32]]. This attack can be accomplished through
various methods with their own attack name, such as the
51% attack [32]. The exact percentage of network comput-
ing power a successful attack needs varies depending on
blockchain consensus mechanisms and strategies [33]]. This
study considered either the brute-force strategy, where the
attacker can only leverage blank transactions for the attack, or
other ledger-specific attacks and was in the network minority.
It was assumed the attacker does not control information sent
to an IoT node in an Eclipse or Sybil-related attack [34]]. The
attacker also had perfect knowledge of the ledger learner and
all internal parameters, because it was white-box.

The additional vulnerabilities from adding RL were also
addressed . An attacker will try to game the decision-making
process of an innocent node to help in their attack strategy
through several means, such as [35]: evasion, poisoning, and
exploratory. It was assumed that an adversary could alter
the inputs to influence the reward during testing, meaning
robustness against attacks was needed. Exploratory attacks
were not beneficial to the attacker, because the learner was
already white-box.

C. INTELLIGENT TRANSACTION SELECTION

The general approach for intelligent machine-learning ledger
construction is shown in Algorithm|[I] The study provided an
extension to Bernoulli TS with an approach that emphasizes
learning from consistent reward increases in Algorithm [2]
called Biased TS. The main novelty with this approach
comes from the adjusted shape values for each arm created
by frequency of arm pulls. If an adversary poisons several
reward values for an non-optimal arm, the few impulses will
eventually be forgotten by another arm that creates a more
consistent average from the innocent network majority for
the beta update in [0, 1]. The inspiration for this approach
came from batch processing with TS [36] and posterior
sampling [37]. Given the literature discussing the adversarial
security of TS [26] [29], it was assumed that Biased TS was
still vulnerable to manipulation with large reward values. A
simple prevention scheme against reward poisoning attacks
is presented in Algorithm 3]

To further protect against attacks, the core bandit algo-
rithm’s vision was reduced. This was done with a light form
of filtering shown in Algorithm 3] In this manner, if an
adversary were to create a parasite chain that drastically
changed |L(t)], it would not influence the behavior of the
learner. This approach does not prevent selection of parasite
chain transactions, but it does prevent adversarial gaming.
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While [38] originally presented the idea of a trimmed mean
to a UCB, the main novelty with this approach was directly
removing the adversary influence by filtering out large adver-
sarial attacks that would otherwise influence an arm’s mean
reward. Notice the careful indexing in Algorithm [3] where
actions selected for the current batch are also compared to
the previous experience if f < C. Legal actors can avoid
being added to M by slowly publishing their transactions
along with the network.

Algorithm 1 General Ledger Construction Algorithm

. Initialize L(t), M, Ag = Bo = 1,C,tg = 0VS
: while receive « € L(t) do

Sobv = {>\; LErm 12 U}

Get S € S from decision tree

a = BiasedTS(S)

Update tree parameters according to [24]]
Verify x legibility with £ tips from a
Broadcast = with k£ edges

A A S o

Algorithm 2 BiasedTS(S)

1: Get Ak,Bk, Ry, fi. from S

2: a = argmaxye i {beta(Ax, Bi)}
3 fot+=1

4: R, .append( reward from (3))
5. if tg > C then

6: R, = FilteredMean(R,,)
7: I=f,+E(R,)

8: F:fa*(l_E(Ra))

9: U = beta(I,F)

10: A, = A, +U

11 B,=B,+(1-0)

12: R, .pop(1)

13: t=0

14: fa=0

15: return A

IV. RESULTS

To demonstrate the methodology in Algorithm [I] and from
other approaches in the literature, the IOTA ledger simulatmﬂ
was used. A RL environment for the Tangle was created
in OpenAl gym in Python [39]. The code showing this
simulation is provided in the Github repositoryﬂ

A. COMPARISON OF ALGORITHMS

The tip selection algorithm with Biased TS was compared
to two other approaches. The current algorithm used by
the IOTA foundation is called almostURTS [12]. The al-
mostURTS algorithm is an extension of URTS with an added
weight bias towards transactions that were confirmed with
recent timestamps. To simulate network delays, noise was
added to a transactions received timestamp. Without this
noise, almostURTS behaved like regular URTS. The other
algorithm selected was "E-IOTA’ [|14]. E-IOTA varies algo-
rithm selection randomly with MCMC and varying levels of
«v. The parameters for this algorithm were selected based on
the best parameters presented in [14].

The training and DT parameters are shown in Table
Training varied A\ uniformly with no attacks. After each trail,
tree nodes not frequently visited were pruned. The bandit had
difficulty balancing actions without prior reward experience,
so learning was frozen until tree nodes were generated. New
nodes in the tree inherited Ay, By upon splitting, and Hg was
reset to 1 each time a node was split.

TABLE 1. DT Training and Testing Parameters

Q-learning/Training

Algorithm 3 FilteredMean(R)

Y = {}\R[l] - R[2],...,|R[C] — R[C —1]|}
: Ryar =E(Y)
: RU,AR = O’(Y)
: foriinl:|Y]|do
if Y[i| > R, Ar + 3 * R, AR then
A.append()
: for iin A do
Add transactions causing attack i to M
for jini:C' —1do
Y[jl =Yl =Y
: R={R[1l],R[1]+Y[1],...,R[C - 1]+ Y][C - 1]}
: Return R

R T S

—_ = = e
W N = O
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Learning Rate v 0.9
Reward Bias v 0.95
Trials 30
Biased TS Batch C' 70
A Range [5, 50]
Testing Parameters
A 10
Trials per. Algo. 10
MCMC « 0.9
almostURTS (C1, C1p, C2, M) (1,1,1,10)
E-IOTA (p1,p2) (0.1,0.35)
Init. Split Threshold Hg 1
Visit Decay d 0.999
Split Threshold Decay D 0.9999
Visit Trim Perc. 10%
Max. Tree Depth 20
Regret Simulation Parameters
Time Steps T' 107
Trials 10
e-greedy e Start Value 4
Biased TS Batch C' 10
Arm Budget By 100

The performance of each algorithm was compared by
looking at the amount of transactions left behind. These were
measured by counting timestamps more than three standard
deviations of tip time for the pure URTS selection from the

IIOTA Ledger Simulator Github Repository
2Biased TS Github Repository to be added in the final version of the paper
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FIGURE 2. Average Transactions Left Behind Comparison

TABLE 2. Average Algorithm Computation Comparison (10 Trials)

URTS | MCMC | E-IOTA | almostURTS | DT
URTS 1998 0 0 1998 10
MCMC (a=0) 0 0 202 0 0
MCMC 0 1998 1796 0 1988

respective algorithm mean. The best-case (URTS) and worst-
case (MCMC) scenarios for leaving transactions behind were
also performed (see Fig.[2).

The DT approach was more effective at taking actions to
confirm late transactions compared to stochastic algorithms.
The performance was comparable to almostURTS but also
accomplished secure actions. In addition, the number of
computations for each basic algorithm were compared in
Table 2l The low amount of URTS action selections was
achievable for the DT with a high learning rate and reward
bias. The slow learning of Biased TS helped child nodes
in the DT improve from experience, with the drawback of
additional training.

B. REGRET ANALYSIS AND SIMULATION
For regret analysis, an extension was provided to existing

work for regret with Bernoulli TS to estimate the upper bound
for regret in Biased TS [40].

Theorem 1. Let each arm i = 1,...,k and constant batch
number C. The expected amount of regret for Biased TS in
Algorithm[D)is
k
4 InT 48
ER(T)] < Ai .
(R) < D =g it

%

An approach similar to [29] was used to find expected re-
gret of Biased TS under an adversarial setting. This assumed
that the adversary had a budget strategy of manipulating an
arm with total budget B;.

Theorem 2. Let each arm v = 1, ...,k and constant batch
number C. The expected amount of regret for Biased TS
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under an adversarial setting with arm budget B; is

k
4InT H
E[R(T)] <> lg Ai+max{—, HologT},

where H = |30ARr + paRg| for the reward change distribu-
tion.

The full proof of Theorem [T]and [2] with full term definitions
is provided in the Appendix.

Other bandit algorithms, e-greedy and Gaussian TS, were
compared against for their robustness to arm manipulation.
The adversary had a total budget for manipulating each
individual arm By and individual trial manipulation values
(v 1, to increase a reward. Each algorithm was tested with
and without the Lump Sum Investment (LSI) attack strategy
outlined in []22[], where the attacker spends the rest of its
remaining budget on attacking an arm to convince the bandit
it had higher rewards at times 7: Ry, = Ry + B — X{_1 Qv ..
Fig. 3] and Fig. ] compare each algorithm’s standard and
adversarial regret respectively. The regret for each trial | R, —
Rj;| was plotted and averaged over 10 trials. The simulation
parameters for regret are shown in Table T}

1000
—— g-greedy
800{ —— Gaussian TS
—— Biased TS
§ 600
[®)]
(V]
o 400
200
00 2 4 6 8
In(t)

FIGURE 3. Control Regret Comparison (By, = 0)

1000
—— ¢g-greedy
8001 —— Gaussian TS
—— Biased TS
aé 600 1
[®)]
[0
o 400
2001 /
0 . - .
0 2 4 6 8
In(t)

FIGURE 4. Adversarial Regret Comparison (Bj, = 100)

Biased TS had noticeably worse regret under standard
conditions compared to Gaussian TS and e-greedy. However,
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Biased TS maintained similar regret levels under heavy at-
tack and showed superior performance compared to the other
two algorithms. Batch processing with Biased TS did slow
performance to find the optimal action, but also prevented
attacks.

C. PERFORMANCE MEASUREMENTS

For consideration of 10T devices, tip selection with Biased
TS was measured for its energy consumption on physical
hardware. A Raspberry Pi 4 Model B with the standard
Raspberry Pi OS was running Python 3.8 with code provided
in the repository using a standard 5V power supply. The Pi
uses a 1.5 GHz CPU with the Arm Cortex-A72 architecture.
Each algorithm in Table [3] was executed for 10 trials of
creating 1000 transactions with A = 10. Each group of trials
was repeated 5 times for a total of 50 trials. The Pi was
monitored with a USB Power monitor made by MakerHawk
and recorded on a separate computer. The voltage and cur-
rent were measured and averaged over each trial group and
recorded in Table@ In addition, the Linux tool perf stat
was used to estimate the number of cycles and instructions
generated by each algorithm. The results showed that the DT
did not cause a drastic power draw or computation compared
to tested algorithms.

2.424 —— URTS
MCMC
—— EIOTA
2.401 —— almostURTS
S
‘1;’ 2.38
(o)
o
@]
la}

2.36 1

25 50 75 100 125 150 175
Time (s)

FIGURE 5. Tip Selection Energy Comparison

TABLE 3. Average Computation Experiment Comparison (50 trials)

Algorithm Power (W) Instr. [1079] Cycles [10M9]
URTS 2.367 209 117
MCMC 2.369 351 217
E-IOTA 2.368 318 196
almostURTS 2.370 234 133
DT 2.372 408 260

D. REFLECTION AND FUTURE WORK
Ledger construction with Biased TS showed improved with
intelligent selection. Highlighting consistent reward changes
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and filtering outliers successfully prevents impulse attacks.
Bounding filtered values by outliers in the reward change
distribution were key for logarithmic regret bounds. One
issue with the learning strength of the DT is that it needed
incentive to minimize selection of URTS by adding By rrs
and Bycme to (@), increasing complexity. Another issue
worth noting is that an adversary may have more success with
manipulation if they are able to create consistent poisoned
rewards, though only if they are not network minority.

The next opportunity to be explored is preemptively
adding additional transactions to M before they are con-
firmed. While it is true that attacks in a distributed ledger
are repelled by consensus in the DLT network, avoidance
is crucial to reduce computation and bandwidth. This di-
rection will be explored from a data clustering approach in
future work. Other areas to explore could include altering
the reward function to prioritize actions for computational
efficiency.

V. CONCLUSIONS

This effort presented a machine learning-based DLT ledger
construction algorithm for IoT with Biased TS. The algo-
rithm’s performance was compared to other schemes through
simulation and improved transaction confirmation perfor-
mance was found. This approach was also comparable in
energy consumption to other tested algorithms. Proof of
security against manipulation for Biased TS was shown with
better regret under attacks compared to other bandits. Future
work will include preemptively flagging attack transactions
through data clustering.
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APPENDIX A PROOFS
A. DEFINITIONS AND ASSUMPTIONS

The definitions below are for understanding the proceeding
analysis. Several definitions are also found in [40], while
others are unique to this work.

Definition 1. (n; (t), /li; K1, Hi.Cs Az‘, 0; (t)) Let n; (t) be the
number of times arm i was pulled. [i; is the empirical mean
for arm i, which is defined as

L Zf—;llzi(r):i ri(7)
e

L is the reward mean for arm i and [ is the optimal arm
mean. [i; ¢ is the mean regret created by the beta distribution
update in Algorithm [2 This value is expanded upon in the
adversarial proof but used on its own in the general proof.
A; = |p1 — 4| is the remaining difference between the
optimal and non-optimal arms for each arm i. 0;(t) is a
posterior distribution sample.

Definition 2. (z; and y;) x; and y; are two thresholds for
0;(t) where p; < x; < y; < p1.

Definition 3. (E!(t) and E?(t)) Event E(t) occurs when
fii < x; and E?(t) occurs when 0;(t) < y;.

Definition 4. (Distribution Measurements) Ffp and ff,p
denote the binomial distribution’s cdf and pmf respectively.
F g,eé‘l is the cdf of the beta distribution. In addition, to
relate the binomial and beta distributions: F g?é“ (y) =1-

Fo]c3+,8—1,y(a -1)

Definition 5. (H;) H; is the arm pull history where H; =
{i(1), 75 (7), 7 = 1,...,t}, i(T) is the arm played for time
T, Ti(7)(T) is the reward observed from time T.

Definition 6. (Multiplicative Chernoff Bound) The multi-
plicative Chernoff Bound defines a bound for the tails of
a distribution. This general bound applies to any random
variable with ;1 = E(x). (Theorem 4.4 in [41]])

—u6?

PX>(1+0)p) < exp(

)

Definition 7. (H;) H; is the maximum value that a change in
reward for arm i can take before it is filtered out by Algorithm
E}' H = |30aR + par|- This value assumes that the reward
and absolute change distributions are sub-Gaussian.

Definition 8. (B; and Attack Strategies) Let B; note the
budget an adversary has to influence the reward for non-
optimal arms. We assume the adversary chooses the optimal
attack strategy with the LSI approach [29]. For a general
attack, the adversary influence is 3; = % For the
LSI attack, the adversary influence is a massive influence
over the arm by using the accrued values o; = BT The

adversary applies the influence using the LSI strategy by
t—1
Bit=Bi— _ Qi
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B. BANDIT ALGORITHM GENERAL REGRET

The approach to finding the general regret analysis upper
bound is an extension of thorough work in [40]. Where
this work deviates is changing the reward to TS with an
augmented beta distribution found in Algorithm 2}

Proof of Theorem(I] Following a similar strategy to Theo-
rem 1.1 and Lemmas 2.9-2.12 in [40]], regret analysis fol-
lowed a martingale approach by finding individual term
bounds for biased TS. The expected number of arm pulls can
be found by

T
E[ni(T)] = Y _ P(i(t) = i, E}' (1), E{(t))
T ! T
+y P(i(t) =i, B (1), E{ (t))+)_ P(i(t) = i, E[ (1))

“)
The first term is bounded by O(1) according to Lemma
2.10 in [40]). The remaining two terms are influenced by the
beta distribution reward and their bounds are determined by
Lemmas [3]and @] Plugging in the bounds for these terms,

4in(T) 48
Eln;(T)] < 1 1 1
()] < 00+ 1+ 2 1 s
Ain(T) 48
e A7

and then finding the standard regret,

z
)] < 37 AEni(T)] Z AI(T) 5, /fi

Lemma 3.
T

> Pi(t)
t=1

Proof of Lemma[3] A function that bounds n;(t) for each
arm Q;(T) is found by

4 InT

=i, E2(1), EX(t)) < +1

Q;(t) bounds n;(t) in the first term. For the second term,

T
Y P(i(t) = iyni(t) > Qu(T), EL (1), EL'(t)
T
<SE T(ni(t) > Qu(T), fu(t) < @)-P(6i(t) > ysl Hy1)]

When [i;(t) < x;, then the biased reward update in Al-
gorithm [2| stochastically dominates 0;(t): beta(U, (1 — U)),
If U = beta(f; - pic, fi - (1 — pic)), the standard beta
distribution average reduces the update to y; ¢. 0;(t) is then
dominated by beta(z;B; i ¢+ pi,c, (1 —x;)Bipi,c), where
B, is the number of batches where ¢ is selected. Given an in-
stance Hy—1 of H;_1 where ji;(t) < x; and n;(t) > Q;(T),

P0:(t) > yilHs—1 = Hy—1)
<= Bty e e, ()
According to Def. 4]
L= F e o Bty e (1—a0)B: (Ui)
= F. 4By Wic(@iBi + 1))
L"éﬂj for C' > 1, set

Using Def and substituting B; =
Q’L( ) = CrvlT

) sz 2
(@ipioBi + i) < exp(_%)

pi,0 (2:Qi(T))?
3

<

B
Fm,c(1+Bi)1y

) < eap(—

1
— <1.
7=
Putting in the bounds for the original equation,

41nT
S Pi(t) = i, BY(t), B (1) € — o + 1.
t=1
0
Lemma 4.

o 48
> Plit) =i T < i

Proof of Lemma[d} Let 7, denote the n'" trial that arm i is
pulled,

T T—1
S PGi() = 1 BF@) < S PE (7o)
t=1 ’I’Li—O
= 3 Plumiin) > )
’I’LiIO

At time 741 for k > 1, fii(Thy1) = ::—fl < ELC Using
Def.[f] to define a bound,

T

3" Pli(rir) > ) Z PEEC S g
n;=0 n; =0
T 2
Uz i,C5i
< 3 eap(-TLE)
'qu‘,:O

: _A
Letting 0; = 5
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Zexp( z#zc <1+Zex 1.“26’ Nili.cO;
n;=0 n;=1
<1+ 18
- i

Thus, the bound is

! 48
7;013(2'(0 =i, Bl (t) <1+ AT

i

C. ADVERSARIAL REGRET

The adversarial regret analysis approach also extends on
the work of [29], but an adversary has a limited budget to
influence a bandit algorithm towards non-optimal arms.

Proof of Theorem[2] Following the same approach as The-
orem [T} we find regret bounds for individual terms of the
expected number of arm pulls in (@). Bounds for the first two
terms are found like Theorem [T} the third term is bounded
by Lemma [5] to show adversary influence. Plugging in these
terms,

4in(T) H HologT
Eln; (T)] < 1)+1 1 _
[ni(T)] < OW) 414 —F—+1+maz{ 3=, —=—}
_ 4n(T) H HologT
= ¢ tmarlegn TR,
Following with standard regret, the bound is
4ln
T) <> AE[R(T) Z
H
mcm:{?, HologT}
O
Lemma 5.
T
— H HologT
P(i(t) =14, E*(t)) < - 1
> Pile) = i BI0) < mas{g, =5} +

Proof of Lemma[5] We find a function that bounds n;(t) for
each arm Q;(T'), but under an adversarial setting like Lemma

C.5in [29].

1
[M]=
)

i(t) = i,ni(t) < Qi(T), B} (1))

T
+) P(i(t)

The first term is bounded by Q;(T"), but the adversary influ-
ences the second term.

= i,ni(t) > Qi(T), EF (1))
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T

> P(i(t) = i,ni(t) > Qi(T), EL(t))

t=1

T
< ZP([M +Bi > zilni(t — 1) > Qi(T))

t=1
To represent the adversary’s influence in the second term, we
establish how the adversary influences i; with the security
algorithms from ;. Since any large changes in reward are
removed by algorithm [3] 3; < H. The bias introduced by
fi in Algorithm [2[ also l1m1ts the adversaries attacks by
where we assume f; < for 1 # 1. With both of these
limits,

fi, Bi fi H;

;= < < = <
bi=cGm) SH ol < 94,

B; is bounded by £Z{o0L,

H HologT
(T —, =
Qi(T) = mazx 58, A }.
Using the above bound and Def. [6]
T
> P+ Bi = wilna(t — 1) > Qi(T))
t=1
T
o fi, Bi
=) P+ Z(—F—) =2 zini(t = 1) > Qi(T
D Pl o) 2 (e = 1) 2 Qi)
T ~ L B 2
PRC
< _— )< =<1
Plugging in the appropriate terms, the bound is
& H HologT
P(i(t) =i, E0(t), E*(t)) < ——}+1
3Pl =6 BB 0) < mas{gx =1 )+
O
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