Exceptional service in the national interest

Dynamic Interface Instabilities as a Window into Material Behavior

Tracy Vogler, Brittany Branch, Seth Root (SNL)
Matt Hudspeth (LANL), and Joe Olles (NSWC-IH)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

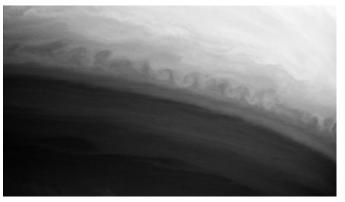
Dynamic Interface Instabilities

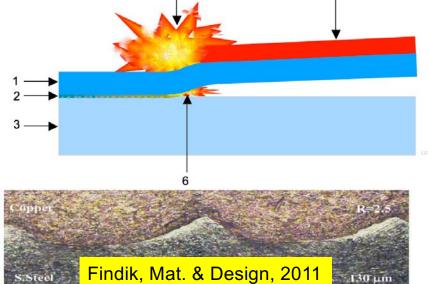
- Arise at interface between dissimilar materials: gases, liquids, solids
- Shear, gravitational, and shock instabilities are most commonly studied
- Studied because of their importance to a variety of physical phenomena and applications
- Instability stabilized by factors such as surface tension, viscosity, and strength
- Thus, the instability development can be used to probe (not directly measure)
 these aspects of material behavior

Physical Mesomechanics 10 5-6 (2007) 265-274

Hydrodynamic instabilities in solid media — from the object of investigation to the investigation tool

A.L. Mikhailov


Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics (VNIIEF), Sarov, 607188, Russia


Kelvin-Helmholtz Instability (KHI)

Develops at interface between two layers undergoing shearing

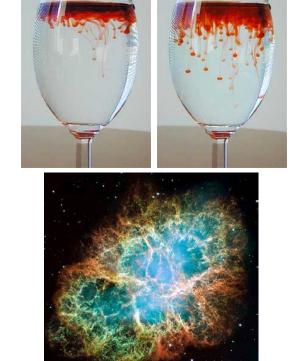
For inviscid fluids, unstable under all conditions

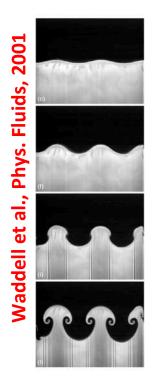
Bahrani et al., Proc. Roy. Soc. 1967

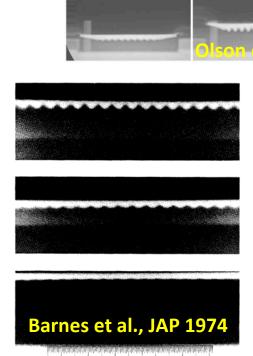
3

Sandia National Laboratories

Rayleigh-Taylor Instability (RTI)

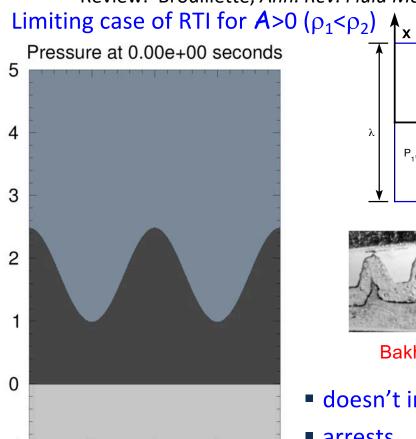

Review: Zhou, *Phys. Rep.*, 2017

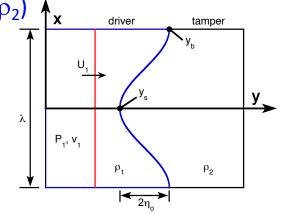



Gravitational instability

Unstable if acceleration from light to dense material

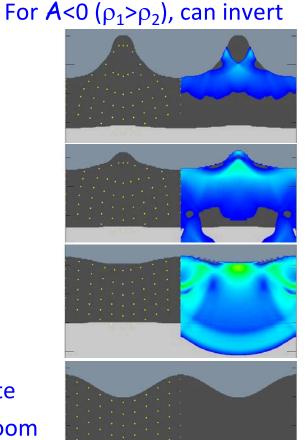
$$\mathbf{A} = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}$$





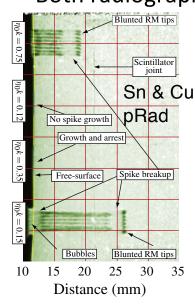
T₀+11.10µs

Richtmyer-Meshkov Instability (RMI) Review: Brouillette, Ann. Rev. Fluid Mech., 2002

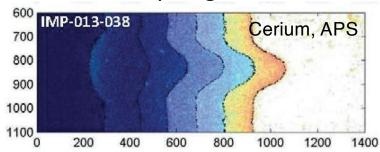


Bakhrakh et al., 1997

- doesn't invert
- can separate

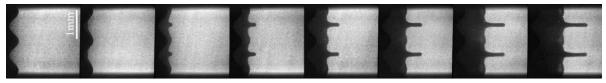

arrests

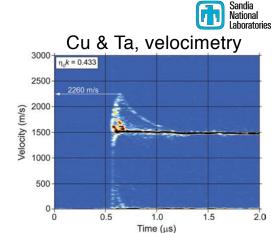
can mushroom



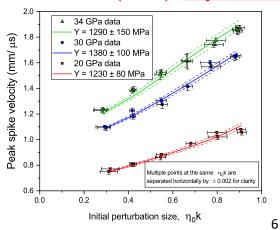
RMI Strength Experiments at A=-1

- Backed by vaccum, so $\rho_2=0$
- Both radiography and velocimetry diagnostics

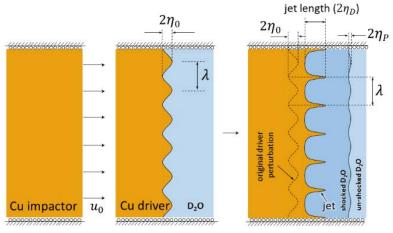

Dimonte et al. (2011). Phys. Rev. Let. Buttler et al. (2012). J. Fluid Mech.



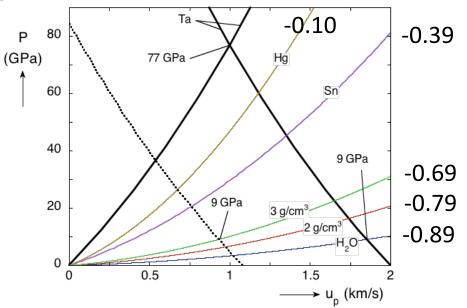
Jensen et al. (2015). J. App. Phys.


$$\frac{\eta_{\infty} - \eta_o}{\eta_o} = Ck\eta_o \frac{\rho u_{fs}^2}{Y}$$

Cu, DCS Olles et al. (2019). Soc. Exp. Mech.

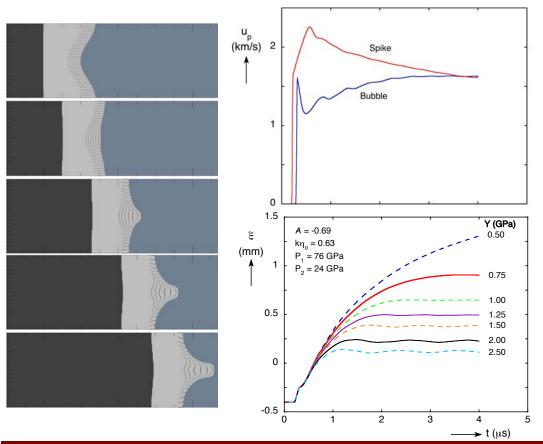


Prime et al. (2017). JDBM Prime et al. (2019). Phys. Rev. E



Tamped RMI Strength Experiments (A≠-1)

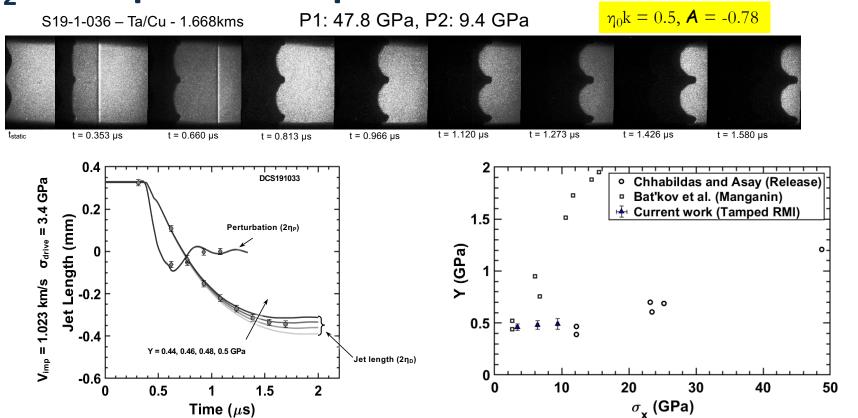
- Adding tamper keeps P above zero, reducing role of damage
- Potential tampers depend upon instrumentation needs/capabilities, but some options available
- For velocimetry, need transparent liquid.
 With radiography, limited by transmission.



- Liquids: water, perfluorooctane, perflubron, sodium polytungstate
- Low melting point metals: Field's metal,
 Wood's metal, Galinstan, Hg
- Metal powder (Sn, In, Au, etc.)

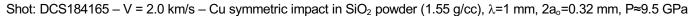
Example: Ta Tamped by Sodium Pertungstate

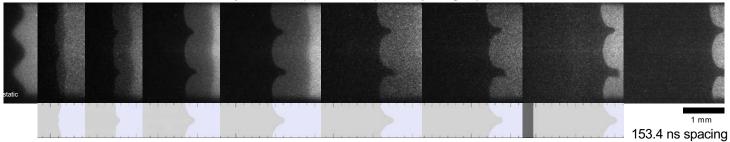
V = 2 km/s, λ =2 mm, k η_o =0.63, A=-0.69, P₁=76, P₂=24 GPa, Y₁=0.75 GPa

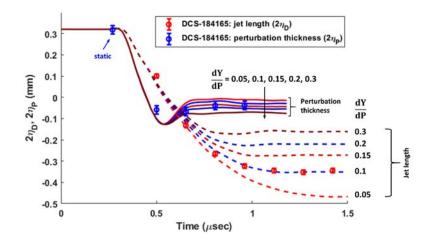


 Though loading is complex, most plastic work occurs near P₂ and 2x10⁵ s⁻¹

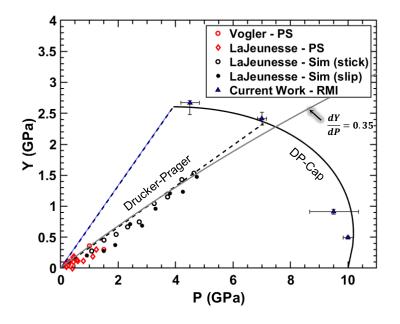
D₂O Tamped RMI Experiments on Cu at DCS





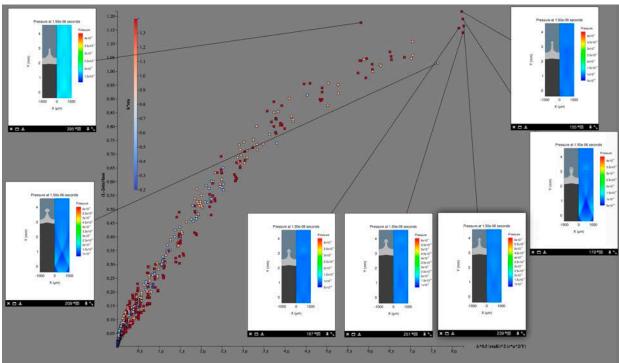

Once calibrated, jetting copper can be used in RMI experiments into other materials

RMI Experiments on Granular SiO₂ at DCS



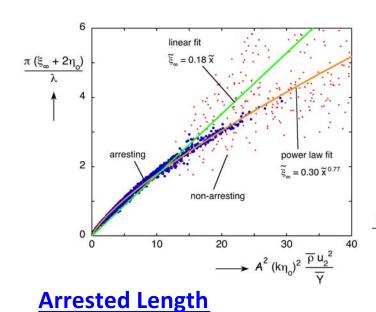
- RM unstable interface (A ≈-0.7/-0.5) leads to jetting, but jets arrest due to strength of compacted SiO₂
- jet amplitude much more sensitive to strength than shock front perturbation

Granular SiO₂ Strength



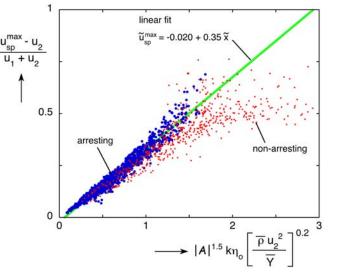
- Strength values obtained at pressures much higher pressures than pressure-shear (elasticperfectly plastic model used)
- Thermal softening leads to fall-off of strength ~8
 GPa
- Data fit with Drucker-Prager type model with a cap
- Strength appears higher than pressure-shear for low pressures, but no direct overlap → future work

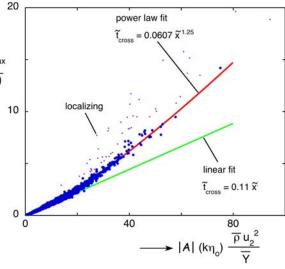
Simulation Ensembles: Dakota & Slycat



- Dakota drives large number (~2000) of simulations for Ta tamped by a fluid, randomly sampling:
 - impact velocity (1-3 km/s)
 - wave parameter (0.25-1.50)
 - tamper density (1.0-7.9 g/cm³)
 - Ta strength (0.1-3.0 GPa)
- Slycat used for visualizing data on cluster or locally - identify different classes of behavior (e.g. mushrooming) more easily

Scaling for Tamped RMI




probably requires imaging

scaling agrees with previous

Max Spike Velocity

- only need velocimetry
- useful for non-arresting cases
- proportional to Y^{-0.2}

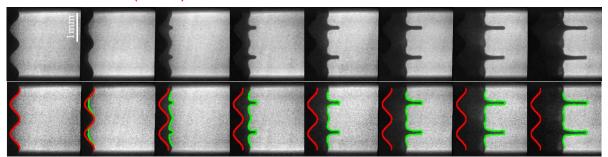
Time when $u_{sp} = u_{bub}$

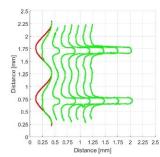
- may be possible for velocimetry
- proportional to Y⁻¹

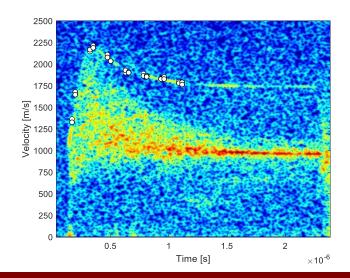
■ proportional to Y⁻¹

work

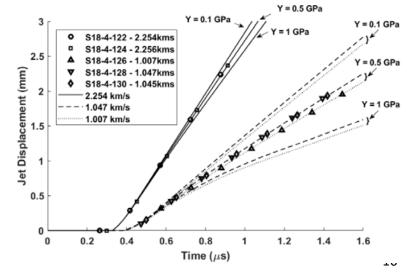
Conclusions and References

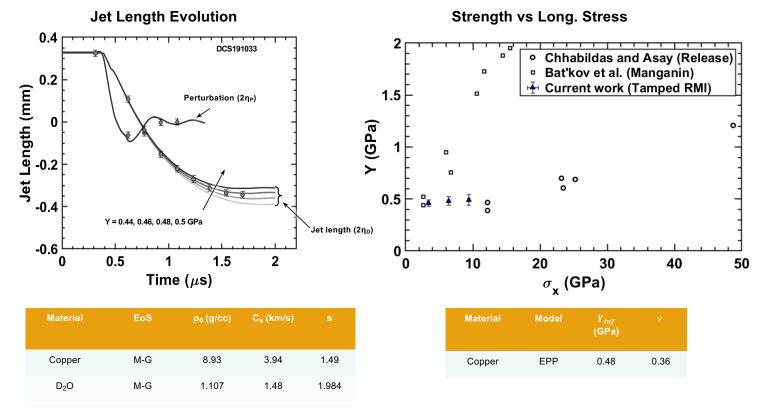

- Dynamic interface instabilities provide a useful way to probe material behavior
- Tamped RMI experiments can provide strength information at high P and $\dot{\epsilon}$
- Tamper material varied to give desired conditions or can be the subject of study
- More study needed for tamper materials and standard jet materials (Cu, Au)
- High-speed radiographic imaging provides key information about behavior
- With experience and additional characterization, it should be possible to do some tamped RMI experiments with velocimetry only
- Scaling relations useful for design of experiments
 - Hudspeth, M., Olles, J., Mandal, A., Williams, J., Root, S., and Vogler, T. (2020). "Development of a Strength Model for Shocked Porous α-SiO2: Calibration via Richtmyer-Meshkov Instability and Validation via Mach Lens Experiments," *Journal of Applied Physics* (submitted).
 - Olles, J.D., Hudspeth, M.C., Vogler, T.J., and Tilger, C.F. (2021). "The effect of liquid tamping media on the growth of Richtmyer-Meshkov instability in copper" (in preparation).
 - Vogler, T.J. and Hudspeth, M.C. (2021). "Tamped Richtmyer-Meshkov Instability Experiments to Probe High-Pressure Material Strength," *Journal of the Dynamic Behavior of Materials* (submitted).




Extra Slides

>>>Improved Imaging at the Dynamic Compression Sector at APS Olles et al. (2021). JDBM




Spatial resolution: ~2.5 µm Window size: ~2.5 x 2.5 mm Temporal resolution: 33.5 ps Min interframe time: 153.4 ns

Number of frames: 8

D₂O Tamped RMI Experiments on Cu at DCS

Once calibrated, jetting copper can be used in RMI experiments into other materials

Dense Liquids

Wikipedia

Name	Density in g⋅cm ⁻³
1,2-Dibromoethane	2.180
cis-1,2-Dibromoethene	2.246
trans-1,2-Dibromoethene	2.231
Dibromomethane	2.477
Bromal	2.550
Bromoform	2.890
1,1,2,2-Tetrabromoethane (Muthmanns solution)	2.967
Sodium polytungstate	3.100
Bromine	3.1028
Thoulets solution	3.196
Diiodomethane	3.325
Indiumiodide	3.40
Bariummercuriciodide	3.57
Thallium formate + Thallium malonate (Clerici solution)	4.25
Liquid metal (Gallium/Indium/Tin/Zinc alloy)	6.5
Mercury	13.6

