£ANOIS- 1997 C

CONFqpp34T--1

The Role of Decimated Sequences in’ Scaling Encryption Speeds Through
Parallelism

Edward L. Witzke
RE/SPEC Inc.

4775 Indian School Road N.E., Suite 300
Albuquerque, New Mexico 87110
elwitzk@respec.com
(505)268-2661

Sandia National Laboratories
Lyndon G. Pierson
Mail Stop 0806
P.O. Box 5800
Albuquerque, New Mexico 87185-0806
Igpiers@sandia.gov
(505)845-8212

Abstract

Encryption performance, in terms of bits per second encrypted, has not scaled well, as network
performance has increased. The authors felt that multiple encryption modules, operating in
parallel would be the cornerstone of scalable encryption. One of the major problems with
parallelizing encryption is ensuring that each encryption module is getting the proper portion of
the key sequence at the correct point in the encryption or decryption of the message. Many
encryption schemes use linear recurring sequences, which may be generated by a linear feedback
shift register. Instead of using a linear feedback shift register, the authors describe a method to
generate the linear recurring sequence by using parallel decimated sequences, one per encryption
module. Computing decimated sequences can be time consuming, so the authors have also
described a way to compute these sequences with logic gates rather than arithmetic operations.

Introduction

End-to-end encryption can protect proprietary information as it passes from one end of a complex
computer network to another, through untrusted intermediate systems. Encryption performance,
in terms of bits per second encrypted, has not scaled well, as network performance has increased.
Encryption performance in terms of long term secrecy also suffers as computer performance is
scaled, cracking previously secure algorithms.

The overall problem addressed in the authors' research is: How can end-to-end encryption
technology be scaled for high performance in the Gigabit per second networking arena? The
authors, along with other members of the project team, identified and analyzed current research
efforts in scalability of encryption and interoperability of scaled and unscaled encryptors.

@
e

SEP 18 13535
OSTI

DISTRIBUTION OF THIS DOCUMENT 1S UNLKMWE%




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




Approach

The authors found that multiple encryption modules operating in parallel would provide an
alternative for creating a scalable encryption architecture able to keep pace with the needs of
modern, high performance communication networks. Varying numbers of encryption modules
could be combined with control circuitry to produce an encryption unit for a specific computer
system or class of systems with similar capabilities. The number of encryption modules making up
a parallel encryption unit would be determined by the speed at which the computer system is
expected to communicate to networks. A supercomputer may require 8 or 16 encryption modules
operating in parallel to keep up with its network communications demand, while a workstation
may only need 2 or 4 encryption modules in parallel to accommodate its workload. A PC may
only require 1 encryption module.

These encryption units with different degrees of parallelism must interoperate with each other
across networks, while remaining synchronized. Encryption functions with feedback based on a
combination of key and plaintext or ciphertext do not scale and interoperate. There are ways to
design an encryption unit of parallel modules incorporating this feedback, which would provide a
scalable solution. The drawback is that the units would not interoperate with other units having a
different degree of parallelism, i.e. an 8-way encryptor would not interoperate with a 2-way
encryptor. This eliminates the feedback modes of the Data Encryption Standard (DES) as
candidates for the individual encryption modules, the building blocks of the parallel encryption
unit.

A linear recurring sequence can be used to feed a nonlinear encryption function. Because of the
ease of implementing linear feedback shift registers (LFSRs) in hardware, one may use the
concept of parallel LFSRs to feed parallel nonlinear encryption modules. Now the problem
becomes a question of how to ensure that each encryption module is getting the proper portion of
the linear recurring sequence at the correct point in the encryption or decryption of the message.

A n th order homogeneous linear recurring sequence in a field F, satisfies the linear recurrence
relation S, =4, .S, , +4,,5,,+ ... + 4,5, and would correspond to a left shifting (Fibonacci)
linear feedback shift register. S,,..., S, , correspond to the cells in the LFSR, while the nonzero
coefficients (4,,..., 4, ;) correspond to the taps of the LFSR. Lidl and Niederreiter[4] provide an
excellent treatise of linear recurring sequences, feedback shift registers, and characteristic
polynomials.

To decimate a sequence is to replace an integer sequence @ = { a,, @,, a;, 4, ..., A, } With the
sequence d, = { @y, Ayypoa 7 Faitmoa 7'y Vaieimod 2> > We1ymoa ) §» thereby producing a sequence
of every kK™ element of the main sequence. Using decimated sequences in parallel, one can reduce
the amount of time it takes to generate the main sequence, @, by a factor of £. For % parallel
encryptors fed by k decimated sequences, it is now possible to send the first element of the
sequence @ to the first encryptor, the second sequence element to the second encryptor, and so
on, wrapping around feeding elements &+1, 2k+1, 3k+1,... to the first encryptor, k+2, 2k+2,
3k+2,... to the second encryptor and so on. By doing this, the same portion of the linear recurring




sequence is matched with the same portion of plaintext/ciphertext in the encryption/decryption
units without regard to the degree of parallelism within communicating units.

In general, a companion matrix for an n cell, left shift register, would be a zero filled n x n matrix,
with 1's along the diagonal just below the main diagonal, and feedback coefficients down the last
column. Companion matrices allow manipulation of linear feedback shift registers using matrix
arithmetic. The companion matrix corresponding to 1 shift of a 5 element, left shifting LFSR
would be as shown. (This could also be considered as a decimation by 1 matrix.)

(0 0 0 0 4]
1 00 0 4
01 00 4
001 0 4,
0 0 0 1 A4,]

The elements of vector 4 would contain a 1 if there was a tap at the corresponding element of the
LFSR, and a 0 otherwise. The ones just below the main diagonal have the effect of shifting the
elements left by one, that is, LFSR element S,(new) = S,(old), S,(new) = S,(old), etc. The new
element of the sequence (the new S,) will be an "Exclusive-or" of various elements in the register,
based on possible taps at locations 0 through 4, as specified by vector 4. A linear feedback shift
register, 5 elements in length, with taps at elements 0, 1, and 3, would look like:

S S S S A
0 1 T2 3 4

U ()

é_

and be represented by vector the A =[1101 0. This would yield the companion matrix shown.

— -

N

Il
o O O = O
O O = O O
O - O O O
-_ 0 O O O
O e O e

To get the second decimation, or a matrix that would produce every other element in the
sequence (2 shifts of the LFSR), square the companion matrix (mod 2). To get the fourth
decimation, a matrix that would produce every fourth element in the sequence (shifting the LFSR
4 times), raise the companion matrix to the 4™ power (mod 2).




M? =

O O = O O
O = O O O
_0 O < O
O = O e
—_— O = = O

M=

-0 O O O

QO = O ke

— O = = O

O O = e

O bt = = O

Multiplying that resulting decimation matrix (as raised to the 4™ power) by the initial state vector
(1), mod 2, gives the vector that would be obtained after shifting the LFSR 4 times (/,). Now,
every 4" vector can be produced by multiplying the current vector (/) by M* mod 2.

The application of this is we can now seed 4 of these matrix multiplies, all in parallel, with 4
different initial vectors (I, 1, I, L,), representing the first 4 states of the linear recurring sequence.
This will allow us to have 4 concurrent streams {(each one generating every fourth element) of the

same sequence.

In the linear feedback shift register shown above, the sequence generated by
S, =8,,0S, ,DS, ;isgivenin the following table.

State O:
State 1:
State 2:
State 3:
State 4:
State 5:
State 6:
State 7:
State 8:
State 9:
State 10:
State 11:

[10000]
[00001]
[00010]
[00101]
[01010]
[10100]
[01001]
[10011]
[00110]
[01101]
[11011]
[10111]

Table 1. State Vectors From 5 Element Linear Feedback Shift Register.

By using the first 2 states in the table above as our initial states, /, we can generate the next states
by multiplying /A% mod 2 as shown in Table 2.




Generator 1 Generator 2
State 0: [10000]

State 1: [00001]
State 2: [00010]
State 3: [00101]
State4: [01010]
State 5: [10100]
State 6: [01001]
State 7: [10011]
State 8: [00110]
State 9: [01101]
State 10: [11011]
State 11: [10111]

Table 2. Five Element State Vectors From Decimation by 2 Matrix Multiplication.

As shown in Table 2, the first sequence generator is seeded with vector O and produces vectors 2,
4,6, 8, 10, 12,... The second generator, seeded with vector 1, produces vectors 3, 5,7, 9, 11,
13,... ]

By using the first 4 states in the table above as our initial states, /, we can generate the next states
by multiplying /A* mod 2 as shown in Table 3.

Generator 1 Generator 2 Generator 3 Generator 4
State O: [10000]
State 1: [00001]
State 2: [00010]
State 3: [00101]
State 4: [01010]
State S: [10100]
State 6: [01001]
State 7: [10011]
State 8: [00110]
State 9: [01101]
State 10: [11011]
State 11: [10111]
Table 3. Five Element State Vectors From Decimation By 4 Matrix Multiplication.

As illustrated in Table 3, the first sequence generator is seeded with vector 0 and produces
vectors 4, 8, 12,... The second generator, seeded with vector 1, produces vectors 5, 9, 13,..., and
so on. This can be repeated % times (all operating in parallel) to attain the desired encryption rate.

At this point we should note that the sequences in Tables 1, 2, and 3 are identical. This shows
that as long as the blocks are sent through the network in the proper order, units having differing
degrees of parallelism will be able to interoperate.




Whereas this technique looks useful in concept, in reality it is not practical in most general
purpose computers due to the amount of time necessary to carry out the multiplication (mod 2) of
a 1 by » vector with an » by » matrix. What can be done to make this technique practical, is to
use logic gates rather than arithmetic operations to implement the matrix multiplication. Since
addition modulo 2 can be represented by a logical "Exclusive-or" and multiplication modulo 2 can
be represented by a logical "And", the matrix multiplication reduces to a set of logic gates, many
of which can be wired in parallel. The general case would have each element in a column of the
decimation matrix (say M") wired to an "And" gate along with the corresponding element of the
current state vector. The output of these "And" gates can be fed into a cascade of "Exclusive-or"
gates. This effectively performs the multiplications (mod 2) concurrently and then sums the
results (mod 2) to produce the corresponding element of the new state vector. This is repeated
(in parallel) for each column of the decimation matrix. This entire group of logic gates will have
to be replicated & times, once for each encryption module in the parallel encryption unit.

In each encryption module (of a unit containing & encryption modules operating in parallel), for
any characteristic polynomial of order #, #* "And" gates could be executed concurrently. There
could also be n cascades of "Exclusive-or" gates operating in parallel. These logic gates will also
be operating k-times in parallel with the other encryption modules in the parallel encryption unit.
This will result in the generation of the next state vector for use with each nonlinear
encryption/decryption function, while incurring very few gate delays.

This process can be sped up further, if the LFSR taps are not part of the key material and can be
defined at implementation time. In our example above, with taps at S, S,, and S;, and a
decimation of 4, the new state vector for each generator could be constructed from the old state
vector [S,, S}, S, Sy, S, as: S=[S, S, @5,@S, 585,05, S,050S5, §05,075]
This logic would be repeated four times, once for each encryptor in the unit. The output from
these logical operations, seeded as before with the initial vectors (/,, 1, 1,, 1;), will produce the
same values as found in Table 3.

Conclusion

‘This method of generating linear recurring sequences in parallel could be applied anywhere LFSRs
are currently used, in order to achieve increased performance. As applied to increasing encryption
rates, one could now design an encryption unit using & decimated linear feedback shift register
sequences feeding & nonlinear encryption functions operating in parallel. Since these units will
interoperate with each other, as higher encryption rates are needed, the number of encryption
modules operating in parallel (&) within a unit can be scaled, without rendering previous versions
obsolete. These slower units can still be used in portions of the network where top encryption
speeds are not necessary.

Acknowledgements

The work described in this paper was performed by Sandia National Laboratories and RE/SPEC
Inc. under RE/SPEC contract number 56-4484 to Sandia National Laboratories and Sandia




s:nt;;.?knumber DE—.ACO4-.94AL85000 to the United States Department of Energy. The authors
ould like to that}k Jup Davis (ret.) of Sandia National Laboratories and Jed Greene of
Northwestern University for their contributions to this work.

Bibliography

11). bll?ES. Modes of Opera}:ion“ (FIPS PUB 81), Federal Information Processing Standards
ublication 81, U. S. National Bureau of Standards, Washington, D. C., December 2 1980

2. Golomb, Solomon W., Shift Register Sequences, Holden-Day Inc., San Francisco, 1967.

| 3. Lempel, '}’Xbraham, and W. L. Eastman, "High Speed Generation of Maximal Length
Sequences," IEEE Transactions on Computers, Vol. C-20, February, 1971.

4. Lidl, Rudolf, and Harald Niederreiter, Finite Fi i
» Rudolf, 1 , ields, Vol. 20, Encyclopedia of M i
Its Applications, Addison-Wesley, Reading, Massachusetts, 1983. of Mathematics and

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recomi-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
e

[




