
Computing Bottleneck Structures at Scale for
High-Precision Network Performance Analysis

Noah Amsel, Jordi Ros-Giralt, Sruthi Yellamraju, James Ezick, Brendan von Hofe, Alison Ryan, Richard Lethin
(amsel, giralt, yellamraju, ezick, vonhofe, ryan, lethin)@reservoir.com

Reservoir Labs, 632 Broadway, Suite 803 New York, New York 10012, USA

Abstract—The Theory of Bottleneck Structures is a recently-
developed framework for studying the performance of data
networks. It describes how local perturbations in one part of the
network propagate and interact with others. This framework
is a powerful analytical tool that allows network operators to
make accurate predictions about network behavior and thereby
optimize performance. Previous work implemented a software
package for bottleneck structure analysis, but applied it only
to toy examples. In this work, we introduce the first software
package capable of scaling bottleneck structure analysis to
production-size networks. We benchmark our system using logs
from ESnet, the Department of Energy’s high-performance data
network that connects research institutions in the U.S. Using
the previously published tool as a baseline, we demonstrate that
our system achieves vastly improved performance, constructing
the bottleneck structure graphs in 0.21 s and calculating link
derivatives in 0.09 s on average. We also study the asymptotic
complexity of our core algorithms, demonstrating good scaling
properties and strong agreement with theoretical bounds. These
results indicate that our new software package can maintain
its fast performance when applied to even larger networks.
They also show that our software is efficient enough to analyze
rapidly changing networks in real time. Overall, we demonstrate
the feasibility of applying bottleneck structure analysis to solve
practical problems in large, real-world data networks.

Index Terms—Network, performance, traffic engineering, ca-
pacity planning, bottleneck structure, benchmark, congestion
control

I. INTRODUCTION

Congestion control is an essential component of high-
performance data networks that has been intensely researched
for decades. The goal of congestion control is to distribute
the limited bandwidth of each link in the network among
the various data flows that need to traverse it. Congestion
control algorithms have a dual mandate of maximizing net-
work utilization while also ensuring fairness among competing
flows. The conventional view of this problem assumes that the
performance of a flow is solely determined by its bottleneck
link—that is, the link in its path that allocates the least
bandwidth to it. Standard congestion control algorithms in
the TCP protocol such as Reno [1], Cubic [2], and BBR [3]
operate at the level of individual flows, the transmission rates
of which are set separately by each sender. This perspective
makes it difficult to consider the network as a whole, since it
hides the complex ripple effects that changes in one part of
the network can exert on the other parts.

This work is partially funded by the Department of Energy under contract
DE-SC0019523.

The Theory of Bottleneck Structures, introduced in [4],
provides a deeper understanding of congestion controlled
networks. It describes how the performance of each link and
data flow depends on that of the others, forming a latent
dependency structure that can be modeled as a directed graph.
Armed with this model, network operators can make accurate,
quantitative predictions about network behavior, including
how local changes like link upgrades, traffic shaping or flow
routing will propagate, interact with one another, and affect
the performance of the network as a whole. The Theory of
Bottleneck Structures can be used to reason about a large
variety of network optimization problems, including traffic
engineering, congestion control, routing, capacity planning,
network design, and resiliency analysis [5].

The goal of this paper is to demonstrate that the insights
of the Theory of Bottleneck Structures can be applied at scale
to production networks. Previous work introduced a software
system that implemented the two core operations of construct-
ing the bottleneck structure graph and computing derivatives
of network performance with respect to parameters like link
capacities and traffic shapers [5]. However, this system was
tested on relatively small networks, and its performance was
not benchmarked. In this work, we demonstrate a new high-
performance software package designed to scale these two core
operations to production-size networks. Using real production
NetFlow logs from ESnet—the Department of Energy’s high-
performance network connecting the US National Laboratory
system—we performed extensive benchmarks to compare the
two packages and characterize their scalability. We confirm
that, with the right implementation, bottleneck structures can
be used to analyze large networks in practice, thus unlocking
a powerful new framework to understand performance in
production environments.

This paper is organized as follows. In Section II, we provide
a brief introduction to bottleneck structures and summarize
the core algorithms that are the subject of the presented
benchmarks. Section III describes the data set and reports
the benchmarks for the computation of bottleneck structures
(Section III-B) and link gradients (Section III-C). In Section
IV we summarize the prior work and Section V provides some
notes on integration of the benchmarked algorithms in real
production networks. Section VI concludes.

Fig. 1: Network configuration used in Example 1.

II. THEORETICAL BACKGROUND AND ALGORITHMS

A. Introduction to Bottleneck Structures

While describing the mathematics of bottleneck structures
is not the focus of this paper, this section provides an example
that will give the reader some intuition for the meaning and
analytical capabilities of a bottleneck structure.

Example 1. Consider a network consisting of four links
{l1, l2, l3, l4} in which there are six active data flows
{f1, . . . , f6}. The capacity of each link (c1, . . . , c4) and the
route of each flow is shown in Fig. 1. (We do not consider the
network’s topology, just the set of links in each flow’s route.)
The resulting bottleneck structure of this example network is
shown in Fig. 2. It is represented by a directed graph in which:

1) There exists one vertex for each flow (plotted in gray)
and each link (plotted in white) of the network.

2) a) If flow f is bottlenecked at link l, then there exists
a directed edge from l to f .

b) If flow f traverses link l but is not bottlenecked by
it, then there exists a directed edge from f to l.

Intuitively, the bottleneck structure captures the influences
that links and flows in the network exert on each other.
Consider link 1. Three flows traverse it, and it has a capacity
of 25. Thus, it allocates 25/3 = 81

3 each to flows 1, 3, and 6.
If the capacity of link 1 were to change, the rates of these three
flows would change too. This relationship is reflected in the
directed edges from node L1 to nodes F1, F3, and F6. Flow
3 also traverses link 2, but since link 2 has more bandwidth
available than link 1, flow 3 is not bottlenecked there. The
leftover bandwidth not used by flow 3 is picked up by other
flows that use link 2—that is, by flow 2 and flow 4. So if flow
3’s rate were to change, their rates would be affected too. This
relationship is reflected in the directed paths F3 → L2 → F2
and F3 → L2 → F4. The reverse is not true. If L2’s rate were
perturbed by a small amount, F3’s performance would not be
affected, and indeed, no path from L2 to F3 exists. It has been
proven that the performance of a flow f is influenced by the
performance of another flow f ′ if and only if there exists a
directed path in the bottleneck structure graph from flow f ′’s
bottleneck link to flow f [4].

The bottleneck structure allows us to easily visualize re-
lationships between network elements. We can also quantify

Fig. 2: Bottleneck structure of the network in Example 1.

these relationships. Consider the congestion control algorithm
to be a function that takes the network conditions as input
and assigns a transmission rate to each flow as output. A key
insight stemming from the Theory of Bottleneck Structures [4]
is that many seemingly separate questions in network manage-
ment can be unified under a single quantitative framework by
studying the derivatives of this function. 1 For example, letting
c1 be the capacity of link 1 and r3 be the rate of flow 1, we
have

dr3
dc1

=
1

3

since each additional unit of capacity added at link 1 will
be distributed evenly among the three flows which are bottle-
necked there. Derivatives with respect to flow rates can also
be calculated; they represent, for example, the effect of traffic
shaping a flow (that is, artificially reducing its rate) on the
performance of another flow. In our experiments however, we
always use the capacity cl of some link l as the independent
variable. Derivatives can also be taken of any differentiable
function of the rates, not just an individual rate like r3. In this
paper, we take the dependent variable to be the total throughput
of the network, that is, the total rate of all its flows:

T =
∑
f∈F

rf

The derivative dT
dcl

quantifies how much the total throughput
of the network would change if link l were given an

1The bandwidth allocation function is continuous everywhere, but not
technically differentiable. In particular, it is piecewise linear. Thus, while the
derivative does not exist at all points, we can study the directional derivative
instead. Since the focus of this paper is on benchmarking, without loss of
generality we gloss over this technicality and simply use ‘derivative’ to denote
the derivative in the positive direction (δ > 0 rather than δ < 0 in line 2 of
Algorithm 3). See [6].

2

infinitesimally higher capacity.

The Theory of Bottleneck Structures is a somewhat ideal-
ized model of network behavior. In our example, we assumed
that flow 3 would experience a rate of 8 1

3 , but in fact its
rate will fluctuate as the congestion control algorithm tries to
calibrate it to network conditions, and due to other factors
like latency. Nevertheless, it has been shown [4], [5], [7]
that the theoretical flow rates predicted by the bottleneck
structure model accurately match the actual transmission rates
observed in networks that use popular congestion control
algorithms like BBR [3] and Cubic [2]. In forthcoming work,
we further strengthen these findings by using the G2-Mininet
emulation environment [8] to make empirical measurements of
flow rates. The Theory of Bottleneck Structures can also be
extended; for example, a latent bottleneck structure still exists
if a proportional fairness criterion is used to allocate rates
instead of max-min fairness. The theory can also be applied
to networks that use multipath routing by considering each
route to be a separate flow, and optimizing the sum of their
bandwidths instead of any individual bandwidth.

B. Applications of Bottleneck Structure Analysis

The scientific community has long relied on high-
performance networks to store and analyze massive volumes
of data [9]. As the collection of scientific data continues to
balloon [10], the importance of designing these networks intel-
ligently and operating them at maximum efficiency will only
increase. The analytical power of the Theory of Bottleneck
Structures stems from its ability to capture the influences that
bottlenecks and flows exert on each other and, in particular,
to precisely quantify these influences [7]. This ability can
be applied to a wide range of networking problems. For
example, taking derivatives of the form dT

dcl
is a natural way

to study the problem of optimally upgrading the network.
The derivative of the total throughput with respect to the
capacity of each link reveals which links should be upgraded
to have the maximal impact on the overall performance of
a network. Other questions in network design and capacity
planning can be addressed using similar techniques. The The-
ory of Bottleneck Structures also sheds light on flow control
problems like routing and traffic engineering. For example,
if we want to increase the performance of a certain high
priority flow and we know which flows are low priority, we
can compute derivatives of the high priority flow’s rate to
determine which of the low priority flows to traffic shape. We
can also make precise quantitative predictions of how much
this intervention would increase performance. Applications
also arise in other areas. For example, determining where a
given flow is bottlenecked, who controls that bottleneck link,
and how other traffic in the network affects the flow can help in
monitoring and managing Service-Level Agreements (SLAs).
Future work will describe such applications in greater detail,
but few are feasible without high-performance algorithms and
software for bottleneck structure analysis. One challenge of
analyzing networks in practice is that network conditions

change from second to second. The need to analyze networks
in real time imposes even stricter performance requirements
that previous work has failed to meet.

C. Constructing Bottleneck Structures

This section describes two algorithms for constructing bot-
tleneck structures. The first corresponds to a slightly modified
version of the algorithm proposed in [4]. The pseudocode is
presented in Algorithm 1 under the name ComputeBS.

During each iteration of the main loop, a set of links are
resolved, meaning the rates of all flows which traverse them
are permanently fixed. This set of links is those whose “fair
share value” sl at that iteration (line 12) is the smallest among
all links with which they share a flow (line 13). The rates of all
flows traversing link l which have not previously been fixed are
set in line 15, and the link and its flows are marked as resolved
(line 18 and 19). In addition, the proper directed edges are
added to the bottleneck structure graph—from a links to flows
which they bottleneck (line 16) and from flows to links that
they traverse but that do not bottleneck them (line 17). The
algorithm returns the bottleneck structure G = 〈V,E〉, the link
parameters {sl,∀l ∈ L} and the predicted flow transmission
rates {rf ,∀f ∈ F}.

This procedure is the same as the algorithm proposed in
[4], but with additional logic to build the graph representation
of the bottleneck structure. Its computational complexity is
O(H · |L|2 + |L| · |F|), where L is the set of links, F is the
set of flows and H is the maximum number of links traversed
by any flow. We leave it as an exercise for the reader to verify
that applying ComputeBS() to the network configuration in
Fig. 1 results in the bottleneck structure shown in Fig. 2.

Algorithm 1 ComputeBS(N = 〈L,F , {cl,∀l ∈ L}〉)
1: L := Set of links in the input network;
2: F := Set of flows in the input network;
3: Fl := Set of flows going through link l;
4: cl := Capacity of link l;
5: B := Set of bottleneck links;
6: rf := Rate of flow f ;
7: Lk := Set of unresolved links at iteration k;
8: Ck := Set of resolved flows at iteration k;
9: L0 = L; C0 = ∅; k = 0;

10: E = ∅;
11: while Ck 6= F do
12: skl = (cl −

∑
∀f∈Ck∩Fl

rf)/|Fl \ Ck|, ∀l ∈ Lk;
13: ukl = min{sk

l′ | Fl′ ∩ Fl 6= ∅, ∀l′ ∈ Lk},∀l ∈ Lk;
14: for l ∈ Lk, skl = ukl do
15: rf = skl , ∀f ∈ Fl \ Ck;
16: E = E ∪ {(l, f),∀f ∈ Fl \ Ck};
17: E = E ∪ {(f, l′), ∀f ∈ Fl \ Ck and ∀l′ ∈ Lf | skl′ 6= uk

l′};
18: Lk = Lk \ {l};
19: Ck = Ck ∪ {f, ∀f ∈ Fl};
20: end for
21: Lk+1 = Lk; Ck+1 = Ck;
22: k = k + 1;
23: end while
24: B = L \ Lk; V = B ∪ F ; sl = skl , ∀l ∈ B;
25: G = 〈V,E〉;
26: return 〈G, {sl, ∀l ∈ L}, {rf , ∀f ∈ F}〉;

We next describe FastComputeBS (Algorithm 2), an
improved algorithm for computing bottleneck structures with

3

an asymptotically faster run time than ComputeBS. This
algorithm resolves links one-by-one, but unlike ComputeBS,
it stores the links in a heap data structure sorted by the
amount of bandwidth they can allocate to flows which traverse
them. This allows the algorithm to resolve links in the proper
order without searching through the entire set of links at each
iteration, effectively skipping the expensive min{} compu-
tation of Algorithm 1 (line 13). FastComputeBS reduces
the asymptotic run time of computing the bottleneck structure
to O(|E| · log |L|), where |E| is the number of edges in
the bottleneck structure and |L| is the number of links. By
definition, there is one edge for each pair of a flow and a link
it traverses. Thus, the run time is quasilinear in the size of the
input.

Algorithm 2 FastComputeBS(N = 〈L,F , {cl,∀l ∈ L}〉)
1: V = ∅; E = ∅; rf =∞,∀f ∈ F ;
2: for l ∈ L do
3: al = cl; # available capacity
4: sl = al/|Fl|; # fair share
5: MinHeapAdd(key = sl, value= l);
6: end for
7: while F 6⊆ V do
8: l = MinHeapPop();
9: for f ∈ Fl such that rf ≥ sl do

10: E = E ∪ {(l, f)};
11: if f 6∈ V then
12: rf = sl;
13: V = V ∪ {f};
14: for l′ ∈ Lf such that rf < sl′ do
15: E = E ∪ {(f, l′)}
16: al′ = al′ − sl
17: sl′ = al/|Fl \ V|;
18: MinHeapUpdateKey(value = l′, newKey = sl′);
19: end for
20: end if
21: end for
22: V = V ∪ {l};
23: end while
24: return 〈G = 〈V,E〉, {sl, ∀l ∈ L}, {rf , ∀f ∈ F}〉;

D. Computing Link Gradients

This section describes two algorithms for computing
derivatives in a network. Algorithm 3 calculates the derivative
∂T
∂cl∗

by perturbing the capacity of l∗ by an infinitessimally
small constant δ. We then measure the change produced
in the total throughput, and divide by δ to calculate the
rate of change. Since the bandwidth allocation function is
piecewise linear, this slope is exactly the derivative ∂T

∂cl∗
.

While this method is accurate, it requires recomputing the
rates r′f from scratch, which is an expensive operation.
Thus, we call this algorithm BruteGrad. We can improve
the algorithm somewhat by replacing ComputeBS in lines
1 and 3 with FastComputeBS. We call this improved
algorithm BruteGrad++. While asymptotically faster than
BruteGrad, it is still slow if many derivatives need to be
computed.

In contrast, Algorithm 4 (ForwardGrad) uses the infor-
mation captured in the bottleneck structure graph itself to
speed up the computation of the derivative. The key insight for

Algorithm 3 BruteGrad(N = 〈L,F , {cl,∀l ∈ L}〉, l∗ ∈ L)
1: 〈G, {sl}, {rf}〉 = ComputeBS(〈L,F , {cl}〉)

2: c′l =
{
cl + δ l = l∗

cl o.w.
, ∀l ∈ L

3: 〈G′, {s′l}, {r
′
f}〉 = ComputeBS(〈L,F , {c′l}〉)

4: return ∑
f∈F r

′
f − rf
δ

this algorithm is that once the bottleneck structure has been
computed, it can be reused to calculate different derivatives
without the need to recompute the bottleneck structure for each
derivative, as in the BruteGrad algorithm. The algorithm is
inspired by forward mode automatic differentiation (“Forward
Prop”), an algorithm for finding the derivative of a complicated
expression that repeatedly applies the chain rule to larger
and larger pieces of the expression [11]. In our case, the
bottleneck structure is analogous to a computation graph of
a complicated expression, since a flow’s rate is determined by
its bottleneck links, which in turn depend on its predecessors
in the bottleneck structure. But the analogy fails in two ways.
First a flow’s rate can be affected by a change in its sibling’s
rate that frees up extra bandwidth in their shared parent, even
if the parent’s overall capacity stays the same. Second, a flow’s
rate can fail to change when its parent link changes, if it also
has another parent bottleneck link that does not change. Thus,
while the algorithm begins with the independent variable and
propogates the derivatives forward according to the chain rule,
it sometimes needs to backtrack in the graph to correct for
these cases. Still, the algorithm is a significant improvement
on BruteGrad. It only requires visiting each link or flow
at most once, and it only visits nodes which are affected by
changes in l∗. This means that ForwardGrad has a much
lower asymptotic complexity than BruteGrad. In the extreme
case, l∗ could have no descendants in the bottleneck structure,
and the algorithm will terminate immediately.

Algorithm 4 ForwardGrad(N = 〈L,F , {cl,∀l ∈ L}〉, l∗ ∈ L)
1: ds = 0 ∀s ∈ L ∪ F
2: dl∗ = 1
3: MinHeapAdd(key =〈rl∗ , dl∗/|children(l∗,G)|〉, value =l∗)
4: V = ∅ # the set of previously visited nodes
5: repeat
6: l = MinHeapPop()
7: V = V ∪ {l}
8: for f ∈ [children(l,G)] do
9: df = dl/|children(l,G)|

10: for l′ ∈ children(f,G) \ V do
11: dl′ = dl′ − df
12: MinHeapAdd(key =〈rl′ , dl′/|children(l′,G)|〉, value =l′)
13: end for
14: end for
15: until MinHeapEmpty()
16: return

∑
f∈F df

III. BENCHMARKS

A. Dataset and Experimental Environment

To ensure the benchmarks are performed on a realistic
dataset, our team was given access to a set of anonymized

4

Algorithm 5 ForwardGrad(N = 〈L,F , {cl,∀l ∈ L}〉, f∗ ∈
F)
1: ds = 0 ∀s ∈ L ∪ F
2: df∗ = 1
3: V = ∅ # the set of previously visited nodes
4: Let b ∈ L be a link such that f∗ ∈ children(b,G) # b is the

bottleneck link of f∗
5: Remove edge from b to f∗ in G
6: for l ∈ children(f∗,G) ∪ {b} do
7: dl = dl − df∗
8: MinHeapAdd(key =〈rl, dl/|children(l,G)|〉, value =l)
9: end for

10: repeat
11: l = MinHeapPop()
12: V = V ∪ {l}
13: for f ∈ [children(l,G)] do
14: df = dl/|children(l,G)|
15: for l′ ∈ children(f,G) \ V do
16: dl′ = dl′ − df
17: MinHeapAdd(key =〈rl′ , dl′/|children(l′,G)|〉, value =l′)
18: end for
19: end for
20: until MinHeapEmpty()
21: return

∑
f∈F df

NetFlow [12] logs from ESnet. ESnet is a high-performance
network built to support scientific research that provides
services to more than 50 research sites, including the entire
US National Laboratory system, its supercomputing facilities,
and its major scientific instruments [13].

The dataset contains NetFlow logs from February 1st, 2013,
through February 7th, 2013. At the time the logs were gener-
ated, ESnet had a total of 28 routers and 78 links distributed
across the US. (See Fig. 3 for a view of the ESnet topology at
the time the logs were captured.) The dataset includes samples
from all the routers, organized in intervals of 5 minutes, from
8am through 8pm, for a total of 1008 NetFlow logs for each
router (or a total of 28224 logs across the network). The total
data set is about 980 GB.

Fig. 3: ESnet network topology at the time the dataset we
use in our benchmark was taken (February 2013). Source:
ESnet historical network maps https://www.es.net/engineering-
services/the-network/network-maps/historical-network-maps.

All tests were performed on an Intel Xeon E5-2683 v3
processor clocked at a rate of 2 GHz. The processor had 4
cores configured with hyperthreading disabled. L1, L2 and
L3 caches had a size of 32 KB, 256 KB and 35840 KB,
respectively, and the size of the RAM was 32 GB.

We benchmarked two software packages developed by
our team for computing bottleneck structures. The first is
a Python package that was previously published in [5].
This package implements the ComputeBS algorithm for
computing bottleneck structures and the BruteGrad algo-
rithm for computing link gradients. The second is a new
C++ package equipped with a Python interface and func-
tions to plot the bottleneck structure graph. It implements
the FastComputeBS algorithm for computing bottleneck
structures and the BruteGrad++ and the ForwardGrad
algorithms for calculating link gradients.

B. Computing Bottleneck Structures at Scale

In this section, we benchmark and compare the two pro-
grams on the task of computing bottleneck structures. We
expect the C++ package to be more efficient because it is
written in a faster language and uses an asymptotically faster
algorithm.

1) Runtime: Figure 4 plots the time taken by each package
to compute the bottleneck structure of ESnet at each of the
1008 logging snapshots. The seven separate days on which
logs were collected are clearly distinguishable, corresponding
to varying levels of traffic through the network (the gaps in
our logs between 8 pm and 8 am each day are not represented
in the plot). As expected, the C++ package is significantly
faster than the Python package. The C++ package runs in
0.21 s on average, completing each in under 0.44 s, while
the Python package averages 20.4 s and takes as long as 66.5
s. On average, the C++ package performs 87 times faster at
this task.

0 200 400 600 800 1000
Snapshot

0

10

20

30

40

50

60

Ru
nt

im
e

(s
)

Runtimes vs. Snapshot
Alg
Python
C++

Fig. 4: Runtimes of the two packages on each of the 1008
network snapshots, showing that the new package runs quickly
on each.

5

Figure 5 demonstrates the asymptotics of the
FastComputeBS algorithm. The left panel plots the
observed run time of the C++ package against the asymptotic
bound |E| log |L|, showing very high correlation between the
two. This indicates that the asymptotic bound tightly captures
the true running time of the algorithm. The right panel plots
the runtime of each snapshot against the number of flows
|F| present in the network at that time, also showing strong
agreement. This is because, in our experiments, the number
of links is the same across all snapshots, and since each flow
traverses a small number of links, |E| is approximately linear
in |F|.

2) Memory Usage: Figure 6 plots the amount of memory
used by each package when computing the bottleneck structure
of ESnet at each of the 1008 logging snapshots. Both algo-
rithms must build a directed graph with the same numbers
of vertices and edges. However, as Figure 6 shows, the C++
package is still far more efficient, using 26.7 MB on average.
This represents a 4x median improvement over the Python
package.

Figure 7 demonstrates the space complexity of the
FastComputeBS algorithm, showing that the amount of
memory it uses is linear in the size of the input network.

C. Computing Link Gradients at Scale

In this section, we benchmark and compare the two pro-
grams’ functionality for computing link gradients. We con-
sider three methods in all: the Python package’s BruteGrad,
the C++ package’s BruteGrad++, and the C++ package’s
ForwardGrad. This allows us to separate the effect of using a
faster algorithm from the effect of using a faster programming
language. We consider one snapshot per hour over twelve
hours. For each snapshot, we compute the derivative of the
network’s total throughput with respect to each of its links
using each of the three algorithms.

1) Runtime: Figure 8 shows the runtime of each algo-
rithm across all the links and snapshots on a log scale. The
12 different snapshots form discernible sections, since the
state of the network remains constant throughout all trials
within each snapshot. Changing from the Python package’s
BruteGrad to the C++ package’s BruteGrad++ reduces the
average runtime from 19.9 s to 0.30 s, a 66-fold improvement.
Notice that this is approximately the same improvement ob-
served when moving from Python’s ComputeBS to C++’s
FastComputeBS, since these algorithms are used as sub-
routines by BruteGrad and BruteGrad++. Changing to the
C++ package’s ForwardGrad algorithm further reduces the
runtime to 0.09 s, a further 3.5-fold improvement. This level of
performance makes it possible to compute a large number of
derivatives in real time to respond to rapidly changing network
conditions.

As discussed in Section II-D, when ForwardGrad is used
to compute a link derivative, the runtime is linear in the
number of flows and links that are affected by the given link.
This group, which we call the link’s “region of influence”, is
simply the descendants of the link in the bottleneck structure

300000 400000 500000 600000 700000 800000 900000
|E| log |L|

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

C+
+

Ru
n

tim
e

(s
)

C++: Run time (s) vs. |E| log |L|
Pearson's r = 0.99

40000 60000 80000 100000 120000
flows

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

C+
+

Ru
n

tim
e

(s
)

C++: Run time (s) vs. flows
Pearson's r = 0.99

Fig. 5: Asymptotics of the FastComputeBS algorithm,
showing that it is quasilinear in the size of the network.

graph. 2 In contrast, the run times of the BruteGrad and
BruteGrad++ algorithms depend on the size of the entire
network, since they reconstruct the whole bottleneck structure.

Figure 9 plots the runtimes of the three algorithms against
the size of the given link’s region of influence and against
the total number of flows in the network. As expected,

2In rare cases, a single flow may be bottlenecked simultaneously at multiple
links. In this case, the siblings of a link’s descendants may also be part of the
region of influence, even if they are not themselves descendants of the given
link. We observe no such cases in our experiments.

6

0 200 400 600 800 1000
Snapshot

0

50

100

150

200

M
em

or
y

Us
ag

e
(M

B)
Memory Usage vs. Snapshot

Alg
Python
C++

Fig. 6: Memory usage of the two packages on each of the
1008 network snapshots, showing that the new package uses
about 4x less space.

60000 80000100000120000140000160000180000200000220000
edges

0

10

20

30

40

50

60

C+
+

M
em

or
y

Us
ag

e
(M

B)

C++: Memory Usage (MB) vs. edges
Pearson's r = 0.93

Fig. 7: Asymptotics of the space complexities of
FastComputeBS, showing that it is linear in the size
of the input network.

ForwardGrad is highly correlated with the former (top left).
It is also somewhat correlated with the number of flows (top
right), but only because networks with many flows also tend
to have some links with many descendants. Even in these
large networks however, the runtime falls under the line of
best fit for most links. As the middle and bottom left panels
show, the runtimes of BruteGrad++ and BruteGrad are not
well explained by the size of the region of influence. Instead,
like FastComputeBS and ComputeBS, they are linearly

0 100 200 300 400 500 600
Trial Number

10 1

100

101

Ru
nt

im
e

(s
)

Runtimes Across All Trials

Alg
ForwardGrad
BruteGrad++
BruteGrad

Fig. 8: Runtimes of algorithms for computing link derivatives
across 655 trials from 12 snapshots of the network.

dependent on the size of the network (middle and bottom right
panels).

Given their time complexities, we expect ForwardGrad
will exhibit a larger speed-up compared to BruteGrad++ in
cases when the input link has a small region of influence.
Figure 10 plots this relationship, showing that the speed-up
factor grows as the size of the region of influence approaches
0. This is because the size of region of influence shrinks in
comparison to the network as a whole. Thus, the 3.5x average
speed-up observed in our experiments would keep increasing
as the algorithms are applied to larger and larger networks.

2) Memory Usage: We profile the algorithms based on
the amount of additional memory they need to compute
each derivative given a pre-constructed bottleneck struc-
ture. Figure 11 shows that replacing the Python package’s
BruteGrad with BruteGrad++ significantly reduces the
memory usage—by a factor of 10 on average. Replacing
BruteGrad++ with ForwardGrad has an even greater im-
pact, reducing memory usage by a factor of 30 on average.
Indeed, the average amount of additional memory used by
ForwardGrad across all trials was just 850 KB, and the
maximum was 6.4 MB. (The steep decline in memory usage
observed in the later trials reflects the fact that the number of
flows in the network decreased precipitously at the end of the
day.)

Figure 12a shows the asymptotic behavior of the
ForwardGrad’ memory usage. Unlike the other algorithms,
ForwardGrad does not use more memory as the net-
work size increases. Technically, the space-complexity of
ForwardGrad is linear in the size of the region of influence,
since forward grad stores a derivative value for each element
in that set. In our experiments however, we find that this
dependence is so weak as to make the memory usage almost
constant. (See Figure 12b. If we only consider trials in the
middle 99% by memory usage, to exclude outliers, then the
correlation shrinks to 0.06.) These experiments demonstrate
that the ForwardGrad algorithm is highly scalable and

7

0 20000 40000 60000 80000
Size of Region of Influence

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Fo
rw

ar
dG

ra
d

Ru
n

tim
e

(s
)

ForwardGrad: Run time (s) vs. Size of Region of Influence
Pearson's r = 0.83

50000 60000 70000 80000 90000 100000 110000
flows

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Fo
rw

ar
dG

ra
d

Ru
n

tim
e

(s
)

ForwardGrad: Run time (s) vs. flows
Pearson's r = 0.68

0 20000 40000 60000 80000
Size of Region of Influence

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Br
ut

eG
ra

d+
+

Ru
n

tim
e

(s
)

BruteGrad++: Run time (s) vs. Size of Region of Influence
Pearson's r = 0.19

50000 60000 70000 80000 90000 100000 110000
flows

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Br

ut
eG

ra
d+

+
Ru

n
tim

e
(s

)

BruteGrad++: Run time (s) vs. flows
Pearson's r = 0.98

0 20000 40000 60000 80000
Size of Region of Influence

10

15

20

25

30

35

Br
ut

eG
ra

d
Ru

n
tim

e
(s

)

BruteGrad: Run time (s) vs. Size of Region of Influence
Pearson's r = 0.17

50000 60000 70000 80000 90000 100000 110000
flows

10

15

20

25

30

35

Br
ut

eG
ra

d
Ru

n
tim

e
(s

)

BruteGrad: Run time (s) vs. flows
Pearson's r = 0.89

Fig. 9: Asymptotic behavior of the algorithms to compute bottleneck structures. ForwardGrad’s runtime is linear in the size
of the region of influence, while BruteGrad and BruteGrad++ grow with the size of the network as a whole.

8

0 20000 40000 60000 80000
Size of Region of Influence

2.0

2.5

3.0

3.5

4.0

4.5

Fo
rw

ar
dG

ra
d

Sp
ee

d-
up

ForwardGrad Speed-up vs.
Size of Region of Influence

Pearson's r = -0.81

Fig. 10: The speed-up factor obtained by replacing
BruteGrad++ with ForwardGrad increases as the region
of influence shrinks.

0 100 200 300 400 500 600
Trial Number

0

50

100

150

200

M
em

or
y

Us
ag

e
(M

B)

Memory Usage Across All Trials
Alg
ForwardGrad
BruteGrad++
BruteGrad

Fig. 11: Memory usage of each algorithm across all trials.
ForwardGrad is orders of magnitude more space-efficient.

space-efficient.

IV. RELATED WORK

The analysis of bottlenecks in data networks has been the
subject of intense research since 1988, when Van Jacobson
proposed the first congestion control algorithm. This advance
literally saved the Internet from congestion collapse [14].
However much of the research during the past three decades
has been premised on the notion that a flow’s performance is
uniquely determined by the capacity of its bottleneck and the
communication round trip time of its path. This view has lead

90000 100000110000120000130000140000150000160000
edges

1

2

3

4

5

6

Fo
rw

ar
dG

ra
d

M
em

or
y

Us
ag

e
(M

B)

ForwardGrad: Memory Usage (MB) vs. edges
Pearson's r = 0.004

(a) ForwardGrad’s memory usage does not grow with the size of
the network.

0 20000 40000 60000 80000
Size of Region of Influence

1

2

3

4

5

6
Fo

rw
ar

dG
ra

d
M

em
or

y
Us

ag
e

(M
B)

ForwardGrad: Memory Usage (MB) vs. Size of Region of Influence
Pearson's r = 0.21

(b) ForwardGrad’s space complexity is linear in the size of the
region of influence, but actual memory usage is nearly constant.

Fig. 12: Memory usage of ForwardGrad.

to dozens of congestion-control algorithms based on charac-
terizing (whether implicitly or explicitly) the performance of
each flow’s bottleneck. Well-known works in this vein include
BBR [3], Cubic [2] and Reno [1]. While these algorithms
have been crucial to the success of large-scale communication
networks like the Internet, they continue to treat bottlenecks
as independent elements and do not consider their interactions
or dynamic nature.

One line of research has taken a more global view by
modeling networks as instances of multi-commodity flow
problems. The classical formulation of these problems is
altered to include a notion of fairness between competing flows

9

[15]. This approach has been applied to routing and load bal-
ancing problems under the assumption of multi-path routing;
algorithms typically involve iteratively solving a series linear
programs and adjusting the constraints [16]. This approach has
a high computational complexity that makes scaling difficult
[17], despite algorithmic tricks to mitigate the cost [18].
Moreover, this framework is somewhat brittle; it obscures the
roles played by individual elements in determining network
behavior, lacking, for example, an equivalent notion to link
and flow derivatives.

The existence of such complex interactions among bot-
tlenecks has not gone completely unnoticed in the research
community. For instance, [19] states that ”the situation is
more complicated when multiple links are involved; [...] As
flows are added or deleted and advertised fair-share rates are
adjusted, bottleneck links for flows may change, which may
in turn affect other bottleneck links, and so on, potentially
weaving through all links in the network.” However, the
authors do not attempt to solve the problem of modeling these
complex relationships.

The solution to this problem was first presented in [4]. This
work introduced the concept of latent bottleneck structures and
used a directed graph to model them. It also introduced the first
algorithm to compute the bottleneck structure, which appears
in this paper as ComputeBS. However, no benchmark was
provided, leaving open the question of whether such bottleneck
structures can be computed efficiently enough to be used in
real production networks.

The first software package for computing bottleneck struc-
tures and using them to analyze networks was introduced
in [5]. The authors provide Python implementations of the
ComputeBS and BruteGrad algorithms, along with func-
tionality for reading sFlow logs and performing simulations.
We use their package as a baseline in this paper. However, the
performance of this software was not benchmarked, and the
core functionality was too slow and memory intensive for use
with large networks in practice.

This paper provides the first benchmark of the proposed
algorithms to compute bottleneck structures, demonstrating
that, when efficiently implemented, they are capable of scaling
to support the size of real production networks. This result
confirms the practical usefulness of bottleneck structures as a
framework to help network operators understand and improve
performance with high-precision.

V. USING FastComputeBS AND ForwardGrad IN
PRODUCTION NETWORKS

The algorithms described in this paper are developed as part
of the GradientGraph (G2) technology [5]. G2 is a network
optimization software package that leverages the analytical
power of bottleneck structures to enable high-precision bot-
tleneck and flow performance analysis. Network operators
can use G2 to address a variety of network optimization
problems, including traffic engineering, congestion control,
routing, capacity planning, network design, and resiliency
analysis, among others.

The G2 technology is composed of three layers: the core
analytical layer, the user interface (northbound API) and the
network interface (southbound API).

The core analytical layer constructs the bottleneck structure
of the network under study using FastComputeBS and uses
algorithms such as ForwardGrad (among others from the
Theory of Bottleneck Structures [4], [7]) to analyze perfor-
mance. Then, G2 provides network operators with both online
and offline recommendations on how to configure the network
to achieve better performance. Online recommendations ad-
dress traffic engineering problems and include actions such
as changing the route of a set of flows or traffic shaping
certain flows to improve overall system performance. Offline
recommendations address capacity planning and network de-
sign problems and include actions such as picking the optimal
link to upgrade or identifying the most cost-effective allocation
of link capacities (for instance, identifying optimal bandwidth
tapering configurations in data center networks [20]).

The user interface (northbound API) provides three mech-
anisms to interact with G2’s core analytical engine: a repre-
sentational state transfer (REST) API to enable interactive and
automated queries, a graphical user interface (GUI) that allows
operators to visualize bottleneck structures and gradients, and
a command line interface (CLI).

The network interface (southbound API) provides a set
of plugins that allow for convenient integration of G2 into
production networks. These plugins read logs from flow
monitoring protocols such as NetFlow [12], sFlow [21] or
SNMP [22]. The sets of links L and active flows in the
network F can be easily reconstructed if such a monitoring
protocol is enabled in all the routers and switches of the
network. Otherwise, links and flows can be reconstructed with
additional information extracted from SNMP (to learn the
network topology) and from routing tables (to infer flow path
information). The capacity parameters {cl,∀l ∈ L} can be
obtained from SNMP or static network topology files that
production networks typically maintain. G2’s southbound API
includes plugins for all of these standard protocols to enable
its integration with production networks.

VI. CONCLUSION

This paper presents the first practical application of the
Theory of Bottleneck Structures to production networks. In
a series of experiments on the ESnet network, we show that
our new software package far outperforms the one published
in [5] on the core operations of computing bottleneck structure
graphs and computing link gradients. We also show that our
FastComputeBS and ForwardGrad algorithms are highly
scalable in both time and space complexity. FastCompute is
shown to scale quasilinearly with the size of the network, and
ForwardGrad is shown to scale linearly with the size of the
region of influence. These results demonstrate that bottleneck
structure analysis is a practical tool for analyzing production
networks. The benchmarks indicate that our package can
analyze networks that are even larger than ESnet and do
so in real time, even as network conditions are changing

10

rapidly. The efficiency of our core algorithms enables them
to be used as subroutines in larger network optimization
toolchains. The advances presented in this paper unlock the
potential of bottleneck structure analysis for myriad important
applications.

ACKNOWLEDGMENT

We thank the ESnet team at the Lawrence Berkeley National
Laboratory for providing the anonymized NetFlow dataset
used in the presented benchmarks and for their support
throughout this process.

This work is supported by the Department of Energy under
contract number DE-SC0019523.

REFERENCES

[1] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe,
Reno and SACK TCP,” SIGCOMM Computer Communication
Review, vol. 26, no. 3, pp. 5–21, July 1996. [Online]. Available:
http://doi.acm.org/10.1145/235160.235162

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-friendly
High-speed TCP Variant,” SIGOPS operating systems review,
vol. 42, no. 5, pp. 64–74, July 2008. [Online]. Available:
http://doi.acm.org/10.1145/1400097.1400105

[3] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: Congestion-Based Congestion Control,” ACM
Queue, vol. 14, no. 5, pp. 50:20–50:53, October 2016. [Online].
Available: http://doi.acm.org/10.1145/3012426.3022184

[4] J. Ros-Giralt, A. Bohara, S. Yellamraju, M. H. Langston, R. Lethin,
Y. Jiang, L. Tassiulas, J. Li, Y. Tan, and M. Veeraraghavan, “On the
bottleneck structure of congestion-controlled networks,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 3, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3366707

[5] J. Ros-Giralt, S. Yellamraju, A. Bohara, R. Lethin, J. Li, Y. Lin,
Y. Tan, M. Veeraraghavan, Y. Jiang, and L. Tassiulas, “G2: A network
optimization framework for high-precision analysis of bottleneck and
flow performance,” in 2019 IEEE/ACM Innovating the Network for
Data-Intensive Science (INDIS), 2019, pp. 48–60.

[6] D. M. Friedlen and M. Z. Nashed, “A note on one-sided directional
derivatives,” Mathematics Magazine, vol. 41, no. 3, pp. 147–150, 1968.
[Online]. Available: http://www.jstor.org/stable/2688187

[7] (2020) Technical report on the theory of bottleneck structures
and its applications. Reservoir Labs. Available upon request: con-
tact@reservoir.com. New York, NY, USA.

[8] (2019) Mininet-extensions-anonymized: Mininet extensions to support
the analysis of the bottleneck structure of networks. [url]. [Online].
Available: https://github.com/reservoirlabs/g2-mininet

[9] E. Martelli and S. Stancu, “Lhcopn and lhcone: status and future
evolution,” in Journal of Physics: Conference Series, vol. 664, no. 5.
IOP Publishing, 2015, p. 052025.

[10] R. Rao, “Synchrotrons face a data del-
uge,” Physics Today, 2020. [Online]. Available:
https://physicstoday.scitation.org/do/10.1063/PT.6.2.20200925a/full/

[11] R. D. Neidinger, “Introduction to automatic differentiation and matlab
object-oriented programming,” SIAM Rev., vol. 52, no. 3, p. 545–563,
Aug. 2010. [Online]. Available: https://doi.org/10.1137/080743627

[12] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes.
(2004) Netflow specifications, cisco systems. [Online]. Available:
https://www.ietf.org/rfc/rfc3954.txt

[13] ESnet, “ESnet Energy Sciences Network,” 2019. [Online]. Avail-
able: http://es.net/network-r-and-d/experimental-network-testbeds/test-
circuit-service/

[14] V. Jacobson, “Congestion Avoidance and Control,” SIGCOMM computer
communication review, vol. 18, no. 4, pp. 314–329, August 1988.
[Online]. Available: http://doi.acm.org/10.1145/52325.52356

[15] M. Allalouf and Y. Shavitt, “Maximum flow routing with weighted max-
min fairness,” in QofIS, 2004.

[16] D. Nace and M. Pioro, “Max-min fairness and its applications to
routing and load-balancing in communication networks: a tutorial,” IEEE
Communications Surveys Tutorials, vol. 10, no. 4, pp. 5–17, 2008.

[17] E. Danna, A. Hassidim, H. Kaplan, A. Kumar, Y. Mansour, D. Raz,
and M. Segalov, “Upward max-min fairness,” J. ACM, vol. 64, no. 1,
Mar. 2017. [Online]. Available: https://doi.org/10.1145/3011282

[18] D. Nace and L. Doan, “A polynomial approach to the fair multi-flow
problem,” Rapport Interne, Heudiasyc, UTC, 2002.

[19] L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McKeown, and
S. Katti, “High Speed Networks Need Proactive Congestion Control,”
in Proceedings of the 14th ACM Workshop on Hot Topics in Networks,
ser. HotNets-XIV. New York, NY, USA: ACM, 2015, pp. 14:1–14:7.
[Online]. Available: http://doi.acm.org/10.1145/2834050.2834096

[20] G. Michelogiannakis, Y. Shen, M. Y. Teh, X. Meng, B. Aivazi,
T. Groves, J. Shalf, M. Glick, M. Ghobadi, L. Dennison, and
K. Bergman, “Bandwidth steering in hpc using silicon nanophotonics,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356145

[21] P. Phaal, S. Panchen, and N. McKee, “sFlow Specifications, InMon
Corporation,” IETF RFC 3176, 2001.

[22] J. Case, M. Fedor, M. Schoffstall, and J. Davin. (1990) A
simple network management protocol (snmp). [Online]. Available:
https://tools.ietf.org/html/rfc1157

11

