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Abstract— HIPCL is expanding the scope of the CUDA 

portability route from an AMD platform to an OpenCL platform. 

In the meantime, the Intel DPC++ Compatibility Tool (DPCT) is 

migrating a CUDA program to a data parallel C++ (DPC++) 

program. Towards the goal of portability enhancement, we 

evaluate the performance of the CUDA applications from Rodinia, 

SHOC, and proxy applications ported using HIPCL and DPCT on 

Intel GPUs. After profiling the ported programs, we aim to 

understand their performance gaps, and optimize codes converted 

by DPCT to improve their performance. The open-source 

repository for the CUDA, HIP, and DPCT programs will be useful 

for the development of a translator. 
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I. INTRODUCTION 

NVIDIA CUDA [1], which was introduced in 2007, has 
successfully enabled the use of a graphics processing unit (GPU) 
as a programmable general-purpose computing device. 
However, CUDA is a proprietary programming model for 
NVIDIA GPUs. OpenCL, on the other hand, is an open standard 
maintained by the Khronos group with the support of major 
graphics hardware vendors as well as personal computer 
vendors interested in offloading computations [2, 3]. Hence, 
OpenCL offers programming portability across a wide range of 
software and hardware for GPUs, multi-core processors (CPUs), 
and other accelerators. 

In contrast to OpenCL which is based on the C programming 
language, SYCL is a specification which defines a single-source 
C++ programming layer on top of OpenCL [4]. Hence, SYCL 
allows a developer to create applications and libraries with C++ 
without using OpenCL host and kernel languages. The goals of 
the single-source programming model and the support for C++ 
features are to improve programming productivity and 
performance portability [5, 6, 7, 8, 9, 10, 11]. 

NVIDIA and AMD have been driving most of the discrete 
GPU market. Hence, there are significantly more CUDA or HIP 
applications available than those implemented in OpenCL and 
SYCL. On the other hand, the OpenCL application-
programming interface (API) is a lower-level architecture 
compared to the commonly used CUDA API, thus requiring 
more time and effort to develop an OpenCL host program for 
the management of device, memory, and kernel execution. Such 
process is often tedious and error prone. 

Acknowledging CUDA’s established presence in high-
performance computing and alleviating the pain of manual 
development of OpenCL programs, researchers have been 
striving for a portability-enhancing path for a wider set of 
platforms [12 , 13 , 14 , 15]. Towards the goal of portability 
enhancement, in this paper we evaluate the performance of 
CUDA applications ported using HIPCL [16] and the Intel 
DPC++ Compatibility Tool (DPCT) [17] on Intel computing 

platforms. While there are other translators for porting CUDA 
codes [ 18 , 19 , 20 , 21 ], they have not been under active 
development for a while. HIPCL and DPCT are ready for 
porting the applications in our study. After profiling the codes 
ported using HIPCL and DPCT, we aim to understand the cause 
of their performance gaps. Furthermore, we optimize the codes 
converted by DPCT to improve their performance on the GPUs. 
We summarize the contribution of the paper as follows.  

• Open access to the applications for evaluating CUDA 
portability on GPUs 

• Performance evaluation of the applications ported using 
HIPCL and DPCT on Intel GPUs 

• Analysis and optimization of the applications ported with 
DPCT for performance improvement 

The rest of the paper is organized as follows. Section II 
introduces different programming models (HIP, HIPCL, SYCL, 
DPCT) and the architecture of an integrated GPU. Section III 
describes the evaluation and optimization of the applications on 
the GPUs. Section IV summarizes related work, and Section V 
concludes the paper. 

II. BACKGROUND 

Figure 1 shows the method of evaluating CUDA portability 
with DPCT and HIPCL. We will explain the flow in the 
following sections.  

 

Fig 1. The flow of evaluating CUDA portability 
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A. HIP 

Heterogeneous-compute Interface for Portability (HIP) is an 
API written in the C++ programming language for developers to 
run applications on AMD and NVIDIA GPUs [22]. The HIP 
philosophy was to make the HIP language close enough, in 
terms of the function names, to CUDA that the porting effort is 
generally straightforward and simple. This reduces the potential 
for porting errors, making it easy to automate the translation. 
The goal of HIP is to run a ported program on both platforms 
with little manual intervention [23]. A CUDA source can be 
converted to a HIP source in a largely automated fashion using 
the HIPify-Clang utility in AMD’s developer tools [24].  

B. HIPCL 

HIPCL is a new library for running HIP programs on devices 
supporting OpenCL and SPIR-V [25]. Since the APIs of CUDA 
and HIP are close enough and the porting effort is typically 
straightforward, HIPCL provides a portability path from CUDA 
to OpenCL. HIPCL consists of three components: Clang, the 
runtime library, and the kernel library [16]. A patched Clang is 
required to compile a single-source C++ program to a Linux 
ELF binary which bundles device code in SPIR-V and host code. 
The runtime library implements HIP API functions, which are 
called in a host program, by mapping them to OpenCL API 
equivalents. The kernel library implements the HIP math API by 
using the OpenCL C math built-ins and Intel-specific OpenCL 
extensions. The library requires OpenCL version 2.0 for features 
such as virtual address space and subgroup functions. Since 
AMD and NVIDIA do not support SPIR-V currently, HIPCL 
has been mainly tested on Intel GPU devices.  

C. SYCL 

The design of SYCL allows for the combination of the 
performance and portability features of OpenCL and the 
flexibility of using high-level C++ abstractions [4]. Most of the 
abstraction features of C++, such as templates, classes, and 
operator overloading, are available for data-parallel functions 
(i.e., kernels) executed on a device such as a GPU. Some C++ 
language features, such as virtual functions, virtual inheritance, 
throwing/catching exceptions, and runtime type-information, 
may be disallowed inside kernels due to the capabilities of the 
underlying standard. These features are available outside the 
kernel scope. 

D. DPCT 

The tool can migrate a CUDA program to a data parallel C++ 
(DPC++) program. DPC++ extends SYCL with additional 
extensions and provides support for a variety of OpenCL devices 
[26]. The tool claims that it can port both CUDA kernels and 
library API with 80% – 90% of CUDA codes automatically 
migrated to DPC++ codes [17]. When migrating CUDA codes, 
comments are added in DPC++ codes to suggest that users 
modify migrated codes when they can be optimized away or are 
not transformed automatically due to the constraints of the 
programming model, translator, or computing capabilities. An 
example of migrating a CUDA program is shown in [17]. While 
the tool is a component of the Intel oneAPI toolkit, a standalone 
version is also available. 

DPCT can convert a CUDA program to a DPC++ program 
in which memory management migration is implemented using 

the explicit and restricted unified shared memory (USM) 
extension or the DPCT header files. By default, the generated 
codes rely on explicit and restricted USM extension for memory 
management migration. The empirical results of migrating over 
many CUDA applications show that the default implementation 
can generally achieve higher performance and portability 
coverage [27]. Hence, we will choose the USM-based codes for 
evaluating the performance of the ported applications. For ease 
of description, we will refer to DPC++ programs, which are 
generated from CUDA programs using DPCT, as DPCT 
applications, codes, or programs. 

E. Intel integrated GPUs 

In the architecture of an Intel integrated GPU [28], a GPU 
connects to CPU cores via a ring interconnect, and they share a 
main memory with CPU cores. To reduce data access latency 
from a main memory, a GPU maintains a memory hierarchy 
comprised of register files, instruction caches, and data caches. 
Some products include an embedded dynamic random-access 
memory behind a last-level cache to further reduce latency to 
system memory for higher effective bandwidth. The building 
block of the graphics compute architecture is an execution unit 

Table 1. Characteristics of the 18 Applications (M = 220) 

Name Domain #Kernels Problem size 

b+tree [29] 
Database 
search 

2 1 million keys 

backprop [29] 
Pattern 
recognition 

2 65536 keys 

bfs [29] 
Graph 
traversal 

1 1 million vertices 

cfd [29] 
Fluid 
dynamics 

5 97047 elements 

gaussian [29] Linear algebra 2 4096×4096 matrix 

heartwall [29] 
Medical 
imaging 

1 104 frames 

hotspot3D [29] 
Physics 
simulation 

1 512×512 points 

hybridsort [29] Sorting 7 50 million numbers 

kmeans [29] Data mining 2 
494020 points and 34 
features per point 

particlefilter [29] 
Medical 
imaging 

4 400000 points 

nw [29] Bioinformatics  2 2048×2048 data points 

srad [29] 
Image 
processing 

6 512×512 data points 

lud [29] Linear algebra 3 8192×8192 points 

sort [30] Sorting 3 16M numbers 

md5hash [30] Cryptography 1 10M keyspace 

fft [30] Linear algebra 2 16M complex numbers 

s3d [30] 
Combustion 
simulation 

27 16×16×16 grid 

miniFE [31] 
Unstructured 
grids 

9 128×128×128 grid 

 



(EU). It is a combination of simultaneous multi-threading and 
fine-grained interleaved multi-threading. In general, each EU 
can run seven threads concurrently to hide memory access 
latency. Arrays of EUs are organized as a subslice. The number 
of EUs per subslice depend on the generation of compute 
architecture. Each subslice contains a thread dispatcher unit and 
supporting instruction caches. Subslices are grouped into slices. 
A slice integrates additional logics for thread dispatch routing, 
banked L3 data cache, banked shared memory, and fixed 
function logic for atomics and barriers. 

III. EXPERIMENT 

A. Applications 

Table 1 lists the applications from Rodinia [29], SHOC [30], 
and proxy-apps [31] used in our work. These applications, which 
cover a variety of scientific domains, have been widely used for 
performance evaluation [32, 33, 34, 35, 36]. The number of 
kernels in the table indicate the number of distinct kernels which 
are executed at least once on a device. The problem sizes of the 
selected Rodinia applications are larger than or equal to the 
original sizes. For the SHOC programs, we choose one of the 
four problem sizes specified in the original programs. The 
CUDA, HIP, and DPCT implementations are available in the 
public repository [27]. 

B. Setup 

We evaluate the applications on two computing systems. 
The first one (System 1) has an Intel Xeon E3-1284L v4 CPU 
running at 2.9 GHz. The CPU has four cores and each core 
supports two threads. The integrated GPU is Broadwell GT3e, 

Generation 8.0. It contains 48 EUs with two slices. The second 
one (System 2) has an Intel Xeon E2176G CPU running at 3.7 
GHz. The CPU has six cores and each core supports two threads. 
The integrated GPU is Coffee Lake GT2, Generation 9.5. It 
contains 24 EUs in a single slice. We use the DPCT in the Intel 
oneAPI Base Toolkit Beta8 to port CUDA codes, and the 
DPC++ compiler to produce binaries from the DPCT codes. 
Following the HIPCL installation guide, we build HIPCL from 
the source on each system.  

The timing results are measured with the Intel OpenCL 
intercept layer [37]. The host timing is the total elapsed time of 
executing OpenCL API functions on a CPU host while the 
device timing the total elapsed time of executing OpenCL API 
functions on a GPU device. The Plugin interface (PI) is OpenCL 
[38], which is more mature than the new Level-ero PI. It should 
be mentioned that comparing performance differences of the 
ported codes between the two computing systems is beyond the 
scope of the paper. We focus on the performance implications 
of porting CUDA codes using HIPCL and DPCT on each 
system. 

C. Results 

While porting the applications with DPCT, intermediate 
configuration files are also generated for some applications. 
These files might be considered irrelevant in the CUDA-to-
DPCT translation. In addition, the tool did not generate “cfd” 
codes completely, but the issue was fixed in new releases. 

Table 2 and Table 3 list the host and device timing in seconds 
of the ported applications on the target systems, respectively. To 

Table 2. Host execution time in seconds on the two systems  

Host time 

(second) 

System 1 System 2 

HIPCL DPCT HIPCL DPCT 

miniFE 10.8 9.9 12.2 10.6 

s3d 1096 73.5 1630 65.7 

fft 13.9 19.2 21.2 28 

md5hash 2.8 3.3 6.0 6.2 

sort 8.6 28.3 10.1 17.2 

lud 7.7 9.6 11.4 11.7 

srad 1.58 1.58 5.3 3.8 

nw 1.98 2.25 2.6 2.1 

particlefilter 27.3 27 48.1 47.3 

kmeans 106 112 356 346 

hybridsort 1.95 1.74 2.1 1.65 

hotspot3D 3.8 4.5 3.94 2.74 

heartwall 8.2 8.8 14.9 12.9 

gaussian 10.4 11 9.2 9.8 

cfd 4.1 4.2 9.7 6.4 

bfs 0.25 0.56 0.37 0.45 

backprop 1.77 2.3 1.65 1.74 

b+tree 0.23 0.58 0.32 0.38 

 

Table 3. Device execution time in seconds on the two systems 

Device time 

(second) 

System 1 System 2 

HIPCL DPCT HIPCL DPCT 

miniFE 8.9 8.8 6.5 9.44 

s3d 1.07 0.83 1.5 0.92 

fft 5.6 17 11.6 26.2 

md5hash 2.6 2.6 5.7 5.7 

sort 7.8 27.5 9.4 16.6 

lud 6.3 8.45 10.5 11.2 

srad 0.62 0.79 1.9 1.8 

nw 0.86 0.91 1.5 1.1 

particlefilter 26.4 26.3 47.3 46.8 

kmeans 105 109 341 332 

hybridsort 0.89 0.87 1.1 1.06 

hotspot3D 3.8 3.9 5.95 4.1 

heartwall 8 8.3 14.5 12.7 

gaussian 10.3 10.4 11.1 11.1 

cfd 3.3 3.4 8.4 5.2 

bfs 0.025 0.025 0.075 0.074 

backprop 1.1 1.42 1.12 1.22 

b+tree 0.0039 0.0068 0.009 0.013 

 



evaluate the performance of the ported codes, we compute the 
ratios of the host and device time of an application ported using 
DPCT over those ported using HIPCL, respectively. When the 
ratio is above one, the execution time of a DPCT application is 
longer. Figures 2 show the ratios on the two systems. While 
HIPCL can achieve higher or similar performance for most 
applications, the host execution time of “s3d” is 1096 seconds 
(s) and 1630 s on the two systems, respectively. Performance 
profiling shows that building the 27 kernels at runtime takes 
more than 85% of the host time. This suggests that such runtime 
overhead become prohibitive for large applications that contain 
many static kernels. 

Based on the performance gaps shown in Figures 2, we will 
focus on the representative applications (i.e., “sort”, “fft”, “bfs”) 
which perform poorly using DPCT on the two systems. Figure 
2a shows that the device time of “sort” is more than three times 
longer. There are three static kernels in the “sort”. Profiling the 

application shows that the third kernel, which performs a bottom 
scan, is a performance bottleneck. Comparing the GPU 
assembly of the kernels, we find that two additional instructions 
are generated for synchronized global fence flushing. The 
flushing occurs 67 times in the assembly, and the two 
instructions are executed 262144 times for each flushing. The 
flushing operations cause EUs in a GPU to stall for more than 
80% of the execution time. Looking back at the DPCT kernels, 
we realize that the fence space of a work-group barrier is global 
rather than local [2]. A global fence stalls the execution of a 
GPU device for global memory synchronization, significantly 
reducing the efficiency of GPU computing when there are many 
synchronization points in a kernel. 

It turns out that 11 out of 18 applications contain memory 
synchronization in their kernels. After optimizing these 
applications with local memory fence, we re-evaluate their 
performance, and find that seven applications see performance 

  

Fig 2a. The ratios of host and device execution time of the applications 

ported using DPCT over those using HIPCL on System 1 
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Fig 2b. The ratios of host and device execution time of the applications 
ported using DPCT over those using HIPCL on System 2 
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Fig 3a. Speedup of the host execution time of the applications when 

using local memory fence on the two systems 
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Fig 3b. Speedup of the device execution time of the applications when 

using local memory fence on the two systems 
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improvement in host and/or device execution time as shown in 
Figures 3. Particularly, the execution time of “sort” is now 
almost the same for HIPCL and DPCT. For the remaining four 
applications, there is no further performance improvement, 
indicating that memory synchronization is not on the 
performance critical path. 

While the optimization also improves the performance of 
“fft”, the device execution time of the application is still more 
than two times slower than that of the HIPCL version. FFT and 
inverse FFT are the two kernels in “fft”. Performance profiling 
and the GEN assembly of the two kernels indicate that HIPCL 
can unroll the loops in the kernels automatically whereas they 
are not unrolled by the DPC++ compiler. Without loop 
unrolling, additional private memory is allocated by the 
compiler to store the 8-element array as shown in Listing 1. 
Hence, the compiler is unable to put the array data in the register 
file of an EU in a GPU for efficiency. After the loops are 
unrolled fully, the device execution time becomes the same for 
HIPCL and DPCT on each system, and the host execution time 
is 10.6 s on System 1 and 17.2 s on System 2, approximately 
24% and 19% lower than the corresponding HIPCL time, 
respectively.  

As shown in Figure 2a, the host execution time of “bfs” and 
“b+tree” ported using DPCT are approximately two times longer 
than those ported using HIPCL on System 1. Table 4 breaks 
down the execution time of the OpenCL API functions which 
account for 90% or more of the total host time on System 1. The 
results show that most of the host execution time is spent on 
“clBuildProgram” for the HIPCL implementation while 
“clCreateContext” and “clLinkProgram” consume most of the 
time for the DPCT implementation. “clBuildProgram” compiles 
and links a program executable from the program source or 
binary. “clLinkProgram” links compiled program objects and 
libraries for a specific device(s) in the OpenCL context. 
Reducing the link time will reduce the runtime overhead on a 

host. While the overhead is negligible when device execution 
time of an application is significantly longer, there is no benefit 
of offloading computation to a GPU for performance 
improvement when kernel computation time is less than runtime 
overhead.  

IV. RELATED WORK 

MCUDA is a source-to-source translator built upon the 
Cetus compiler for converting a CUDA program to a program 
for a multi-thread program running on a CPU [39]. MCUDA is 
intended to broaden the applicability of a previously accelerator-
specific programming model to a CPU architecture. Swan 
provides a high-level library for an application to call Swan API 
which is then mapped to the CUDA or OpenCL API [18]. The 
authors point out that OpenCL lacks CUDA’s C-language 
extensions which can simplify the host program’s management 
of GPU code. Coriander is a compiler and runtime for running 
CUDA applications on OpenCL 1.2 devices [19]. The author 
prefers to maintain a single codebase which can run on devices 
from any vendor for low maintenance cost. CU2CL is a source-
to-source translator built upon the Clang compiler for converting 
a CUDA program to an OpenCL program [20]. Contrary to the 
assumption that translating CUDA to OpenCL is effectively a 
one-to-one mapping process, translating certain parts of CUDA 
requires a deeper understanding of both APIs to find suitable 
corresponding constructs. Hence, these projects show the 
significance and challenges of achieving CUDA portability for 
CPUs and GPUs. A survey shows that DPCT has been used to 
convert CUDA codes in applications [12, 40, 41] and math 
libraries [42, 43]. However, users will need to change generated 
codes manually for CUDA features which are not fully 
supported by the tool. 

V. CONCLUSION 

In this paper, we evaluate the performance of the CUDA 
applications ported using HIPCL and DPCT on Intel GPUs. We 
find that HIPCL’s runtime overhead will become prohibitive 
when building a large application containing many distinct 
kernels. HIPCL is a new library, so we expect that the potential 
overhead will be mitigated in the future release of the software. 
On the other hand, the link time in the OpenCL runtime of the 
Intel oneAPI toolkit may discourage a user from offloading 
computation to a GPU for performance improvement. 
Performance analysis shows that we need to manually change 
DPCT programs to specify the appropriate address space for 
memory synchronization fence. The DPC++ compiler may be 
improved to identify the opportunity of loop unrolling in a kernel 
for performance enhancement. No tools are perfect in translating 
a CUDA application. With the growth of the two promising 
toolchains for CUDA portability, we will evaluate HIPCL and 
DPCT using more applications in our future work. 

ACKNOWLEDGMENT 

We sincerely appreciate the reviewers for their constructive 
criticism and the development teams for improving HIPCL and 
DPCT. This research was supported by the US Department of 
Energy Advanced Scientific Computing Research program 
under Contract No. DE-AC05-00OR22725. The results 
presented were obtained using the Chameleon testbed and the 
Intel DevCloud. 

T2 data[8]; 

for ( int j = 1; j < 8; j++ ){ // unroll the loop 

  data[j] = cmplx_mul( data[j], 

  exp_i(((T)-2*(T)M_PI*reversed[j]/(T)512)*tid) ); 

} 

… 

… 

for ( int j = 1; j < 8; j++ ){ // unroll the loop 

  data[j] = cmplx_mul( data[j], 

  exp_i(((T)-2*(T)M_PI*reversed[j]/(T)64)*hi) ); 

} 

 

Listing 1. The loops which compute the complex values for the data array 

in “fft” 

 

Table 4. Breakdown of the host execution time of “bfs” on System 1 

OpenCL API 
HIPCL 
time 

DPCT 
time 

clGetPlatformIDs 0.001 s 0.05 s 

clBuildProgram 0.22 s N/A 

clCreateContext 10 us 0.29 s 

clLinkProgram N/A 0.18 s 

Host time 0.23 s 0.58 s 
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