Evaluating CUDA Portability with HIPCL and DPCT

Zheming Jin and Jeffrey Vetter
Oak Ridge National Laboratory
jinz@ornl.gov

Abstract— HIPCL is expanding the scope of the CUDA
portability route from an AMD platform to an OpenCL platform.
In the meantime, the Intel DPC++ Compatibility Tool (DPCT) is
migrating a CUDA program to a data parallel C++ (DPC++)
program. Towards the goal of portability enhancement, we
evaluate the performance of the CUDA applications from Rodinia,
SHOC, and proxy applications ported using HIPCL and DPCT on
Intel GPUs. After profiling the ported programs, we aim to
understand their performance gaps, and optimize codes converted
by DPCT to improve their performance. The open-source
repository for the CUDA, HIP, and DPCT programs will be useful
for the development of a translator.

Keywords—CUDA, HIP, OpenCL, DPC++, CUDA Portability

I. INTRODUCTION

NVIDIA CUDA [1], which was introduced in 2007, has
successfully enabled the use of a graphics processing unit (GPU)
as a programmable general-purpose computing device.
However, CUDA is a proprietary programming model for
NVIDIA GPUs. OpenCL, on the other hand, is an open standard
maintained by the Khronos group with the support of major
graphics hardware vendors as well as personal computer
vendors interested in offloading computations [2, 3]. Hence,
OpenCL offers programming portability across a wide range of
software and hardware for GPUs, multi-core processors (CPUS),
and other accelerators.

In contrast to OpenCL which is based on the C programming
language, SYCL is a specification which defines a single-source
C++ programming layer on top of OpenCL [4]. Hence, SYCL
allows a developer to create applications and libraries with C++
without using OpenCL host and kernel languages. The goals of
the single-source programming model and the support for C++
features are to improve programming productivity and
performance portability [5, 6, 7, 8, 9, 10, 11].

NVIDIA and AMD have been driving most of the discrete
GPU market. Hence, there are significantly more CUDA or HIP
applications available than those implemented in OpenCL and
SYCL. On the other hand, the OpenCL application-
programming interface (API) is a lower-level architecture
compared to the commonly used CUDA API, thus requiring
more time and effort to develop an OpenCL host program for
the management of device, memory, and kernel execution. Such
process is often tedious and error prone.

Acknowledging CUDA’s established presence in high-
performance computing and alleviating the pain of manual
development of OpenCL programs, researchers have been
striving for a portability-enhancing path for a wider set of
platforms [12, 13, 14, 15]. Towards the goal of portability
enhancement, in this paper we evaluate the performance of
CUDA applications ported using HIPCL [16] and the Intel
DPC++ Compatibility Tool (DPCT) [17] on Intel computing

platforms. While there are other translators for porting CUDA
codes [18, 19, 20, 21], they have not been under active
development for a while. HIPCL and DPCT are ready for
porting the applications in our study. After profiling the codes
ported using HIPCL and DPCT, we aim to understand the cause
of their performance gaps. Furthermore, we optimize the codes
converted by DPCT to improve their performance on the GPUs.
We summarize the contribution of the paper as follows.

e Open access to the applications for evaluating CUDA
portability on GPUs

o Performance evaluation of the applications ported using
HIPCL and DPCT on Intel GPUs

e Analysis and optimization of the applications ported with
DPCT for performance improvement

The rest of the paper is organized as follows. Section 1l
introduces different programming models (HIP, HIPCL, SYCL,
DPCT) and the architecture of an integrated GPU. Section Il
describes the evaluation and optimization of the applications on
the GPUs. Section 1V summarizes related work, and Section V
concludes the paper.

II. BACKGROUND

Figure 1 shows the method of evaluating CUDA portability
with DPCT and HIPCL. We will explain the flow in the

following sections.
CUDA source

DPCT HIPify
Y Y
DPC++ source HIP source
DPC++ HIPCL
Compiler
Y \J
Binary Binary

Fig 1. The flow of evaluating CUDA portability

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research

in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

http://energy.gov/downloads/doe-public-access-plan

A. HIP

Heterogeneous-compute Interface for Portability (HIP) is an
AP written in the C++ programming language for developers to
run applications on AMD and NVIDIA GPUs [22]. The HIP
philosophy was to make the HIP language close enough, in
terms of the function names, to CUDA that the porting effort is
generally straightforward and simple. This reduces the potential
for porting errors, making it easy to automate the translation.
The goal of HIP is to run a ported program on bhoth platforms
with little manual intervention [23]. A CUDA source can be
converted to a HIP source in a largely automated fashion using
the HIPify-Clang utility in AMD’s developer tools [24].

B. HIPCL

HIPCL is a new library for running HIP programs on devices
supporting OpenCL and SPIR-V [25]. Since the APIs of CUDA
and HIP are close enough and the porting effort is typically
straightforward, HIPCL provides a portability path from CUDA
to OpenCL. HIPCL consists of three components: Clang, the
runtime library, and the kernel library [16]. A patched Clang is
required to compile a single-source C++ program to a Linux
ELF binary which bundles device code in SPIR-V and host code.
The runtime library implements HIP API functions, which are
called in a host program, by mapping them to OpenCL API
equivalents. The kernel library implements the HIP math API by
using the OpenCL C math built-ins and Intel-specific OpenCL
extensions. The library requires OpenCL version 2.0 for features
such as virtual address space and subgroup functions. Since
AMD and NVIDIA do not support SPIR-V currently, HIPCL
has been mainly tested on Intel GPU devices.

C. SYCL

The design of SYCL allows for the combination of the
performance and portability features of OpenCL and the
flexibility of using high-level C++ abstractions [4]. Most of the
abstraction features of C++, such as templates, classes, and
operator overloading, are available for data-parallel functions
(i.e., kernels) executed on a device such as a GPU. Some C++
language features, such as virtual functions, virtual inheritance,
throwing/catching exceptions, and runtime type-information,
may be disallowed inside kernels due to the capabilities of the
underlying standard. These features are available outside the
kernel scope.

D. DPCT

The tool can migrate a CUDA program to a data parallel C++
(DPC++) program. DPC++ extends SYCL with additional
extensions and provides support for a variety of OpenCL devices
[26]. The tool claims that it can port both CUDA kernels and
library APl with 80% — 90% of CUDA codes automatically
migrated to DPC++ codes [17]. When migrating CUDA codes,
comments are added in DPC++ codes to suggest that users
modify migrated codes when they can be optimized away or are
not transformed automatically due to the constraints of the
programming model, translator, or computing capabilities. An
example of migrating a CUDA program is shown in [17]. While
the tool is a component of the Intel oneAPI toolkit, a standalone
version is also available.

DPCT can convert a CUDA program to a DPC++ program
in which memory management migration is implemented using

the explicit and restricted unified shared memory (USM)
extension or the DPCT header files. By default, the generated
codes rely on explicit and restricted USM extension for memory
management migration. The empirical results of migrating over
many CUDA applications show that the default implementation
can generally achieve higher performance and portability
coverage [27]. Hence, we will choose the USM-based codes for
evaluating the performance of the ported applications. For ease
of description, we will refer to DPC++ programs, which are
generated from CUDA programs using DPCT, as DPCT
applications, codes, or programs.

E. Intel integrated GPUs

In the architecture of an Intel integrated GPU [28], a GPU
connects to CPU cores via a ring interconnect, and they share a
main memory with CPU cores. To reduce data access latency
from a main memory, a GPU maintains a memory hierarchy
comprised of register files, instruction caches, and data caches.
Some products include an embedded dynamic random-access
memory behind a last-level cache to further reduce latency to
system memory for higher effective bandwidth. The building
block of the graphics compute architecture is an execution unit

Table 1. Characteristics of the 18 Applications (M = 2%)

Name Domain #Kernels Problem size
Database L
b+tree [29] search 2 1 million keys
Pattern
backprop [29] recognition 2 65536 keys
Graph . .
bfs [29] traversal 1 1 million vertices
Fluid
cfd [29] dynamics 5 97047 elements
gaussian [29] Linear algebra 2 4096x4096 matrix
Medical
heartwall [29] imaging 1 104 frames
Physics .
hotspot3D [29] simulation 1 512x512 points
hybridsort [29] Sorting 7 50 million numbers
- 494020 points and 34
kmeans [29] Data mining 2 features per point
A Medical -
particlefilter [29] imaging 4 400000 points
nw [29] Bioinformatics 2 2048x2048 data points
Image :
srad [29] processing 6 512x512 data points
lud [29] Linear algebra 3 8192x8192 points
sort [30] Sorting 3 16M numbers
md5hash [30] Cryptography 1 10M keyspace
fft [30] Linear algebra 2 16M complex numbers
Combustion -
s3d [30] simulation 27 16x16x16 grid
miniFE [31] ;?gg“““red 9 128x128x128 grid

(EV). It is a combination of simultaneous multi-threading and
fine-grained interleaved multi-threading. In general, each EU
can run seven threads concurrently to hide memory access
latency. Arrays of EUs are organized as a subslice. The number
of EUs per subslice depend on the generation of compute
architecture. Each subslice contains a thread dispatcher unit and
supporting instruction caches. Subslices are grouped into slices.
A slice integrates additional logics for thread dispatch routing,
banked L3 data cache, banked shared memory, and fixed
function logic for atomics and barriers.

I1l. EXPERIMENT

A. Applications

Table 1 lists the applications from Rodinia [29], SHOC [30],
and proxy-apps [31] used in our work. These applications, which
cover a variety of scientific domains, have been widely used for
performance evaluation [32, 33, 34, 35, 36]. The number of
kernels in the table indicate the number of distinct kernels which
are executed at least once on a device. The problem sizes of the
selected Rodinia applications are larger than or equal to the
original sizes. For the SHOC programs, we choose one of the
four problem sizes specified in the original programs. The
CUDA, HIP, and DPCT implementations are available in the
public repository [27].

B. Setup

We evaluate the applications on two computing systems.
The first one (System 1) has an Intel Xeon E3-1284L v4 CPU
running at 2.9 GHz. The CPU has four cores and each core
supports two threads. The integrated GPU is Broadwell GT3e,

Table 2. Host execution time in seconds on the two systems

Host time System 1 System 2
(second) HIPCL | DPCT | HIPCL | DPCT
miniFE 10.8 9.9 12.2 10.6
s3d 1096 735 1630 65.7
fft 13.9 19.2 212 28
md5hash 2.8 33 6.0 6.2
sort 8.6 28.3 10.1 17.2
lud 7.7 9.6 11.4 11.7
srad 1.58 1.58 5.3 3.8
nw 1.98 2.25 2.6 2.1
particlefilter | 27.3 27 48.1 47.3
kmeans 106 112 356 346
hybridsort 1.95 1.74 2.1 1.65
hotspot3D 3.8 45 3.94 2.74
heartwall 8.2 8.8 14.9 12.9
gaussian 10.4 11 9.2 9.8
cfd 4.1 4.2 9.7 6.4
bfs 0.25 0.56 0.37 0.45
backprop 1.77 2.3 1.65 1.74
b+tree 0.23 0.58 0.32 0.38

Generation 8.0. It contains 48 EUs with two slices. The second
one (System 2) has an Intel Xeon E2176G CPU running at 3.7
GHz. The CPU has six cores and each core supports two threads.
The integrated GPU is Coffee Lake GT2, Generation 9.5. It
contains 24 EUs in a single slice. We use the DPCT in the Intel
oneAPl Base Toolkit Beta8 to port CUDA codes, and the
DPC++ compiler to produce binaries from the DPCT codes.
Following the HIPCL installation guide, we build HIPCL from
the source on each system.

The timing results are measured with the Intel OpenCL
intercept layer [37]. The host timing is the total elapsed time of
executing OpenCL API functions on a CPU host while the
device timing the total elapsed time of executing OpenCL API
functions on a GPU device. The Plugin interface (PI) is OpenCL
[38], which is more mature than the new Level-ero PI. It should
be mentioned that comparing performance differences of the
ported codes between the two computing systems is beyond the
scope of the paper. We focus on the performance implications
of porting CUDA codes using HIPCL and DPCT on each
system.

C. Results

While porting the applications with DPCT, intermediate
configuration files are also generated for some applications.
These files might be considered irrelevant in the CUDA-to-
DPCT translation. In addition, the tool did not generate “cfd”
codes completely, but the issue was fixed in new releases.

Table 2 and Table 3 list the host and device timing in seconds
of the ported applications on the target systems, respectively. To

Table 3. Device execution time in seconds on the two systems

Device time System 1 System 2
(second) HIPCL | DPCT | HIPCL | DPCT
miniFE 8.9 8.8 6.5 9.44
s3d 1.07 0.83 15 0.92
fft 5.6 17 11.6 26.2
md5hash 2.6 2.6 5.7 5.7
sort 7.8 275 94 16.6
lud 6.3 8.45 10.5 11.2
srad 0.62 0.79 1.9 18
nw 0.86 091 15 11
particlefilter | 26.4 26.3 47.3 46.8
kmeans 105 109 341 332
hybridsort 0.89 0.87 11 1.06
hotspot3D 38 39 5.95 41
heartwall 8 8.3 145 12.7
gaussian 10.3 10.4 11.1 1.1
cfd 33 34 8.4 5.2
bfs 0.025 0.025 | 0.075 0.074
backprop 1.1 1.42 1.12 1.22
b+tree 0.0039 | 0.0068 | 0.009 0.013

Ratios of device and host execution time on System 1

MINIFE —
s3d
fft

md5hash
sort
lud
srad
nw

particlefilter
kmeans
hybridsort
hotspot3D
heartwall
gaussian
cfd
bfs
backprop EE——
e e

2 3 4

o
=

mdevice mhost

Fig 2a. The ratios of host and device execution time of the applications
ported using DPCT over those using HIPCL on System 1

evaluate the performance of the ported codes, we compute the
ratios of the host and device time of an application ported using
DPCT over those ported using HIPCL, respectively. When the
ratio is above one, the execution time of a DPCT application is
longer. Figures 2 show the ratios on the two systems. While
HIPCL can achieve higher or similar performance for most
applications, the host execution time of “s3d” is 1096 seconds
(s) and 1630 s on the two systems, respectively. Performance
profiling shows that building the 27 kernels at runtime takes
more than 85% of the host time. This suggests that such runtime
overhead become prohibitive for large applications that contain
many static kernels.

Based on the performance gaps shown in Figures 2, we will
focus on the representative applications (i.e., “sort”, “fft”, “bfs”)
which perform poorly using DPCT on the two systems. Figure
2a shows that the device time of “sort” is more than three times
longer. There are three static kernels in the “sort”. Profiling the

Performance speedup of host execution using local
memory fence

fft ———
SOrt I eeeee—
lud ———
Srad S

nw ————

backprop EEEE——
bttree E——

0 1 2 3 4

m System2 ®m Systeml

Fig 3a. Speedup of the host execution time of the applications when
using local memory fence on the two systems

Ratios of device and host execution time on System 2

miniFE
s3d

fft
md5Shash
sort

lud

srad

nw
particlefilter
kmeans
hybridsort
hotspot3D
heartwall
gaussian
cfd

bfs
backprop
b+tree

o
o
(&3]
[any
=
(&3]
N

2.5

mdevice mhost

Fig 2b. The ratios of host and device execution time of the applications
ported using DPCT over those using HIPCL on System 2

application shows that the third kernel, which performs a bottom
scan, is a performance bottleneck. Comparing the GPU
assembly of the kernels, we find that two additional instructions
are generated for synchronized global fence flushing. The
flushing occurs 67 times in the assembly, and the two
instructions are executed 262144 times for each flushing. The
flushing operations cause EUs in a GPU to stall for more than
80% of the execution time. Looking back at the DPCT kernels,
we realize that the fence space of a work-group barrier is global
rather than local [2]. A global fence stalls the execution of a
GPU device for global memory synchronization, significantly
reducing the efficiency of GPU computing when there are many
synchronization points in a kernel.

It turns out that 11 out of 18 applications contain memory
synchronization in their kernels. After optimizing these
applications with local memory fence, we re-evaluate their
performance, and find that seven applications see performance

Performance speedup of device execution using local
memory fence

sort
lud
srad ...
nw e——
backprop EE———
b+tree e

0 1 2 3 4

m System2 = Systeml

Fig 3b. Speedup of the device execution time of the applications when
using local memory fence on the two systems

T2 datal[8];
for (int j = 1; j < 8; j++){ // unroll the loop
data[j] = cmplx mul(datalj],
exp 1(((T)-2*(T)M PI*reversed[j]/(T)512)*tid));
}

Eor (int 3 = 1;
data[j] = cmplx mul(datalj],
exp 1(((T)-2*(T)M PI*reversed[j]/(T)64)*hi));
}

j < 8; j++){ // unroll the loop

Listing 1. The loops which compute the complex values for the data array
in “fft”

improvement in host and/or device execution time as shown in
Figures 3. Particularly, the execution time of “sort” is now
almost the same for HIPCL and DPCT. For the remaining four
applications, there is no further performance improvement,
indicating that memory synchronization is not on the
performance critical path.

While the optimization also improves the performance of
“fft”, the device execution time of the application is still more
than two times slower than that of the HIPCL version. FFT and
inverse FFT are the two kernels in “fft”. Performance profiling
and the GEN assembly of the two kernels indicate that HIPCL
can unroll the loops in the kernels automatically whereas they
are not unrolled by the DPC++ compiler. Without loop
unrolling, additional private memory is allocated by the
compiler to store the 8-element array as shown in Listing 1.
Hence, the compiler is unable to put the array data in the register
file of an EU in a GPU for efficiency. After the loops are
unrolled fully, the device execution time becomes the same for
HIPCL and DPCT on each system, and the host execution time
is 10.6 s on System 1 and 17.2 s on System 2, approximately
24% and 19% lower than the corresponding HIPCL time,
respectively.

As shown in Figure 2a, the host execution time of “bfs” and
“bttree” ported using DPCT are approximately two times longer
than those ported using HIPCL on System 1. Table 4 breaks
down the execution time of the OpenCL API functions which
account for 90% or more of the total host time on System 1. The
results show that most of the host execution time is spent on
“clBuildProgram” for the HIPCL implementation while
“clCreateContext” and “clLinkProgram” consume most of the
time for the DPCT implementation. “clBuildProgram” compiles
and links a program executable from the program source or
binary. “clLinkProgram” links compiled program objects and
libraries for a specific device(s) in the OpenCL context.
Reducing the link time will reduce the runtime overhead on a

Table 4. Breakdown of the host execution time of “bfs” on System 1

OpenCL API E'rLZCL tDir';ST
clGetPlatformIDs | 0.001s | 0.05s
clBuildProgram 0.22s N/A
clCreateContext 10us 0.29s
clLinkProgram N/A 0.18s
Host time 0.23s 0.58s

host. While the overhead is negligible when device execution
time of an application is significantly longer, there is no benefit
of offloading computation to a GPU for performance
improvement when kernel computation time is less than runtime
overhead.

IV. RELATED WORK

MCUDA is a source-to-source translator built upon the
Cetus compiler for converting a CUDA program to a program
for a multi-thread program running on a CPU [39]. MCUDA is
intended to broaden the applicability of a previously accelerator-
specific programming model to a CPU architecture. Swan
provides a high-level library for an application to call Swan API
which is then mapped to the CUDA or OpenCL API [18]. The
authors point out that OpenCL lacks CUDA’s C-language
extensions which can simplify the host program’s management
of GPU code. Coriander is a compiler and runtime for running
CUDA applications on OpenCL 1.2 devices [19]. The author
prefers to maintain a single codebase which can run on devices
from any vendor for low maintenance cost. CU2CL is a source-
to-source translator built upon the Clang compiler for converting
a CUDA program to an OpenCL program [20]. Contrary to the
assumption that translating CUDA to OpenCL is effectively a
one-to-one mapping process, translating certain parts of CUDA
requires a deeper understanding of both APIs to find suitable
corresponding constructs. Hence, these projects show the
significance and challenges of achieving CUDA portability for
CPUs and GPUs. A survey shows that DPCT has been used to
convert CUDA codes in applications [12, 40, 41] and math
libraries [42, 43]. However, users will need to change generated
codes manually for CUDA features which are not fully
supported by the tool.

V. CONCLUSION

In this paper, we evaluate the performance of the CUDA
applications ported using HIPCL and DPCT on Intel GPUs. We
find that HIPCL’s runtime overhead will become prohibitive
when building a large application containing many distinct
kernels. HIPCL is a new library, so we expect that the potential
overhead will be mitigated in the future release of the software.
On the other hand, the link time in the OpenCL runtime of the
Intel oneAPI toolkit may discourage a user from offloading
computation to a GPU for performance improvement.
Performance analysis shows that we need to manually change
DPCT programs to specify the appropriate address space for
memory synchronization fence. The DPC++ compiler may be
improved to identify the opportunity of loop unrolling in a kernel
for performance enhancement. No tools are perfect in translating
a CUDA application. With the growth of the two promising
toolchains for CUDA portability, we will evaluate HIPCL and
DPCT using more applications in our future work.

ACKNOWLEDGMENT

We sincerely appreciate the reviewers for their constructive
criticism and the development teams for improving HIPCL and
DPCT. This research was supported by the US Department of
Energy Advanced Scientific Computing Research program
under Contract No. DE-AC05-000R22725. The results
presented were obtained using the Chameleon testbed and the
Intel DevCloud.

[1]
[2]

(3]

(4]
(5]

(6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

Kirk, D., 2007, October. NVIDIA CUDA software and GPU parallel
computing architecture. In ISMM (Vol. 7, pp. 103-104).

Munshi, A., Jacobs, 1.S., Bean, C.P., Rado, G.T. and Suhl, H., 2007.
Khronos OpenCL Working Group. The OpenCL Specification, Version
1, pp.271-350.

Czajkowski, T.S., Aydonat, U., Denisenko, D., Freeman, J., Kinsner, M.,
Neto, D., Wong, J., Yiannacouras, P. and Singh, D.P., 2012, August.
From OpenCL to high-performance hardware on FPGAs. In 22nd
international conference on field programmable logic and applications
(FPL) (pp. 531-534). IEEE.

Wong, M., Richards, A., Rovatsou, M. and Reyes, R., 2016. Khronos’s
OpenCL SYCL to support heterogeneous devices for C++.

Ke, Y., Agung, M. and Takizawa, H., 2021, January. neoSYCL: a SYCL
implementation for SX-Aurora TSUBASA. In The International
Conference on High Performance Computing in Asia-Pacific Region (pp.
50-57).

Jin, Z., 2020. The Rodinia Benchmark Suite in SYCL (No. ANL/ALCF-
20/06). Argonne National Lab.(ANL), Argonne, IL (United States).

Constantinescu, D.A., Navarro, A., Corbera, F., Ferndndez-Madrigal, J.A.
and Asenjo, R., 2020. Efficiency and productivity for decision making on
low-power heterogeneous CPU+ GPU SoCs. The Journal of
Supercomputing, pp.1-22.

Jod, B., Kurth, T., Clark, M.A., Kim, J., Trott, C.R., Ibanez, D.,
Sunderland, D. and Deslippe, J., 2019, November. Performance
portability of a Wilson Dslash stencil operator mini-app using Kokkos
and SYCL. In 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC) (pp. 14-25). IEEE.

Jin, Z. and Finkel, H., 2019, December. A Case Study of k-means
Clustering using SYCL. In 2019 IEEE International Conference on Big
Data (Big Data) (pp. 4466-4471). IEEE.

Jin, Z. and Finkel, H., 2019, November. Evaluation of Medical Imaging
Applications using SYCL. In 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) (pp. 2259-2264). IEEE.
Reguly, 1.Z., 2019, November. Performance portability of multi-material
kernels. In 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC) (pp. 26-35). IEEE.
Christgau, S. and Steinke, T., 2020, May. Porting a Legacy CUDA Stencil
Code to oneAPI. In 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (pp. 359-367). IEEE.
Deakin, T. and Mclntosh-Smith, S., 2020, April. Evaluating the
performance of HPC-style SYCL applications. In Proceedings of the
International Workshop on OpenCL (pp. 1-11).

Burns, R., Lawson, J., McBain, D. and Soutar, D., 2019, May.
Accelerated neural networks on OpenCL devices using SYCL-DNN. In
Proceedings of the International Workshop on OpenCL (pp. 1-4).

Goli, M., lwanski, L. and Richards, A., 2017, May. Accelerated machine
learning using TensorFlow and SYCL on OpenCL Devices. In
Proceedings of the 5th International Workshop on OpenCL (pp. 1-4).
Babej, M. and Ja&skeldinen, P., 2020, April. HIPCL: Tool for Porting
CUDA Applications to Advanced OpenCL Platforms Through HIP. In
Proceedings of the International Workshop on OpenCL (pp. 1-3).
https://software.intel.com/en-us/get-started-with-intel-dpcpp-
compatibility-tool

Harvey, M.J. and De Fabritiis, G., 2011. Swan: A tool for porting CUDA
programs to OpenCL. Computer Physics Communications, 182(4),
pp.1093-1099.

Perkins, H., 2017, May. CUDA-on-CL: a compiler and runtime for
running NVIDIA CUDA C++ 11 applications on OpenCL™ 1.2 Devices.
In Proceedings of the 5th International Workshop on OpenCL (pp. 1-4).
Gardner, M., Sathre, P., Feng, W.C. and Martinez, G., 2013.
Characterizing the challenges and evaluating the efficacy of a CUDA-to-
OpenCL translator. Parallel Computing, 39(12), pp.769-786.

Sathre, Paul, Mark Gardner, and Wu-chun Feng. On the portability of
CPU-accelerated applications via automated source-to-source translation.
In Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, pp. 1-8. 2019.

Brown, C., Abdelfattah, A., Tomov, S. and Dongarra, J., 2020,
September. Design, Optimization, and Benchmarking of Dense Linear

(23]

[24]
[25]
[26]

[27]
(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]
(39]

[40]

[41]

[42]

(43]

Algebra Algorithms on AMD GPUs. In 2020 IEEE High Performance
Extreme Computing Conference (HPEC) (pp. 1-7). IEEE.

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-
FAQ.html#hip-faq

https://github.com/ROCm-Developer-Tools/HIPIFY
https://www.khronos.org/spir/

Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J. and
Tian, X., 2021. Data Parallel C++: Mastering DPC++ for Programming
of Heterogeneous Systems using C++ and SYCL. Springer Nature.
https://github.com/zjin-Icf/oneAPI-DirectProgramming

Gera, P., Kim, H., Kim, H., Hong, S., George, V. and Luk, C.K., 2018,
April. Performance characterisation and simulation of intel's integrated
GPU architecture. In 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS) (pp. 139-148).
IEEE.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, JW., Lee, S.H. and
Skadron, K., 2009, October. Rodinia: A benchmark suite for
heterogeneous computing. In 2009 IEEE international symposium on
workload characterization (1ISWC) (pp. 44-54). IEEE.

Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford,
K., Tipparaju, V. and Vetter, J.S., 2010, March. The scalable
heterogeneous computing (SHOC) benchmark suite. In Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units (pp. 63-74).

Barrett, R.F., Tang, L. and Hu, S.X., 2014. Performance and Energy
Implications for Heterogeneous Computing Systems: A MiniFE Case
Study (No. SAND2014-20215). Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States).

Memeti, Suejb, Lu Li, Sabri Pllana, Joanna Kotodziej, and Christoph
Kessler. Benchmarking OpenCL, OpenACC, OpenMP, and CUDA:
programming productivity, performance, and energy consumption. In
Proceedings of the 2017 Workshop on Adaptive Resource Management
and Scheduling for Cloud Computing, pp. 1-6. 2017.

Mishra, A., Li, L., Kong, M., Finkel, H. and Chapman, B., 2017,
November. Benchmarking and evaluating unified memory for OpenMP
GPU offloading. In Proceedings of the Fourth Workshop on the LLVM
Compiler Infrastructure in HPC (pp. 1-10).

Zohouri, H.R., Maruyama, N., Smith, A., Matsuda, M. and Matsuoka, S.,
2016, November. Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs. In SC16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (pp. 409-420). IEEE.

Lopez, M.G., Young, J., Meredith, J.S., Roth, P.C., Horton, M. and
Vetter, J.S., 2015, November. Examining recent many-core architectures
and programming models using SHOC. In Proceedings of the 6%
International Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems (pp. 1-12).

Fang, J., Varbanescu, A.L. and Sips, H., 2011, September. A
comprehensive performance comparison of CUDA and OpenCL. In 2011
International Conference on Parallel Processing (pp. 216-225). IEEE.
Ashbaugh, B., 2018, May. Debugging and Analyzing Programs Using the
Intercept Layer for OpenCL Applications. In Proceedings of the
International Workshop on OpenCL (pp. 1-2).
https://intel.github.io/llvm-docs/Plugininterface.html

Stratton, J.A., Stone, S.S. and Wen-mei, W.H., 2008, July. MCUDA: An
efficient implementation of CUDA kernels for multi-core CPUs. In
International Workshop on Languages and Compilers for Parallel
Computing (pp. 16-30). Springer, Berlin, Heidelberg.
https://github.com/intel/supra-on-oneapi

Phillips, J.C. and et al., 2020. Scalable molecular dynamics on CPU and
GPU architectures with NAMD. The Journal of chemical physics, 153(4),
p.044130.

Anzt, H., Cojean, T., Chen, Y.C., Flegar, G., Gobel, F., Grutzmacher, T.,
Nayak, P., Ribizel, T. and Tsai, Y.H., 2020. Ginkgo: A high performance
numerical linear algebra library. Journal of Open Source Software, 5(52),
p.2260.
https://techdecoded.intel.io/resources/migrating-from-cuda-to-dpc-
using-the-intel-dpc-compatibility-tool/

