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1 Executive Summary

This report provides a summary of the research activities conducted over the four years of this
project. These research activities were performed by three teams:

- Combustion Team: A team of engineers located in Georgia Tech that conducted
experiments on combustor test-rigs. Team members include: Timothy Lieuwen, Benjamin
Emerson, Nicholas Rock, and Raghul Manosh Kumar

- Turbine Team: A team of engineers located in Pennsylvania State University that
conducted experiments on the turbine test-rig. Team members include: Reid Berdanier,
Karen Thole, and Eric Deshong

- Data Analytics Team: A team of engineers located in Georgia Tech that aided both teams
in designing experiments and performed data analytics for condition monitoring tasks.
Team members include: Nagi Gebraeel, Kamran Paynabar, and Benjamin Peters

The report is organized as follows. Section 2 discusses the overall objectives of the project and
outlines the data analytics framework used to address challenges related to the combustor and the
turbine. Section 3 discusses the development of data analytics methodologies related to two
combustor faults: lean blowout and centerbody degradation. Section 4 discusses the development
of two data analytics methodologies for monitoring cooling faults in the gas turbine. Furthermore,
the development of a new dataset for future analysis is also discussed. Section 5 outlines the
dissemination of results for this project. The report concludes with a summary of accomplishments
and potential for future work.

2 Objectives and Approach

The objective of this project is to enable the development of a Big Data analytics framework
for critical gas turbine components through a systematic experimental program that leverages
unique industry-class turbine test rigs. As mentioned in the proposal, the analytics framework
consists of four key components:

- Data curation procedures that tackle data storage, data quality assessments, and integrity
checks.

- Feature engineering, which revolves around using different data transformation algorithms
guided by physics-based models to develop high-fidelity fault features that can be
leveraged by subsequent fault detection algorithms and prognostic models.

- Machine learning-based fault detection and diagnostics algorithms constitute the third
component of our analytics methodology.

- Remaining life prognostics of critical gas turbine components will be the focus of the fourth
component of our methodology, prognostics and predictive analytics.

Advanced gas turbine test facilities will be interrogated using state-of-the-art instrumentation
techniques to build fault signatures and data trends for key combustor and turbine faults. Data
generated from a combustor test rig (Georgia Tech) and a turbine test rig (Penn State) during both
normal operation and with “seeded” faults serve as the basis for the Big Data sets. The test
conditions in the two test facilities include common, critical events that occur in the operation of



power plants. Figure 2.1 provides an overview of the research approach and has been extracted
from the proposal narrative.

Industrial Data
from OEMs

'

High-Resolution Data Big Data Analytics I Scalable Analytic

Combustor & Turbine Framework Algorithms
» Data Curation
: » Feature Engineering Curated Data Sets
Physics-Based - »| * Detection/Diagnostics [ ® & Gas Turbine
Modeling L Prognostics ) Sensing Roadmap

Figure 2.1. Research Objective, Scope, and Deliverables

3 Combustor

Modern emission standards have resulted in a transition from non-premixed combustion to
premixed combustion. While enabling a reduction in nitrogen oxide (NOx) emissions, this
transition has rendered modern combustors more susceptible to operational faults such as lean
blowout and combustor instabilities. Therefore, it is important to detect precursors to these faults
to maintain operability of the combustor. In this section, we highlight the contributions of both the
combustion team and data analytics team as it pertains to combustor fault detection. Notably, we
discuss experimentation and data analytics methodologies related to lean blowout and combustor
centerbody erosion, the latter of which results from combustor instabilities.

3.1 Lean Blowout

Lean blowout, or the failure to stabilize a flame in a combustor, is a phenomenon that narrows
combustor operability margins. The ground power generation heavy frame gas turbine industry is
faced with this issue as combustor blowout will trip the plant and cause costly operational down
time. This problem is also relevant to other industries, such as gas turbine engines for aircraft. The
working solution is to maintain a combustor at an equivalence (fuel-to-air) ratio ¢ well above the
lean blowout limit ¢; 5o. However, modern low NOx systems operate at low equivalence ratios by
design for emissions reasons. Advanced lean blowout detection would enable increased gas turbine
turndown and therefore wider operability range. Advanced detection methods require detailed
combustor rig data and improved understanding of lean blowout physics. Lab-scale experiments
are helpful for this purpose, as they provide optical access and flexibility in a way that is impossible
in an actual engine.

In this study, the combustor test-rig located at the Ben T. Zinn Combustion Laboratory at
Georgia Tech was used to acquire lean blowout data. This test-rig is displayed in Figure 3.1.



Figure 3.1: Combustion Test-rig 1

OH* chemiluminescence time series data was recorded using a photomultiplier tube, which
aggregates the light intensity in its field of view into a singleton point. Data was sampled at a rate
of 10 kHz over a 50 second interval. During this interval, the equivalence ratio was gradually
reduced from ¢ — ¢; 50 = 0.1 to blowout. A realization of this data is shown in Figure 3.2.
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Figure 3.2: OH* Chemiluminescence Signal Recorded by PMT

Ten replications of this process were recorded for ten fuels and two air temperatures (300 K and

450 K). This dataset was utilized to develop a data analytics framework for detecting precursors
to lean blowout. However, application of the framework was limited to the conventional fuel.
Therefore, application of the framework to the alternative fuels is a topic for future work.

The data analytics framework consists of constructing a control chart to monitor the
combustion flame as the equivalence ratio is reduced. In Statistical Process Control (SPC), data is
collected while the system is in a healthy state and operating under normal operating conditions.
The statistical distribution of this data serves as a baseline for the system. The control chart is
constructed such that statistically significant deviations from the baseline distribution are detected.



These alarms can then be investigated as either chance anomalous occurrences or as results of
system faults. An assumption commonly made in SPC is that data samples are statistically
independent of each other while being identically distributed. However, the signal in Figure 3.2 is
highly autocorrelated and consists of trends in both the mean and variance. Constructing a
conventional control chart without accounting for the properties of the data inevitably leads to a
high false alarm rate. Therefore, we model the autocorrelation and the nonstationary behavior in
the signal using a time series model, ARIMA(2,1,1)-IGARCH(1,1). The formulation for this model
is shown below:
VXi =+ ¢1VX;_ 1 + ¢oVXi 5 + 6101 +a;
a;~N(0,07) (3.1.1)
of =Var(ala;_y) = ag + ayaf 4 +n107 4, > 0,a3,1; 2 0,2, + 1 = 1

In Equation 3.1.1, VX; = X; — X;_{. The advantage of this modeling framework is that the

sequence Z;, i = 1,2, ..., where Z; = %~N (0,1) for all i, consists of uncorrelated, identically

distributed random variables. Thus, the observed values of this sequence are suitable for
constructing the control chart.

To estimate the parameters of the ARIMA(2,1,1)-IGARCH(1,1) model, the ten realizations are
equally split into training and testing. A time series model is fitted for each training realization
using the first half of the OH* chemiluminescence signal. This corresponds to when the flame is
stable. The parameters for the five training realizations are then averaged to obtain a global time
series model. This global model is then applied to the five testing realizations.

To detect precursors to blowout, we construct an Exponentially Weighted Root Mean Squared
error (EWRMS) control chart. To remove residual autocorrelation, we collect rational subgroups
of size b = 10. The EWRMS control chart monitors the squared deviation of the process Z, k =
1,2, ... from the expected value of zero. The equation for the monitoring statistic is as follows:

Sk = J(l =S, +yZi k=12, ..,[b7T,] (3.1.2)

1
where Sy, = bz and y = 0.2. The control limits are determined by first establishing an acceptable

100(1—-«a

false alarm rate, @ = 0.0027 and then computing the %th percentile and the dh percentile

of the sequence S; when the flame is stable. An example of control charts for air temperatures of
300 K and 450 K are shown in Figure 3.3 and Figure 3.4 respectively.

The control chart elicits an alarm when the monitoring statistic breaches one of the control
limits. We notice that as blowout becomes more imminent, the frequency of alarms increases. We
leverage this to imbue each alarm with a probability that it is a true precursor to blowout. For each
air temperature, a 2-parameter exponential distribution is fitted to the equivalence ratio values at
the time of alarms for the training realizations. This is shown in Figure 3.5.

For the test realizations, once an alarm is observed, we condition on the event that the
equivalence ratio is less than the current value which causes the probability of a true alarm to
approach unity as the equivalence ratio reduces toward blowout. This is shown in Figure 3.6.

This true alarm probability can aid turbine operators in decision making. Furthermore, future
work can focus on developing utilizing this true alarm probability to control equivalence ratio
automatically to prevent blowout.
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Figure 3.4: EWRMS Control Charts of Training Realizations for 450 K Air Temperature
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Figure 3.5: Fitted Distributions for Air Temperatures 300 K and 450 K
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Figure 3.6: Control Charts for 300 K (Top) and 450 K (Bottom)

3.2 Centerbody

In addition to lean blowout, the transition to pre-mixed combustion leaves modern combustors
susceptible to instabilities that can result in component degradation. For example, thermal stresses
can cause degradation to the combustor centerbody, a component responsible for maintaining a
stable combustor flame and for protecting combustor hardware from the flame. Therefore, a study



was conducted to develop a methodology for diagnosing centerbody degradation. This
methodology consisted of placing 10 acoustic sensors around a combustor test rig as shown in
Figure 3.7.

Figure 3.7: Combustor Test-rig with Acoustic Sensors

An experiment was conducted where 10 samples of data were recorded from the 10 sensors
for four different levels of centerbody degradation. The degraded centerbodies were manufactured
to lengths of 87.4 mm, 76.2 mm, 63.5 mm, and 50.8 mm. Each data sample consisted of monitoring
the pressure around the flame using the acoustic sensors for 5.1 seconds at a sampling rate of 40
kHz. An example of a data sample is shown in Figure 3.8.

The data analytics approach consists of the following methodology:

e Feature Extraction: This step consists of transforming the raw sensor data to extract salient
features for modeling. A Discrete Wavelet Transform (DWT) was utilized since the time
series is nonstationary. This transform decomposes the signal into discrete frequency
ranges, where high frequencies are characterized by a high number of coefficients and low
frequencies are characterized by a low number of coefficients. To extract features, we
compute the energy in each frequency range by calculating the sum of squared coefficients
within their respective frequency ranges. An example of this feature extraction is shown in
Figure 3.9.



Sensor Selection: In the previous step, two of the sensors are removed because they
malfunctioned during the experiment. To select the appropriate features for monitoring, we
employ a hierarchical feature selection approach. The first step is to select an optimal
subset of sensors. The reason is that some sensors may either be redundant or
noninformative regarding degradation. Inclusion of these sensors introduces noise in the
model and can result in reduced prediction accuracy. To perform sensor selection, we use
multi-class logistic regression with adaptive group lasso penalty. This type of regression
maps the features to the space of discrete degradation classes. The penalty causes the
regression coefficients for features extracted from nonsignificant sensors to shrink to zero,
thereby removing them from the analysis. The sensor selection can be shown in Figure
3.10 below.

Individual Feature Selection: After selecting significant sensors, the optimal set of
individual features are selected from the remaining sensors. This is achieved using multi-
class logistic regression with lasso penalty. The result of this is shown in Figure 3.11.

Diagnosis: The individual feature selection showed that a small number of features can be
used for predicting centerbody degradation. To perform diagnosis, the model fitted in the
previous step is used to predict the probability that the centerbody is in one of the four
states. The state with the highest probability is selected for diagnosis.
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Figure 3.8: Acoustic Sensor Data for Combustor Flame
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(Green) Corresponding to Each Sensor

To assess the effectiveness of the proposed methodology, three hypotheses were tested. First,
we tested whether the proposed methodology was better than using a model with no feature
selection. The baseline model consisted of a multi-class logistic regression model with ridge
penalty. This model shrinks regression coefficients but does not reduce them to zero. Second, we
tested whether our methodology was robust to changes in the training sample size. The results for
both tests are shown in Table 3.1.

Table 3.1: Classification Accuracy for Models Using N Total Observations for Training

Model
N (# Obs/Class) Baseline Hierarchical
Feature
model .
Selection
20(5) 0.985 1.000
16 (4) 0.974 0.999
12.(3) 0.961 0.994
8(2) 0.882 0.956

Table 3.1 demonstrates that the proposed model outperforms the baseline model. Furthermore, it
is more robust to changes in the sample size as it maintains a 95% accuracy even when using only
two observations per class for training. The final test was to determine which set of sensors was
more accurate: the sensors located on the tubes (longitudinal) or those placed on the support beams
(transverse). The results showed that when the training size was N = 20, the longitudinal sensors
had an overall accuracy of 99.75% whereas the tangential sensors had an overall accuracy of
85.6%. Therefore, the sensors placed on the tubing are more effective than those on the support
beams. This concluded the work conducted on the combustion section. In the next chapter, we
discuss research efforts related to the turbine section.



4 Turbine Section

High main gas path temperatures are important for ensuring turbine efficiency. However, these
temperatures can exceed component melting temperatures. To counter this, modern turbines are
equipped with cooling systems to preserve the health of the turbine components despite the high
temperatures. For example, turbine blades are now manufactured with coolant holes so cold air
from the compressor can maintain a blade temperature below the material melting point. For
components below the main gas path, cooling efforts are more novel. They involve using coolant
flow from the compressor to create a seal to protect the under-platform region from main gas path
ingress. The challenges associated with these cooling strategies is in monitoring their
effectiveness. Several instruments for monitoring blade temperature and signs of material warping
like blade tip clearance have been utilized. However, these techniques have not been utilized for
monitoring the coolant flow from the upstream compressor. Therefore, research efforts focused on
developing a framework for monitoring the coolant flow rate using infrared images of the blade.
For the underplatform region, there is a dearth of monitoring strategies published in the literature.
Therefore, we propose two approaches to monitor the effectiveness of the coolant seal using time-
resolved pressure signals recorded either near the rim seal or above the casing. Finally, we
conclude the section by briefly discussing an experiment to monitor tip clearance using the
principles of experimental design. While no data analytics have been published from this effort,
the dataset generated serves as an opportunity for future research teams to develop condition
monitoring methodologies. All experimental work was conducted in the Steady Thermal Aero
Research Turbine (START) facility at Pennsylvania State University. A diagram of this facility is
shown in Figure 4.1.

Figure 4.1: START Lab



4.1 Blade Coolant

Blade cooling flow is necessary to prevent high-temperature erosion of turbine blades. An
example of this erosion is shown in Figure 4.2. To avoid this erosion, turbine blades are designed
to allow cooling flow through manufactured holes as shown in Figure 4.3.

Figure 4.2: Turbine Blade Erosion
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For this experiment, we utilize infrared imaging of the turbine blade to monitor the health of the
coolant system. For example, if an upstream fault occurs in the compressor, we want to determine
whether this type of fault can be detected via the temperature distribution of the blade. A diagram
of the imaging is shown in Figure 4.4.

hot

Tblade
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Figure 4.4: Infrared Imaging of Blade

Imaging of the blade was recorded for four main gas path temperatures and five coolant flow
rates. A diagram showing the set points for these measurements is shown in Figure 4.5.



1r O) T O ngh
(] © o)
0.8
L) ©
_ @ ) o
Meool 0 6 | ?
ri.|r:uol,max '
e o
04
0] @ e
0.2 : : Low
0.85 09 0.95 1
TMGP
TMGP,max

Figure 4.5: Experimental Set Points for Imaging

Note that in Figure 4.5, there are large deviations amongst the coolant flow rates despite the set
points being the same. This is due to latent factors influencing the measurements. The existence
of these measurements influenced the experimental design demonstrated in Section 4.3. Part of
this project was to determine how important including these factors into the model was in
predicting the coolant flow rate. The model used was a linear regression with lasso penalty, whose
formulation is shown below:

N
1
I — R — xTR)2
wo.};r}é‘u%wzzvzl(% Bo = x{B)* + AlIBll; @11)
L=

In Equation 4.1.1, y; is the ith observed coolant flow rate, 3, is the bias term, and x; € R” is the
vector of predictors. For this project, x; is a vector comprised of either just features from the image
or of features combined with ancillary measurements. When other measurements are included, so
too are the interaction terms. For example, if main gas path temperature is included in the model,

= = T = . . . . .
xX; = (Tl, Tyepir Ty X TMGP,I-) , where T; is the average intensity of the infrared image. In general,
three feature extraction techniques were implemented:
- 2D Avg: an overall average of the image pixels

- 1D Avg: the set of column wise averages
- Image: using all image pixels as features

As with the combustor experiments, the data was partitioned into a training and test set, where the
models were fitted using the training data and the accuracy of the models was determined based
on the test data.



Since ancillary factors had a significant effect on the data, we wanted to first see how our
modeling methodology worked on an ideal dataset where variance of these ancillary factors was
minimal. Then, we included the remaining data to test how inclusion of the ancillary measurements
into the model can reduce the prediction error introduced by these non-homogeneous datapoints.
The prediction root mean squared error (RMSE) for all models fitted is shown in Figure 4.6.
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Figure 4.6: Comparison of Coolant Flow Rate Prediction Accuracy

By comparing the median root mean squared error, we can draw the following conclusions:

- The 1D Avg and Image features result in more accurate models than the 2D Avg

- Inclusion of the main gas path temperature into the model only improves accuracy for the
2D Avg feature

- Modeling using the ideal dataset results in less prediction error than modeling using the
original dataset and not including any ancillary measurements. This is true, even if
including the main gas path temperature as a predictor.

- Including the ancillary measurements with the main gas path temperature results in the
most accurate model for all feature extraction techniques. However, the benefit for 1D Avg
and 2D Avg is minimal. Therefore, the added benefit may be outweighed by the cost of
extra sensing capability.

Another interesting discovery was made when looking at the regression coefficients for the
model fitted using just the Image features on the original dataset. The coefficients that were
nonzero were aggregated in two distinct clusters on the image as shown in Figure 4.7.



hot

cold

X

Figure 4.7: Regression Coefficient Clusters

The two regions correspond to a cold region from the bottom-most cooling hole and the hot region
below the upper-most cooling hole. This indicates potential for targeting more cost-effective
sensors to these regions of the blade. As shown in Figure 4.8, the use of four pixels spanning both
regions can perform on par with the optimal model.
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Figure 4.8: Comparison Between Optimal Model and 4-Feature Model

4.2 Sealing Effectiveness

In addition to monitoring blade coolant flow, the START Lab was used to conduct an
experiment to aid in the development of a framework for monitoring the ability of purge flow to
prevent ingress into the wheelspace region. A diagram of the cross-section of the gas turbine
showing the location of the sensors is shown in Figure 4.9.
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In this experiment, 9 samples were recorded at 9 different purge flow conditions. Data was sampled
from pressure sensors located at the rim seal (P,) and the outer casing (P;). A gas tracer method
was used to measure the sealing effectiveness for a given purge flow condition. The purge flow
settings along with the sealing effectiveness values are shown in Figure 4.10.
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Figure 4.10: Sealing Effectiveness vs. Purge Flow Rate

To extract features from the pressure signals, a fast Fourier transform is employed. Then the energy
within frequency bands centered at integer multiples of the disk rotating frequency is computed to
generate features. An example of this transform for both sensor locations is shown in Figure 4.11.
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Figure 4.11: Fast Fourier Transform

In Figure 4.11, there is a noticeable attenuation in the amplitude from the rim seal to the outer
casing. We expect a higher prediction accuracy using features from the rim seal vs. features from
the casing. However, we are interested in whether the outer casing features are usable for
monitoring.

For this study, two diagnosis methodologies are proposed. The first is an off-the-shelf
technique that uses linear regression with lasso to map the features extracted from the fast Fourier
transform to the sealing effectiveness. Upon observing the regression coefficients in Figure 4.12,

we notice that the coefficient related to the dominant frequency in Figure 4.11 (fL = ) is zero.
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Figure 4.13: Purge Flow and Fluid-Dynamic
Instability



However, this feature corresponds to a fluid-dynamic instability that whose correlation with the
sealing effectiveness changes after the sealing effectiveness is greater than 0.5. This can be seen
in Figure 4.13.

To obtain a more accurate model for sealing effectiveness, a two-step approach is employed.
First a coarse model that predicts whether the sealing effectiveness is less than 0.5 or greater than
0.5 is fitted using all features. This model utilizes logistic regression with lasso, where logistic
regression maps the features to a binary state. Then using the dominant frequency and its next four
harmonics (and their log transforms), linear regression with lasso is fitted. However, this model
includes a covariate corresponding to whether the sealing effectiveness is less than 0.5 or greater
than 0.5. This splits the model into two models. Therefore, given the result from the first step, a
granular prediction of sealing effectiveness is obtained using the linear regression model in the
second step. The result of these two strategies is shown in Figure 4.14.
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Figure 4.14: Prediction Results for a) Rim Seal, b) Outer Casing, and the ¢c) RMSE

From Figure 4.14, the two-step approach (2S) significantly reduces the prediction error from the
off-the-shelf method (DD). Furthermore, despite having a higher RMSE than the rim seal sensor,
the outer casing sensor still enables accurate prediction of the sealing effectiveness.



4.3 Tip Clearance

Tip clearance has an inversely proportional relationship with gas turbine efficiency. If tip
clearance can be monitored using temperature or pressure measurements, then that would increase
functionality of these sensors. Therefore, we are interested in whether time-resolved over rotor
pressure and temperature sensors can be used to predict tip clearance. Part of the capabilities of
the START Lab is a magnetic bearing that can move the rotor in either cardinal direction. A
diagram of the turbine blade and the sensor layout is shown in Figure 4.15.
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Figure 4.15: Tip Clearance Sensor Layout

Data analytics related to this study involved first normalizing the pressure and temperature by
the inlet parameters and the coolant parameters. The prediction accuracy of the normalized sensor
features can then be compared to the raw sensor features. A discrete wavelet transform is used to
extract features from the sensor signals. Then linear regression with lasso is used to map the
features to the tip clearance. A model is fit for features extracted from the nonnormalized signals
and the normalized signals. Furthermore, two ensemble methods are employed to combine the
results from the three models. The first method selects the sensor with the lowest prediction error
on the validation set. The second method uses a weighted average of the tip clearance predictions,
where the weights are inversely proportional to the prediction error for that sensor. The results of
this study are summarized in Figure 4.16.

The RMSE plots show that there is not a discernable difference in prediction accuracy
amongst the various sensor normalization techniques. The pressure sensor is far less susceptible
to outliers compared to the temperature sensor. However, predictions near the boundaries of the
sealing effectiveness show a high degree of error.

This project was expanded upon to account for measurements collected under various turbine
operating conditions. Specifically, three types of measurements were highlighted as potential
candidates for diagnostic modelling: blade pressure ratio (BPR), exit temperature (Texit), and time-
resolved blade tip pressure ratio (BTPR). All these measurements are sensitive to both changes in
tip clearance, as well as changes in facility operating conditions. To facilitate the development of
a model which can account for the interdependency of tip clearance and turbine operating



conditions, four boundary conditions were varied across 16 runs with independent tip clearance
variations executed at each run, as shown in Figure 4.17.
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Figure 4.17. Tip Clearance Diagnostics Study Test Matrix



Beginning with BPR, Figure 4.18 shows the data alongside the facility cross-section with the
sensors highlighted. The relationship between BPR and tip clearance (7) is linear across all runs
(operating conditions). Notably, the data are falling into two distinct clusters, which is driven by
the two TSPR set points, as indicated in Figure 4.18. Within these clusters, the x and y shifts are
caused by variations in the other 3 independent variables (inlet temperature, coolant flow rate, and
speed). When considering BPR with respect to the other diagnostic measurements, BPR is
relatively simple in that it does not capture any special or temporal variation.
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Figure 4.18: Left) Equation and Measurement Locations Used to Quantify BPR. Right) BPR vs. Tip
Clearance (1) at All Run Conditions

Next, a subset of the exit temperature (Texit) measurements are shown in Figure 4.19.
Importantly, these Texit measurements were collected at multiple locations between 50% and 100%
span to quantify the rotor exit temperature profile. These profiles are shown in Figure 4.19 for the
concentric tip clearance case across all run conditions. The most pronounced shift in the data is
caused by the variations between the two inlet temperature set points, as noted in Figure 4.19. The
radial distribution of the Texit measurements may be specifically useful for this application because
the most pronounced tip clearance effects will be observed in the measurements near the tip, while
the measurements near the midspan (50% span) will be largely insensitive to the tip clearance
variations.

Lastly, an example of the BTPR data is shown in Figure 4.20. Importantly, the tip pressure
sensor (Ptip) is a fast-response sensor that was sampled at frequencies greater than the blade passing
frequency. This high frequency response enables an examination of the over-rotor pressure on a
blade-by-blade basis. When examining the frequency spectrum (bottom left of Figure 4.20), the
blade passing frequency and its harmonics are clearly observable. This diagnostic measurement is
important because it may capture tip clearance effects that cause high frequency fluctuations in the
flow field.
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Altogether, this suite of diagnostic measurements will shed light on the sensor and modelling
requirements for prediction of blade tip clearance using engine representative sensors. The unique
characteristics of each diagnostic measurement will be useful for separating operating condition



changes from tip clearance changes when using the sensor measurements as inputs to generate
clearance predictions.

5 Dissemination of Project Results

A comprehensive list of conferences/journals in which our findings were presented/published is
provided below:

5.1

1.

5.2

5.3

Posters and Presentations

Poster: 2017 University Turbine Systems Research Project Review Meeting (Pittsburgh,
PA), Title: Real time health monitoring for gas turbine components using online learning
and high-dimensional data

Poster: 2018 Annual Project Review Meeting for Crosscutting Research Portfolios
(Pittsburgh, PA), Title: Title: Real time health monitoring for gas turbine components
using online learning and high-dimensional data

Presentation: 2018 University Turbine Systems Project Review Meeting (Daytona Beach,
FL), Title: Real time health monitoring for gas turbine components using online learning
and high-dimensional data

Presentation: 2019 Annual Project Review Meeting for Crosscutting, Rare Earth
Elements, Gasification and Transformative Power Generation (Pittsburgh, PA), Title:
Real time health monitoring for gas turbine components using online learning and high-
dimensional data

Presentation: 2019 University Turbine Systems Research (UTSR) Project Review
Meeting (Orlando, FL), Title: Real time health monitoring for gas turbine components
using online learning and high-dimensional data

Conference Publications

Kumar, R. M., Peters, B., Emerson, B., Paynabar, K., Gebraeel, N., Lieuwen, T. (2020).
Data driven fault detection of premixer centerbody degradation in a swirl

combustor. Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical
Conference and Exposition GT2020

Correlating time-resolved pressure measurements with rim sealing effectiveness for real-
time turbine health monitoring by Eric T. Deshong, Benjamin Peters, Reid A. Berdanier,
Karen A. Thole, Kamran Paynabar, and Nagi Gebraeel, Submitted to: Proceedings of
ASME Turbo EXPO 2021: Turbomachinery Technical Conference and Exposition GT
2021

Journal Publications

3. Peters, B., Rock, N., Emerson, B., Gebraeel, N., & Paynabar, K. (2021). Data Analytics

Method for Detecting Extinction Precursors To Lean Blowout In Spray Flames.
Accepted Combustion Science and Technology. 2020

DeShong E., Peters B., Berdanier R. A., Thole K. A., Paynabar K., and Gebraeel N.,
“Correlating Time-Resolved Pressure Measurements with Rim Sealing Effectiveness for
Real-Time Turbine Health Monitoring”, Accepted ASME Journal of Turbomachinery,
2022.



6 Conclusion

This project enabled the development of a symbiotic relationship between industry
professionals and data scientists. The benefit for industry professionals is that they are introduced
to the concepts of experimental design, statistical process control, and data analytics that either
provide credibility to previously held beliefs or illuminate interesting phenomena that motivates
further investigation. Conversely, the data scientists are provided feedback on the applicability of
their theoretical modeling frameworks to real-world systems. The results of this project
demonstrated that Big Data analytics is applicable for developing effective models for condition
monitoring of industrial systems. This was shown by a control chart methodology for detecting
precursors to lean blowout, a hierarchical feature selection methodology for diagnosing centerbody
degradation, a two-step data-driven/domain knowledge-based approach for monitoring sealing
effectiveness and using infrared imaging for detecting the state-of-health of cooling systems.

Despite the project concluding, there is still potential for future work. In the lean blowout
study, data was collected for multiple alternative fuels. The OH* chemiluminescence data for these
fuels is yet to be analyzed. Furthermore, the tip clearance data set collected using the designed
experiment is also yet to be analyzed. Therefore, there are opportunities for future research groups
to continue with what was accomplished in this project. Future work would also include an attempt
to include prognostics. The limitation is the need for data failure data. Since this is not easily
attainable, alternative approaches to developing a prognostic dataset can be discussed by future
research teams.



7 Milestone Status Report
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