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1 Executive Summary 

This report provides a summary of the research activities conducted over the four years of this 
project. These research activities were performed by three teams: 

- Combustion Team: A team of engineers located in Georgia Tech that conducted 
experiments on combustor test-rigs. Team members include: Timothy Lieuwen, Benjamin 
Emerson, Nicholas Rock, and Raghul Manosh Kumar 

- Turbine Team: A team of engineers located in Pennsylvania State University that 
conducted experiments on the turbine test-rig. Team members include: Reid Berdanier, 
Karen Thole, and Eric Deshong 

- Data Analytics Team: A team of engineers located in Georgia Tech that aided both teams 
in designing experiments and performed data analytics for condition monitoring tasks. 
Team members include: Nagi Gebraeel, Kamran Paynabar, and Benjamin Peters 

The report is organized as follows. Section 2 discusses the overall objectives of the project and 
outlines the data analytics framework used to address challenges related to the combustor and the 
turbine. Section 3 discusses the development of data analytics methodologies related to two 
combustor faults: lean blowout and centerbody degradation. Section 4 discusses the development 
of two data analytics methodologies for monitoring cooling faults in the gas turbine. Furthermore, 
the development of a new dataset for future analysis is also discussed. Section 5 outlines the 
dissemination of results for this project. The report concludes with a summary of accomplishments 
and potential for future work. 

2 Objectives and Approach 

The objective of this project is to enable the development of a Big Data analytics framework 
for critical gas turbine components through a systematic experimental program that leverages 
unique industry-class turbine test rigs. As mentioned in the proposal, the analytics framework 
consists of four key components: 

- Data curation procedures that tackle data storage, data quality assessments, and integrity 
checks.  

- Feature engineering, which revolves around using different data transformation algorithms 
guided by physics-based models to develop high-fidelity fault features that can be 
leveraged by subsequent fault detection algorithms and prognostic models.  

- Machine learning-based fault detection and diagnostics algorithms constitute the third 
component of our analytics methodology.  

- Remaining life prognostics of critical gas turbine components will be the focus of the fourth 
component of our methodology, prognostics and predictive analytics. 

Advanced gas turbine test facilities will be interrogated using state-of-the-art instrumentation 
techniques to build fault signatures and data trends for key combustor and turbine faults. Data 
generated from a combustor test rig (Georgia Tech) and a turbine test rig (Penn State) during both 
normal operation and with “seeded” faults serve as the basis for the Big Data sets. The test 
conditions in the two test facilities include common, critical events that occur in the operation of 



power plants. Figure 2.1 provides an overview of the research approach and has been extracted 
from the proposal narrative.  

 
Figure 2.1. Research Objective, Scope, and Deliverables 

3 Combustor 

Modern emission standards have resulted in a transition from non-premixed combustion to 
premixed combustion. While enabling a reduction in nitrogen oxide (NOx) emissions, this 
transition has rendered modern combustors more susceptible to operational faults such as lean 
blowout and combustor instabilities. Therefore, it is important to detect precursors to these faults 
to maintain operability of the combustor. In this section, we highlight the contributions of both the 
combustion team and data analytics team as it pertains to combustor fault detection. Notably, we 
discuss experimentation and data analytics methodologies related to lean blowout and combustor 
centerbody erosion, the latter of which results from combustor instabilities. 

3.1 Lean Blowout 
Lean blowout, or the failure to stabilize a flame in a combustor, is a phenomenon that narrows 

combustor operability margins. The ground power generation heavy frame gas turbine industry is 
faced with this issue as combustor blowout will trip the plant and cause costly operational down 
time. This problem is also relevant to other industries, such as gas turbine engines for aircraft. The 
working solution is to maintain a combustor at an equivalence (fuel-to-air) ratio 𝜙𝜙 well above the 
lean blowout limit 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿. However, modern low NOx systems operate at low equivalence ratios by 
design for emissions reasons. Advanced lean blowout detection would enable increased gas turbine 
turndown and therefore wider operability range. Advanced detection methods require detailed 
combustor rig data and improved understanding of lean blowout physics. Lab-scale experiments 
are helpful for this purpose, as they provide optical access and flexibility in a way that is impossible 
in an actual engine. 

In this study, the combustor test-rig located at the Ben T. Zinn Combustion Laboratory at 
Georgia Tech was used to acquire lean blowout data. This test-rig is displayed in Figure 3.1. 



 
Figure 3.1: Combustion Test-rig 1 

OH* chemiluminescence time series data was recorded using a photomultiplier tube, which 
aggregates the light intensity in its field of view into a singleton point. Data was sampled at a rate 
of 10 kHz over a 50 second interval. During this interval, the equivalence ratio was gradually 
reduced from 𝜙𝜙 − 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿 ≈ 0.1 to blowout. A realization of this data is shown in Figure 3.2. 

 
Figure 3.2: OH* Chemiluminescence Signal Recorded by PMT 

 Ten replications of this process were recorded for ten fuels and two air temperatures (300 K and 
450 K). This dataset was utilized to develop a data analytics framework for detecting precursors 
to lean blowout. However, application of the framework was limited to the conventional fuel. 
Therefore, application of the framework to the alternative fuels is a topic for future work. 

The data analytics framework consists of constructing a control chart to monitor the 
combustion flame as the equivalence ratio is reduced. In Statistical Process Control (SPC), data is 
collected while the system is in a healthy state and operating under normal operating conditions. 
The statistical distribution of this data serves as a baseline for the system. The control chart is 
constructed such that statistically significant deviations from the baseline distribution are detected. 
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These alarms can then be investigated as either chance anomalous occurrences or as results of 
system faults. An assumption commonly made in SPC is that data samples are statistically 
independent of each other while being identically distributed. However, the signal in Figure 3.2 is 
highly autocorrelated and consists of trends in both the mean and variance. Constructing a 
conventional control chart without accounting for the properties of the data inevitably leads to a 
high false alarm rate. Therefore, we model the autocorrelation and the nonstationary behavior in 
the signal using a time series model, ARIMA(2,1,1)-IGARCH(1,1). The formulation for this model 
is shown below: 

 ∇𝑋𝑋𝑖𝑖 = 𝜇𝜇 + 𝜙𝜙1∇𝑋𝑋𝑖𝑖−1 + 𝜙𝜙2∇𝑋𝑋𝑖𝑖−2 + 𝜃𝜃1𝑎𝑎𝑖𝑖−1 + 𝑎𝑎𝑖𝑖 
𝑎𝑎𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝑖𝑖2� 

𝜎𝜎𝑖𝑖2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎𝑖𝑖|𝑎𝑎𝑖𝑖−1) = 𝛼𝛼0 + 𝛼𝛼1𝑎𝑎𝑖𝑖−12 + 𝜂𝜂1𝜎𝜎𝑖𝑖−12 ,𝛼𝛼0 > 0,𝛼𝛼1, 𝜂𝜂1 ≥ 0,𝛼𝛼1 + 𝜂𝜂1 = 1 
(3.1.1) 

In Equation 3.1.1, ∇𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖−1. The advantage of this modeling framework is that the 
sequence 𝑍𝑍𝑖𝑖 , 𝑖𝑖 = 1,2, …, where 𝑍𝑍𝑖𝑖 = 𝑎𝑎𝑖𝑖

𝜎𝜎𝑖𝑖
~𝑁𝑁(0,1) for all 𝑖𝑖, consists of uncorrelated, identically 

distributed random variables. Thus, the observed values of this sequence are suitable for 
constructing the control chart. 

To estimate the parameters of the ARIMA(2,1,1)-IGARCH(1,1) model, the ten realizations are 
equally split into training and testing. A time series model is fitted for each training realization 
using the first half of the OH* chemiluminescence signal. This corresponds to when the flame is 
stable. The parameters for the five training realizations are then averaged to obtain a global time 
series model. This global model is then applied to the five testing realizations. 

To detect precursors to blowout, we construct an Exponentially Weighted Root Mean Squared 
error (EWRMS) control chart. To remove residual autocorrelation, we collect rational subgroups 
of size 𝑏𝑏 = 10. The EWRMS control chart monitors the squared deviation of the process 𝑍̅𝑍𝑘𝑘, 𝑘𝑘 =
1,2, … from the expected value of zero. The equation for the monitoring statistic is as follows: 

 
𝑆𝑆𝑘𝑘 = �(1 − 𝛾𝛾)𝑆𝑆𝑘𝑘−12 + 𝛾𝛾𝑍̅𝑍𝑘𝑘2, 𝑘𝑘 = 1,2, … , ⌈𝑏𝑏−1𝑇𝑇𝑛𝑛⌉ (3.1.2) 

where 𝑆𝑆0 = 𝑏𝑏−
1
2 and 𝛾𝛾 = 0.2. The control limits are determined by first establishing an acceptable 

false alarm rate, 𝛼𝛼 = 0.0027 and then computing the 100𝛼𝛼
2

th percentile and the 100(1−𝛼𝛼)
2

th percentile 
of the sequence 𝑆𝑆𝑘𝑘 when the flame is stable. An example of control charts for air temperatures of 
300 K and 450 K are shown in Figure 3.3 and Figure 3.4 respectively. 

The control chart elicits an alarm when the monitoring statistic breaches one of the control 
limits. We notice that as blowout becomes more imminent, the frequency of alarms increases. We 
leverage this to imbue each alarm with a probability that it is a true precursor to blowout. For each 
air temperature, a 2-parameter exponential distribution is fitted to the equivalence ratio values at 
the time of alarms for the training realizations. This is shown in Figure 3.5. 

For the test realizations, once an alarm is observed, we condition on the event that the 
equivalence ratio is less than the current value which causes the probability of a true alarm to 
approach unity as the equivalence ratio reduces toward blowout. This is shown in Figure 3.6. 
This true alarm probability can aid turbine operators in decision making. Furthermore, future 
work can focus on developing utilizing this true alarm probability to control equivalence ratio 
automatically to prevent blowout. 



 

 
Figure 3.3: EWRMS Control Charts of Training Realizations for 300 K Air Temperature 

 
Figure 3.4: EWRMS Control Charts of Training Realizations for 450 K Air Temperature 



 

Figure 3.5: Fitted Distributions for Air Temperatures 300 K and 450 K 

 
Figure 3.6: Control Charts for 300 K (Top) and 450 K (Bottom) 

3.2 Centerbody  
In addition to lean blowout, the transition to pre-mixed combustion leaves modern combustors 

susceptible to instabilities that can result in component degradation. For example, thermal stresses 
can cause degradation to the combustor centerbody, a component responsible for maintaining a 
stable combustor flame and for protecting combustor hardware from the flame. Therefore, a study 



was conducted to develop a methodology for diagnosing centerbody degradation. This 
methodology consisted of placing 10 acoustic sensors around a combustor test rig as shown in 
Figure 3.7. 

 
Figure 3.7: Combustor Test-rig with Acoustic Sensors 

An experiment was conducted where 10 samples of data were recorded from the 10 sensors 
for four different levels of centerbody degradation. The degraded centerbodies were manufactured 
to lengths of 87.4 mm, 76.2 mm, 63.5 mm, and 50.8 mm. Each data sample consisted of monitoring 
the pressure around the flame using the acoustic sensors for 5.1 seconds at a sampling rate of 40 
kHz. An example of a data sample is shown in Figure 3.8. 

The data analytics approach consists of the following methodology: 
• Feature Extraction: This step consists of transforming the raw sensor data to extract salient 

features for modeling. A Discrete Wavelet Transform (DWT) was utilized since the time 
series is nonstationary. This transform decomposes the signal into discrete frequency 
ranges, where high frequencies are characterized by a high number of coefficients and low 
frequencies are characterized by a low number of coefficients. To extract features, we 
compute the energy in each frequency range by calculating the sum of squared coefficients 
within their respective frequency ranges. An example of this feature extraction is shown in 
Figure 3.9. 



• Sensor Selection: In the previous step, two of the sensors are removed because they 
malfunctioned during the experiment. To select the appropriate features for monitoring, we 
employ a hierarchical feature selection approach. The first step is to select an optimal 
subset of sensors. The reason is that some sensors may either be redundant or 
noninformative regarding degradation. Inclusion of these sensors introduces noise in the 
model and can result in reduced prediction accuracy. To perform sensor selection, we use 
multi-class logistic regression with adaptive group lasso penalty. This type of regression 
maps the features to the space of discrete degradation classes. The penalty causes the 
regression coefficients for features extracted from nonsignificant sensors to shrink to zero, 
thereby removing them from the analysis. The sensor selection can be shown in Figure 
3.10 below. 

• Individual Feature Selection: After selecting significant sensors, the optimal set of 
individual features are selected from the remaining sensors. This is achieved using multi-
class logistic regression with lasso penalty. The result of this is shown in Figure 3.11. 

• Diagnosis: The individual feature selection showed that a small number of features can be 
used for predicting centerbody degradation. To perform diagnosis, the model fitted in the 
previous step is used to predict the probability that the centerbody is in one of the four 
states. The state with the highest probability is selected for diagnosis. 

 
Figure 3.8: Acoustic Sensor Data for Combustor Flame 
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Figure 3.9: Component Feature Vectors 

 

 
Figure 3.10: Component Feature Vectors Showing the Selected Sensors (Blue) and Rejected Sensors (Green) 
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Figure 0.11: Component Feature Vectors, 𝐳𝐳𝐢𝐢, Showing the Selected Features (Blue) and the Rejected Features 
(Green) Corresponding to Each Sensor 

To assess the effectiveness of the proposed methodology, three hypotheses were tested. First, 
we tested whether the proposed methodology was better than using a model with no feature 
selection. The baseline model consisted of a multi-class logistic regression model with ridge 
penalty. This model shrinks regression coefficients but does not reduce them to zero. Second, we 
tested whether our methodology was robust to changes in the training sample size. The results for 
both tests are shown in Table 3.1. 

Table 3.1: Classification Accuracy for Models Using 𝐍𝐍 Total Observations for Training 

𝑵𝑵 (# Obs/Class) 

Model 

Baseline 
model 

Hierarchical 
Feature 

Selection 
20 (5) 0.985 1.000 
16 (4) 0.974 0.999 
12 (3) 0.961 0.994 
8 (2) 0.882 0.956 

Table 3.1 demonstrates that the proposed model outperforms the baseline model. Furthermore, it 
is more robust to changes in the sample size as it maintains a 95% accuracy even when using only 
two observations per class for training. The final test was to determine which set of sensors was 
more accurate: the sensors located on the tubes (longitudinal) or those placed on the support beams 
(transverse). The results showed that when the training size was 𝑁𝑁 = 20, the longitudinal sensors 
had an overall accuracy of 99.75% whereas the tangential sensors had an overall accuracy of 
85.6%. Therefore, the sensors placed on the tubing are more effective than those on the support 
beams. This concluded the work conducted on the combustion section. In the next chapter, we 
discuss research efforts related to the turbine section. 
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4 Turbine Section 

High main gas path temperatures are important for ensuring turbine efficiency. However, these 
temperatures can exceed component melting temperatures. To counter this, modern turbines are 
equipped with cooling systems to preserve the health of the turbine components despite the high 
temperatures. For example, turbine blades are now manufactured with coolant holes so cold air 
from the compressor can maintain a blade temperature below the material melting point. For 
components below the main gas path, cooling efforts are more novel. They involve using coolant 
flow from the compressor to create a seal to protect the under-platform region from main gas path 
ingress. The challenges associated with these cooling strategies is in monitoring their 
effectiveness. Several instruments for monitoring blade temperature and signs of material warping 
like blade tip clearance have been utilized. However, these techniques have not been utilized for 
monitoring the coolant flow from the upstream compressor. Therefore, research efforts focused on 
developing a framework for monitoring the coolant flow rate using infrared images of the blade. 
For the underplatform region, there is a dearth of monitoring strategies published in the literature. 
Therefore, we propose two approaches to monitor the effectiveness of the coolant seal using time-
resolved pressure signals recorded either near the rim seal or above the casing. Finally, we 
conclude the section by briefly discussing an experiment to monitor tip clearance using the 
principles of experimental design. While no data analytics have been published from this effort, 
the dataset generated serves as an opportunity for future research teams to develop condition 
monitoring methodologies. All experimental work was conducted in the Steady Thermal Aero 
Research Turbine (START) facility at Pennsylvania State University. A diagram of this facility is 
shown in Figure 4.1. 

 
Figure 4.1: START Lab 



4.1 Blade Coolant 
Blade cooling flow is necessary to prevent high-temperature erosion of turbine blades. An 

example of this erosion is shown in Figure 4.2. To avoid this erosion, turbine blades are designed 
to allow cooling flow through manufactured holes as shown in Figure 4.3. 

 
Figure 4.2: Turbine Blade Erosion 

 

 
Figure 4.3: Turbine Blade Diagram 



For this experiment, we utilize infrared imaging of the turbine blade to monitor the health of the 
coolant system. For example, if an upstream fault occurs in the compressor, we want to determine 
whether this type of fault can be detected via the temperature distribution of the blade. A diagram 
of the imaging is shown in Figure 4.4. 

 
Figure 4.4: Infrared Imaging of Blade 

Imaging of the blade was recorded for four main gas path temperatures and five coolant flow 
rates. A diagram showing the set points for these measurements is shown in Figure 4.5. 



 
Figure 4.5: Experimental Set Points for Imaging 

Note that in Figure 4.5, there are large deviations amongst the coolant flow rates despite the set 
points being the same. This is due to latent factors influencing the measurements. The existence 
of these measurements influenced the experimental design demonstrated in Section 4.3. Part of 
this project was to determine how important including these factors into the model was in 
predicting the coolant flow rate. The model used was a linear regression with lasso penalty, whose 
formulation is shown below: 

 
min

(𝜷𝜷𝟎𝟎,𝜷𝜷)∈ℝ𝑷𝑷+𝟏𝟏

1
2𝑁𝑁

�(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷)2
𝑁𝑁

𝑖𝑖=1

+ 𝜆𝜆‖𝜷𝜷‖1 (4.1.1) 

In Equation 4.1.1, 𝑦𝑦𝑖𝑖 is the 𝑖𝑖th observed coolant flow rate, 𝛽𝛽0 is the bias term, and 𝒙𝒙𝑖𝑖 ∈ ℝ𝑃𝑃 is the 
vector of predictors. For this project, 𝒙𝒙𝑖𝑖 is a vector comprised of either just features from the image 
or of features combined with ancillary measurements. When other measurements are included, so 
too are the interaction terms. For example, if main gas path temperature is included in the model, 
𝒙𝒙𝑖𝑖 = �𝑇𝑇𝚤𝚤� ,𝑇𝑇𝑀𝑀𝐺𝐺𝐺𝐺,𝑖𝑖 ,𝑇𝑇𝚤𝚤� × 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖�

𝑇𝑇
, where 𝑇𝑇�𝑖𝑖 is the average intensity of the infrared image. In general, 

three feature extraction techniques were implemented: 
- 2D Avg: an overall average of the image pixels 
- 1D Avg: the set of column wise averages 
- Image: using all image pixels as features 

As with the combustor experiments, the data was partitioned into a training and test set, where the 
models were fitted using the training data and the accuracy of the models was determined based 
on the test data. 



Since ancillary factors had a significant effect on the data, we wanted to first see how our 
modeling methodology worked on an ideal dataset where variance of these ancillary factors was 
minimal. Then, we included the remaining data to test how inclusion of the ancillary measurements 
into the model can reduce the prediction error introduced by these non-homogeneous datapoints. 
The prediction root mean squared error (RMSE) for all models fitted is shown in Figure 4.6. 

 
Figure 4.6: Comparison of Coolant Flow Rate Prediction Accuracy 

By comparing the median root mean squared error, we can draw the following conclusions: 
- The 1D Avg and Image features result in more accurate models than the 2D Avg 
- Inclusion of the main gas path temperature into the model only improves accuracy for the 

2D Avg feature 
- Modeling using the ideal dataset results in less prediction error than modeling using the 

original dataset and not including any ancillary measurements. This is true, even if 
including the main gas path temperature as a predictor. 

- Including the ancillary measurements with the main gas path temperature results in the 
most accurate model for all feature extraction techniques. However, the benefit for 1D Avg 
and 2D Avg is minimal. Therefore, the added benefit may be outweighed by the cost of 
extra sensing capability. 

Another interesting discovery was made when looking at the regression coefficients for the 
model fitted using just the Image features on the original dataset. The coefficients that were 
nonzero were aggregated in two distinct clusters on the image as shown in Figure 4.7. 
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Figure 4.7: Regression Coefficient Clusters 

The two regions correspond to a cold region from the bottom-most cooling hole and the hot region 
below the upper-most cooling hole. This indicates potential for targeting more cost-effective 
sensors to these regions of the blade. As shown in Figure 4.8, the use of four pixels spanning both 
regions can perform on par with the optimal model. 

 
Figure 4.8: Comparison Between Optimal Model and 4-Feature Model 

4.2 Sealing Effectiveness 
In addition to monitoring blade coolant flow, the START Lab was used to conduct an 

experiment to aid in the development of a framework for monitoring the ability of purge flow to 
prevent ingress into the wheelspace region. A diagram of the cross-section of the gas turbine 
showing the location of the sensors is shown in Figure 4.9. 



 
Figure 4.9: Cross-section of Gas Turbine 

In this experiment, 9 samples were recorded at 9 different purge flow conditions. Data was sampled 
from pressure sensors located at the rim seal (𝑃𝑃𝐴𝐴) and the outer casing (𝑃𝑃𝐺𝐺). A gas tracer method 
was used to measure the sealing effectiveness for a given purge flow condition. The purge flow 
settings along with the sealing effectiveness values are shown in Figure 4.10. 

 
Figure 4.10: Sealing Effectiveness vs. Purge Flow Rate 

To extract features from the pressure signals, a fast Fourier transform is employed. Then the energy 
within frequency bands centered at integer multiples of the disk rotating frequency is computed to 
generate features. An example of this transform for both sensor locations is shown in Figure 4.11. 



 
Figure 4.11: Fast Fourier Transform 

In Figure 4.11, there is a noticeable attenuation in the amplitude from the rim seal to the outer 
casing. We expect a higher prediction accuracy using features from the rim seal vs. features from 
the casing. However, we are interested in whether the outer casing features are usable for 
monitoring. 

For this study, two diagnosis methodologies are proposed. The first is an off-the-shelf 
technique that uses linear regression with lasso to map the features extracted from the fast Fourier 
transform to the sealing effectiveness. Upon observing the regression coefficients in Figure 4.12, 
we notice that the coefficient related to the dominant frequency in Figure 4.11 � 𝑓𝑓

𝑓𝑓𝐷𝐷
= 5� is zero. 

 
Figure 4.12: Lasso Regression Coefficients 

 

 
Figure 4.13: Purge Flow and Fluid-Dynamic 

Instability 

 
 



However, this feature corresponds to a fluid-dynamic instability that whose correlation with the 
sealing effectiveness changes after the sealing effectiveness is greater than 0.5. This can be seen 
in Figure 4.13. 

To obtain a more accurate model for sealing effectiveness, a two-step approach is employed. 
First a coarse model that predicts whether the sealing effectiveness is less than 0.5 or greater than 
0.5 is fitted using all features. This model utilizes logistic regression with lasso, where logistic 
regression maps the features to a binary state. Then using the dominant frequency and its next four 
harmonics (and their log transforms), linear regression with lasso is fitted. However, this model 
includes a covariate corresponding to whether the sealing effectiveness is less than 0.5 or greater 
than 0.5. This splits the model into two models. Therefore, given the result from the first step, a 
granular prediction of sealing effectiveness is obtained using the linear regression model in the 
second step. The result of these two strategies is shown in Figure 4.14. 

 
Figure 4.14: Prediction Results for a) Rim Seal, b) Outer Casing, and the c) RMSE 

From Figure 4.14, the two-step approach (2S) significantly reduces the prediction error from the 
off-the-shelf method (DD). Furthermore, despite having a higher RMSE than the rim seal sensor, 
the outer casing sensor still enables accurate prediction of the sealing effectiveness. 



4.3 Tip Clearance 
Tip clearance has an inversely proportional relationship with gas turbine efficiency. If tip 

clearance can be monitored using temperature or pressure measurements, then that would increase 
functionality of these sensors. Therefore, we are interested in whether time-resolved over rotor 
pressure and temperature sensors can be used to predict tip clearance. Part of the capabilities of 
the START Lab is a magnetic bearing that can move the rotor in either cardinal direction. A 
diagram of the turbine blade and the sensor layout is shown in Figure 4.15. 

 
Figure 4.15: Tip Clearance Sensor Layout 

Data analytics related to this study involved first normalizing the pressure and temperature by 
the inlet parameters and the coolant parameters. The prediction accuracy of the normalized sensor 
features can then be compared to the raw sensor features. A discrete wavelet transform is used to 
extract features from the sensor signals. Then linear regression with lasso is used to map the 
features to the tip clearance. A model is fit for features extracted from the nonnormalized signals 
and the normalized signals. Furthermore, two ensemble methods are employed to combine the 
results from the three models. The first method selects the sensor with the lowest prediction error 
on the validation set. The second method uses a weighted average of the tip clearance predictions, 
where the weights are inversely proportional to the prediction error for that sensor. The results of 
this study are summarized in Figure 4.16. 

The RMSE plots show that there is not a discernable difference in prediction accuracy 
amongst the various sensor normalization techniques. The pressure sensor is far less susceptible 
to outliers compared to the temperature sensor. However, predictions near the boundaries of the 
sealing effectiveness show a high degree of error. 

This project was expanded upon to account for measurements collected under various turbine 
operating conditions. Specifically, three types of measurements were highlighted as potential 
candidates for diagnostic modelling: blade pressure ratio (BPR), exit temperature (Texit), and time-
resolved blade tip pressure ratio (BTPR). All these measurements are sensitive to both changes in 
tip clearance, as well as changes in facility operating conditions. To facilitate the development of 
a model which can account for the interdependency of tip clearance and turbine operating 



conditions, four boundary conditions were varied across 16 runs with independent tip clearance 
variations executed at each run, as shown in Figure 4.17. 

 
Figure 4.16: Prediction Accuracy for Tip Clearance Study 

 
Figure 4.17. Tip Clearance Diagnostics Study Test Matrix 



Beginning with BPR, Figure 4.18 shows the data alongside the facility cross-section with the 
sensors highlighted. The relationship between BPR and tip clearance (τ) is linear across all runs 
(operating conditions). Notably, the data are falling into two distinct clusters, which is driven by 
the two TSPR set points, as indicated in Figure 4.18. Within these clusters, the x and y shifts are 
caused by variations in the other 3 independent variables (inlet temperature, coolant flow rate, and 
speed). When considering BPR with respect to the other diagnostic measurements, BPR is 
relatively simple in that it does not capture any special or temporal variation. 

 
Figure 4.18: Left) Equation and Measurement Locations Used to Quantify BPR. Right) BPR vs. Tip 

Clearance (τ) at All Run Conditions 

Next, a subset of the exit temperature (Texit) measurements are shown in Figure 4.19. 
Importantly, these Texit measurements were collected at multiple locations between 50% and 100% 
span to quantify the rotor exit temperature profile. These profiles are shown in Figure 4.19 for the 
concentric tip clearance case across all run conditions. The most pronounced shift in the data is 
caused by the variations between the two inlet temperature set points, as noted in Figure 4.19. The 
radial distribution of the Texit measurements may be specifically useful for this application because 
the most pronounced tip clearance effects will be observed in the measurements near the tip, while 
the measurements near the midspan (50% span) will be largely insensitive to the tip clearance 
variations. 

Lastly, an example of the BTPR data is shown in Figure 4.20. Importantly, the tip pressure 
sensor (Ptip) is a fast-response sensor that was sampled at frequencies greater than the blade passing 
frequency. This high frequency response enables an examination of the over-rotor pressure on a 
blade-by-blade basis. When examining the frequency spectrum (bottom left of Figure 4.20), the 
blade passing frequency and its harmonics are clearly observable. This diagnostic measurement is 
important because it may capture tip clearance effects that cause high frequency fluctuations in the 
flow field.  
  



 
Figure 4.19: Left) Spanwise Exit Temperature Profiles for the Concentric Case Across All 

Run Conditions. Right) Texit Measurement Location 

 
 
 

 
Figure 17.20 Top left) BTPR Waveform for the First 30 Turbine Blades. Bottom Left) 

BTPR Frequency Spectrum. Right) Equation and Sensors Used to Compute BTPR 

Altogether, this suite of diagnostic measurements will shed light on the sensor and modelling 
requirements for prediction of blade tip clearance using engine representative sensors. The unique 
characteristics of each diagnostic measurement will be useful for separating operating condition 



changes from tip clearance changes when using the sensor measurements as inputs to generate 
clearance predictions. 

5 Dissemination of Project Results 

A comprehensive list of conferences/journals in which our findings were presented/published is 
provided below: 
5.1 Posters and Presentations 

1. Poster: 2017 University Turbine Systems Research Project Review Meeting (Pittsburgh, 
PA), Title: Real time health monitoring for gas turbine components using online learning 
and high-dimensional data 

2. Poster: 2018 Annual Project Review Meeting for Crosscutting Research Portfolios 
(Pittsburgh, PA), Title: Title: Real time health monitoring for gas turbine components 
using online learning and high-dimensional data 

3. Presentation: 2018 University Turbine Systems Project Review Meeting (Daytona Beach, 
FL), Title: Real time health monitoring for gas turbine components using online learning 
and high-dimensional data 

4. Presentation: 2019 Annual Project Review Meeting for Crosscutting, Rare Earth 
Elements, Gasification and Transformative Power Generation (Pittsburgh, PA), Title: 
Real time health monitoring for gas turbine components using online learning and high-
dimensional data 

5. Presentation: 2019 University Turbine Systems Research (UTSR) Project Review 
Meeting (Orlando, FL), Title: Real time health monitoring for gas turbine components 
using online learning and high-dimensional data 

5.2 Conference Publications  
1. Kumar, R. M., Peters, B., Emerson, B., Paynabar, K., Gebraeel, N., Lieuwen, T. (2020). 

Data driven fault detection of premixer centerbody degradation in a swirl 
combustor. Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical 
Conference and Exposition GT2020 

2. Correlating time-resolved pressure measurements with rim sealing effectiveness for real-
time turbine health monitoring by Eric T. Deshong, Benjamin Peters, Reid A. Berdanier, 
Karen A. Thole, Kamran Paynabar, and Nagi Gebraeel, Submitted to: Proceedings of 
ASME Turbo EXPO 2021: Turbomachinery Technical Conference and Exposition GT 
2021 

5.3 Journal Publications  
3. Peters, B., Rock, N., Emerson, B., Gebraeel, N., & Paynabar, K. (2021). Data Analytics 

Method for Detecting Extinction Precursors To Lean Blowout In Spray Flames. 
Accepted Combustion Science and Technology. 2020 

4. DeShong E., Peters B., Berdanier R. A., Thole K. A., Paynabar K., and Gebraeel N., 
“Correlating Time-Resolved Pressure Measurements with Rim Sealing Effectiveness for 
Real-Time Turbine Health Monitoring”, Accepted ASME Journal of Turbomachinery, 
2022. 



6 Conclusion 

This project enabled the development of a symbiotic relationship between industry 
professionals and data scientists. The benefit for industry professionals is that they are introduced 
to the concepts of experimental design, statistical process control, and data analytics that either 
provide credibility to previously held beliefs or illuminate interesting phenomena that motivates 
further investigation. Conversely, the data scientists are provided feedback on the applicability of 
their theoretical modeling frameworks to real-world systems. The results of this project 
demonstrated that Big Data analytics is applicable for developing effective models for condition 
monitoring of industrial systems. This was shown by a control chart methodology for detecting 
precursors to lean blowout, a hierarchical feature selection methodology for diagnosing centerbody 
degradation, a two-step data-driven/domain knowledge-based approach for monitoring sealing 
effectiveness and using infrared imaging for detecting the state-of-health of cooling systems. 

Despite the project concluding, there is still potential for future work. In the lean blowout 
study, data was collected for multiple alternative fuels. The OH* chemiluminescence data for these 
fuels is yet to be analyzed. Furthermore, the tip clearance data set collected using the designed 
experiment is also yet to be analyzed. Therefore, there are opportunities for future research groups 
to continue with what was accomplished in this project. Future work would also include an attempt 
to include prognostics. The limitation is the need for data failure data. Since this is not easily 
attainable, alternative approaches to developing a prognostic dataset can be discussed by future 
research teams. 
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