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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represent that
its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof, or any of their contractors or subcontractors. The views
and opinions expressed herein do not necessarily state or reflect those of the United States
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Abstract

This report presents a comprehensive study of developing ultrasonic wave and acoustic emis-
sion (AE) techniques for long-term monitoring of alkali-silica reaction (ASR) development
in concrete. Small, medium, and full-scale concrete specimens were cast, conditioned, and
monitored for various periods, from at least one year to 2.4 years. The reactive concrete
specimens contain coarse or fine reactive aggregates to study the effects of different types of
reactive aggregates. Confinements were also designed to simulate the 2-dimensional confine-
ment effects of reinforcement in the shield building of nuclear power plants. The concrete
specimens were stored in a environmental chamber with high humidity and high temperature
to accelerate the ASR development.

The ultrasonic monitoring data shows high sensitivity to ASR development and could
detect cracking initiation well before visible surface cracks occurred. However, the linear
ultrasonic analysis based on wave velocity is strongly affected by temperature variation.
Therefore, a nonlinear ultrasonic method was proposed to measure thermally induced non-
linear acoustic responses of concrete (thermal modulation of ultrasonic wave). The measured
nonlinear acoustic parameter shows a high correlation with ASR expansion across specimens
with different reactive aggregates and confinement conditions. The same conclusion was
obtained from nonlinear resonance tests on small concrete prisms. Compared to the linear
acoustic methods, the nonlinear tests show high sensitivities to ASR damage from internal
microcracking initiation at the early stage to visible cracks at the late stage of ASR. The
attributes of the thermal modulation of nonlinear ultrasonic method include high sensitivity,
immunity to temperature effects, and strong correlation with ASR expansion, which demon-
strate great potentials of the nonlinear ultrasonic method for diagnosis of ASR damage and
prediction of concrete deterioration process.

Acoustic emission is a passive sensing technique for damage assessment, and access to only
one surface is needed even for thick and heavily reinforced elements such as the walls utilized
for nuclear shield building. Additionally, relatively few sensors are required to monitor the
progression of the damage process. Results indicate that the AE data can be related to the
damage rating index, which is a petrography-based means of assessing damage due to ASR
in reinforced concrete. Furthermore, AE is capable of detecting ASR damage long before
surface cracking is visually noticeable. Boundary conditions play in important role in the
progression of ASR damage and differences in boundary conditions are reflected in the AE
data. Entropy based data assessment methods provide a means to assess the damage state,
and convolutional neural network based data assessment provided a means to assess the
damage state in real-time. Results indicate that artificial neural network models may be
used as a means to predict volumetric expansion based on AE data.

iii



iv



Contents

Executive Summary viii

I Introduction, Materials, and Tests on Small Specimens 1

1 Introduction 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 ASR Specimen Design and Fabrication 9

2.1 Materials Selection and Specimen Design Philosophy . . . . . . . . . . . . . . . . . . . . 9

2.2 List of Specimens and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Material Properties and Mix Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Concrete Testing and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Conditioning plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Sensors and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Expansion Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Nonlinear Resonance Tests of Small Concrete Prisms 27

3.1 Background of Nonlinear Acoustic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Materials and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.4 Summary of Nonlinear Resonance Tests on Small Concrete Prisms . . . . . . . . . 38

II Monitoring Medium-Scale Concrete Specimens 39

4 Ultrasonic Monitoring – Linear Analysis 41

4.1 Experimental Setup for Ultrasonic Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Signal Processing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Expansion Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Relative Velocity Change History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Correlation Between Relative Velocity Change and Expansion . . . . . . . . . . . . . 57

4.6 Diagnosis Model Using Ultrasonic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Ultrasonic Monitoring – Thermal Modulation of Nonlinear Ultrasonic Wave 79

5.1 Nonlinear Ultrasonic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 ASR Damage Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 ASR Damage Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Correlation Between Thermal Modulation Coefficient and Expansion . . . . . . . 87

6 Acoustic Emission Monitoring 89

6.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Reduction of Acoustic Emission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Prediction Models 113

7.1 Prediction of ASR Damage Using Ultrasonic Signals . . . . . . . . . . . . . . . . . . . . . 113

7.2 Prediction of ASR Damage Using AE Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



III Monitoring Full-Scale Concrete Specimens 128

8 Ultrasonic Monitoring on Full-Scale Specimens 129

8.1 Concrete Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Ultrasonic Monitoring System: Experimental Setup . . . . . . . . . . . . . . . . . . . . . 135

8.3 Temperature and Expansion Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.4 Ultrasonic Monitoring Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.5 Nonlinear Analysis of Ultrasonic Wave Using Thermal Modulation . . . . . . . . . 144

8.6 Irreversible Temperature Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9 Acoustic Emission Monitoring on Full-Scale Specimens 155

9.1 AE Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.3 Pattern recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10 References 167

11 Appendix: List of Publications 177

11.1 Journal Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11.2 Theses and Dissertations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

vii



Executive Summary

This report presents a comprehensive study of developing a structural health monitoring
(SHM) system for long-term monitoring of alkali-silica reaction (ASR) development in con-
crete structures. The proposed SHM approaches include the ultrasonic wave and acoustic
emission techniques. Both sensing methods have shown high sensitivity to microcrack initi-
ation and development in concrete, and they complement each other in spatial and temporal
coverage. The two SHM systems may be integrated into a single acoustic sensing system by
using the same sensors for both active and passive acoustic sensing.

Specimens

Small, medium, and full-scale concrete specimens were cast, conditioned, and monitored for
various periods, from at least one year to 2.4 years. Each set of concrete specimens in-
clude control and reactive specimens, where the reactive specimens contained either coarse
(RCA) or fine reactive aggregates (RFA). Confinements were also designed to simulate the
2-dimensional confinement effect of reinforcements in the shield building of nuclear power
plants. The concrete specimens were stored in an environmental chamber with high humid-
ity and high temperature to accelerate the ASR development. Through collaboration with
University of Tennessee-Knoxville (UTK), the ultrasonic and acoustic emission monitoring
systems were installed on the full-scale specimens cast and conditioned at the UTK labora-
tory. At the end of monitoring periods, the maximum volumetric expansion reached 0.9%
on the medium-scale specimens, and 0.46% on the full-scale specimens.

Resonance tests on small specimens

Small concrete prism specimens were cast using the same mix design as for the medium-scale
specimens. These prisms were conditioned in an environmental chamber at 38◦C and 95%
relative humidity, and monitored with linear resonance test and nonlinear impact resonance
acoustic spectroscopy (NIRAS) test for over 400 days. The linear resonance test could de-
tect ASR damage in the specimens with coarse reactive aggregate, where the interconnected
microcracks reduced the elastic modulus of concrete. In the specimens with fine reactive ag-
gregate, where the microcracks were isolated, the linear resonance method could not detect
ASR damage although the specimens showed measurable expansions. The NIRAS results
showed high sensitivity to microcracking damage and a strong correlation with ASR ex-
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pansion. This correlation may be used for quantitative evaluation of ASR damage in small
concrete specimens.

Ultrasonic monitoring on medium-scale specimens

On medium-scale specimens, the continuous ultrasonic monitoring data showed high sensi-
tivity to ASR development and could detect cracking initiation well before visible surface
cracks occurred. The wave velocity dropped nearly 20% during the monitoring period (more
than 400 days) and then became saturated at the late stage. However, the velocity change
did not show strong correlation with the ASR expansions, and the linear ultrasonic analysis
based on wave velocity is also strongly affected by temperature variation.

Therefore, a nonlinear ultrasonic method was proposed to measure thermally induced
nonlinear acoustic response of concrete (thermal modulation of ultrasonic wave). The mea-
sured nonlinear acoustic parameter shows a high correlation with ASR expansions in all
specimens with different reactive aggregates and confinement conditions. The conclusion is
consistent with the nonlinear resonance test results obtained on the small concrete prisms.
Compared to the linear acoustic methods, the nonlinear tests show high sensitivities to ASR
damage from internal microcracking initiation at the early stage to visible cracks at the late
stage of ASR development. The thermal modulation of nonlinear ultrasonic method has
the following advantages: high sensitivity, no need of baseline measurement, immunity to
temperature effects, and strong correlation with ASR expansion. These attributes demon-
strate great potentials of the nonlinear ultrasonic method for diagnosis of ASR damage and
prediction of concrete deterioration process.

Acoustic emission monitoring

Acoustic emission (AE) monitoring was pursued for fifteen small-scale concrete specimens
in addition to six medium-scale specimens as well as three full-scale specimens. AE is
by definition a passive means of structural assessment, and therefore data is produced as
damage progresses. AE sensors are very sensitive to damage initiation and growth, and
damage progression may be assessed long before surface cracking is noticeable through visual
assessment. AE monitoring only needs access to one surface and requires relatively few
sensors for the assessment of damage progression. To minimize spurious, or non-genuine AE
events in the data set, appropriate means of filtering are required.

The AE analysis methods pursued included intensity analysis, frequency component anal-
ysis, and entropy analysis in combination with petrography. In addition, an ASR damage
diagnosis method was developed utilizing convolutional neural networks, and a means of
prediction for volumetric expansion based on AE data was developed. Results indicate that
ASR damage can be detected via AE regardless of the scales investigated. An AE based
intensity analysis chart for the classification of ASR damage agreed with the damage rating
index achieved through petrographic analysis.
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Boundary conditions cause a considerable difference in alkali-silica reaction related dam-
age modes and the effect of boundary conditions was reflected in the AE data. AE was used
to calculate signal entropies and to thereby assess the temporal trend of data due to dam-
age progression. Average entropy values generally showed similar patterns to global voltage
entropy and counts-entropy.

Monitoring full-scale specimens

Through collaboration with UTK, the ultrasonic and acoustic emission monitoring systems
were installed on the full-scale specimens at the UTK laboratory. The AE system focused on
the early stage of ASR development (200 days since casting), while the ultrasonic monitoring
focused on the late stage of ASR expansion (278 days to 866 days). For both monitoring
systems, similar conclusions were obtained from the full-scale and medium-scale specimens.
These results validated the developed passive and active health monitoring systems and their
applicability to in-situ monitoring of large-scale concrete structures.

x
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1 Introduction

1.1 Introduction

Alkali-silica reaction (ASR) has been recognized as a degradation mechanism affecting many

concrete structures, including bridges, pavements, and dams. ASR is a chemical reaction

between the alkali hydroxides in the pore solution of concrete and reactive silica minerals

in some aggregates. The reaction product, when absorbing water, will expand and cause

cracking and degradation of concrete. Since ASR expansion is a a very slow process, cracks

may occur many years or decades after construction. However, once initiated, ASR may be

coupled with other damage mechanisms, such as freezing and thawing, corrosion etc., which

further accelerate the deterioration of concrete and reduce the durability and capacity of

concrete structures.

ASR was recently discovered as a challenge for management of aging concrete structures

in nuclear power plant (NPP). In 2010, the shielding wall of Seabrook nuclear power plant

in New Hampshire was confirmed to be affected by ASR, which is the first documented case

of ASR at nuclear power plants in United States. To ensure safe functions of NPP concrete

structures during extended period of operation, research is needed to understand the long

term effects of ASR on durability, serviceability, and safety of NPP concrete structures, which

will then provide needed technical supports for evaluation of licence renewals of NPPs.

Currently there is no effective way to identify and evaluate ASR damages in the early

stage, or predict the expansion rate in future. In current practice, the ASR assessment pro-

grams mostly rely on visual inspection for qualitative assessment of surface cracks. However,

visual inspection cannot provide reliable information for the internal damage in concrete.

Expansion measurement is a common technique for ASR damage assessment, which requires

a reference measurement before initiation of ASR expansion. Concrete coring with subse-

quent petrographic examination [1] may provide more detailed information about the ASR

damage in the microscale, but petrographic examination is time consuming and destructive,
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not suitable for critical and sensitive NPP structures.

Nondestructive testing and evaluation (NDT/NDE) methods, such as vibration-based

method, acoustic emission (AE), ultrasonic method, have been studied to assess ASR damage

development in concrete. The ultrasonic test method measures stress wave propagating in

concrete and evaluates ASR damage by measuring wave velocity or signal amplitude. Because

an ultrasonic source is needed to transmit the ultrasonic energy into concrete, it is an active

sensing method. AE is a passive sensing method, which detects the energy released from

the cracking events in concrete. Both the ultrasonic and the AE methods are suitable for

continuous and long-term monitoring.

This NEUP project aims to developing an online health monitoring system to evalu-

ate ASR damage in concrete structure using the active ultrasonic and passive AE sensing

methods. This report presents research efforts and findings on using the developed sensing

technologies to monitor ASR development in concrete specimens. Specific research objectives

and tasks are summarized in the next section.

1.2 Research Objectives and Scope

The objective of this research project is to develop an online structural health monitoring

(SHM) system that integrates active and passive sensor networks and advanced signal pro-

cessing algorithms to monitor ASR induced degradation in concrete structures. Six research

tasks were proposed to achieve this research objective. The University of Nebraska-Lincoln

(UNL) team was responsible for ASR concrete specimen fabrication (Task 1) and ultrasonic

monitoring research (Task 2); the University of South Carolina (SC) team led the AE moni-

toring research (Task 3); and Georgia Institute of Technology (GT) contributed to diagnosis

and prediction models based on the monitoring data (Task 5). The UNL and SC teams

collaborated with the University of Tennessee-Knoxville (UTK) team to test on full-scale

concrete specimens with ASR damage (Task 6). Detailed efforts and findings are presented

in this final report.

This final report includes three Parts and 9 Chapters.

• Part I: Introduction, Specimens, and Tests on Small Specimens

1. Chapter 1 is the introduction and research objective.
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2. Chapter 2 presents concrete specimen design and fabrication (Task 1). Two sets

of medium-size concrete specimens (six specimens) were cast for long-term mon-

itoring at UNL and SC laboratories.

3. Chapter 3 presents nonlinear resonance tests on small-scale concrete prisms for

over one year. A strong correlation is found between the nonlinear resonance

parameter and ASR expansion, which provides a quantitative NDE method for

evaluation of ASR damage at the early stage for small concrete specimens (Task

4).

• Part II: Monitoring Medium-Scale Concrete Specimens Part II presents ultra-

sonic and AE monitoring results on medium-scale concrete specimens.

4. Chapter 4 describes development of the ultrasonic monitoring system and wave

velocity monitoring results. The specimens were monitored for more than 500

days. It was found the wave velocity dropped nearly 20% and then saturated

after 400 days of conditioning. Limitations are discussed regarding the linear

ultrasonic wave method (Task 2).

5. In Chapter 5, a new nonlinear ultrasonic wave technique was proposed. The pro-

posed thermal modulation method uses temperature variation as a driving force

for nonlinear response of materials. Wave velocities on the specimens with ASR

damage demonstrated higher sensitivity to temperature change than on the con-

trol specimens. The nonlinear ultrasonic technique does not need baseline mea-

surements and shows great potential for ASR damage assessment and prediction

of ASR expansion.

6. Chapter 6 presents AE monitoring results on medium-scale specimens. An ASR

damage diagnosis method was developed through utilizing a convolutional neural

network approach. (Task 3)

7. In Chapter 7, machine learning techniques were developed to analyze ultrasonic

and AE data and detect ASR initiation. (Task 5)

• Part III: Monitoring Full-Scale Concrete Specimens. Part III presents ultra-

sonic and AE monitoring results on full-scale concrete specimens at UTK. (Task 6)

8. Chapter 8 first describes the design of full-scale concrete specimens at UTK, then

presents the development of a long-term ultrasonic monitoring system and the

monitoring results. The ultrasonic monitoring started after visible cracking on

the ASR specimens (275 days) and ended at 866 days. It was found the linear
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analysis of wave velocity could not differentiate the ASR specimens from the

control specimen. Then the thermal modulation of nonlinear ultrasonic wave

analysis method was proposed.

9. Chapter 9 presents acoustic emission monitoring on full-scale specimens.

1.3 Conclusions and Recommendations

This report presents a comprehensive study of developing ultrasonic and acoustic emission

techniques for long-term monitoring of ASR development in concrete structures. Both the

ultrasonic and acoustic emission systems were used to monitor medium-scale and full-scale

concrete specimens with different expansion rates and confinement conditions. Resonance

tests and acoustic emission were also used to monitor ASR development in small concrete

prism specimens.

The ultrasonic monitoring data shows high sensitivity to ASR development and could

detect cracking initiation well before visible surface cracks occurred. However, the linear

ultrasonic analysis based on wave velocity is strongly affected by temperature variation.

Therefore, a nonlinear ultrasonic method was proposed to use measure thermally induced

nonlinear acoustic response of concrete (thermal modulation of ultrasonic wave). The mea-

sured nonlinear acoustic parameter shows a high correlation with ASR expansion across

specimens with different reactive aggregates and confinement conditions. The same conclu-

sion was obtained from nonlinear resonance tests on small concrete prisms. Compared to the

linear acoustic methods, the nonlinear acoustic test methods show high sensitivities to ASR

damage from internal microcracking initiation at the early stage of ASR to visible cracks at

the late stage. Research findings show that thermally induced nonlinear ultrasonic wave is a

promising nondestructive evaluation (NDE) method for in-situ evaluation of large concrete

structures with microcracking damage.

Acoustic emission is a highly sensitive means of detecting damage progression in rein-

forced concrete, and only needs access to one side of relatively thick concrete structural

elements. Due to the high sensitivity of the acoustic emission method damage progression

can be detected and assessed long before surface cracking becomes noticeable. Findings

indicate that acoustic emission data can be utilized to assess the damage state of thick,

reinforced concrete structures using relatively few sensors. The intensity analysis chart pro-

vides one means of assessment that can be correlated to the petrographic-based damage
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rating index. Entropy based methods showed promise for assessing damage progression, and

boundary conditions were reflected in the acoustic emission data as is expected due to the

differing modes of damage progression caused by differing boundary conditions. Classifica-

tion of different damage phases was achieved through entropy based methods and damage

classification in real time was demonstrated using convolutional neural networks. Prediction

of volumetric expansion based on acoustic emission data was also demonstrated.

Recommendations The developed thermal modulation of nonlinear ultrasonic method

has the following advantages: high sensitivity, immunity to temperature effects, no need of

baseline measurement, and strong correlation with ASR expansion. These attributes show

great potentials of using the nonlinear ultrasonic method for diagnosis of ASR damage and

prediction of concrete deterioration process.

Entropy based acoustic emission methods show great promise for classification of ASR

damage phases even in very thick reinforced concrete elements using relatively few sensors.

Convolutional neural networks showed substantial promise for achieving similar damage

classification in real time. The use of the intensity analysis chart was likewise promising

for damage classification and was correlated to a petrography-based damage rating index. It

is recommended that these means of damage classification be further explored and validated

in field settings.
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2 ASR Specimen Design and Fabrication

This chapter presents the concrete mixture designs and proportions, specimen designs and

fabrication details, specimen conditioning, and the fresh and hardened concrete properties.

ASR expansion data are also presented.

2.1 Materials Selection and Specimen Design Philoso-

phy

ASR damage development and cracking patterns can be influenced by a number of variables,

including, but not limited to: the type, particle size, and distribution of reactive aggregates,

the presence of reinforcement and degree of confinement provided, the dimensions of the

concrete element, external boundary conditions, and the environmental exposure conditions.

In the context of this project, it was desirable to determine if SHM data could be generally

correlated to the total amount of ASR distress, or if the data are influenced in part by these

variables. For example, the presence of reactive coarse aggregates will cause ASR damage

to be initiated in and propagate from fewer, more widely-distributed points in the concrete

matrix than if a reactive fine aggregate is present. Cracking patterns, particularly at the

concrete surface, are influenced by confining stresses provided by reinforcement, and align

with the direction of principle reinforcement. In the case of certain NPP structures, there is

heavy reinforcement in two planar directions (x and y), but no transverse reinforcement in

the third (z) direction (thickness). This has the effect of forcing the bulk of the volumetric

expansion to occur in the third, z-direction, but does not significantly reduce the total

volumetric expansion compared to a completely unconfined structure. By forcing the damage

to occur in the z-direction, much of the distress is not observable from the x-y plane, thus

heightening the need for advanced sensing systems that can detect this distress. This project

permits investigation of the effects of confinement (2-D reinforcement or unreinforced) and

reactive aggregate particle size (coarse or fine) on the acquired SHM data.
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Although it was important to simulate a high degree of ASR damage within the time

constraints of the project, it was deemed critical that the concrete mixture not have such a

high degree of reactivity that ASR may initiate long before SHM activities could begin; this

was particularly important given that the specimens were not cast independently at UNL

and SC. This influenced the selection of highly-reactive aggregates that had been proven

through prior laboratory testing to have an initial dormant period of one to two months to

permit time for proper curing, transport, and instrumentation of the specimens prior to the

initiation of ASR.

Specimen size was influenced by the logistics of fitting sufficient specimens into envi-

ronmental chambers at USC and UNL capable of conditioning the specimens at 38°C and

>95% relative humidity, and the desire that the specimens be as large as practically fea-

sible. Small specimens in such a conditioning environment are known to suffer from alkali

leaching, which limits the ultimate progress of ASR [2, 3]. Larger specimens are also easier

to reinforce, permit more extensive instrumentation networks, and allow for the extraction

of many core samples for forensic and SHM validation purposes at the conclusion of testing.

Thus, a specimen dimension of 12 × 12 × 44 inches was chosen.

The materials selection and specimen design was also influenced by the mockup speci-

mens cast at the University of Tennessee-Knoxville (UTK) in 2016 [4], which were used for

validation of the SHM methods on full-scale concrete containment wall specimens in this

project. The same reactive coarse aggregate from North Carolina that was used for the

UTK specimens was also selected for this project, and the reinforcement layout was as simi-

lar as a possible given the size constraints for specimens cast for this project. No. 7 headed

reinforcing bars were used to provide 2-D confinement with fully-developed reinforcement.

For the second reactive aggregate, a highly-reactive fine aggregate from Robstown, Texas

was selected. This aggregate is somewhat less-reactive than the more widely-known Jobe

aggregate from Texas, but exhibits a critical dormant period necessary to support the SHM

activities of this project.

2.2 List of Specimens and Nomenclature

This section introduces specimen nomenclature and test matrix information. For clarity, the

nomenclature discussed here will not be mentioned throughout most of this report. Six beam

specimens (12x12x44 inches) were cast for the UNL and the SC teams. These specimens are

called “medium size” or ”large” specimens in this report to be differentiated from “small”
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prism specimens (3x3x11.25 inches) and “full-scale” specimens at UTK.

Depending on the reactive aggregates used in mix designs, the specimens are named

as Control or “CTRL” (no reactive aggregate), RCA (reactive coarse aggregate), and RFA

(reactive fine aggregate). The prefix “UNL-” or “SC-” indicates the conditioning and moni-

toring locations. The suffix “-2D” is added to specimens with 2D reinforcement confinement.

For example, “UNL-RCA-2D” refers to the specimen conditioned at UNL, containing reac-

tive coarse aggregate and reinforced with 2D headed rebars. The prefix “UNL” or ”SC”

is only used in this chapter. Becasue the UNL team only used the “UNL-” specimens for

ultrasonic monitoring, and the SC team only did acoustic emission (AE) monitoring on the

“SC-” specimens, the prefix is omitted in the following chapters for clarity. All ultrasonic

results were obtained from the “UNL-” specimens and all AE results were obtained from the

“SC-” specimens unless specified otherwise.

At UNL site, in addition to the six medium-scale specimens, two smaller beams (12”x12”x24”)

were cast in August 2019 using the RCA aggregates. These two beams were also conditioned

in the same chamber and monitored using the ultrasonic system.

Table 2.1 shows all medium-scale specimens cast for long-term health monitoring. The

“SC-” specimens with casting date of April 2017 were cast at University of Alabama (UA)

and then shipped to SC. All other specimens were cast at UNL.

Table 2.1: List of specimens and casting dates

Specimen ID Cast date Monitoring technique

UNL-CTRL, UNL-RCA, UNL-RCA-2D 10/2018 Ultrasonic
UNL-CTRL-2D, UNL-RFA, UNL-RFA-2D 01/2019 Ultrasonic
UNL-sRCA, UNL-sRCA-2D (12”x12”x24”) 08/2019 Ultrasonic

SC-CTRL, SC-RCA, SC-RCA2D 04/2017 AE
SC-CTRL-2D, SC-RFA, SC-RFA-2D 01/2019 AE

In addition to these medium-scale beam specimens, prisms with dimensions of 3x3x11.25

inches were also cast using the Control, RCA, and RFA mix designs. The small-scale prisms

were also conditioned in the same condition as the medium-scale specimens, and experimental

results on these prisms are presented in Chapter 3.
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2.3 Material Properties and Mix Design

2.3.1 Material Properties

Aggregate Properties

Four different aggregates were used for this project: a reactive coarse aggregate from Gold

Hill, North Carolina and a reactive fine aggregate from Robstown, Texas, and a non-reactive

coarse and non-reactive fine aggregate from Omaha, Nebraska, with similar gradation as the

two reactive aggregates. Pictures of the four aggregates are shown in Figure 2.1. Specific

gravity (SG), absorption, dry rod unit weight (DRUW), and gradation of the four aggregates

were determined based on ASTM C127 (2015), ASTM C128 (2015), ASTM C29 (2017), and

ASTM C136 (2014) respectively. The aggregate properties determined by the mentioned

tests are listed in Table 2.2 and the gradation are shown in Figure 2.2.

Nonreactive CoarseNonreactive Fine Reactive CoarseReactive Fine

Figure 2.1: Aggregates used in study

Table 2.2: Aggregate properties

Label Location SG (SSD) Absorption DRUW (lb/ft3)

A Nebraska 2.617 2.57% 103.97

B Nebraska 2.651 0.42% -

C North Carolina 2.722 0.39% 92.42

D Texas 2.658 0.70% -
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Figure 2.2: Sieve plot (aggregate gradation)

Cement

ASTM C150 (2018) Type I/II Portland cement was used as cementitious material in the

concrete. The chemical compositions and physical properties of cement used in the study

are reported in 2.3.

Table 2.3: Cement properties

Chemical Properties
Oxide (%)

SiO2 20.4
Al2O3 4.1
Fe2O33 3.1
CaO 63.8
MgO 2.3
SO3 2.7

Na2Oeq 0.47
Loss on Ignition 2.5

Physical Properties
Blaine Fineness, m2/kg 443

Specific Gravity 3.15

Chemical admixtures

A polycarboxylate-based HRWR was used to enhance the flowability of the concrete. The

recommended dosage of the HRWR is 3-12 fl oz/cwt.
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2.3.2 Formwork and Rebar Design

Formwork Design

Wooden formwork was prepared for the casting of the specimens (12”×12”×44”), as shown

in Figure 2.3. The inner material of the formwork used is a 3/4 in. white medium-density

fiberboard. The fiberboard was used to ensure a smooth concrete surface. Additional ply-

wood was installed along the perimeter of the form to add strength and stability. High

strength wood screws were used. A thin plastic sheet was placed on the bottom of the form

to allow for easy specimen movement once it was demolded. To prevent concrete leakage hot

glue was used to seal the edges of the form.

Figure 2.3: Formwork Design

Rebar Design

Reinforced specimens were cast to simulate field performance of concrete, as shown in Figure

2.4. The specimens cast were either unconfined or 2-D reinforced. The reinforcement pattern

consisted of four 40 in. #7 bars (Grade 60) in the longitudinal direction and twelve 9 in.

#6 bars (Grade 60) in the vertical direction. All rebar used was headed rebar. The rebar

was fastened together using cable ties.

The rebar was placed into position and supported in the form by four small metal rods,as

shown in Figure 2.5. Small holes were drilled into the form to allow the rods to pass through.

After casting, the metal rods were cut to a short length for safety. To connect the rebar to

the rods, cable ties were placed around the rebar and pulled until fastened tightly.
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Figure 2.4: Specimen 2-D Reinforcement Plan

2.3.3 Mix Design

All specimens involved three different concrete mix designs: (1) a Control mix using innocu-

ous coarse (aggregate A) and fine aggregates (aggregate B), (2) a RCA reactive mix using a

reactive coarse aggregate (aggregate C) and an innocuous local fine aggregate (aggregate B)

with added NaOH to boost the alkali content to 1.50% Na2Oeq by mass of cement, and (3) a

RFA reactive mix using a reactive fine aggregate (aggregate D) and an innocuous local coarse

aggregate (aggregate A) with added NaOH to boost the alkali content to 1.50% Na2Oeq by

mass of cement. The admixture was added into the mixing water prior to mixing. Detailed

mix designs are shown in Table 2.4.

To allow for a highly reactive mix design, a sodium hydroxide solution was added to the

mixing water of the reactive specimens. The 50/50 NaOH solution was added in a quantity

to bring the total alkali loading of the concrete to 1.50% Na2Oeq by mass of cement. While

handling the chemical directly, proper personal protective equipment (PPE), including a

rubber apron, goggles, and gloves was always utilized.
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Figure 2.5: Rebar Placed in Formwork Prior to Casting

Table 2.4: Theoretical Mix Design (SSD)

Component Control RCA RFA

Cement (lb/yard3) 590 590 590

Water (lb/yard3) 295 295 295

Coarse aggregate (SSD) (lb/yard3) 1900 1751 1846

Fine aggregate (SSD) (lb/yard3) 1195 1415 1252

HRWR (oz./cwt.) 4 4 4

50/50 NaOH, lb 0 15.69 15.69

w/c 0.50 0.50 0.50

For each reactive mix, prior to mixing, the 50/50 NaOH solution was diluted into the

one half of the mixing water (approximately 25 lbs.). The NaOH solution was added to

the mixer with the first half of the mixing water with the coarse aggregate. The diluted

NaOH solution was handled with care and proper PPE including long sleeves, safety glasses

and long rubber gloves was always utilized to protect against coming into contact with the

chemical.
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2.3.4 Concrete Mixing and Casting

Mixing Procedure

Prior to mixing, all materials were gathered and prepared approximately 24 hours in advance.

Moisture contents of aggregates used in each batch were measured with a representative

sample prior to batching and the amount of water in each batch were adjusted accordingly.

To ensure no changes in moisture content, all mixing materials were kept inside and covered

prior to mixing.

A drum mixer with a capacity of 9 cubic feet was used in all medium-scale specimen

preparation. The mixing power is 8 horse power. At the beginning of each mix, water was

poured into the mixer and the mixer was turned on for approximately one minute to moist

the inside of mixer. To help to ensure the consistency of material collected from the mixer,

the mixer was “buttered” in accordance with ASTM C192 (2007). “Buttering” the mixer

involves mixing a small batch of 1 ft3 using the same mixture proportions to simulate the

test batch. The mortar left on the inside of the mixer will help compensate for the loss of

mortar during batching.

Concrete was mixed in accordance with ASTM C192 (2007). For the reactive mixes,

slight variances from the standard mixing procedure were made. Once the mixer has been

moist and “buttered”, the coarse aggregate and half of the mixing water were added. For

non-reactive batches the high-range water-reducer was included in the initial water added.

For reactive batches the 50/50 NaOH solution was added with the initial water and the

HRWR was added with the remaining water.

Casting and Curing

After mixing, the concrete was then transported to the location of forms for the medium-

scale specimens, cylinders and prisms using a wheel barrow and deposited using a scoop

or a shovel. The 4”x8” cylinders were cast in accordance with ASTM C192 (2007). The

3”x3”x11.25” prisms were filled in one layer and a vibration table was used to consolidate

the concrete. The 12”x12”x44” medium-scale specimens were filled in two layers each being

vibrated with an internal vibrator. The second layer was vibrated approximately 1 inch deep

into the first layer. The four corners of each specimen were vibrated, along with vibration

in the middle of the specimen spaced at approximately 10 inches apart.
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After both layers of the specimens were consolidated, the surface was carefully finished

with a 14-inch trowel. The specimens were then covered with moist towels and then plastic

sheet to ensure the moisture was retained. After 24 hours, the specimens were demolded.

The cylinders were moved to the curing room until testing was performed. The medium-scale

specimens and prisms were kept in the lab, under the same curing conditions, covered with

wet towels and plastic sheet for 28-days.

2.4 Concrete Testing and Properties

2.4.1 Fresh Concrete

Fresh concrete testing was done prior to casting to ensure the required fresh concrete prop-

erties were met. Slump, unit weight, air content, and temperature of each cast batch were

measured per ASTM C143 (2015), C138 (2017) and C231 (2017) respectively and the results

are summarized in Table 2.5.

Table 2.5: Fresh Concrete Property Summary

Specimen Cast Date Air Content
(%)

Unit Weight
(lb/ft3)

Slump
(in.)

UNL-CTRL 09/14/2018 1.5 150.7 5.00
UNL-RCA 10/09/2018 1.4 153.9 5.00
UNL-RCA-2D 10/16/2018 1.4 155.5 4.00

UNL-CTRL-2D 01/17/2019 1.5 142.1 7.50
UNL-RFA 01/21/2019 3.0 152.8 2.75
UNL-RFA-2D 01/22/2019 3.0 151.2 6.50

SC-CTRL 12/19/2018 1.5 151.2 4.50
SC-RFA 12/26/2018 3.0 148.6 5.25
SC-RFA-2D 12/26/2018 3.0 146.8 4.75

2.4.2 Hardened Concrete Testing

After curing of the specimens hardened concrete property tests were performed to verify the

quality of the specimens. The hardened properties tested included the compressive strength

at 7 and 28 days were measured per ASTM C39 (2010) and results are shown in Table 2.6.
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Table 2.6: Hardened Concrete Property Summary

Specimen f
′
c (7-day) (ksi) f

′
c (28-day) (ksi)

UNL-CTRL 3.95 5.39
UNL-RCA 3.09 4.66
UNL-RCA-2D 3.32 -

UNL-CTRL-2D 3.86 5.42
UNL-RFA 4.22 4.9
UNL-RFA-2D 4.00 4.6

SC-CTRL 4.59 6.30
SC-RFA 4.40 5.95
SC-RFA-2D 4.27 5.39

2.5 Conditioning plan

2.5.1 Specimens Storage Before Conditioning

To minimize the impact of the age of specimens to ASR expansion, all medium-scale speci-

mens were cured in a moist condition (covered with moist towels and plastic sheets) in room

temperature for a minimum of 28 days before being moved into the environmental chamber

for conditioning . As shown in Figure 2.6, the specimens were moved from the curing area

to the area outside of the chamber using a overhead crane in the laboratory. To move the

specimens into the chamber, high-strength carts were used to push the specimens up a small

ramp. The specimens remain on these carts for convenient movement.

Figure 2.6: Moving specimens in the laboratory using crane and supporting carts.
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2.5.2 Environmental Chamber and Layout

A walk-in environmental chamber with footage of 90” by 136” (total floor area 85 square

feet) was used for all medium-scale specimens conditioning. A photo of the layout of the

environmental chamber is shown in Figure 2.7. All medium-scale (12” × 12” × 44”) speci-

mens were stored inside along with select prisms and cylinders which are stored on a large

heavy-duty rack. Cables for data acquisition from sensors were run through a small hole in

the back of the chamber to an external data logger.

Figure 2.7: Environmental chamber and specimen storage layout.

2.5.3 Conditioning and Measurement

The environmental chamber was set to a temperature of 38◦C and a humidity of 95% to

accelerate ASR activity. Measurement was taken every two weeks. Prior to each measure-

ment of specimen expansions, the chamber temperature is set to 23◦C overnight. When the

internal temperature of the specimens reach a stable 23◦C, expansions are measured on the

medium-scale specimens, and other NDT tests are performed on small scale prisms. The

entire shut off period typically lasts for less than 24 hours.

2.6 Sensors and Monitoring

2.6.1 Sensors for Ultrasonic Monitoring

For ultrasonic monitoring at UNL, acoustic emission (AE) sensors R15I-AST and R6I-AST

by Mistras were used as ultrasonic receivers (see Figure 2.8). Piezoceramic (PZT) disks were

20



used as the ultrasonic transmitter (Figure 2.8(b). Each specimen has one PZT transmitter

and multiple receivers, and the receiver layout had changed during monitoring. Details can

be found in Chapter 4.

Figure 2.8: ASR sample: (a) top and left surfaces, (b) top and right surfaces, with the PZT
transmitter highlighted.

2.6.2 Temperature Sensors

Thermocouples were used for monitoring the surface and internal temperature of the concrete

samples.One thermocouple was glued on the surface of the control sample measuring the

surface temperature, as shown in Figure 2.9(a). Another thermocouple was embedded in

the ASR unconfined sample to measure the internal temperature, as shown in Figure 2.9(b).

Since all the samples were conditioned in the same chamber environment, the measured

surface and internal temperature data can represent the temperatures for the three samples.

A TC-08 thermocouple data logger (PICO Technology, UK) was used for the temperature

recording, as shown in Figure 2.9(c).

(a) (b)
(c)

Figure 2.9: (a)Thermocouple on surface, (b) Embedded thermocouple, (c) Temperature data
logger.

21



The chamber temperature and humidity were monitored using a DH22 sensor. The

temperature and humidity data were acquired by a Python program on a Raspberry Pi 3, as

shown in Figure 2.10. All the data were immediately uploaded to Google drive for instant

monitoring.

(a) (b)

Figure 2.10: (a) Raspberry Pi 3, (b)Temperature and humidity sensor for chamber environ-
ment monitoring.

2.6.3 DEMEC Target Installation and Monitoring

The demountable mechanical strain gauge (DEMEC) were used to monitor the expansion of

specimens. The gauge length 150 mm was used along the transverse and vertical directions,

and the 500 mm gauge length was along the longitudinal direction. Stainless steel DEMEC

targets were installed on five sides of every specimen. Fast-setting, high-strength epoxy

(Double/Bubble®) was used to glue the DEMEC targets to concrete surface. Targets were

covered with tape until the epoxy hardens. Once the targets were installed, the distance

between the two target locations were measured using the DEMEC mechanical strain gauge.

The targets and the mechanical strain gauge are shown in Figure 2.11. The DEMEC target

design layout is illustrated in Figure 2.12 .

22



(a) (b)

Figure 2.11: (a)DEMEC targets on specimen, (b) DEMEC mechanical strain gauge (150
mm).

Figure 2.12: DEMEC target design layout.
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2.7 Expansion Measurements

Expansion measurement results from all medium-scale specimens are presented in this sec-

tion. Expansions were measured in three directions (longitudinal, transverse and vertical

directions). The longitudinal measurements include two side surfaces and the top surface,

and an average of the three surface measurements was taken. The transverse expansion was

based on three surface measurements (two ends and the top) and vertical expansion was

based on four surface measurements (two sides and two ends). The volumetric expansion

was the summation of the average expansions in longitudinal, transverse, and vertical direc-

tions. For concrete structures affected by ASR, the volumetric expansion is usually used to

represent the global ASR damage.

For “UNL-” specimens, expansions were measured every two weeks; for “SC-” specimens,

the expansions were measured every month.

2.7.1 Expansion results on ”UNL-” specimens

Volumetric expansion

Figure 2.13 plots the volumetric expansion histories for all “UNL-” specimens. In both the

medium-scale RCA and RFA specimens (see Figure 2.13(a)(b)), the unconfined ASR (RCA

and RFA) and reinforced ASR (RCA-2D, RFA-2D) specimens show different expansions,

although the ASR specimens cast from the same group were supposed to have similar volu-

metric expansions. The difference in the volumetric expansions could be caused by variations

in casting. Due to capacity limit of the concrete mixer, only one medium-scale specimen

could be cast from each batch of concrete mix. Therefore, RCA and RCA-2D were cast

from two mixes. Although they had the same mix design, small variations in water content

and consolidation could affect their properties. The sudden increase of expansion rate may

indicate crack initiation due to ASR development. Although RCA and RCA-2D specimens

have different volumetric expansions, cracks initiated around 69 days in both specimens. The

chamber was malfunctioning from 302 to 343 days (Figure 2.13(a)). No expansion was mea-

sured during this time. The control specimen had no expansion during the entire monitoring

period.

As designed, the volumetric expansions in RFA specimens developed at slower rates than
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Figure 2.13: Volumetric expansion histories of ”UNL-” specimens. : (a) Control, RCA,
RCA-2D specimens, (b) Control-2D, RFA, and RFA-2D specimens, (c) Small RCA (sRCA)
and Small RCA-2D (sRCA-2D) specimens

in the RCA specimens. Crack initiated in both RFA specimens around 118 days. Similar to

the RCA case, the two RFA specimens showed different expansion rates because they were

cast from different mixes.

The two small RCA specimens (sRCA and sRCA-2D) were cast from the same batch

of concrete mix. Their expansion curves showed very similar volumetric expansion histories

(Figure 2.13(c)). It demonstrates that the casting process will affect the ASR development

process even with the same mix design. Since crack initiation occurred during the chamber

malfunctioning period, the initiation dates should be between 36 days and 84 days. The

actual initiate dates were around to 60 days and close to the initiation date of the medium-

scale RCA specimens. Detailed results of ASR damage in UNL specimens are presented in

Chapter 4.
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2.7.2 Expansion results on ”USC-” specimens

Specimens RCA, RCA-2D, and control were conditioned for 300 days. The ”confined” spec-

imen in this section refers to RCA-2D, whereas the ”unconfined” specimen with reactive

coarse specimen is referred to as RCA. The volumetric strains of the three specimens are

illustrated in Figure 2.14(a). Based on the measured volumetric expansion, the crack initia-

tion date was around 80 days. Specimens RFA, RFA-2D, and Control-2D were conditioned

for 250 days.

(a) (b)

Figure 2.14: Volumetric expansion histories of ”SC-” specimens: (a) Control, RCA, RCA-2D
specimens, (b) Control-2D, RFA, and RFA-2D specimens
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3 Nonlinear Resonance Tests of Small Con-

crete Prisms

This chapter presents continuous expansion and NDT monitoring results on small-scale con-

crete prisms. Two mix designs were used to cast the prism specimens. Group 1 prisms used

the same mix designs as for the medium-size specimens (Control, RCA, RFA), and group 2

prisms followed the specifications of ASTM 1293 [5]. Both linear and nonlinear resonance

methods were used to measure the damage progression and the results were correlated to

the expansions.

3.1 Background of Nonlinear Acoustic Tests

ASR damage in concrete may be monitored by measuring wave velocities and dynamic stiff-

ness, because cracks will cause stress wave scattering and attenuation of and decrease of

Young’s modulus. Several NDT techniques have been used to evaluate ASR damage de-

velopment by relating linear parameters to the Young’s modulus of elasticity of concrete

specimens. Commonly used linear acoustic techniques include monitoring the resonance fre-

quency (ASTM C215 [6]), and ultrasonic pulse velocity (UPV) in concrete [7]. Rivard and

Saint-Pierre [8] found the ultrasonic velocities only dropped about 4%, and the resonance

frequency decreased by 12% when the ASR expansion reached 0.18% during a 48-week mon-

itoring period. Giannini et al. [9] also investigated UPV, impact-echo, surface wave velocity

and transmission, and the resonance frequency method for much larger expansion ranges

(0.3% ∼ 1.6%). They found that the UPV results decreased 20% at higher expansions,

but it was difficult to obtain consistent UPV measurements. Linear resonance frequency

tests showed high sensitivity at low ASR expansion levels, but the frequency drop became

insensitive at high expansion levels. These measurements require a baseline measurement,

which limit the applicability of linear acoustic analysis to concrete damage characterization

for in-service structures.
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Concrete is an inherent nonlinear material due to its complex microstructure. Micro-

cracking will further increase the material’s nonlinearity. Nonlinear acoustic responses in-

clude resonance frequency shift, wave velocity decrease, and generation of higher harmonics

[10]. Several nonlinear acoustic techniques based on these nonlinear responses have been

used to evaluate micro-damage in concrete. The nonlinear resonance acoustic/ultrasound

spectroscopy (NRAS/NRUS) test [11, 12] measures the resonance frequency shift ∆f under

excitation by frequency sweeps at increasing strain levels. The nonlinear impact resonance

acoustic spectroscopy (NIRAS) technique is a variation of the NRAS method and has been

applied to mortar bars [13] and concrete specimens [14] with ASR damage. NIRAS uses an

impact hammer to induce the flexural mode resonance of a sample under increasing impact

amplitudes, and the resonance frequency shift is measured. Lesnicki et al. showed that NI-

RAS is able to detect ASR damage in concrete prisms at early stages of damage development

[14, 15].

Although these studies indicate that the acoustic nonlinearity generally increases with

ASR damage and microcrack density in early damage, quantitative characterization of dam-

age was not available because there is no clear correlation between material nonlinearity and

ASR damage. This study focuses on ASR damage characterization at early stages. Linear

resonance and the NIRAS techniques were used to monitor the the concrete specimens for

more than one year, and the expansion reached 0.085% at the end of the monitoring pro-

gram. Petrographic analysis results were used to build an understanding of the underlying

damage mechanisms.

3.2 Materials and Experiments

3.2.1 Concrete specimens

The aggregates used in this study have been described in Chapter 2: a reactive coarse aggre-

gate (RCA), a reactive fine aggregate (RFA), and a non-reactive coarse aggregate (NRCA)

and non-reactive fine aggregate (NRFA) with similar gradation as the two reactive aggregates

as shown in Figure 2.2. The properties of the aggregates can be found in Table 2.1.

Six different concrete mix designs were used in this study (Table 3.1). The first set

of three mix designs match the mix designs for the medium-scale specimens in Chapter 2,

including Control, RCA, and RFA, which are designated as #1 in this chapter. The second
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set (#2) of mix designs follows ASTM C1293 [5], where the reactive coarse aggregate in

the RCA (#2) design was crushed to meet the ASTM C1293 gradation requirement for the

smallest aggregate category. For the reactive mix designs, NaOH was added to boost the

alkali content of the mix to promote accelerated ASR damage. Six concrete prisms (3 x 3 x

11.25 in3) were cast for each mix designs.

Table 3.1: Mix designs for small prism specimens.

Component (kg/m3) Ctrl 1 RFA 1 RCA 1 Ctrl 2 RFA 2 RCA 2
Cement 350 350 350 420 420 420
Water 175 175 175 189 189 189
Coarse aggregate 1127 1095 1039 1196 1038 1196
Fine aggregate 709 743 839 544 744 545
Water reducer (mL/kg) 2.3 2.3 2.3 2.3 2.3 2.3
50/50 NaOH 0 9.31 9.31 0 8.46 8.46
w/c 0.5 0.5 0.5 0.45 0.45 0.45

3.2.2 Curing, conditioning, and expansion measurements

The specimens were stored in the same environmental chamber as described in Chapter 2.

Expansion, linear resonance, and nonlinear resonance measurements were taken every two

weeks. Prior to each measurement, the chamber temperature was set to 23◦C. A separate

concrete prism with an embedded thermocouple sensor was used for continuous monitoring

of the internal temperature. When the internal temperature of the specimens reached a

stable 23◦C, expansions and resonance frequency tests were performed on the prisms. Prism

length change measurements were made using a Humboldt H-3250D length comparator. The

entire shut down period typically lasted for less than 24 hours.

3.2.3 Linear and nonlinear resonance acoustic techniques

Resonance frequency tests used a test setup as described in ASTM C215 [6] (Figure 3.1).

Each specimen was impacted at multiple times with increasing force for nonlinear analyses.

An accelerometer (PCB Piezotronics 352C65, sensitivity 10.2 mV/(m/s2) was used to mea-

sure the vibration response. Signals were digitized by a 16-bit oscilloscope (PicoScope 4262)

at a 100 kHz sampling rate.

The NRAS method measures the relative resonance frequency shift with the strain change
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Figure 3.1: Resonance test setup [16]

as [11]:
f0 − f

f0
= αf (ε− ε0) (3.1)

where αf is defined as the nonlinear parameter, f0 is the linear frequency measured at a low

strain level ε0, and f is the frequency at a high strain level ε. In experimental studies, a

relative nonlinear parameter α is commonly used by replacing the strains in Eq. (3.1) with

accelerations. The parameter α referred in this study is the relative nonlinear parameter.

The NIRAS technique uses a hammer impact to excite the fundamental vibration mode

and measures the resonance frequency shift under increasing impact forces. Figure 3.2(a)

shows the signal processing procedures. It can be seen that for the RCA specimen, a larger

decrease in resonance frequency is observed with increasing amplitude. The nonlinear pa-

rameter (α) is then determined from the slope of the resonance frequency shift (f0 − f)/f0

vs. the acceleration amplitude plot, as shown in Figure 3.2(b).

3.2.4 Petrographic analysis

Petrographic examination was performed on two prisms: one RFA#1 specimen and one

RCA#1 specimen, at the conclusion of the monitoring period. Each prsim was prepared

and analyzed following ASTM C856 [17] and ASTM C1723 [18]. Each prism was cross

sectioned longitudinally and a 45 x 45 x 5 mm section was taken from an area of interest

at approximately mid-length of each prism. Optical examination of each polished section

was conducted in reflected light at low magnification. SEM examination included collecting

both backscattered electron (BSE) micrographs and chemical composition from locations of

interest using electron dispersive spectroscopy (EDS).
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Figure 3.2: NIRAS signals and analysis including (a) frequency spectra, (b) multi-impact
nonlinear analysis. [16]
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3.3 Results and Discussions

3.3.1 Expansion results

Figure 3.3 shows the expansion history of specimens from all six mix designs. During the

first 50 days of monitoring, all specimens showed minor shrinkage due to hydration. The

Control specimens then kept relatively stable expansion levels thereafter. For both sets of

specimens (#1 and #2), the RCA specimens showed consistently larger expansions earlier

crack initiation time than the RFA specimens, which indicates that the RCA aggregate is

more reactive than the RFA aggregate.
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Figure 3.3: Expansion measurement results during testing period (Solid lines for mix design
#1, dashed lines for design #2, black, blue and red colors represent control, RCA, and RFA
specimens respectively). [16]

3.3.2 Linear resonance frequency results

In the NIRAS test, the signals from the lowest impacts were used for the linear resonance

frequency analysis. Because resonance frequency of a specimen is related to the specimen’s

Young’s modulus as f ∝
√
E, the measured resonance frequency will increase as concrete

strengthens, and decrease with development of ASR damage. Figure 3.4 presents the pro-

gression of the linear resonance frequency of the specimens for more than 400 days. Both sets
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of control specimens experienced a small increase in resonance frequency due to continued

strength increase.
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Figure 3.4: Linear resonance frequency results during testing period. [16]

The RCA specimens first showed an increase in linear resonance frequency before 50

days, followed by a large drop during the testing period. The initial large drop for both sets

of specimens occurred around 75 days after specimen casting, which are consistent with the

expansion results. The resonance frequencies dropped more than 10% for both sets of RCA

specimens around 300 days, and then stopped decreasing although the expansion was still

progressing. This result is consistent with previous findings by Rivard and Saint-Pierre [8]

and Giannini et al. [9], where they noticed the resonance frequency became saturated at

late stage of ASR damage.

The RFA specimens did not show clear frequency drop during the entire monitoring

period, although they had clear expansions of 0.033%.

These results present several limitations of the linear acoustic method. First, the linear

resonance frequency depends on the dimensions of the specimens. Figure 3.4 shows that

specimens had different starting frequencies due to slight difference in dimensions. In order

to use the linear resonance frequency for ASR evaluation, a baseline measurement for each

specimen is needed. Second, at the late stage of RCA specimens, although the expansions

continued to increase, the linear resonance frequency was no longer sensitive to further

damage development. Third, the linear resonance test could not detect ASR damage in

the RFA specimens, even though clear expansion was measured. In the RFA specimens,
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reactive fine aggregates might cause localized micro-damage that has minimum impact on

the modulus. More detailed discussions on specimen microstructures are presented in the

petrographic analysis section.

3.3.3 Nonlinear resonance test results

Figure 3.5 presents the nonlinear parameter (α) change during the testing period for all

specimens. This plot is similar to the expansion result in Figure 3.3. The control (undam-

aged) specimens have a nearly constant low value of nonlinearity, with α remaining around

3 ×10−4 during the entire test period.
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Figure 3.5: Nonlinear parameter α measured from NIRAS method during testing period
[16]

The RFA specimens showed a significant increase in nonlinearity beginning around 187-

229 days, consistent with the time when a large increase in expansion was observed. For

the RFA specimens, the measured nonlinear parameter (α) is more than 7 times larger

than the average α value of the Control specimens, validating that the nonlinear testing is

highly sensitive to microcracking damage. The RCA specimens showed an earlier increase

in nonlinearity, with a noticeable change after 75 days had passed in the testing period, the

same time when the expansions started to increase. The final values of nonlinear parameter

(α) for the RCA specimens were more than 10 times larger than for the Control specimens.
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3.3.4 Correlation of nonlinear results and ASR expansion

The similarity between the nonlinear results (Figure 3.5) and expansions (Figure 3.3) indi-

cates a strong correlation between these two measurements. Figure 3.6 shows the correlation

between the nonlinear parameter and the expansion for all specimens. A nearly linear rela-

tionship is obtained for all ASR specimens, regardless of their mix design and type of reactive

aggregate. This result means that the ASR expansion and nonlinear acoustic response are

related to a same parameter due to ASR damage. Attar et al. [19] found the ASR induced

crack density initially increases with time at the early stage of ASR damage. Therefore, ASR

expansions in the early stage can be attributed to initiation of new cracks and extension of

existing cracks, and both increase the crack density. The nonlinear resonance response is

governed by clapping and slipping interactions between crack interfaces, which are also di-

rectly related to the crack density. Therefore, the increase of crack density at early stage of

ASR damage contributes to the increase of ASR expansion and acoustic nonlinearity.
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Figure 3.6: Relationship between nonlinear parameter (α) and specimen expansion.

Unlike the expansion measurement which needs a baseline value, the nonlinear parameter

can be measured at any time without a reference measurement. The results validate that the

nonlinear parameter α has high sensitivity to microcracks but is not affected by other factors

such as aggregate type or gradation, and therefore can be used for quantitative evaluation

of ASR damage.
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3.3.5 Petrographic results

Petrographic analysis can be used to help us understand the difference between the RCA

and RFA specimens in the resonance frequency test and analyze the damage mechanism in

both reactive specimen types.

In the RFA specimen, microcracking could not be detected using optical microscopy,

but limited microcracking was observed in the SEM at higher magnifications. Figure 3.7(a)

shows microcracking within the aggregate particles. A smaller number of sand grains showed

cracking within the aggregate particles with some cracks extending into the paste. Most

cracks were empty, and gel was observed in the cracks only near the paste-aggregate interface;

an example is shown in Figure 3.7(b).

(a) (b)

Figure 3.7: RFA specimen: BSE image and EDS point spectrum of (a) chert sand particle
with ASR gel formation and microcracking confined within the particle (b) cracked siliceous
fine aggregate particle with microcracking extending into paste and ASR gel within the
mouth of the crack [20]

In the RCA specimen, microcracking was observed in coarse aggregate particles and

extending into the paste and bridging other reacted aggregate particles (see Figure 3.8).

ASR gel was found within microcracks both in the aggregate and in the paste, as well as

lining adjacent air voids (see Figure 3.9).

Both the RFA and RCA specimens exhibited very low degrees of ASR-induced damage

under petrographic examination, but the damage patterns in the RFA and RCA specimens
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(a) (b)

Figure 3.8: RCA specimen: BSE images and EDS point spectra showing (a) ASR gel in a
crack in the paste, and (b) cracks bridging between two coarse aggregate particles.[20]

(a) (b)

Figure 3.9: RCA specimen: BSE images and EDS point spectra showing (a) ASR gel lining
a crack that begins in a coarse aggregate particle and extends into the paste; (b) gel is also
seen partially lining an air void.[20]

are different. In the RCA specimen, microcracking extended into the paste and had begun to

bridge between aggregate particles. In the RFA specimen, microcracks jsut began to exit the

reactive aggregate particles into the paste but not yet forming an interconnected network.
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The petrographic analysis helps explain the difference between the RFA and RCA spec-

imens in the resonance frequency test. Although the isolated microcracks in the RFA spec-

imens did not lead to significant decrease of resonance frequency, they still contribute to

increase of nonlinearity. These results confirm the high degree of sensitivity of the NIRAS

technique to early-stage initiation of ASR damage.

3.4 Summary of Nonlinear Resonance Tests on Small

Concrete Prisms

Linear and nonlinear resonance tests were used to evaluate ASR damage in small concrete

prism specimens. The concrete specimens included six mix designs. Different types of

reactive aggregates (coarse or fine) were used to cast the reactive specimens, which resulted

in different levels of ASR damage and cracking patterns. The specimens were conditioned

in an environmental chamber for 400 days.

The linear resonance test could detect crack initiation and ASR development in the RCA

specimens, but it became insensitive at the later stage. Because the resonance frequency

depends on dimensions of specimens, baseline measurements are needed for each specimen.

Isolated microcracks in the RFA specimens could not be detected by the linear resonance

test, although the RFA specimens had shown clear expansion. The difference between RCA

and RFA specimens in the linear resonance test is attributed to different microcracking

patterns, where interconnected microcracks were found in the RCA specimen, while isolated

microracks in the RFA specimen. This explanation was confirmed by petrographic analysis.

The nonlinear resonance test showed high sensitivity to microcracking damage in con-

crete, in both the RCA and RFA specimens. At the early stage of ASR damage, the nonlinear

parameter and ASR expansion showed a strong correlation with each other. It is believed

that both the nonlinear parameter and ASR expansion are related to the crack density in

material. The test results demonstrate the feasibility of using nonlinear acoustic resonance

methods for quantitative NDT evaluation of ASR damage.
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Part II

Monitoring Medium-Scale Concrete

Specimens
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4 Ultrasonic Monitoring – Linear Analysis

This chapter describes the experimental setup and linear ultrasonic analysis results on the

medium-size concrete beams. All specimens studied in this chapter refer to the “UNL” speci-

mens that were cast and conditioned at UNL. These specimens were continuously monitored

for more than 400 days using ultrasonic waves. The linear ultrasonic analysis focuses on

wave velocity change with conditioning ages and ASR expansion levels.

4.1 Experimental Setup for Ultrasonic Monitoring

A hybrid monitoring system was developed to continuously monitor ASR damage in the

concrete specimens. The system can be used for active ultrasonic monitoring and passive

acoustic emission (AE) monitoring. The system diagram is shown in Figure 4.1(a). Fifteen

AE sensors (R6I-AST and R15I-AST, Mistras, NJ, USA) were installed on the concrete

specimens, and used as AE sensors and ultrasonic receivers. These sensors were connected

to the AE system for most of the time. At specific times (01:05 am and 13:05 pm) every

day, the switch (Agilent 34970, CA, USA) disconnected all sensors from the AE system and

connected them to the ultrasonic system as the receivers. When the system switched to

ultrasonic test, the switch board controlled data acquisition from each sensor one by one.

An AE amplifier system (AE-2A) was used to power the AE sensors and connect to the

ultrasonic system. An ultrasonic pulser/receiver (Olympus 5077PR) emitted square wave

pulses to drive the transmitters (PZT disks) at the frequency of 100 kHz. A second switch

board was used to switch among the transmitters and specimens (one transmitter on each

specimen). The received signals were digitized by a digital oscilloscope (PICO4262) with a

sampling rate of 10 MHz. Only the ultrasonic results are presented in this report.

Sensor arrangements and sensor positions for group 1 specimens (Control and RCA) are

shown in Figure 4.2. The number of sensors on each specimen was changed several times

during the monitoring. Based on the sensor arrangement, the entire monitoring process can
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Figure 4.1: Ultrasonic-acoustic emission hybrid monitoring system

be divided into four periods. During the first period (12/09/2018-01/14/2019), three sensors

were installed on the control, the RCA and the RCA-2D specimens with S1 for the high-

frequency sensor (R15I-AST, 150kHz) and S2, S3 for the low-frequency sensors (R6I-AST,

60kHz). During period 2 (01/20/2019-03/31/2019), six sensors were installed on the RCA

and the RCA-2D specimens and three on the control sample. During period 3 (04/06/2019-

08/08/2019), only one high-frequency sensor (R15I-AST) was installed on the control sample

and four sensors on the ASR and ASR-2D specimens. After that, S1 sensor was replaced

with a R6I-AST sensor and S4 sensor was removed from the ASR sample and the ASR 2D

sample in period 4. A PZT disk (T) was used as the ultrasonic transmitter and installed on

the opposite surface of sensor S1. The sensor arrangement is summarized in Table 4.1.

Table 4.1: Sensor arrangement on group 1 specimens

Period Control RCA RCA-2D
12/09/2018-
01/14/2019

S1(150 k),S2,S3 S1(150k),S2,S3 S1(150k),S2,S3

01/20/2019-
03/31/2019

S1(150 k),S2,S3 S1(150k),S2,S3,
S4,S5,S6

S1(150k),S2,S3,
S4,S5,S6

04/06/2019-
08/08/2019

S1(150 k) S1(150 k),S3,S4,S5 S1(150k),S3,S4,S5

08/10/2019-
end

S1 S1(150 k),S3,S5 S1(150 k),S3,S5
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(a) Sensors arrangement on RCA specimens
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(b) Sensor positions

Figure 4.2: Sensor arrangement on the RCA specimens

Table 4.2: Sensor arrangement on RFA and sRCA specimens (groups 2 and 3)

Group Monitoring period Control-2D ASR ASR-2D
2 04/06/2019- end S1 S1,S2 S1,S2
3 08/09/2019- end N/A S1 (150 kHz) S1 (150 kHz)

On the RFA specimens, two sensors (R6I-AST) were used as the ultrasonic receivers and

one PZT disk was used as the transmitter. The sensor positions are shown in Figure 4.3.

On the Control-2D sample, one R6I-AST sensor was used (S1). The sensor arrangement is

summarized in Table 4.2.

On the two small RCA concrete specimens (sRCA), one AE sensor (R15I-AST, 150kHz)

was used as the ultrasonic receiver, and one PZT sensor was installed as the transmitter.

The sensor positions are shown in Figure 4.4, and sensor arrangement is in Table 4.2.
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Figure 4.4: Sensor arrangement on the sRCA specimens
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4.2 Signal Processing Algorithms

At the early stage of ASR, the relative velocity change is very small so that it cannot be

reliably measured by the time-of-flight (TOF) method. Coda wave analysis technique is

commonly used to track small ultrasonic velocity change due to minor changes in materials.

There are two commonly used methods for coda wave interferometry analysis: the doublet

method and the stretching technique. The doublet method was first proposed by Poupinet

et al.[21] and Roberts et al.[22] and later developed by Snieder et al.[23]. The time delay of

a small window T at time t is calculated using cross-correlation between the original signal

φ and the perturbed signal φ′ as:

CC(t, δt) =

∫ t+T/2

t−T/2
φ(t)φ′(t+ δt)dt√∫ t+T/2

t−T/2
φ2(t)dt

∫ t+T/2

t−T/2
φ′2(t)dt

(4.1)

The time delay δt that maximizes the cross-correlation coefficients represents the time lag

between the two signals and the relative velocity change is expressed as: dv/v = −δt/t.

Figure 4.5(a) shows the time domain signals on an aluminum block with blue curve for the

original signal (at 23◦C) and red for the perturbed signal (at 40◦C). In the zoomed inset,

the perturbed signal has a clear time delay to the original signal. Figure 4.5(b) shows the

time delay at different signal travel time and the slope δt/t is 0.254%, which indicates the

relative velocity change is -0.254%.

The stretching technique was first proposed by Lobkis and Weaver [24] and this method

allows processing the full waveform by applying a stretching factor ε to the perturbed signal

φ′. Using the stretching technique, the cross-correlation coefficient is evaluated as:

CC(ε) =

∫ t2
t1

φ′[t(1− ε)]φ(t)dt√∫ t2
t1

φ′2[t(1− ε)]dt
∫ t2
t1

φ2(t)dt
(4.2)

The stretching factor εmax which maximizes the cross-correlation coefficient represents the

relative velocity change dv/v. Figure 4.6 shows the cross-correlation coefficient CC at dif-

ferent stretching factors for the two signals in Figure 4.5(a). A window from 0.15 ms to 0.65

ms is used for the analysis.

The stretching factor at the maximum cross-correlation coefficient ε=-0.231% represents

the relative velocity change. The stretching and doublet techniques give very close results,
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Figure 4.5: Doublet results on an aluminum sample for temperature of 23◦C (original) and
40◦C (perturbed)

but the stretching technique is more stable and precise than the doublet method according to

Hadziioannou et al. [25]. Therefore, the stretching technique is used for coda wave analysis

in the following works.

The stretching method uses a fixed reference signal (e.g., the first signal of starting

monitoring), and all other signals are compared to this reference signal. However, when the

test specimen experiences large changes in stress, temperature, or internal structure change

(cracks), the disturbed signals will be very different from the reference signal and the CWI

analysis has a very low cross-correlation coefficient. Therefore a moving reference algorithm

based on the cross-correlation coefficient is proposed in this study. Let dv/vi represent the
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Figure 4.6: Cross-correlation coefficient at different stretching factors

relative velocity change of the ith signal to the reference signal S0, which is recorded at

the beginning of the monitoring. The relative velocity changes dv/vi, and the correlation

coefficients CCi are calculated using the stretching technique. If the correlation coefficient

CCk of the kth signal is lower than a threshold value (e.g., 0.95), the kth signal is used as

the new reference for the signals after it. For example, the relative velocity change dv/vk+1

of the (k + 1)th signal is calculated as below:

dv/vk+1 = dv/vk +∆dv/v(k+1,k) (4.3)

where the ∆dv/v(k+1,k) is the relative velocity change between the (k + 1)th signal and kth

signals calculated by the stretching method. The reference signal may change several times

for the signals experiencing large changes. If the total velocity change is very large, we may

also need to consider the compound effect, as shown in the following equation

dv/vk+1 = dv/vk +∆dv/v(k+1,k) × (1 + dv/vk) (4.4)

In the CWI analysis, the relative velocity change dv/v approximately equals to the rel-

ative time delay δt/t. When there is a temperature change, two effects contribute to the

relative time delay δt/t: thermal expansion of the sample, and temperature dependence of the

wave velocity [24, 26]. The relative velocity change is calculated as dv/v = −(δt/t−αT∆T ).

If the thermal strain is negligible (ϵ = αT∆T ≪ dv/v), the relative velocity change can be

calculated as dv/v = −δt/t.
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4.3 Expansion Measurements

Detailed expansion measurement results from the eight “UNL-” specimens are presented in

this chapter. Expansion was measured every two weeks in three directions (longitudinal,

transverse and vertical directions). The longitudinal measurements include two side sur-

faces and the top surface, and an average of the three surface measurements was taken.

The transverse expansion was based on three surface measurements (two ends and the top)

and vertical expansion was based on four surface measurements (two sides and two ends).

The volumetric expansion was the summation of the average expansions in longitudinal,

transverse, and vertical directions.

4.3.1 Volumetric expansion

Table 4.3: Dates for ASR initiation.

specimen Determined by expansion Date of first surface crack

RCA 69 days 144 days
RCA-2D 69 days 160 days
RFA 118 days 173 days
RFA-2D 118 days 158 days
sRCA 36 days 144 days
sRCA-2D 36 days 160 days

Volumetric expansions have been presented in Chapter 2. The expansion curves are shown

in this chapter again for convenience (Figure 4.7). The specimen surfaces were inspected

when the chamber was shut down. The date was recorded when the first surface crack was

observed and this information is summarized in Table 4.3. Comparing to the ASR initiation

dates determined by the volumetric expansions, the dates of surface cracking are about

70-100 days later than For the RCA specimens. Because internal ASR cracks could occur

much earlier than the surface cracks, it is not accurate to determine ASR initiation using

surface crack. For the RFA and RFA-2D specimens, the first surface cracking dates were

about 40 days later than the crack initiation dates determined by the expansions. The ASR

initiation dates determined by expansion in RFA specimens were much later than in the

RCA and RCA-2D specimens, which indicates that the RFA specimens had a slower ASR

development rate. For all four ASR specimens, the dates of first surface cracking were later

than the internal ASR initiation, which indicates that the surface cracks are late alarms
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Figure 4.7: Volumetric expansion histories of: (a) Control, RCA, RCA-2D specimens, (b)
Control-2D, RFA, and RFA-2D specimens, (c) Small RCA (sRCA) and Small RCA-2D
(sRCA-2D) specimens

to the ASR damage initiation. Both the unconfined and confined specimens had the same

ASR initiation time, which indicates that the rebar confinement had little effect on the ASR

initiation dates of these specimens.

4.3.2 Expansions in three directions

The expansions in longitudinal (L), transverse (T), and vertical (V) directions are plotted

in Figure 4.8 for the reactive specimens: RCA, RCA-2D, RFA, RFA-2D, sRCA, and sRCA-

2D. In Figure 4.8(a), the vertical expansions (two red curves) for the RCA and RCA-2D

specimens are larger than others due to the effect of the horizontal casting plane which

was reported by Smaoui et al. [27]. Horizontal cracks occurred near the half-height on the
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side surfaces where the casting planes were located (see Figure 4.9(a) and (b)). The RCA

specimen had similar expansions in the longitudinal and transverse directions (solid black

and solid blue), which is consistent with expectation for unconfined ASR specimens.

The RCA-2D specimen had much smaller expansion in the longitudinal direction due to

confinement by the headed rebars. The vertical expansion was affected by both casting effect

and vertical confinement effect, so the vertical expansion was still the largest for RCA-2D

specimen, but smaller than the vertical expansion in the RCA specimen. The transverse

expansion (dashed blue) in RCA-2D is smaller than that of the RCA specimen (solid blue),

which is unexpected, because the confined direction in the RCA-2D specimen was expected

to have large expansion. But it showed a higher expansion rate after 300 days and eventually

exceeded the vertical expansion of RCA curve. The comparison between RCA and RCA-

2D expansions indicates that the headed rebar confinement was effective in the RCA-2D

specimen.
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Figure 4.8: Expansion in three directions: (a) RCA and RCA-2D specimens, (b) RFA and
RFA-2D specimens, (c) sRCA and sRCA-2D specimens.

In Figure 4.8(b), the vertical expansions of RFA and RFA-2D (solid red and dashed red)
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(a) (b) (c) (d)

(e) (f)

Figure 4.9: Surface cracks of: (a) RCA (side), (b) RCA-2D (side), (c) RFA (side), (d) RFA-
2D (side), (e) RFA (top surface), (f) RFA-2D (top surface). Cracks are highlighted in black
lines for clarity.

were also larger than other expansions due to the casting plane effect that cracks existed

at the half-height positions on the side surface (see Figure 4.9 (c) and (d)). The RFA

longitudinal (solid black) and RFA-2D longitudinal (dashed black) showed similar trends

over the whole period. The RFA specimen only showed some random cracks on its top

surface (see Figure 4.9 (e)). The RFA-2D transverse expansion (dashed blue) was the largest

among all expansions. A single longitudinal crack was observed on the top surface of the

RCA-2D specimen leading to the large transverse expansion (see Figure 4.9 (f)). In Figure

4.9 (b) and (d), both RCA-2D and RFA-2D specimens showed a vertical crack on the side

surfaces, which contributed to the large transverse expansions. Both vertical cracks on the

two specimens only penetrate the one-third of the depth.

In Figure 4.8(c), the sRCA and sRCA-2D had very similar vertical expansions (solid and

dashed red) since the two specimens were cast from the same batch. They were also larger

than expansions in other direction due to the casting plane effect. The sRCA longitudinal,

sRCA transverse, and sRCA-2D transverse directions showed very similar expansions while

the sRCA-2D longitudinal expansion was smaller than all the other expansions since this

direction was confined using headed rebar.
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4.4 Relative Velocity Change History

4.4.1 Temperature history

The internal and surface temperature histories of the specimens are plotted in Figure 4.10.

Since all the specimens were conditioned in the same chamber, we use the same internal

and surface temperatures for all specimens. Each temperature data point corresponds to a

daily ultrasonic test. Because the ultrasonic data was collected when the chamber status

was stable, the internal temperature and surface temperature have good agreement in the

figure. Most temperature points are around 38◦C, which is the designed conditioning tem-

perature. The RCA specimens were conditioned from 11/27/2018, while the RFA specimens

were conditioned from 131 days later (04/04/2019) and sRCA specimen from 255 days later

(08/09/2019). Temperature was not recorded from 301 days to 327 days during chamber

malfunctioning period.
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Figure 4.10: Internal and surface temperatures of the concrete specimens

4.4.2 Velocity change for group 1 specimens: Control, RCA, RCA-

2D

The ultrasonic relative velocity change for each specimen was analyzed using the stretching

technique. The results for the Control, RCA, and RCA-2D specimens were plotted in Figure

4.11(b). The transverse expansions of the three specimens was also plotted in Figure 4.11(a)

for comparison since the ultrasonic wave propagated in the transverse direction.
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The relative velocity change of the control specimen (black) increased to about 3.6%

at 265 days due to the cement hydration and decreased after that, which was caused by

temperature increase due to chamber malfunction. Then the chamber was shut down at

301 days and the temperature dropped to 23◦C and the humidity to 50% RH. After the

chamber resumed normal conditioning at 327 days, the velocity had a large drop and was

never recovered to the previous velocity. This might be caused by the moisture evaporation

and the shrinkage of the control specimen, as shown in the expansion curve. After that, the

velocity stayed constant. During the entire monitoring period, the transverse expansion of

the Control specimen stayed nearly constant (black curve in Figure 4.11(a)).
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Figure 4.11: RCA specimens: (a) Transverse expansion history, (b) Relative velocity change
histories.

Both RCA and RCA-2D specimens began to show a fast velocity drop at 75 days. This

time was close to the date of transverse expansion initiation (69 days) shown in Figure

4.11(a). Both relative velocity change histories of the RCA and RCA-2D first had a fast

decreasing rate till 250 days for RCA-2D, and 295 days for RCA, and then the velocity drop

rate started to slow down. The two expansion curves in Figure 4.11(a) also show similar

trends of fast-increasing before 300 days and the RCA expansion slowed down after that.

However, the expansion histories of the two reactive specimens were still increasing after 420

days while the two velocity curves became saturated after 400 days. This result indicates that

the ultrasonic velocity became insensitive to the ASR expansion after 400 days. A possible

explanation is that, at a late stage of ASR damage, the expansion is mainly attributed to

widening of existing cracks rather than generation of new cracks; while the wave velocity

is mainly affected by crack density instead of crack width. From 301 days to 327 days, no

ultrasonic signal was recorded due to the chamber malfunction. At the end of the monitoring

period (530 days), the relative velocity changes of the RCA and RCA-2D were 18.9% and
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14.2% respectively. However, the transverse expansions for the two specimens were very

close (0.254% and 0.246%) at 530 days. The volumetric expansions for the two specimens

were 0.910% and 0.615% and the ratio of the two volumetric expansions is close to the ratio

of the two relative velocity changes at 530 days.

4.4.3 Velocity change for group 2 specimens: Control-2D, RFA,

RFA-2D

The relative velocity histories for the Control-2D, RFA, and RFA-2D specimens were plotted

in Figure 4.12. For the Control-2D specimen (black curve), the relative velocity change

increased until the chamber malfunction period. The velocity has a large drop and then

stayed constant after chamber resumed conditioning.
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Figure 4.12: RFA specimens: (a) Transverse expansion history, (b) Relative velocity change
histories.

For the RFA and RFA-2D specimens, the relative velocity change started to drop at 118

days, which was same to the transverse expansion initiation time 118 days for the RFA and

RFA-2D specimens. Actually, the relative velocity change histories had small drop before

118 days, which indicates that the ultrasonic velocity monitoring may be able to detect the

ASR development earlier than the expansion measurement.

The relative velocity change histories of the RFA and RFA-2D specimens had similar

trend for the whole period, although RFA-2D had a much larger transverse expansion than

the RFA specimen after crack initiation at 118 days, as shown in Figure 4.12(a). On the

top surface of the RFA specimen, surface cracks with random orientations were observed

(see Figure 4.9(e)), while the RFA-2D specimen only had a single large longitudinal crack
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which caused the large transverse expansion (see Figure 4.9(f)). The longitudinal crack on

the RFA-2D specimen only penetrated 1/3 depth of the specimen which did not block the

wave propagation path. Further widening of the large crack only increased the transverse

expansion but did not affect the velocity change, which explained why these two specimens

had similar velocity change curves.

4.4.4 Velocity change for group 3 specimens: sRCA, sRCA-2D

The relative velocity histories for the two sRCA specimens are plotted in Figure 4.13. The

velocities of both ASR specimens starts to drop at 35 days, which matches the expansion

initiation time of 36 days for the two ASR specimens. Both the expansions and velocities

of the two ASR specimens indicates they have similar ASR damage development over time.

This result indicates that the two-way confinement has little effect on volumetric expansion

and velocity change in ASR specimens.
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Figure 4.13: sRCA and sRCA-2D specimens: (a) Transverse expansion history, (b) Relative
velocity change histories.

4.4.5 Temperature cycle effect on wave velocity

An interesting phenomenon was observed in the relative velocity histories for all specimens.

Figure 4.14 shows the relative velocity histories of the Control-2D, RFA, and RFA-2D spec-

imens from 340 days to 400 days. There are many sudden relative velocity drops in the

figure, caused by temperature drop during the chamber shutdown, such as the drop between

time T1 and time T2. At time T1, the chamber was shut down, and the temperature of the
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specimens began to drop from 38◦C to 23◦C, and the chamber humidity from 90% RH to

50% RH. At the time T2, the chamber was restarted, and the specimen temperature was

resumed and maintained at 38◦C with the chamber humidity of 90% RH. After the speci-

men experienced a complete cycle of cooling and heating and a cycle of dehumidification and

humidification, the velocity at T2 was lower than the velocity at T1, although the specimen

temperature and chamber humidity returned to the pre-shutdown condition. Both reactive

specimens had large velocity drops with 1.34% for the RFA and 0.88% for the RFA-2D, while

the Control-2D specimen had a much smaller velocity drop (0.18%). Although there was a

cycle of dehumidification and humidification in the chamber, the specimens were assumed

to be moisture saturated in such a short time. We attribute this velocity drop to the cool-

ing/heating temperature cycle. We denote this phenomenon as the irreversible temperature

effect. The velocity can not recover to its original value after the specimen experiences a

close temperature cycle when the specimen temperature returns to its original temperature.

This effect could be related to the material damage level and material hysteresis and deserves

further study.
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Figure 4.14: Relative velocity change histories of the Control-2D, RFA, RFA-2D specimens
from 340 days to 400 days.

After the specimen temperature returned to stable 38◦C and the humidity to 95% RH,

the velocity gradually increased with time. This slow recovery phenomenon existed after

every chamber shutdown. When the chamber maintained a constant temperature and hu-

midity for 30 days after 370 days, the relative velocity history demonstrated a long and slow

recovery process. When we review the entire velocity change curves for all ASR specimens,

we may notice that velocity drop mainly occured during the chamber shutdown period, or

caused by thermal cycles. In control specimens, the slow velocity recovery during the stable
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temperature and humidity condition could cancel the small velocity drop during the shut-

down period, which give an overall increase trend of velocity curve. In ASR specimens, the

velocity recovery was always smaller than the drop during each chamber on/off cycles. This

phenomenon indicates strong nonlinear behavior in the ASR damaged concrete specimen,

and it will be described in next chapter.

4.5 Correlation Between Relative Velocity Change and

Expansion

The relative velocity changes at the expansion measurement dates were extracted and cor-

related with the transverse expansions and volumetric expansions for all ASR specimens.

The correlations for the Control and the Control-2D specimens are not presented here since

the expansions for these specimens can be neglected comparing to that of the reactive spec-

imens. Figure 4.15(a) shows the correlation curves between the relative velocity change and

the transverse expansion for the six reactive specimens while Figure 4.15(b) presents the cor-

relation curves between the relative velocity change and the volumetric expansion. In Figure

4.15(a), all the curves show similar correlation relationships, except for the RFA specimen.

The RFA specimen has similar level of velocity change but very small transverse expansion.

In Figure 4.15(b), the correlation curves for the RCA, RCA-2D, sRCA, and sRCA-2D

specimens still demonstrated similar trends, which may be explained by the same mix design

used in these RCA specimens. It indicates that the ultrasonic velocity could be a useful

indicator for the ASR damage evaluation at least for the RCA, RCA-2D, sRCA, and sRCA-

2D specimens regardless the confinement condition. However, the correlation curves for

the RFA and RFA-2D specimens showed different trends with the other four curves and

these two curves also showed different correlations. The RFA and RFA-2D specimens had

similar relative velocity change (Figure 4.12(b)) while the RFA-2D specimen showed higher

transverse expansion and volumetric expansion than those of the RFA specimen due to the

longitudinal crack on the top surface (see Figure 4.9(f)). It indicates that the wave velocity

may not be used for ASR damage evaluation for concrete with different mix designs. Ever

for the same mix designs, the specimens may demonstrate different crack patterns due to the

confinement conditions which will affect the correlation between wave velocity and expansion.
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Figure 4.15: Correlation between the relative velocity change and expansion: (a) Correlation
with transverse expansion, (b) Correlation with volumetric expansion.
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4.6 Diagnosis Model Using Ultrasonic Signals

Anomaly detection is a potential approach for detecting the occurrence of damage in various

applications. Anomaly detection refers to the problem of finding patterns in data that do

not conform to the expected behavior [28]. Correctly identifying areas which deviate from

the norm is an important problem in many applications. For example, Jiang and co-authors

suggested using reconstruction-error based anomaly detection for defect detection of wind

turbines [29]. Alex et. al. proposed an anomaly detection method to detect brain lesions

using magnetic resonance images [30]. In the structural health monitoring field, Chow et.

al. proposed using a convolutional autoencoder to detect cracks in concrete structures using

image data [31].

The studies mentioned above use a reconstruction-error-based anomaly detection. The

advantages of such a method is that a model can be trained without the need for labeled data

and that it has been shown to generalize across different specimens. For many applications,

normal data is abundant and can be readily collected. However, anomalous data can be

scarce, hard to collect, and hard to identify. A reconstruction-error-based anomaly detection

method is not hindered by this issue as it only requires normal data for training of the

model. Furthermore, because the anomaly detection model is used to detect deviations from

the normal data, it is able to generalize across specimens it has not seen during training. Any

sufficient deviation from the normal training data is considered to be an anomaly, suggesting

a change in the material. The disadvantages of reconstruction-error-based anomaly detection

methods that a large number of training samples are required, should not be an issue as data

should be readily collectable from undamaged concrete structures, and the high latency time

associated with such models will not pose a problem as the volume of data streamed is very

small, in the case of our experiment there are two samples collected per day.

Inspired by previous work, a reconstruction-error-based anomaly detection method is

proposed for detecting ASR damage initiation in concrete. The method is based on an

autoencoder that utilizes convolutional and recurrent layers, hereon referred to as the Long

Short-Term Memory Convolutional neural network (LSTM-CNN) autoencoder. The LSTM-

CNN autoencoder attempts to extract the representational and local features of relative

velocity variation and decorrelation of coda waves. Then, by using a reconstruction-error

based anomaly detection method, a model is developed to identify crack initiation in concrete.

Experimental studies are conducted for model development and validation of the model’s

effectiveness.
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4.6.1 Methodology

Figure 4.16: Flowchart of steps using the LSTM-CNN Autoencoder for anomaly detection

A reconstruction-error based anomaly detection method is proposed to detect the initi-

ation of ASR damages in concrete using coda waves. Instead of using the raw coda waves

as inputs for the anomaly detection model, small input sequences are created using the

damage indicative traits, velocity variation, and decorrelation, since certain behaviors of

the velocity variation and decorrelation have been shown to be representative of changes

in complex material. An autoencoder is used to extract the features of the velocity vari-
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ation and decorrelation sequences. Then, using these extracted features, the autoencoder

is trained to reconstruct the input sequence. The reconstructed sequences are compared to

the original input sequences using mean-squared error to obtain a measure of reconstruction

error. The reconstruction error is then used to determine whether or not an input sequence

is anomalous. Fig. 4.16 illustrates the main steps of the reconstruction-error-based anomaly

detection method.

4.6.2 Damage Indicative Features

Coda Wave Velocity Change through CWI

Coda wave shows high sensitivity to minor changes in materials caused by microcracks,

temperature variation, or stresses. The relative velocity change dv/v can be obtained by the

CWI analysis. In this study, dv/v is used as a damage indicative feature.

Coda Wave Decorrelation

Changes in solid materials, such as concrete, have been found to not only cause amplitude

differences and phase shifts, but also cause distortion of signals. Velocity variation best

captures the phase changes between the reference signal and perturbed signal, while decor-

relation has been found to be a better representation of distortions induced by cracks. Coda

wave decorrelation (CWD) calculates the residual distortion of the signal after phase changes

have been accounted for as shown in Eq. (4.5) [32].

Kd = 1− CCk(ϵ0) (4.5)

Because the decorrelation is calculated after accounting for velocity variation, it is a

measure of changes in the coda wave caused by factors other than temporal stretching, such

as distortion by localized defects.

Reference Updating Algorithm for Coda Wave Feature Extraction

If too much distortion is present, CWI fails as the velocity variation calculations are no

longer meaningful. To combat this issue, researchers have proposed a variety of methods
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to update the reference signal when necessary. In [33], Zotz-Wilson et. al proposed using

a rolling reference, in which a new reference is chosen after a predetermined number of

measurements. Niederleithinger et al. proposed two methods of updating the reference.

First, they proposed a stepwise method, in which the reference signal is updated after each

measurement. Second, they proposed an automated, data-driven procedure for selecting a

new reference signal for coda wave interferometry [34]. The authors propose that when the

correlation coefficient found using CWI exceeds a predetermined threshold, the reference

should be switched to the current signal. The proposed automated method has been shown

to decrease the number of reference changes compared to the rolling reference method or

the stepwise method, and have shown to reduce rounding errors associated with frequent

reference changes. In this report, that threshold is chosen as 0.9, similar to the value used

in [35], and the reference is updated when correlation coefficients fall below this value.

4.6.3 Reconstruction-Error Based Anomaly Detection

For early damage detection in concrete, an autoencoder was trained to reconstruct short

sequences of velocity variation and decorrelation collected on undamaged control specimens

(UNL-Control specimen). More information about the control specimen is provided in Chap-

ter 2. The autoencoder consists of an encoder-decoder network. The encoder portion of an

autoencoder extracts features from the input by reducing the input data to a lower dimen-

sional representation. The decoder portion then uses this lower dimensional representation

to reconstruct the original input. This encoder-decoder network is trained to minimize the

error of this reconstruction. The reconstruction error of each feature is found using the mean

squared error (MSE) equation given by Eq. (4.6), where yi is the input data point and ỹi is

the reconstructed data point.

MSE =
1

n

n∑
i=1

(yi − ỹi)
2 (4.6)

The reconstruction errors of the two features are then averaged to gain an overall recon-

struction error of the data.

If such a network is trained only on normal data, or in our study data collected from

undamaged concrete structures, the model will be able to reconstruct data from undamaged

concrete structures with very small reconstruction error. However, if the model is used to

reconstruct input data representative of a damaged structure, the model will return a high
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reconstruction error [28]. Therefore, the reconstruction error of the model can be used as a

damage indicator.

To utilize the time-dependent patterns of the coda wave features, the coda wave features

were organized into sequences. The sequences were created using a fixed-width sliding win-

dow of length sixteen and a sliding step size of one. To further preprocess our data, each

feature was normalized using a Min-Max scaling method to normalize the features of the

training data from zero to one. The preprocessed sequences were then used as inputs for our

LSTM-CNN autoencoder.

Furthermore, to determine if an input sequence is an anomaly, or damaged, a reconstruc-

tion error threshold must be chosen to make a binary classification. If the reconstruction

error falls below the threshold, it is classified as normal, or undamaged, and if the reconstruc-

tion error falls above the threshold it is classified as anomalous, or damaged. This threshold

is chosen during the training. During training, the reconstruction error of every sequence

in the training set is collected. The threshold was then chosen using the interquartile range

(IQR). IQR is often used to measure the statistical dispersion and data variability of data

by dividing the data into quartiles based on their magnitude. Q1 is defined as the median

of the bottom half of the data set based on magnitudes, Q2 is defined as the median of

the entire data set, Q3 is defined as the median of the top half of the data set, and Q4 is

defined as the maximum value of the entire data set. The interquartile range is defined as

the difference between the Q3 and Q1, or IQR=Q3-Q1. A standard method of identifying

anomalies in data uses (Q3+1.5×IQR) to determine the threshold [36].

Lastly, for our implementation, a specific date was considered anomalous only if every

sequence including data from that date returned a reconstruction error greater than the

threshold. Because the length of an input sequence of our model is sixteen, a date is con-

sidered an anomalous date only if sixteen consecutive sequences including the corresponding

data return reconstruction errors exceeding the threshold. This criterion was enforced for

the anomaly detection method because we are not worried about point outliers, but are more

concerned with collective outliers. A point outlier is a single point which extremely deviates

from well defined norms. A collective outlier, on the other hand, group of data points that

fall extremely far from well defined norms of a data set [37]. Point outliers can occur due to

reasons that do not necessarily indicate damage in concrete. Sensor malfunctions and envi-

ronmental changes, for example, can cause point outliers in the measured data when there

is no damage to the concrete specimen, but data measured from a damaged concrete speci-

men will exhibit a shift in the data through consecutive measurements. Using this criterion,
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the training data returns no anomalous dates and there are more than sixteen consecutive

samples exhibiting reconstruction errors above the chosen threshold.

4.6.4 Autoencoder Architecture

For the proposed autoencoder, a recurrent layer and a 1-d convolutional layer are used due

to the nature of our data. The two main advantages of using a convolutional layer are

their computational efficiency as well as their ability to extract features from raw data,

while recurrent layers have the advantage of being able to capture changes over time. To

determine the number of hidden layers, the number of nodes, and the number of epochs that

the model is trained, 3-fold cross validation was used. Only the control data was used for

training and validation. After determining the aforementioned hyperparameters, the model

was retrained on the entire control data set for optimal model performance [38].

Convolutional Layers

Convolutional layers perform a convolution operation using kernels, or a small matrix of

weights, of a predefined size. The kernel slides over the input data computing the dot

product, or convolving, with the part of the input it is currently on. For example, given a

kernel, w, of length p and an input matrix, x, the resulting matrix, h, of the convolution

operation for a 1-dimensional matrix is given by Eq. (4.7).

h[i] =

p−1∑
k=0

x[i+ k]w[k] (4.7)

This operation produces an activation map of that kernel. The activation maps act as

filters which activate when a specific feature is detected at some spatial position in the input.

The filters are therefore able to detect patterns occurring in groups equal to the size of the

kernel. By using a different kernel size for each convolutional layer, both general features,

learned by using a larger kernel size, and more local features, learned by using a smaller

kernel size, can be extracted from the raw data [39]. Because our data is sequential, a 1-

dimensional convolutional layer was used, and zero-padding was used to maintain the shape

of the input data.
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Recurrent Layers

Recurrent layers make use of information from the input xt at time t as well as information

from the previous hidden state ht−1, allowing the network to hold information about previous

inputs in the sequence. This makes recurrent layers ideal for sequential data. The hidden

state, ht, of the recurrent neural network is found using Eq. (4.8) where Wx and Wh are

matrices learned during the training process and f is the activation function.

ht = f(Wxxt +Whht−1) (4.8)

However, the vanilla RNN has been found to face the vanishing gradient problem when

dealing with long-term dependencies. Therefore, for this model long-term short-memory

(LSTM) layers were used as the recurrent layers. The LSTM layer makes use of gates, the

forget gate, the input gate, and the output gate, to regulate the cell state to allow learning

of long-term dependencies. The forward pass of the LSTM layer is given by:

ft = σ(W (f)
x xt +W

(f)
h ht−1 + b(f)) (4.9)

it = σ(W (i)
x xt +W

(i)
h ht−1 + b(i)) (4.10)

ot = σ(W (o)
x xt +W

(o)
h ht−1 + b(o)) (4.11)

ct = ft ⊙ ct−1 + it ⊙ tanh(W (c)
x xt +W

(c)
h ht−1 + b(c)) (4.12)

ht = ot ⊙ tanh(ct) (4.13)

Here, b refers to the bias value, W, refers to the weights, and the superscripts f, i, and o

describe which gate the bias and weights refer to, the forget gate, input gate, and output

gate respectively. Furthermore ft, it, and ot are the activation vectors of the forget gate,

input gate, and output gate respectively, and ct is the cell state.

Model Implementation

For the proposed model, a time-step of sixteen was used to create short sequences of velocity

variation and decorrelation which represent the current status of a concrete specimen, as de-

scribed in section 4.6.3. Then, these short sequences were used as inputs for the autoencoder

anomaly detection model. After experimenting with different architectures, a LSTM-CNN
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Table 4.4: LSTM-CNN Autoencoder Hyperparameters

Layer # Layer Type # of Units Output Shape
1 Input N/A 16 × 2
2 LSTM 32 16 × 32
3 Conv1D & Maxpool1D 32 8 × 32
4 LSTM 16 8 × 16
5 Conv1D & Maxpool1D 32 4 × 16
6 LSTM 4 4 × 4
7 Conv1D 4 4 × 4
8 LSTM 4 4 × 4
9 Upsampling1D & Conv1DTranspose 16 8 × 16
10 LSTM 16 8 × 16
11 Upsampling1D & Conv1DTranspose 32 16 × 32
12 LSTM 32 16 × 32
13 Time Distributed Fully Connected 2 16 × 2

model has been found to perform better than a CNN-LSTM model. Zhang et al. have

also found this to be true in their model for text classification. They have found that a

LSTM-CNN model causes lower feature loss than CNN-LSTM models [40].

For the encoder part of the encoder-decoder architecture, LSTM layers were first used to

generate a new encoded sequence containing temporal features of the original input sequence.

Next, convolutional layers were used to extract time-invariant, spatial features from the

output of the LSTM layer before it. Then, a maxpooling layer was used to reduce redundant

features found by the preceding layers and to reduce the dimensionality. The process was

then repeated on the features extracted by the convolutional layer and maxpooling layer. A

LSTM layer was used to generate an encoded sequence containing temporal features from the

features extracted by its preceding layers and a convolutional and maxpooling layer followed

that LSTM layer. The decoder part of the encoder-decoder architecture was the inverse of

the encoder structure, where a transpose convolutional layer was used as the inverse of the

convolutional layer and an upsampling layer was used as an inverse of the maxpooling layer.

The model architecture is shown in Fig. 4.17. The hyperparameters of the autoencoder

model is shown in Table 8.2.
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Figure 4.17: Anomaly detection model architecture where FC is a fully connected layer.
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4.6.5 Experimental Setup and Data Collection

Concrete Specimens and sensor setup

Experimental data collected on the medium-scale control and ASR concrete specimens were

used to develop and test the performance of the autoencoder anomaly detection model. The

data include expansion measurements and ultrasonic signals. The measured expansions were

used to indicate damage initiation in each reactive specimen. Ultrasonic signals were used

to calculate velocity variation and decorrelation using CWI and CWD respectively before

being restructured as inputs for the anomaly detection model.

Data presented in this section was collected on the following specimens: Control, Control-

2D, RCA, RCA-2D. The sensor positions are shown in Figure 4.18. The S1 sensor is directly

opposite to the ultrasonic transmitter on all specimens.

Figure 4.18: Sensor positions on concrete specimens [35].

Concrete Expansion

Fig. 4.19 shows the expansion of each specimen that were taken every two weeks. Both

control specimens showed very little expansion throughout the duration of the experiment.

The reactive specimens showed very little expansions before day 69, but exhibited a sudden

increase in expansion after day 69, as shown by the change in slope. The day at which the

slope of the expansion began to increase significantly, between days 69 and 84, was used to

represent the estimated date of damage initiation [35]. For both reactive specimens (RCA

and RCA-2D), the expansion measurements show a significant increase between days 69 and
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84. The trend is most noticeable in the vertical expansion measurements, which had the

largest increase during the experiment.
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Figure 4.19: Expansion of (a) Control and RCA specimens (b) Control-2D and RCA-2D
specimens (L: longitudinal; T: transverse; v: vertical; UC: Control; UR: RCA; CC: Control-
2D; and CR: RCA-2D).

4.6.6 Data Set Composition

The experiment for this report was conducted using seven different data sets, one training

data set and six testing data sets. The training data consists of all of the data collected for the

two control specimens, the unconfined control specimen and the confined control specimen.

For the unconfined control specimen, S1 collected 709 samples, while S2 and S3 only collected

116 samples as they were removed during the experiment. For the confined control specimen,

which only had one sensor S1, 593 samples were collected. After rearranging the data from

each of the sensors into sequences of length sixteen and then combining them, the total

number of sequences used for training was 1474.
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For the testing data sets, data from each sensor of each reactive specimen comprised its

own testing data set, resulting in a total of six testing data sets. Furthermore, because we are

focused on when the initial damage occurs in concrete specimens undergoing ASR damage,

only the data from the first four months of the experiment was used. Each sensor of the

reactive specimens collected 116 samples, resulting in 101 sequences used for each testing

data set.

4.6.7 Results and Discussion

As described in section 4.6.3, the reconstruction-error based anomaly detection model is de-

veloped using the data from the two control specimens. Using the model described in section

4.6.4 the model was able to achieve a low training loss of 0.000198. To visualize how well

the model reconstructs the velocity variation and decorrelation values of the training data,

the reconstructed values are compared with the calculated values from the measurements in

Fig. 4.20 using sensor S1 from the unconfined control specimen as an example.

The reconstruction error of the model using the training data, shown in Fig. 4.21, is used

to choose the reconstruction error threshold for the model. Using the IQR, as described in

section 4.6.3, the threshold is chosen to be 0.000470. The reconstruction error threshold

will be then used to determine which input data sequence is anomalous. Sequences which

returned a reconstruction error greater than the threshold will be classified as anomalous

while sequences which returned reconstruction errors less than the threshold will be classified

as normal.

The trained anomaly detection model is then applied to data collected from different

sensors on the reactive specimens to test the model’s ability to detect early damage in

concrete structures undergoing ASR. The reconstruction errors of the model for each sensor

from each reactive specimen and its corresponding first anomaly detection date are shown

in Fig. 4.22. As demonstrated in Figure 4.22, for each sensor, the reconstruction errors of

most data points are below the threshold before the first anomaly detection date, which can

be more clearly observed in Fig. 4.23, a zoomed-in plot before the first anomaly date of S2

from the unconfined reactive specimen.

On average, only twenty-one sequences had reconstruction errors above the threshold

before the first anomaly detection date, and the average reconstruction error before the first

anomaly detection date was 0.0043. The average reconstruction error before the first anomaly

detection date is boosted by a few points which had large reconstruction errors. These
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Figure 4.20: Comparison of (a) velocity variation and (b) decorrelation between recon-
structed values and calculated values using S1 data collected from unconfined ”Control”
specimen using proposed method.
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Figure 4.22: Reconstruction errors of (a-c) unconfined reactive specimen (RCA) and (d-f) of
the confined reactive specimen (Top: S1, Middle: S2, Bottom: S3 respectively).

samples with unusually large errors occurred right after chamber shutdowns, which were

necessary for expansion measurements and sensor reinstallations. The effect of the chamber

shutdown may have contributed to these large errors before the first anomaly detection date.

Furthermore, although the reconstruction errors of some data points before the first anomaly

date are above the threshold, they are not, however, classified as anomaly dates because

they do not satisfy the criterion of having sixteen or more consecutive data points over the

threshold, as stated in Section 4.6.3. After the first anomaly detection date, in general, the

reconstruction error of each sensor does not fall below the threshold, and tends to increase

with time. The average reconstruction error after the first anomaly detection date is 0.1791,

which is significantly larger than the average reconstruction error before the first anomaly
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Figure 4.23: Reconstruction errors of S2 of the unconfined reactive specimen (RCA) before
the first anomaly date.

detection. The first date that anomalies were detected by all sensors are also summarized in

Table 4.5. From Table 4.5 we can see that the first anomaly detection dates of all sensors

except S3 from the unconfined specimen are within the date range (between days 69 and

84) during which the average expansion begins to increase significantly as demonstrated in

Fig. 4.19. These results demonstrate the feasibility of using the developed LSTM-CNN

autoencoder model and the coda wave signals to detect early damage in concrete structures.

Table 4.5: First anomaly detection dates from all sensors on ASR specimens using LSTM-
CNN autoencoder

Reactive Specimen Type Sensor Location Anomaly Detection Date (days)
Unconfined S1 79

S2 77
S3 92

Confined S1 79
S2 73
S3 79

In addition, Table 4.5 shows that the date at which each sensor detects the first anomaly

may vary. The variation of anomaly dates detected by different sensors may be explained

by the sensitivity kernels of coda-wave interferometry that show high sensitivity around

the direct path between source and receiver [41]. Use S1 and S3 as examples. Since the

transmitter was placed opposite to S1 and S1 is closer to side C of each specimen, the anomaly

date detected by S1 might be more correlated to the transverse expansion measured on side

C, compared with that detected by S3. Similarly, the anomaly date detected by S3, which

is closer to side D of each specimen, might be more correlated to the transverse expansion

measured on side D. This phenomenon is observed in both unconfined and confined reactive
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specimens.

Figure 4.24(a) shows the transverse expansion measured on side C for the unconfined

specimen. It shows a significant increase between measurements taken on day 69 and day

84, while that on side D does not start to increase significantly until between days 84 and 97.

Accordingly, S1 detects anomaly on day 79, earlier than S3 that detects anomaly on day 92.

For the confined specimen, as shown in Fig. 4.24(b), the transverse expansion measurements

on both sides C and D start to increase significantly between days 69 and 84. As a result,

both S1 and S3 detect anomaly on the same day.
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Figure 4.24: Axial expansion measurements of (a) transverse axis of sides C and D of the
unconfined reactive specimen (RCA) (b) transverse axis of sides C and D of the confined
reactive specimen (T: Transverse Axis).

As a baseline comparison anomaly detection using the same coda-wave features was

conducted using an one-class support vector machine (SVM). For the one-class SVM a radial

basis function (RBF) kernel was used for non-linear mapping and the parameter ν, which

determines the upper bound on the fraction of outliers and the lower bound on the number
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of support vectors [42], and the parameter γ of the RBF kernel which determines how far the

influence of a single training example reaches, were tuned so that the radius of the decision

boundary containing most of the data was minimized [43]. A ν value of 0.05 and a γ value

of 10 best minimized the radius of the decision boundary while containing most of the data

as shown in Fig. 4.25.
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Figure 4.25: Decision boundary of one-class SVM for (a) training data (b) testing data of
S2 data from the unconfined reactive specimen (RCA)

The distribution of the control data, as well as the decision boundary determined by the

one-class SVM can be seen in Fig. 4.25(a). From the figure it can be seen that there are

three main clusters of data for the training data set. The boundary decision encompasses

most of the middle cluster and extends towards the cluster to the right which has a higher

density than the cluster to the left.

The distribution of the testing data for S2 of the unconfined reactive specimen and the

decision boundary can be seen in Fig. 4.25(b). A few of the points lie within the decision
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boundary, but majority of the data exists outside of the decision boundary as the velocity

variation decreases far more for the unconfined reactive specimen. Fig. 4.25(b) showed the

results obtained using the testing data for S2 of the unconfined reactive specimen, because

it deviated most significantly from our expectations, but the results using all of the sensors

are summarized in Table 4.6.

Table 4.6: First anomaly detection dates using One-Class SVM

Specimen Sensor Location Anomaly Detection Date (days)
Unconfined S1 76
(RCA) S2 62

S3 75
Confined S1 71
(RCA-2D) S2 60

S3 71

The one-class SVM detected anomaly dates that were generally earlier than that of the

proposed method. In particular, S2 of both the unconfined and confined reactive specimens

detected an anomaly much earlier than the expected damage date, day 62 and 60 respectively.

Based on the expansion of the reactive specimens in Fig. 4.19, there is little evidence to

suggest damage is occurring before day 69, suggesting that the one-class SVM is detecting

anomalies before damage occurs.

Another method used as comparison to the proposed method was a reconstruction-error-

based anomaly detection method using an autoencoder with no recurrent or convolutional

layers. The same training and testing steps were taken for this method, and the anomaly

detection dates using this method but a training loss of only 0.000713 was achieved, more

than three times greater than the training loss achieved by the proposed method. First

anomaly detection dates have been summarized in Table 4.7. To visualize how well this

model reconstructs the velocity variation and decorrelation values of the training data, the

reconstructed values are compared with the calculated values from the measurements in Fig.

4.26 using sensor S1 from the unconfined control specimen as an example. As seen in Fig.

4.26, the standard autoencoder which does not include recurrent or convolutional layers was

unable to reconstruct the input sequences as accurately as the proposed method, as seen

in Fig. 4.20. The first anomaly detection dates for the standard autoencoder method as

shown in Table 4.7 is very similar to that of the one-class SVM method. As stated before,

it is unlikely that a change occurred in the material before day 69, suggesting that the two

comparison methods are detecting anomalies before damage has occurred.
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Figure 4.26: Comparison of (a) velocity variation and (b) decorrelation between recon-
structed values and calculated values using S1 data collected from unconfined control speci-
men using a standard autoencoder.

Table 4.7: First anomaly detection dates using standard autoencoder

Specimen Sensor Location Anomaly Detection Date (days)
Unconfined S1 77
(RCA) S2 62

S3 75
Confined S1 71
(RCA-2D) S2 63

S3 71

4.6.8 Summary

An anomaly detection model based on coda waves is investigated for early damage detection

of concrete structures undergoing ASR, and its feasibility is demonstrated. The model

trained on data from multiple undamaged concrete structures is used to detect early damage
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in two different ASR specimens. By making use of the advantages of convolutional and

recurrent layers, an autoencoder was trained to achieve a very low training loss of 0.000198.

A reconstruction error threshold was chosen using interquartile ranges of the reconstruction

errors of the training data. When the reconstruction error of the ASR specimens exceeds the

threshold, the input sequence is marked as an anomaly. An anomaly date for each specimen

is detected when all sequences containing data from that date is marked as anomalous. The

experimental validation results show that the anomaly dates detected by the developed model

are consistent with that derived from the expansion measurements, which demonstrates that

the model developed from control specimens can be used for detecting initiation of damages

in different specimens. Previous works have used damage detection and damage prediction

methods which were dependent on specimen specific metrics. However, the proposed method

has been shown to be able to detect damage in concrete undergoing ASR for two different

specimens. The proposed method is trained on data from completely different specimens

and has shown to be able to make predictions for two different test specimens, suggesting

that it can be generalized across specimens. With more undamaged concrete specimens, the

proposed method will likely be able to better reconstruct data of normal data, improving

the performance and robustness of the proposed method. In addition, the anomaly dates

detected by sensors at different locations seem to be highly correlated to the expansion

measurements at locations and directions close to the direct path between source and receiver,

consistent with the conclusions derived by other researchers based on the sensitivity kernels

of coda-wave interferometry.
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5 Ultrasonic Monitoring – Thermal Modula-

tion of Nonlinear Ultrasonic Wave

5.1 Nonlinear Ultrasonic Method

Nonlinear ultrasonic techniques have attracted considerable attention due to their high sen-

sitivity to microcracking damage in concrete. Concrete is a kind of nonlinear mesoscopic

material and its nonlinearity comes from the mesoscopic linkages (order 10−6 to 10−9 m)

among cement, aggregates and cracks. Cracks and microcracks in concrete will dramati-

cally increase the concrete material nonlinearity. Its nonlinearity manifests as the hysteretic

stress-strain relation and discrete memory. Following the phenomenological description of

stress-strain hysteresis of rock by McCall and Guyer [44–46], a nonlinear hysteresis model is

used to describe the modulus of nonlinear mesoscopic materials such as concrete and rock.

The strain and strain rate related modulus is expressed as:

E(ε, ε̇) = E0

{
1− βε− δε2 − α [∆ε+ εsign(ε̇))]

}
(5.1)

where E0 is the linear modulus. ε and ε̇ are the strain and strain rate, β and δ are the

quadratic and cubic nonlinear parameter, and α is the hysteresis parameter. When concrete

experiences dynamic excitation, even at the strain level as lows as 10−8, the concrete modulus

shows a softening behavior resulting in frequency/velocity shift [11]. When ultrasonic waves

propagate in a nonlinear material, the ultrasonic waveform is distorted by the nonlinear

response of the material, and higher harmonic waves are generated. These phenomena are

very weak for undamaged samples and become remarkably large when microcracking and

cracking develop in concrete. Most existing nonlinear ultrasonic methods are based on the

behaviors of modulus softening or higher harmonics. Several nonlinear ultrasonic methods

have been widely studied in the last few decades, such as Second Harmonic Generation

(SHG) [47–50], Nonlinear Resonance Acoustic Spectroscopy (NRAS) [11–13, 45, 51, 52],

Nonlinear Wave Modulation Spectroscopy (NWMS) [51, 53, 54], Dynamic Acousto-elastic
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Testing (DAET) [55–58] and etc.

Although these existing nonlinear ultrasonic methods show different degrees of success

in laboratory tests, there are some limitations of these nonlinear ultrasonic testing methods.

The SHG technique needs high precision equipment to detect the high order harmonics.

The NRAS method is only applicable to small samples since it needs the free vibration of

the test sample. The NWMS method requires either a high amplitude impact source or a

low-frequency pumping wave source to modulate the high-frequency wave, which is often

challenging for large concrete structures. The DAET method uses a shaker or a large piezo-

electric disk to vibrate the sample to generate strain changes inside the sample. Although

the strain level needed is low, it is hard to excite large size samples. Additionally, the strain

changes generated by impact or pumping only exist in a local area, which indicates only the

nonlinear behavior of a small area can be excited. Overall, these nonlinear ultrasonic meth-

ods measure the nonlinear responses excited by the stress-induced strain changes. There are

two limitations to the stress-induced strain. First, these methods need large energy input

to generate strain changes which makes these methods not applicable to large size concrete

structures. Secondly, the stress on the sample may only create local strain changes, resulting

in that the method may only be sensitive to local damages.

In this work, we proposed a new nonlinear ultrasonic wave method: thermal modula-

tion of nonlinear ultrasonic waves for characterizing the concrete damage level. Instead of

using stress-induced strain, thermal strain changes due to temperature change is used as

the driving force to excite nonlinear behavior of material and modulate the high-frequency

ultrasonic waves in a material. For materials with microcracking damage, the temperature

effect is especially effective for generating large thermal strain, which causes closing/opening

of microcracks and induce strong hysteretic nonlinearity. Thermal modulation coefficients,

which represent the thermal dependence of the relative velocity changes, are used as a nonlin-

ear parameter to evaluate concrete damage levels [59]. Most concrete structures are exposed

in ambient environment and experience temperature changes. Temperature changes on con-

crete can create large enough thermal strains (about 10 µε per Celsius) which can excite the

nonlinear behavior of concrete. Compared to the stress-induced strain, the thermal strain is

more uniform in concrete, and the proposed method will be more sensitive to global damage.

In this chapter, we use the temperature change during the chamber shutdown to modulate

the ultrasonic waves and concrete damage induced by ASR is studied using the thermal

modulation method.
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5.2 ASR Damage Characterization

When the chamber was shut down, the sample temperature dropped from 38◦C to 23◦C.

Meanwhile, the ultrasonic signals for the sensor pair (T-S1) were recorded every ten minutes.

The relative velocity change histories were obtained using the CWI analysis (stretching) for

the cooling process. The relative velocity change dv/v and the temperature change ∆T were

correlated for the thermal modulation analysis. The slope of the correlation curves k−
1 is

defined as the thermal modulation coefficient. Since the whole shutdown process was less

than 17 hours, we assume there is not ASR damage development during such short time.

0 5 10 15 20
22

24

26

28

30

32

T
e

m
p

e
ra

tu
re

(C
)

0 5 10 15 20

Time(hour)

0

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 v
e

lo
c
it
y
 c

h
a

n
g

e
 (

%
)

Control

RCA

RCA-2D

(b)

(a)

24 26 28 30 32

Temperature(C)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

la
ti
v
e

 v
e

lo
c
it
y
 c

h
a

n
g

e
(%

)

k= -3.49 10-4, R2=0.995

k= -11.78 10-4, R2=0.999

k= -12.64 10-4, R2=0.999

Control

RCA

RCA-2D

(c)

Figure 5.1: Thermal modulation test results for the Control, RCA, and RCA-2D specimens
on 01/20/2020: (a) Temperature history, (b) Relative velocity change history, (c) Correlation
curves

Figure 5.1(a) and (b) shows the temperature history and the relative velocity change

histories for the Control, RCA, and RCA-2D specimens in the temperature range of 31◦C to

23◦C. The RCA sample had the largest velocity increase, while the control sample had the

lowest velocity increase. This test was conducted on 01/20/2020 (age of 420 days) and the

transverse expansions of the three specimens were measured as 0.0003%, 0.225%, and 0.232%

for the control, RCA, and RCA-2D specimens, respectively. In Figure 5.1(c), the correlation

curves for the three specimens all have good linearity and the goodness of fit coefficients R2

are all very close to 1. The curve for the RCA-2D sample shows highest k−
1 , while the curve

of the control sample has the lowest coefficient. The RCA sample has a slightly smaller k−
1
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than that of the RCA-2D sample, which is also consistent with their transverse expansions.

Figure 5.2(a) and (b) shows the temperature history and the relative velocity change

histories of the Control-2D, RFA, and RFA-2D specimens in the temperature range of 34◦C

to 26◦C. The test was also conducted on 01/20/2020 (age of 292 days) and the transverse

expansions of the three specimens were measured as 0.006%, 0.038%, and 0.156% for the

Control 2D, RFA, and RFA-2D specimens, respectively. In Figure 5.2(c), The RFA-2D

sample had the highest k−
1 and the trend of the three coefficients matches the damage levels

of the three specimens. The correlation curves for the RFA and RFA-2D specimens have

some curvatures while the curve of the control sample has good linearity. The curvature of

the correlation curves is related to the high order nonlinearity of the material [59].
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Figure 5.2: Thermal modulation test results for the Control-2D, RFA, and RFA-2D spec-
imens on 01/20/2020: (a) Temperature history, (b) Relative velocity change history, (c)
Correlation curves

Figure 5.3(a) and (b) shows the temperature history and relative velocity change histories

of the two sRCA specimens in the temperature range of 37◦C to 26◦C. The test was conducted

on 03/23/2020 (age of 216 days) and the transverse expansions of the two specimens were

measured as 0.124% and 0.125%. In Figure 5.3(c), both curves have a very close slope and

they also had similar transverse expansions. The sRCA sample shows a little bit of curvature

while the curve of the sRCA-2D sample shows good linearity, which indicates the sRCA

sample has some higher order nonlinearity. At the test time, the volumetric expansion of

the sRCA sample was 0.427%, which was slightly larger than the expansion of the sRCA-2D

82



sample 0.400%.
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Figure 5.3: Thermal modulation test results for the sRCA and sRCA-2D specimens on
03/23/2020: (a) Temperature history, (b) Relative velocity change history, (c) Correlation
curves

The results for all specimens are summarized in Table 5.1. The concrete ages and volu-

metric expansions are also included in the table. The RCA and RCA-2D specimens had the

longest curing age and largest transverse expansions. The two specimens also had the highest

thermal modulation coefficients k−
1 . The two specimens in the sRCA batch had the shortest

curing age and smallest transverse expansion, which represent lowest damage level. These

specimens had smaller coefficient k−
1 . The RFA and RFA-2D specimens had the moderate

damage level. Based on these results, the sample with a higher transverse expansion shows

higher coefficient k−
1 . The sRCA and sRCA-2D had similar coefficients k−

1 due to similar

transverse expansions. However, the higher curvature of the sRCA curve may be related to

by its higher volumetric expansion. Therefore we can conclude that the thermal modulation

coefficient in this study is dominant by the transverse expansion, but also affected by the

volumetric expansion.
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Table 5.1: Thermal modulation test results for the concrete specimens

Batch Sample Age (day) Transverse
Expansion

Volumetric
expansion

k−
1

RCA
Control 420 0.000% -0.008% -3.49×10−4

RCA 420 0.225% 0.801% -11.78 ×10−4

RCA-2D 420 0.232% 0.526% -12.64×10−4

RFA
Control-2D 292 0.006% 0.003% -2.85×10−4

RFA 292 0.038% 0.203% -5.85×10−4

RFA-2D 292 0.156% 0.444% -10.77×10−4

sRCA
sRCA 216 0.124% 0.427% -10.06×10−4

sRCA-2D 216 0.125% 0.400% -10.64×10−4

5.3 ASR Damage Monitoring

Based on the results in Figure 5.1, Figure 5.2, and Figure 5.3, we can conclude that the

thermal modulation coefficient k−
1 can be used to characterize the damage levels of the

concrete specimens with ASR damage. The thermal modulation coefficients k−
1 measured

from each chamber shutdown period are used to monitor the ASR damage development over

time.

RCA specimens Figure 5.4(b) shows the thermal modulation coefficients k−
1 over time

for the Control, RCA, and RCA-2D specimens. All the results are extracted from the

cooling process of the specimens from 08/19/2019 (265 days) to 5/10/2020 (530 days). The

transverse expansions for this period are plotted in Figure 5.4(a). The k−
1 for the Control

sample has a range from 3× 10−4/◦C to 6× 10−4/◦C during this period. This variation may

be caused by the inconsistency of testing conditions for each test, such as the temperature

changing rate, humidity condition. The RCA and RCA-2D specimens both showed higher

thermal modulation coefficients (> 8× 10−4/◦C) than of the Control-2D sample. The k−
1 of

the RCA-2D sample has a increasing trend as ASR damage developing, while the coefficient

of the RCA sample increases first until 420 days and then decreases.

RFA specimens Figure 5.5 shows the thermal modulation coefficients k−
1 during the pe-

riod pf 08/19/2019 (137 days) to 5/10/2020 (402 days) for the Control-2D, RFA, RFA-2D

specimens. The thermal coefficient k−
1 of the Control-2D sample decreases from 5.2×10−4/◦C

to 2 × 10−4/◦C due to cement hydration. The RFA sample had similar k−
1 values with the

Control-2D sample until 200 days and then started to increase. The expansion initiation
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Figure 5.4: Control, RCA, and RCA-2D specimens: (a) Transverse expansion history, (b)
Thermal modulation test results

time of RFA sample was around 150 days. The RFA-2D sample had a consistently increas-

ing trend from the beginning (137 days) since the sample began to expand at 118 days and

had much higher expansion than the RFA sample. Overall, the trend of the thermal modu-

lation coefficients has a good agreement with the expansion histories of the three specimens.

sRCA specimens Figure 5.6 shows the thermal modulation coefficients k−
1 over time

for the sRCA and sRCA-2D specimens. The data points start from 08/19/2019, which is

the conditioning start date of the two specimens. The thermal coefficients k−
1 of the two

ASR specimens kept increasing from the beginning, while the expansions initiated at 36

days. Before 36 days, the k−
1 values were around 4 × 10−4/◦C or 5 × 10−4/◦C, which was

similar to the coefficients of the Control and Control-2D specimens. It indicates the two ASR

specimens had little ASR damage before the crack initiation date. After 36 days, the thermal

modulation coefficients k−
1 of the two specimens kept increasing, which indicates that ASR

damage was developing in the two specimens. The increasing trend has a good agreement

with the expansion histories of the two specimens. Since the two specimens had similar

transverse expansion over time, the thermal modulation coefficients of the two specimens

also showed similar values and trends.
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Figure 5.5: Control-2D, RFA, and RFA-2D specimens: (a) Transverse expansion history, (b)
Thermal modulation test results
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Figure 5.6: sRCA and sRCA-2D specimens: (a) Transverse expansion history, (b) Thermal
modulation test results
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5.4 Correlation Between Thermal Modulation Coeffi-

cient and Expansion

In a separate study on the same concrete specimens, Malone [60] found the relative nonlinear

parameter αIE from nonlinear impact-echo had a strong correlation with the expansion. For

unconfined specimens, the impact-echo test was only conducted in the vertical direction

since the vertical and the transverse have similar damage levels. For concrete specimens

with 2D confinement, IE tests were conducted in both transverse and vertical directions.

The correlation data points for all tests are plotted in Figure 5.7. The nonlinear parameter

αIE has a strong linear relationship with the expansion, which proves the feasibility of using

the nonlinear parameter for quantitative evaluation of ASR damage.
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Figure 5.7: Correlation between the nonlinear parameter αNLIE and the expansions in ver-
tical and transverse directions

The results in Figure 5.4, 5.5 and 5.6 demonstrate that the thermal modulation coeffi-

cient can be used to monitor the ASR damage development. In this subsection, the thermal

modulation coefficient and the transverse expansion were correlated. For each thermal mod-

ulation coefficient obtained from the chamber shutdown, expansions were measured at the

same time. Figure 5.8 shows the correlation curves between the thermal modulation coef-

ficients and transverse expansions for all eight specimens. In the figure, triangles represent

the RCA specimens, while circles for RFA specimens and stars for the sRCA specimens.

For the data points around zero expansion, the thermal modulation coefficient ranges
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Figure 5.8: Correlation between the thermal modulation coefficient k−
1 and the transverse

expansion for all specimens

from 2 × 10−4/◦C to about 6 × 10−4/◦C and these data points represent the results of the

control specimens and the ASR specimens before measurable damage. Therefore, the ther-

mal modulation coefficient k−
1 = 6 × 10−4/◦C can be used as a threshold value to classify

ASR damage. Once there is a measurable expansion on the ASR specimens, the thermal

modulation coefficient increases almost linearly with the ASR expansion. These data points

contain the results from the unconfined specimens and the 2D confined specimens, with reac-

tive coarse aggregate or reactive fine aggregate. Although the ASR specimens had different

mixing designs and confinement conditions, these data points show a good linear relation-

ship between thermal modulation coefficient and transverse expansion. We may use a linear

relationship to describe the correlation between the two parameters:

k−
1 = (6 + 0.23ε)× 10−4 (5.2)

where ε for the transverse expansion. This empirical relationship provides an NDE method

to evaluate the damage level of concrete structures affected by ASR without using a baseline

measurement and an expansion history. Compared to the linear velocity change parameter

presented in 4, the thermal modulation coefficient is a promising parameter for ASR damage

evaluation, regardless of mix designs and confinement conditions.

88



6 Acoustic Emission Monitoring

6.1 Experimental Methodology

6.1.1 Small-scale specimens

The information on small-scale specimens is provided here as background information. This

work was completed prior to the current NEUP project and was self-funded. Further in-

formation can be found in [61] and portions of this chapter have been adapted from this

source.

Fifteen specimens were cast, including twelve conditioned specimens cast with reactive

coarse aggregate (RCA) and three control specimens cast with nonreactive coarse aggregate

(non-RCA). All specimens have dimensions of 3 x 3 x 11.25 inches (76 x 76 x 286 mm).

The w/c ratio, cement content, the volume of coarse aggregate per unit volume of concrete,

and alkali content for the conditioned specimens are show in Table 6.1. Table 6.2 shows the

concrete mix design. The conditioned specimens were cast using two identical batches (six

specimens per batch). The control specimens were cast with ordinary Portland cement and

innocuous aggregates.

Table 6.1: Materials ([61], used with permission)

w/c ratio 0.45

Cement content 26.2 lb/ft3

Volume of coarse aggregate
per unit volume of concrete

0.70

Alkali content 5.0% Na2Oeq

To accelerate the ASR test, the concrete specimens were put in a sealed chamber room for

one year with a temperature of 100 ± 2◦F and a humidity of 100% relative humidity. Three
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Table 6.2: Mix design ([61], used with permission)

Constituent Weight (lbs./cy)

Cement 700

Water 340

Coarse Aggregate 1,830

Fine Aggregate 1100

NaOH Admixture 40

Total 4,010

concrete specimens were placed in one container (Figure 6.1). In total, four containers were

used. The petrographic examinations were conducted on three specimens on days 14, 28, and

56. This chapter utilizes ’XY-Z’ format to represent the types of all the specimens, where

”X” refers to the type of specimen, S means the ASR specimens, and C means the control

specimen. ’Y’ refers to the specimen number; the specimens in batch one are numbered from

1 to 6, and the specimens in batch two are numbered from 7 to 12. ’Z’ denotes the duration

of conditioning in days.

Figure 6.1: Test setup. Controlled temperature chamber (left) and specimens placed in 100%
relative humidity buckets (right). ([61], used with permission)

The specimens were measured using a length comparator apparatus (Figure 6.2(a)). In

the first two months, the measurements of lengths were conducted at 5, 10, 14, 28, and 56

days. Additional measurements were carried out on the three samples that were tested for

another year. The measurement readings collected during the year were compared with the

measurements conducted on the third day after conditioning. This procedure is designed to

minimize the effect of thermal expansion. One R6I-AST resonant sensor with an operating
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frequency of 40-100 kHz was attached at the mid-length of the specimen as shown in Figure

6.2(b).

(a)
(b)

Figure 6.2: (a) length comparator apparatus, and (b) specimens with AE sensors attached.
([61], used with permission).

6.1.2 Medium-scale specimens

Six medium-scale specimens were cast for ASR experimental program. Three specimens were

cast at the University of Alabama, including an RCA specimen, an RCA specimen with two-

dimensional confinement (RCA-2D), and a control specimen. Three specimens were cast at

the University of Nebraska, including a reactive fine aggregate (RFA), an RFA specimen

with two-dimensional confinement (RFA-2D), and a control specimen with two-dimensional

confinement (Control-2D). The details of the mix design of all specimens and experimental

procedures are described in Chapter 2. Much of the information on medium-scale specimens

has been summarized in [62–64], and portions of those sources are adapted for this chapter.

6.2 Reduction of Acoustic Emission Data

Acoustic emission data was recorded over an extended period of time for both small-scale

and medium-scale specimens. As acoustic emission is a very sensitive means of detection,

it is inevitable that in such long-term programs a significant amount of spurious data was
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received. Therefore, several filters were developed and utilized to minimize this spurious

data.

For the small-scale specimens, the primary reason for the unwanted data is due to the

geometry of the specimens, resulting in emission due to reflections. This occurs because the

length and width of the specimens is much smaller than the attenuation distance of the AE

signal. Different types of parameter-based data filters were utilized. The first filter utilized

for small-scale specimens is referred to as a “duration-amplitude filter (D-A)”, also referred

to as a Swansong II filter [65]. This filter is based on the observation that a genuine acoustic

emission signal with long duration generally has high amplitude and vice versa. The second

filter is implemented after the first filter type. This filter is based on the rise time and

amplitude (R-A) and reflects the observation that genuine AE signals with long rise time

generally have high amplitude and vice versa. The third filter removes AE signals with signal

strength larger than 10,000,000 pVs (pico-volt second). Filter four deletes AE signal with

small counts (less than 2) and high amplitude (more than 50 dB).

In addition to the feature-based filters two frequency-based filters were utilized to min-

imize spurious data. The first frequency-based filter removed AE signals whose average

frequency is not in the range of 10-200 kHz. The second frequency-based filter removes a

signal if its peak frequency is less than 20 kHz. The filters described above were developed

with consideration to in-depth inspection of the waveforms, study of the literature, and past

experience with similar data.

For the medium-scale specimens, the primary source emission is faulty cable connections

and environmental noise. Due to the high humidity environment, water found its way into

the cable to sensor connections on some occasions. The data due to these faulty connections

was minimized by removing the signal with a low average frequency (less than 60 kHz)

and low peak frequency (less than 80 kHz). An additional filter was developed to remove

environmental noise, which was based on the AE event definition. Only AE events with at

least four hits were considered genuine data and preserved, while the remainder of the data

was discarded.
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6.3 Results

6.3.1 Small-scale specimens

Results of AE cumulative signal strength (CSS) and the measurement of length for all con-

ditioned specimens are shown in Figure 6.3. The AE activity increases as exposure time

increases, demonstrating this method may be well suited for estimating the rate of ASR

degradation. Furthermore, the CSS of the specimens exposed over a full year increased,

demonstrating that the AE sensors can detect the formation of micro-cracks as ASR dete-

rioration progresses, regardless of the attenuation induced by those cracks. It is observed

in Figure 6.3 that length change rises as exposure time increases, which is consistent with

the AE data progression. With a value of 0.044 percent, the largest length change was

detected in specimen S10-365. ASTM C1293 [5] specifies 0.04 percent expansion after one

year of exposure as the cutoff point for determining if an aggregate is prone to harmful

ASR expansion, which is consistent with a) the known reactivity of the type of aggregates

utilized and b) the petrographic analysis results, which revealed ASR damage as discussed

in the following section. The results shown in Figure 6.3, length change measurements and

CSS, had a correlation coefficient of 0.81 which indicates a strong correlation between the

two variables. This suggests that AE monitoring may be utilized to compute the rate of

expansion associated with ASR damage, enabling the detection and quantification of this

degradation mechanism.

Using a Damage Rating Index (DRI), a petrographic investigation was conducted on two

specimens on day 14, two specimens on day 28, and two specimens at day 56. Figure 6.4

depicts the results of the petrographic research. The specimen with the lowest DRI value

had been conditioned for 14 days and the specimen with the highest DRI value had been

conditioned for 56 days. It is evident that the average DRI value rises as the duration

of exposure time increases. The most common ASR damage features in the investigated

specimens were cement paste cracking, cracks with gel in the cement paste, gel formation in

air voids, and aggregate cracking.
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Figure 6.3: CSS and length measurement versus time for all the specimens (S5-365
CSS=6.48e7 pVs). ([61], used with permission)
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Figure 6.4: DRI measurements for six specimens. ([61], used with permission)

AE Intensity Analysis (IA) [66] is one method to classify ASR damage based on historic

index and severity. This method utilizes signal strength to derive historical index H(t) and

severity Sr. The historic index H(t) is a trend analysis that calculates the change in the

slope of CSS relative to time. The severity Sr is calculated by averaging the signal strength

of the largest fifty hits. The historic index and severity can be obtained using Equations 6.1

and 6.2

H(t) =
N

N −K

∑N
i=K+1 Soi∑N
i=1 Soi

(6.1)

Sr =
1

50

i=50∑
i=1

Soi (6.2)

where N is the number of hits collected up to t, Soi refers to the signal strength of the

i-th event, K refers to an empirically determined factor that fluctuates depending on the

number of hits. For this work K is described as a) N/A if N≤50, b) K=N-30 if 51≤N≤200,

c) K=0.85N if 201≤N≤500, and d) K=N-75 if N≥501.

The greatestH(t) and Sr obtained for each specimen are displayed on an intensity analysis

chart. More damage is indicated by points displayed in the top-right quadrant of the chart.
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Table 6.3: Length change, DRI and AE results ([61], used with permission)

Specimen Duration
(days)

Length
change*
(%)

DRI Historic in-
dex

Severity
(pVs)

S7-14 14 0.006 91.0 1.514 1.38E+04

S8-14 14 0.009 67.2 1 1.40E+03

S2-28 28 0.018 96.1 1.707 2.68E+04

S11-28 28 0.017 105.0 2.982 4.89E+04

S6-56 56 0.018 105.1 2.167 9.13E+04

S9-56 56 0.014 152.0 3.246 2.15E+05

The IA and DRI values are shown in Figure 6.5. In the lower left corner of the figure,

the specimen with minor DRI damage is plotted. IA data points move towards the top-

right corner of the figure as DRI readings rise, indicating more damage. The chart can

be separated into three parts based on DRI results: A-No damage, B-Minor damage, and

C-Moderate damage.

Figure 6.5: Results of intensity analysis (S5-365 CSS=6.48e7 pVs). ([61], used with permis-
sion)

The DRI readings and severity have a 0.95 correlation coefficient. The DRI measurements
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and the historic index have a 0.88 correlation coefficient. According to these findings, DRI

levels had a stronger association with AE activity than length change, indicating that AE

activity and DRI values are linked.

6.3.2 Medium-scale specimens RCA, RCA-2D, and control

Specimens RCA, RCA-2D, and control were conditioned for 300 days. The ”confined” spec-

imen in this section refers to RCA-2D, whereas the ”unconfined” specimen with reactive

coarse specimen is referred to as RCA. The volumetric strains of the three specimens are

illustrated in Figure 6.6. The volumetric strain of the confined specimen was higher than

the unconfined specimen starting from 115 days, while the unconfined specimen reached

the value of volumetric strain of the confined specimen around 269 days. Between 115 and

220 days, the confined specimen is projected to crack more severely than the unconfined

specimen, based on the measured volumetric strain.
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Figure 6.6: Volumetric strains of RCA, RCA-2D, and control specimens. ([62], used with
permission)

The control specimen had significantly lower hit rate and cumulative signal strength

(CSS) than the reactive specimens. There is greater AE activity in the confined specimen

than in the unconfined specimen (Figure 6.7). Furthermore, the rate of AE events in the

unconfined specimen is significantly lower than in the confined specimen.

Frequency component analysis was conducted using an unsupervised pattern recognition

method. The AE data for the unconfined and confined specimens were clustered into four

and three groups, respectively. The fast Fourier transform (FFT) was used to convert the
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(a) RCA-2D

(b) RCA

(c) Control

Figure 6.7: Filtered AE hits and CSS versus time. ([62], used with permission).
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AE signals to the frequency domain. The frequency-domain of each signal was separated

into 10 equal bands, each with a bandwidth of 40 kHz. Calculating the area under the FFT

spectrum in each frequency band yielded the energies corresponding to that frequency band.

Frequency-energy-based features are normalized energies for distinct frequency bands. The

recovered frequency-energy-based features were subjected to principal component analysis

(PCA) to minimize the dimension of the features. The dimension-reduced features were

utilized as input for the unsupervised pattern recognition algorithm.

Clustering results are presented in Figure 6.8. The results of the confined specimen are C1

through C4, and the results of the unconfined specimens are U1 through U3. The height of

linkages in the dendrograms was used to determine the number of clusters, and the red lines

in the figure indicate desired levels for clustering. Figure 6.8 shows the resulting dendrograms

for confined and unconfined specimens. In the Principal Component (PC) space, Figure 6.9

depicts the first three PCs. Because the clusters share some similar frequency-energy-based

properties, some overlaps exist at cluster borders. (Figure 6.9 and Figure 6.10).

(a) Confined specimen (b) Unconfined specimen

Figure 6.8: Clustering dendrograms ([62], used with permission).

The average energy distribution in the frequency domain is presented in Figure 6.10.

For the confined specimen, C1 and C2 represent ‘low’ frequencies. C3 represents ‘medium’

frequency, and C4 is ‘high’ frequency. For the unconfined specimen, U1 is ‘low’ frequency,

U2 is ‘medium’ frequency, and U3 is ‘high’ frequency. Within each time interval, the number

of signals in each cluster was determined and normalized to the overall number of AE signals

in those intervals (Figure 6.11). According to Figure 6.11, the percentage of low-frequency

signals rose in both the unconfined and the confined specimens after 200 days. In contrast,

the percentage of high-frequency decreased after 200 days.
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(a) Confined specimen RCA-2D (b) Unconfined specimen RCA

Figure 6.9: Data presentation in principal component space. ([62], used with permission).

(a) Confined specimen (b) Unconfined specimen

Figure 6.10: Energy-frequency distributions of clusters. ([62], used with permission).

(a) Confined specimen (b) Unconfined specimen

Figure 6.11: Percentage of signals in clusters. ([62], used with permission).
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One potential explanation for the trends shown in Figure 6.11 is that in the later stages

of the ASR process, the initiation and propagation of macrocracks outnumbered microcrack

initiation. Previous literature indicates that low-frequency AE signals can be related to crack

extension, while the high-frequency AE signals can be linked to the formation of small-scale

cracks[67]. This could explain the decrease of the percentage of high-frequency signals and

the increase in the percentage of high-frequency signals after day 200.

Beginning at 146 days after casting crack widths were measured. The visible cracks on

the top surfaces of specimens were the focus of this measurement. The maximum crack

widths of RCA and RCA-2D are presented in Figure 6.12. The wider crack widths of the

confined specimen suggest a higher stress concentration in the mid-width of the specimen,

which is to be expected because the reinforcing of the confined specimen generated more

anisotropic resistance to the ASR expansion when compared to the unconfined specimen.

Figure 6.12: Crack quantification time on the top surface of RCA and RCA-2D specimens.
([62], used with permission).

Petrographic analysis was conducted on the reactive specimens at the end of the ac-

celerated aging process. Each specimen was sawn into cross-section slices for about half

of its length (core samples were extracted from the opposite half to measure mechanical

properties). Each specimen was divided into fourteen 38-mm thick cross-section slices, and

each slice was split into quarter sections and polished for stereo-optical microscopy experi-

ments. To give a quantitative assessment of internal damage a manual point count approach

(MPCP) was devised. For the confined specimen, the MPCP was performed on thirteen

whole slices and one-half slice, and for the unconfined specimen, MPCP was performed on

eleven slices. Figure 6.13 shows the weighted normalized cracking score based on the av-

erage findings of slices for the confined and unconfined specimens. The cracking score of

the confined specimen was generally higher than the unconfined specimen, which is aligned
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with the surface cracking, expansion stresses, and AE findings. It is worth noting that the

slices were oriented perpendicular to the longitudinal reinforcement, which offered signifi-

cant restriction against X-direction growth while causing anisotropic damage with Y-Z plane

expansions. The cracking scores reveal that expansion anisotropy and surface cracking are

accompanied by similar variances in interior damage features.

Figure 6.13: Average of the weighted normalized cracking score for reactive specimens. ([62],
used with permission).

AE data was also utilized to derive signal entropies and evaluate the temporal trend

of data. The discrete voltage entropy (DVE), global voltage entropy (GVE), and counts-

entropy were calculated in this chapter. A detailed explanation of these entropies can be

found in[63].

The DVE for the confined and unconfined specimen is presented in Figure 6.14. For both

specimens the range of entropy values is nearly identical. The average entropy at 50-day

intervals is represented by the solid black line. The average entropy in the confined specimen

increased for 200 days before declining, but in the unconfined specimen, it increased for 150

days before declining with considerable oscillations.

GVE is shown in Figure 6.15. The GVE increased in the confined specimen until it

reached 200 days after which it stayed nearly constant. The GVE grew in the unconfined

specimen up to 123 days, then reduced slightly after that, and remained nearly constant after

180 days. The GVE curves in both specimens followed the same patterns as the averaged

DVE curves. In addition, the GVE range was similar for the two specimens, although
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the peak value for the confined specimen was slightly greater than the peak value for the

unconfined specimen.

(a) Confined specimen (b) Unconfined specimen

Figure 6.14: DVE for medium-scale specimens, bin size: 0.0001 volts. ([63], used with
permission).

(a) Confined specimen (b) Unconfined specimen

Figure 6.15: GVE for medium-scale specimens. ([63], used with permission).

Two different approaches were utilized for calculating trends related to counts-entropy.

The first method is referred to as count entropy (CE). The results for CE for the confined

and unconfined specimens are illustrated in Figure 6.16(a) and Figure 6.16(b). According

to the figures, the CE rising rates in the early stage were substantially higher than the later

stage. After 200 days, the value of CE in the confined specimen was nearly constant. The

confined specimen has higher CE values than the unconfined specimen, as this method is

based on the number of signals, which were larger for the confined specimen. The second

method is based on cumulative distribution function (CDF), presented in Figure 6.16c and

Figure 6.16d. The CDF values of both specimens showed an ascending trend until they

reached their greatest value, then a downward trend can be observed.
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(a) Confined-CE (b) Unconfined-CE

(c) Confined-CDF (d) Unconfined-CDF

Figure 6.16: Counts entropy (CE) for medium-scale specimens. ([63], used with permission).

6.3.3 Medium-scale specimens RFA, RFA-2D, and control-2D

Specimens RFA, RFA-2D, and control-2D were conditioned for 250 days. The RFA-2D spec-

imen represents the “confined” specimen, while the RFA specimen represents the “uncon-

fined” specimen. The volumetric expansion of the reactive fine aggregate specimens (RFA,

RFA-2D) and control-2D specimen are plotted in Figure 6.17. The expansion rate of the fine

aggregate specimens is generally less than that of the coarse aggregate specimens.

The AE hits and CSS of RFA, and RDA-2D were presented in Figure 6.18. The two

reactive fine aggregate specimens (RFA and RFA-2D) have very similar cumulative signal

strengths (CSS) in the early phases of ASR growth, but the two reactive coarse aggregate

specimens (RCA and RCA-2D) exhibit a rather big variance in CSS. When compared to

coarse aggregate concrete, fine aggregate concrete is substantially less impacted by boundary

conditions, particularly reinforced steel. Because the ASR gel that surrounds fine aggregates

can grow similarly in all directions regardless of the boundary condition, there may be greater

AE activity in the unconfined fine specimen. Even if the expansions are comparable, the

increase in AE activity could indicate the presence of more microcracks and AE activity

inside the unconfined fine specimen than the unconfined coarse specimen.
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Figure 6.17: Volumetric expansion of reactive fine aggregate (RFA) and Control-2D speci-
mens. ([68], used with permission).

(a) Confined specimen RFA (b) Confined specimen RFA-2D

Figure 6.18: Filtered AE data in terms of amplitude and CSS. ([68], used with permission).
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The maximum crack widths of RCA, RCA-2D, RFA, and RDA-2D are presented in Figure

6.19. Throughout the examination, the fine aggregate specimens show relatively comparable

crack widths. This result supports the observation that boundary conditions have a minor

impact on reactive fine aggregates.

Figure 6.19: Maximum crack width on top surface of RFA specimens. ([68], used with
permission).

6.3.4 ASR damage diagnosis based on acoustic emission

An ASR damage diagnosis approach was developed through by leveraging the relationship

between AE data collected during the ASR process to the physical damage phases of ASR[64].

The method was developed using 70% of the data collected from the ASR experiment con-

ducted on the medium-scale specimen RCA-2D and was validated through the remaining

30% of the data.

The purpose for utilizing the CNN method was to develop a means for diagnosing the

phase of ASR damage for a concrete specimen in real-time as opposed to analyzing the trend

of acoustic emission data based on a set of all data from day one onward. This is of interest

as in most cases acoustic emission sensors are applied relatively late in the lifespan of a

structure and most generally after visible surface cracking becomes readily apparent. The

input of the CNN model is acoustic emission signals receive in real-time, and the result is

classification of the damage phase (phase 1 or phase 2) also in real-time.

The AE signals were filtered and transferred to the frequency domain to calculate fre-

quency based features. The frequency band features for 0-40 kHz (low frequency) and signal
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energy for 80-120 kHz are illustrated in Figure 6.20(a) and Figure 6.20(b). Around 190

to 200 days, the trends in these frequency-based features imply a change in the temporal

evolution. Figure 6.20(c) shows AE hits for this specimen as well as the cumulative signal

strength (CSS). The events of new crack formation and/or crack extension along an existing

crack can be reflected in sudden increases in the CSS curve.

Around 200 days a significant increase occurs, approximately corresponding to the time

associated with the change in the AE features shown in Figures 6.20a and 20b. The ASR

process may be approximately divided into two phases: phase 1 – day 0 to day 190; and

phase 2 – day 190 onward. In deep learning models, the phase definition serves as a label

for the AE signals.

Figure 6.20: Frequency band features and CSS. ([64], used with permission).

An image-based dataset was created by conducting continuous wavelets transform (CWT)

on the AE signals. The signals from different phases have different frequency content as seen

in Figure 6.21. The CWT coefficients were stored as RGB pictures which were then used as

input data for a convolutional neural network (CNN). The CNN model is capable of classify

the AE signals into the attributed classes (phase 1 or phase 2).
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Figure 6.21: CWT images of AE signals in phases 1 and 2.

CNN is a deep neural network with convolutional filters [69]. An input layer, feature

extraction layers, and a fully connected layer are the three primary components of a CNN.

Convolutional layers and pooling layers make up the majority of the feature extraction layers.

Figure 6.22 depicts the structure of a typical CNN with two convolutional layers and two

pooling layers.

Figure 6.22: Architecture of a typical CNN.

Using the data from all of the sensors, a CNN model was developed. A confusion matrix

displays the classification result (Figure 6.23a). In total, 707 images in the validation data

set were successfully assigned to the corresponding phases, accounting for 76.7 percent of all

images, which means the CNN classifier is 76.7 percent accurate (Figure 6.23a). A new CNN

model was then created using the data from a single sensor. The output is shown in Figure

fig:stackedcnnb. The overall accuracy is 85.7 percent (Figure 6.23b). Figure fig:stackedcnn

also shows the recall rate, precision rate, and F1 scores for phase 1 and phase 2.
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Figure 6.23: Performance of stacked CNN. ([64], used with permission).

6.4 Conclusions

This chapter describes acoustic emission (AE) results gained from the long-term conditioning

of fifteen small-scale and six medium-scale concrete specimens to better understand the ASR

process itself and to delve into potential capabilities and limitations of acoustic emission to

detect and classify the ASR damage progression process. Acoustic emission is by definition a

passive means of nondestructive evaluation, meaning that the damage process itself, generally

in the form of crack initiation, extension and coalescence, causes the acoustic emission data.

In the absence of damage progression acoustic emission will generally not be recorded.

One exception to this is environmental noise in the signals, which can be caused by such

items as electric switching, arc welding, and water infiltration into the cables and connectors.

In long term experiments involving high humidity, one cause of environmental noise can be

condensation forming into water droplets which may impact the specimens. This type of

noise was discovered early in the experimental procedure described and was mitigated by
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shielding of the specimens. When environmental noise does occur, it can generally be filtered

from the evaluation data set as was done for the work described. In small scale specimens,

a pervasive cause of emission that is not directly related to damage progression is reflections

of waveforms from the specimen surfaces. This occurs when the attenuation distance is less

than the geometric dimensions of the specimens themselves. This type of spurious emission

can be minimized through a number of approaches including the setting of hit definition

times, the setting of a certain number of sensors to determine an acoustic emission event,

and inspection of waveforms. All of these were employed to varying degrees in the work

described.

One advantage of acoustic emission in relation to active methods of evaluation such as

ultrasonics or ultrasonic pulse velocity is the fact that the damage itself does produce the

acoustic emission signals. Therefore, correlations between damage progression and acoustic

emission data are possible. Another advantage of acoustic emission is its extreme sensitivity

to damage progression, which allows for detection of damage progression in relatively thick

concrete structures such as those used for nuclear containments. It is worth noting that

acoustic emission systems can be of the fiber optic type, the piezoelectric type (such as the

one used for the work described here) and can also utilized in a non-contact fashion.

One challenge with acoustic emission monitoring is the same as one of its advantages,

namely that acoustic emission is extremely sensitive to damage progression. This extreme

sensitivity necessarily means that spurious emission is almost always present in the test

data and this spurious emission must be dealt with in some fashion, generally through post-

processing of the data but also through pre-processing. Another challenge arises from the

fact that wave propagation through damaged structures is not a constant and in fact will

vary with the degree of damage present due to reflections and other issues associated with

cracking and delaminations. For these reasons acoustic emission is often used as a screening

method to alert owners or other interested parties to the degree of damage in a degrading

structure to then be followed up by an active means of interrogation, such as phased array

ultrasonics, ultrasonic pulse velocity, or impact echo. Each of these methods, in turn, has

advantages and challenges for thick concrete structures.

Analysis methods that were potentially of interest were investigated for both small and

medium-scale specimens including intensity analysis, signal frequency component analysis,

signal entropy analysis, and petrographic examination were conducted. In addition, an ASR

damage diagnosis method was developed through utilizing a CNN approach. This diagnosis

method has the advantage of not requiring data collection from the beginning of specimen
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life and has the potential to diagnose damage phase in real-time.

A few conclusions may be summarized as follows.

ASR damage progression can be detected via acoustic emission in both small and medium-

scale specimens. By associating AE results with petrographic investigation, an acoustic

emission Intensity Analysis chart for the classification of ASR damage severity was developed

for small-scale specimens (DRI measurements). The extent of ASR degradation can be

approached through the use of this straightforward chart.

For the medium-scale specimens, the boundary condition resulted in a considerable dif-

ference in ASR-related damage between specimens RCA and RCA-2D, but the boundary

condition resulted in a less significant difference in ASR damage between specimens RFA

and RFA-2D. Large crack widths were observed for the confined specimen with reactive

coarse aggregate. The crack behavior for reactive fine aggregate specimens were similar for

both scenarios.

Acoustic emission data was also used to calculate signal entropies and assess the temporal

trend of data for the medium-scale specimens. A trend in the average values of entropy was

observed in terms of conditioning time. The average entropy values showed an upward trend

in the earlier stage with a decreasing trend in the later stage. A similar pattern was observed

in the global voltage entropy and counts-entropy for the medium-scale specimens using CDF.

Acoustic emission was utilized to diagnose the condition of ASR progression in real-

time by leveraging a CNN model. The method was developed and later validated through

the experimental conditioning conducted on the medium-scale specimen RCA-2D. Results

indicate that the proposed method is capable of classifying signals into the assigned phases

(phase 1 or phase 2) with reasonable accuracy. The CNN model employing data from a single

sensor resulted in an efficient model to diagnose the temporal evolution of ASR progression

without the need to obtain data from the beginning of the conditioning period.

111



112



7 Prediction Models

7.1 Prediction of ASR Damage Using Ultrasonic Sig-

nals

Machine learning techniques have been increasingly used in the automated analysis of ul-

trasonic data for concrete characterization. Most of these works focused on using machine

learning algorithms to predict concrete strength based on ultrasonic pulse velocity (UPV)

and other parameters (e.g., aggregate size, type of cement, water-to-cement ratio) [70–73].

However, this process used only the wave velocity information and discarded all the other in-

formation in the ultrasonic signals. In ultrasonic NDT of welding defects, different features

were extracted from the ultrasonic signals, such as wave parameters, statistical features,

and wavelet features for automated defect classification [74–76]. In this work, the authors

extracted wave parameters and wavelet features from the long-term monitoring ultrasonic

signals obtained from concrete samples subjected to ASR. Because the expansion level is a

measure of the extent of ASR damage level in real-world applications, the first method em-

ployed herein fits a curve between the wave velocity and expansion on one sample to predict

the expansion in another sample. The second method uses the data sets from one concrete

sample to train a machine learning model which is then validated using the data sets from

another concrete sample.

7.1.1 Feature Extraction

Ultrasonic wave velocity

Wave velocity is the most widely used parameter in ultrasonic nondestructive testing for

material characterization. As the ASR sample becomes progressively cracked, the wave

propagation velocity is reduced. In this work, the wave velocity was extracted as one of the
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features used for damage assessment. The Akaike Information Criteria (AIC) picker was used

to detect the arrival time automatically. The AIC picker method was originally developed

for analyzing the P-wave velocity of seismic waves [77]. The AIC values were calculated for

the first 1000 points of the time-domain signal, and the point with the lowest AIC value

represents the first arrival time. As shown in Figure 7.1, the RCA and RCA-2D samples

exhibited a decreasing velocity during the monitoring period. The spikes on the curves were

due to the AIC calculation error when the signal was noisy.
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Figure 7.1: Ultrasonic monitoring system.

Wavelet Features

Aside from wave velocity, features could be extracted from the ultrasonic signals in both the

time and frequency domains. Wavelet transform is the technique that processes a signal in

the time and frequency domains and has been widely used to extract features from ultrasonic

signals in the NDT of welding defects [74, 78]. Discrete wavelets transform (DWT) is an

algorithm that can quickly obtain the wavelet transform coefficients of a discrete-time signal.

The algorithm decomposes the ultrasonic signal with a low-pass and high-pass filter into its

coarse approximation coefficient cA1 and detail coefficient cD1. The bandwidth is [0, f/2] for

the approximation coefficient cA1 and [f/2, f ] for the detail coefficient cD1, and f is half of

the sampling rate. This process is repeated until the desired decomposition level is achieved.

The wavelet feature extraction is based on these detail coefficients.

The ultrasonic signal at the conditioning age of 54 days in Figure 7.2(a) was decomposed

into seven levels with the MATLAB function modwt and db4 wavelet. Before the DWT,

each signal was normalized by its amplitude. Because the energy of the original ultrasonic

signal is in the frequency range of 40 to 250 kHz (Figure 7.2[b]), only the last three levels

of the detail coefficients were used for the feature extraction. Figures 7.2 (c)–(e) show the
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detail coefficients cD5, cD6, and cD7 from DWT. Coefficients cD5 and cD6 have a higher

amplitude than cD7, which indicates that the original ultrasonic signal has more energy in

the high-frequency range (≥78 kHz) than at the early conditioning age. For each of the three

detail coefficients, four features were extracted:

1. First was the mean amplitude:

Am =
1

n

i∑
n

|xi|. (7.1)

As the ASR damage accumulates, the energy decreases in the high-frequency band-

width and increases in the low-frequency bandwidth. Therefore, the mean value of the

detail coefficient will have the same trend as the energy in different bandwidths.

2. The second feature was the maximum amplitude, Amax. Similar to the mean ampli-

tude, the maximum amplitude also has the same trend with the energy in different

bandwidths.

3. The third feature was the total energy:

E =
i∑
n

x2
i (7.2)

The energy ratio in the low-frequency bandwidth increases as the ASR develops.

4. The fourth feature was the attenuation coefficient, which is extracted from the three

coefficients by fitting the signal after the maximum amplitude by using an exponential

decay function.

Thirteen features were extracted from each ultrasonic signal in total with twelve wavelet

features and the wave velocity.

7.1.2 Machine Learning Models

In this work, the machine learning model SVR was used to predict the extent of expansion.

Support vector machine (SVM) is one of the kernel methods used for pattern analysis with a

kernel function. The kernel method uses the kernel function to transform the data in the raw

representation into the feature vector representation. With the kernel function method, the

115



0 0.5 1 1.5

Time(ms)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d

e
(v

)

100 200 300 400 500

Frequency(kHz)

0

100

200

300

400

A
m

p
lit

u
d

e

(a)

(b)

(a) Control specimen

0 0.5 1 1.5
-1

0

1

A
m

p
lit

u
d
e

0 0.5 1 1.5

-0.5

0

0.5

1

A
m

p
lit

u
d
e

0 0.5 1 1.5

Time(ms)

-0.1

0

0.1

A
m

p
lit

u
d
e

(d)

(c)

(e)

(b) ASR specimen

Figure 7.2: (a) Time-domain signal, (b) frequency spectrum, (c) DWT coefficient cD5

(156–312 kHz), (d) DWT coefficient cD6 (78–156 kHz), and (e) DWT coefficient cD7 (39–78
kHz).

SVM model can be used as a nonlinear model. SVMs are typically used for classification.

The support vector regression uses the same principles as the SVM for classification but

with a slight difference: the objective of SVM for classification is to find a hyperplane to

maximize the distance between the two boundaries, whereas the objective of SVR is to find a

hyperplane so that the data points closest to the hyperplane and support vectors are within

that boundary line. In SVR, slack variables were introduced in the constraint for each point,

which is similar to the “soft margin” concept in the SVM classification model. Furthermore,

a polynomial was used to fit a functional relationship between wave velocity and expansion of

the ASR sample. The RCA-2D expansion was predicted based on this polynomial function.

Overall, 644 data sets of 13 features from the RCA sample were used to train the SVR models

in MATLAB with five-fold cross-validation. The learning model was optimized manually with

root mean square error (RMSE) as the objective function. The optimized SVR model has the

following hyperparameters: KernelScale = 36.1, BoxConstraint = 688.9, ε = 1.46×10−4, and

a Gaussian kernel function. Before training the models, all data were normalized suitably.

A total of 620 data sets from the RCA-2D sample were fed into the model for testing.
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7.1.3 Results and Discussions

First, the expansion prediction was conducted based on the polynomial curve fitting with a

quadratic polynomial. Then, the SVR model was trained using the data sets from the ASR

sample with all 13 features. Next, the SVR model was tested with the data sets from the

ASR-2D sample. Figure 7.3 plots the measured expansion versus the predicted expansion

using curve fitting between the wave velocity and the expansion on the ASR and ASR-2D

samples. The ASR sample exhibits a high R2 between the predicted and measured expansion.

However, the prediction results on the ASR-2D were poor with small R2 and high RMSE.

Figure 7.4 plots the measured expansion vs. the predicted expansion using the SVR learning

model on the ASR and ASR-2D samples. The training results (Figure 7.4[a]) have relatively

high R2 and small RMSE, and the testing results show even larger error than the results

that used curve fitting. This indicates that the model was overfitted by using the thirteen

features with poor performance on the testing data.
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Figure 7.3: Measured expansion vs. predicted expansion using polynomial curve fitting on
the (a) RCA sample and (b) RCA-2D sample
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Figure 7.4: Measured expansion vs. predicted expansion using SVR model on the (a) RCA
sample and (b) RCA-2D sample

Because the SVR models had sufficient performance using the training data but had

large prediction errors using the testing data, feature selection was used to avoid overfitting
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and decrease the SVR model variance. Correlation coefficients between the 13 features and

the response (i.e., expansion) are summarized in Table 7.1 for the training (i.e., ASR) and

testing (i.e., ASR-2D) data sets. The wave velocity has a high correlation with the volumetric

expansion for both data sets. The features that have correlation coefficients larger than 0.5

for both data sets were selected. Therefore, features 1, 3, 6, 7, 10, 11 were selected as

input to the SVR model. The training results and testing results with feature selection are

shown in Figure 7.5. The training results exhibit relatively high R2 and small RMSE. By

using the features with relatively high correlations to the response, the testing results of the

SVR model were significantly improved with an R2 from 0.3245 to 0.8946 and an RMSE

from 0.1444 to 0.0570. All R2 and RMSE are summarized in Table 7.2. Compared with

the prediction results obtained via curve fitting based on wave velocity, the SVR model had

extremely poor prediction results on the ASR-2D sample with all 13 features. Overall, using

the six selected features greatly improved the SVR prediction results.

Table 7.1: Absolute correlation coefficients between features and responses.

Feature Vel.
Mean amplitude Max amplitude Energy Attenuation
cD5 cD6 cD7 cD5 cD6 cD7 cD5 cD6 cD7 cD5 cD6 cD7

Index 1 2 3 4 5 6 7 8 9 10 11 12 13

RCA 0.92 0.52 0.87 0.67 0.83 0.76 0.86 0.66 0.41 0.84 0.81 0.43 0.05

RCA-2D 0.90 0.05 0.65 0.03 0.38 0.58 0.64 0.23 0.49 0.59 0.83 0.68 0.26
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Figure 7.5: Measured expansion vs. predicted expansion using SVR model with feature
selection on the (a) RCA sample and (b) RCA-2D sample

Table 7.2: Prediction results of curve fitting and SVR learning model.

Method Curve fitting SVR SVR with feature selection
Samples RCA RCA-2D RCA RCA-2D RCA RCA-2D

R2 0.9116 0.5758 0.9710 0.3245 0.9506 0.8946

RMSE 0.0736% 0.1144% 0.0421% 0.1444% 0.0550% 0.0570%
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7.1.4 Conclusions and Future Research

Conclusions and discussions In this work, the volumetric expansion due to ASR damage

was predicted via two methods: curve fitting based on wave velocity and the SVR machine

learning model. For the curve-fitting method, a quadratic polynomial was fit based on

the wave velocity and expansion measurement on the ASR sample, and the expansion of the

ASR-2D sample was predicted using its velocity measurement and the fit polynomial. For the

SVR model, features were extracted from the ultrasonic signals, and data sets from the ASR

sample were used for training with the data sets from the ASR-2D sample for testing. The

results showed that the prediction results on the ASR-2D sample from both methods were

not satisfactory, as shown by small R2 and large RMSE. The wave velocity extracted still had

poor accuracy because the transducers were reinstalled several times during the monitoring

period and because some ultrasonic signals had a high level of noise. These two factors

led to the poor prediction performance of the curve-fitting method. For the SVR method,

the learning model used too many features, causing overfitting. After feature selection,

the SVR model with six features showed the best performance with adequate prediction

accuracy. If the wave velocity had better accuracy, then the curve fitting method might

have sufficient performance, and the machine learning method would not be required for

expansion prediction. Because the ASR and ASR-2D samples had the same mix design and

were subjected to similar ASR development processes, the prediction procedure implemented

herein was justified; however, this prediction procedure could not be reliably applied if the

two mix designs were different.

Future work Damage prediction is still a very challenging task. Reliable prediction is

only possible when the damage development trend is well studied and understood, and then

NDT data show strong correlations with the damage condition. Machine learning algorithms

show some potentials to predict damage behaviors based on knowledge obtained from similar

materials by selecting features with high correlation with damage. The current models have

not been validated on concrete with different mix designs.

Nonlinear acoustic tests show promising results in diagnosis and prediction of ASR dam-

age. In milestone reports [79] and [80], the nonlinear resonance parameter and nonlinear

ultrasonic parameter show strong linear correlations with the ASR damage, which are valid

for all mix designs and specimens during the investigated period. If these linear relationships

are validated on more concrete structures, we may be able to predict damage development

rate and life span of concrete structures at very early stages.
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7.2 Prediction of ASR Damage Using AE Data

In this work, a data-driven approach based on machine learning is utilized to correlate AE

signals with volumetric strain changes caused ASR. Artificial neural network (ANN) is used

in this work to correlate AE signals and the volumetric expansion (strain) to demonstrate

the feasibility of using AE signals to predict volumetric strain. The number of counts of

AE signals, which requires less computing power to obtain than signal energy but provides

more information about the AE signals than the number of AE events, is used as the input

of ANN model to estimate the volumetric strain change of a concrete undergoing ASRs.

7.2.1 AE Data Preprocessing

Because the monthly measurement of volumetric strain does not provide sufficient labels

for the AE signals collected in real time, linear interpolation was conducted to generate

volumetric strain measurement labels for each hour of the test in this study. Then the

AE signals and corresponding volumetric strains were used to train an ANN model using

supervised learning for predicting volumetric strains of the concrete specimens.

The raw AE data was filtered before conducting any analyses. The first step was deleting

the non-genuine data acquired by faulty channels. These signals were characterized by low

counts and frequency. Then, the AE data, which were captured by at least four sensors in a

specific time interval (referred as AE events), were kept for data analysis. The rest of data

was filtered.

Furthermore, since multiple AE sensors on a specimen may record the same AE event, the

total number of counts recorded from a specimen every hour was averaged over the number

of sensors attached to the same specimen. In addition, to smooth the AE data, a moving

average filter of length 168 hours (1 week) was applied to the hourly average cumulative

counts of each specimen.

Moreover, since the AE events recorded at the initial shrinkage stage of concrete does not

correspond to ASR reactions, the data collected when the volumetric strain was decreasing

was not used for training or testing the ANN model. Only the data collected when the

volumetric strain started to increase consistently is used for building the ANN model.
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Table 7.3: Correlation matrix of the features of the confined specimen.

Cumulative
Counts

Cumulative
Signal
Strength

Cumulative
Absolute
Energy

Volumetric
Strain

Cumulative
Counts

1.00000 0.99307 0.95541 0.98520

Cumulative
Signal
Strength

0.99307 1.00000 0.98283 0.98119

Cumulative
Absolute
Energy

0.95541 0.98283 1.00000 0.95101

Volumetric
Strain

0.98520 0.98119 0.95101 1.00000

7.2.2 Feature Selection

Because cumulative counts, cumulative signal strength, and cumulative absolute energy have

been shown to be highly correlated with crack propagation by numerous authors [81, 82], a

correlation matrix using the Pearson’s correlation coefficient is created to determine which

of the following features is most highly correlated with volumetric strain. As shown in Table

7.3, cumulative counts have the highest correlation with volumetric strain. The cumulative

signal strength and cumulative absolute energy are also highly correlated with the volumetric

strain. However, they are also highly correlated with cumulative counts, indicating that using

all three of these features would be redundant. Another feature that may be included as an

optional, secondary feature for the ANN model is the counts per hour. Although the counts

per hour are not highly correlated with the volumetric strain, it can potentially provide

information about when drastic changes in volumetric strain may occur.

7.2.3 Neural Network Setup

The neural network was designed with the use of several empirical methods to determine

the optimal architecture of the neural network. The preprocessed data was split 50/50 to

create a training and testing data set. The grid search algorithm using the training data

set for k-fold cross-validation was used to determine the optimal number of neurons and

hidden layers for the ANN. The optimal architecture of the single input case is shown in Fig.

7.8, in which the cumulative number of counts is the input and the volumetric strain is the
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Figure 7.8: ANN model architecture for predicting volumetric strains using cumulative num-
ber of counts.

output. The architecture of the two-input case is the same except that the input layer has

two dimensions, including both the cumulative number of counts and the number of counts

per hour.

7.2.4 Results and Discussion

The testing results of the trained ANN models for both the confined and unconfined concrete

specimens are shown in Figs. 7.9-7.12. The comparisons between the prediction models and

the volumetric strain measurements are shown in Figs. 7.9 and 7.11 for the ANN models

with a single input and with two inputs, respectively. The corresponding prediction errors

are given in Figs. 7.10 and 7.12 respectively.

For the confined specimen, the ANN model achieves a mean absolute error of 0.00140%

when only using the cumulative counts as the input to predict volumetric strain. Although

the ANN model is able to predict the volumetric strain of the confined specimen very well,

from Fig. 7.9(a), it can be seen that ANN suffers larger errors before and after the seg-

ment between the dashed lines. The dashed line to the left represents the crack initiation

threshold and the dashed line to the right represents the crack damage threshold. The crack

initiation threshold is estimated using the volumetric strain of 0.036%. Concrete cracks

when the tensile strain exceeds 0.010 to 0.012 percent along an axis [83]. In this work, the

volumetric strain of 0.036% is used to estimate the crack initiation threshold. The crack

damage threshold is defined as the first inflection point of the volumetric strain graph after

the crack initiation threshold and represents the point when unstable crack growth begins

to occur. Unstable crack growth is defined as when the relationship between applied stress
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(a) (b)

Figure 7.9: Evaluation of the ANN models for (a) confined specimen and (b) unconfined
specimen using cumulative counts as the input.

(a) (b)

Figure 7.10: Prediction errors of the ANN models for (a) confined specimen and (b) uncon-
fined specimen using cumulative counts as the input.
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and crack length cease to exist. At this stage crack growth continues to occur even if the

applied load is controlled [84]. This inflection point was found by using b-spline interpo-

lation to create a differentiable interpolation of the volumetric strain measurements. For

the confined specimen, this inflection point occurred at 3882 hours with a volumetric strain

value of 0.1158%.

When using both the cumulative counts and the counts per hour , the ANN model of

the confined specimen achieves a mean absolute error of 0.00190%. From Fig. 7.11(a). It

can be seen that the ANN model using both inputs produces spikes when a large number of

counts occur at a specific hour, resulting in larger errors. In addition, the errors of the ANN

model are increased after the crack damage threshold .

For the ANN models with either a single input or two inputs, the increase in error

before the crack initiation threshold and/or after the crack damage threshold reflects that

the ANN model is able to accurately predict volumetric strain during microcrack formation

and microcrack propagation using AE signals. However, it is less capable of predicting

volumetric strain when the damage progression of concrete behaves differently. Before the

crack initiation threshold, crack closure occurs, and microcracks coalesce to form and grow

into larger cracks after the crack damage threshold. These processes may be more complex

than stable crack growth that occurs between the two thresholds and may require a more

complex ANN to model their behavior.

For the unconfined specimen, the ANN model achieves a mean absolute error of 0.00146%

when only using the cumulative counts as the input and a mean absolute error of 0.00155%

when using both the cumulative counts and the counts per hour as inputs. Spikes correlating

to points in time where a large number of counts occurred have also appeared for the results

of the unconfined specimen when the ANN was trained and tested with both inputs.

A major difference between the confined and unconfined specimens is that the volumetric

strain plot of the unconfined specimen does not have an inflection point. This implies that

the unconfined specimen is yet to reach its crack damage threshold. However, there is a

sudden increase in volumetric strain change rate at 4276 hours after the initial measurement

was taken. This sudden change in volumetric strain change rate may indicate that the

damage progression process may have changed at this point. This observation is supported

by Eberhardt et al. who have also noticed a large rate change in strain before unstable crack

growth [84]. Therefore, as was the case for the unconfined specimen, the ANN model suffers

from larger errors before the crack initiation threshold and after 4276 hours since initial

recording, where a sudden increase in volumetric change rate occurred.
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(a) (b)

Figure 7.11: Evaluation of the ANN models for (a) confined specimen and (b) unconfined
specimen using cumulative counts and counts per hour as the input.

(a) (b)

Figure 7.12: Prediction errors of the ANN models for (a) confined specimen and (b) uncon-
fined specimen using cumulative counts and counts per hour as the input.
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7.2.5 Summary

ANN models are investigated to predict volumetric strains using AE signals. The results

show that the models using either the cumulative counts as input or both the cumulative

counts and counts per hour as inputs can capture the evolution of volumetric strain due

to ASR reactions. Although using counts per hour as a secondary input has degraded the

performance of the ANN model, it may be due to the linear interpolation between the

volumetric strain measurements. When a high number of counts occur, there may be a large

change in volumetric strain, which cannot be reflected by the linearly interpolated values.

In addition, it is noted that although the ANN models for the two concrete specimens with

different designs have different parameter values, it is possible that the same model may

be used to predict the volumetric expansion of a concrete specimen with the same design.

Although we did not have the AE data from another concrete specimen with the same design

to validate this hypothesis, this concept is validated using the ultrasonic data in the next

section. In addition, we note that although the ANN prediction models are different for

different specimens, the model structures are the same. Thus, it would be possible to use

volumetric strain measurements of concrete collected during routine surveys of a concrete

structure to adapt a pre-trained model to predict the volumetric strain of concrete with a

variety of different designs.

127



Part III

Monitoring Full-Scale Concrete

Specimens
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8 Ultrasonic Monitoring on Full-Scale Speci-

mens

This chapter presents experimental studies on full-scale ASR concrete specimens using the

ultrasonic monitoring system, and analysis using the thermal modulation of nonlinear ultra-

sonic method [85]. An ultrasonic monitoring system was installed on three full-scale concrete

specimens (one control, and two ASR) at University of Tennessee-Knoxville (UTK) for long-

term monitoring. Ultrasonic signals were recorded once each day, along with the temperature

and expansion data that were monitored by the UTK team. Since these concrete specimens

experienced large temperature variations during the monitoring duration, the ultrasonic data

is processed in several periods based on the temperature histories. Ultrasonic relative ve-

locity change is analyzed using the CWI method, and then correlated with the temperature

variation for the three specimens. The relationship between the relative velocity change and

the temperature variation is used a nonlinear parameter to characterize the damage levels

of the three specimens.

8.1 Concrete Specimens

Three concrete specimens were designed to closely resemble a typical nuclear power plant

containment structure. These specimens have a thickness of 1.0 m (3.28 ft) and are reinforced

only in the plane of the wall with two elevations of intersecting large steel reinforcement.

Hayes et al. [4] report details about specimen design, fabrication, and curing and condi-

tioning procedures. The first specimen, referred to as the ASR confined, was confined in a

relatively rigid steel frame to simulate the additional confinement by surrounding concrete

that would be present in a Nuclear power plant containment structure. This steel frame

confines against expansion in the plane of the wall, forcing a preferred direction for expan-

sion as the thickness direction of the specimen. The second specimen, referred to as the

ASR specimen, with identical mix design and steel reinforcement detail was designed and
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constructed with no surrounding steel frame. Thus, this specimen is unrestrained by exterior

boundary conditions but still partially restrained against expansion in the plane of the wall

by the steel reinforcing bars. The third specimen, referred to as the Control specimen, with

identical steel reinforcement was designed and constructed with two changes to the mixture

design to minimize the potential for expansion from ASR. Sodium hydroxide (NaOH), used

to promote the development of ASR in the ASR and ASR confined specimens, was not used

in the mix design for the Control specimen. Instead, lithium nitrate was added to miti-

gate against the alkalis contributed by the cement. Thus far, no ASR expansion has been

observed in this specimen. Figure 8.1 shows the three test specimens.

(a) Control specimen (b) ASR specimen

(c) ASR confined specimen

Figure 8.1: Concrete specimens

8.1.1 Dimensions and reinforcing details

Specimen dimensions were selected to represent the scale of a typical NPP containment

structure. The through-thickness dimension (Z-direction) is 1.0 m (3.3 ft). The dimensions

within the plane of the wall were selected accordingly at 3.5 m (11.5 ft) and 3.0 m (9.8 ft)
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for the X-direction and Y-direction respectively. These dimensions are shown in Figure 8.2.

The reinforcement layout for the specimens was also selected to most closely resemble

that of a NPP structure. The reinforcement layout consists of US #11 Gr. 60 reinforcing

steel bars with a nominal diameter of 35.81 mm (1.41 in.) spaced at 25.4 cm (10 in.) on-

center resulting in two elevations of reinforcing bars embedded in the concrete specimens

with 7.62 cm (3 in.) of concrete cover. The reinforcement layout results in reinforcement

ratios for each direction as noted in Table 8.1. Additionally, the reinforcing steel bars were

installed with square heads [10.16 cm × 10.16 cm × 2.54 cm (4 in. × 4 in. × 1 in.)] made

of steel plate to achieve full development length within a relatively short distance inside the

specimen.

Figure 8.2: Dimensions and coordinate axes of concrete specimens ([4])

Direction Reinf. ratio
X-direction 0.67%
Y-direction 0.68%
Z-direction 0.00%

Table 8.1: Reinforcement ratio of specimens in each direction
Note: Reinforcement ratio reported is total longitudinal reinforcement area divided by gross cross-sectional

concrete area.

To allow access to the bottom surface, the concrete specimens are elevated 76 cm (30 in.)

above the floor and vertically supported at the corners by four steel columns capped with

45.7 cm × 45.7 cm (18 in. × 18 in.) steel plates.
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8.1.2 Concrete formulation

The mixture components used in both the reactive and control specimens included a highly-

reactive greenschist coarse aggregate from North Carolina; a non-reactive manufactured sand

from the Knoxville, Tennessee area; and a low-alkali Type II Portland cement with an equiv-

alent alkali content of 0.41% Na2Oeq. A 50% w/w sodium hydroxide solution (NaOH) was

added to the reactive specimens to increase the alkali content to 5.25 kg/m3 (1.50% Na2Oeq

by mass of cement). A 30% w/w lithium nitrate (LiNO3) solution admixture was added

to the control specimen at 150% of the manufacturer’s recommended dosage (sometimes

referred to in the literature as the ”standard dose” of a molar ratio of [Li]/[Na+K] = 0.74

in the mixture) to mitigate the potential for ASR [86–89]. In addition, a high-range water-

reducing admixture (meets requirements for ASTM C494 Type F) and hydration stabilizer

admixture (meets requirements for a ASTM C494 Type D retarder) were added to maintain

a slump value between 15 cm to 20 cm (6 in. to 8 in.) and offset the effects of warm ambient

temperatures that would otherwise accelerate setting of the concrete during placement. The

mixture proportions used for the reactive and control specimens are shown in Table 8.2.

Table 8.2: Design proportions of concrete mixtures

Materials
Quantity, kg/m3 (lb/yd3)

Reactive Control
Coarse Aggregate 1180 (1989) 1180 (1989)
Fine Aggregate 728 (1227) 728 (1227)
Cement 350 (590) 350 (590)
Water* 175 (295) 175 (295)
50% NaOH solution 9.8 (17) -
30% LiNO3 solution - 11.9 (20.0)
Water reducing admixture 2.0 oz/cwt 2.0 oz/cwt
Stabilizer admixture 2.0 oz/cwt 2.0 oz/cwt

Note: Aggregate quantities are given for oven-dry materials. Water quantities assume aggregates in
saturated-surface dry (SSD) condition. (*) indicates that 70% of the mass of mixing water was replaced by

ice, and the actual w/c ranged between 0.46 to 0.52.

8.1.3 Steel confinement frame

In order to simulate the range of structural boundary conditions present in a large structure

such as a NPP containment building, two cases are considered: (1) a reinforced concrete

specimen unconstrained laterally, and (2) a similar specimen encased in a rigid steel frame,

restraining lateral deformation in the plane of the reinforcement and allowing unrestrained
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Figure 8.3: Cross-section of steel confinement frame ([4])

expansion through the specimen thickness. In order to reduce frictional effects between the

steel frame and the concrete specimen, a single 1.5 mm-thick layer of HDPE was placed at

the concrete-steel interface.

To provide sufficient rigidity, the confinement frame was designed for maximum stiffness.

A steel plate girder cross-section was designed consisting of two 76 mm (3 in.) flanges and

three 51 mm (2 in.) webs as shown in Figure 8.3. Because of limited lifting capabilities, the

frame was designed as four sections joined by slip-critical bolted connections, each consisting

of twelve splice plates and 144 bolts. An illustration of the connected elements of the steel

confinement frame is shown in Figure 8.4.

The cross-section and connections were designed for a maximum pressure of 8 Mpa at the

steel frame-concrete interface and a corresponding maximum deflection of 2.5 mm (3/32 in.).

8.1.4 Material testing

Three groups of companion cylinders (150 cylinders total) made of the same concrete batches

of the CASR, UASR, and CTRL specimens were prepared to measure the evolution of the

elastic modulus, compressive strength and splitting tensile strength with the ASR.
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Figure 8.4: Plan view of assembled steel confinement frame ([4])

While the UASR and CTRL cylinder specimens were removed from molds 48 hours after

casting, each CASR cylinder specimen was kept in a relatively rigid cylindrical steel mold

with a wall thickness of 6.4 mm (1/4 in.) until the time of testing. The cylindrical steel

molds were used to promote ASR-induced expansion primarily in the vertical direction, i.e.

parallel to the casting direction, while the unrestrained cylinders were allowed to expand in

all directions.

All cylinders were stored in an environmental chamber also containing the large speci-

mens. Mechanical testing was performed at 7, 28 days, and then at 3, 5, 6, 9, and 12 months.

The elastic modulus, compressive strength and splitting tensile strength were measured using

ASTM C469, ASTM C39 and ASTM C496, respectively.

8.1.5 Casting and curing conditions

The casting of the large-scale and material testing specimens took place on July 23rd, 2016.

The formwork for the large-scale specimens was insulated with rigid foam sheathing insu-

lation in an attempt to mitigate potential damage sources other than ASR (e.g. thermal

cracking). Exposed surfaces were protected from moisture loss shortly after concrete finish-
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ing. To avoid any additional detrimental DEF-induced expansion, the temperature within

the concrete specimens during early-age curing was kept below 70 ◦C by substituting 70%

of the mixing water with ice. The use of ice also permitted placement temperatures of 20 ◦C

or less, which complemented the hydration stabilizing admixture in terms of extending the

time to set, ensuring sufficient time to place and finish the concrete in the laboratory. All

formwork was removed at a concrete age of 12 days and the newly exposed concrete surfaces

were protected from moisture loss while an environmental chamber was being constructed

around the specimens.

The environmental chamber construction was finished at a concrete age of 26 days, and

the chamber was initialized for full operation. The concrete specimens were maintained in an

environment of 38± 1◦C (100± 2oF) and 95%± 5%RH. The chamber was operated uninter-

rupted, except for periodical shutdown for inspection on a average frequency of two days per

month. During shutdowns, the average temperature and RH are about 25oC (≈77oF) and

60% (about 4 hours). After the shutdown period, the chamber is restarted; the temperature

and humidity return to the original set points within 6 hours.

8.2 Ultrasonic Monitoring System: Experimental Setup

8.2.1 Sensor arrangements

Low profile Piezoceramic (PZT) disks were used as ultrasonic transmitters (SMD43T105F200S,

STEINER & MARTINS, INC, Doral, Florida) and receivers (SMD20T27F750S). The trans-

mitter has a diameter of 43 mm and resonance frequency of 200 kHz while the receiver is 20

mm diameter PZT disks with resonance frequency of 750 kHz. The two PZT disks are shown

in Figure 8.5(b). Since the desired frequency range of received signals is from 50 kHz to 200

kHz, the transmitter was actuated at a frequency around 200 kHz for maximum efficiency.

The receiver has a relative flat frequency response in the range of 50 kHz to 200 kHz.

The positions of the PZT sensors are shown in Figure 8.5(a). Two transmitters were

installed on the top surface of each specimen and four receivers on the bottom surface. Both

transmitters and receivers were glued and sealed with waterproof epoxy since the specimens

were curing in high humidity (95%RH) environment. Receiver R2 was installed directly below

the transmitter T1, and receiver R1 had a 30 cm offset in +Y direction to R2. Similarly, R3

was right below T2 and R4 has 30 cm offset in −X direction to R3. The sensor arrangements
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are the same for the three specimens. Figure 8.5 shows the ultrasonic transmitters on the

top surface of a concrete block.

Figure 8.5: Ultrasonic sensors. (a) PZT transmitter and receiver, (b) ultrasonic transmitters
on the top surface.

Figure 8.6: Sensor positions on each concrete specimen. (a) Transmitter positions on the
top surface, (b) transmitter-receiver pairs.

For each specimen, transmitter T1 was actuated first and signals were collected in the

sequence of R1, R2, R3 and R4. Then transmitter T2 was actuated and another four signals

were acquired. This process was repeated on the three specimens. Twenty four signals were

acquired in total everyday. Eight transmitter-receiver pairs can be used on each concrete

specimen (see Figure 8.6). However, the sensor pairs (T1,R3), (T1,R4), (T2,R1), (T2,R2)

have weak ultrasonic signals due to long wave propagation distance. Therefore, in this work,

the signals from the pairs (T1,R1), (T1,R2), (T2,R3), (T2,R4) are studied.
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8.2.2 Ultrasonic monitoring system setup

An 18-channel ultrasonic monitoring system was designed for monitoring the three large con-

crete specimens in UTK structural lab. The schematic diagram of the ultrasonic monitoring

system is shown in Figure 8.7. An ultrasonic pulser/receiver (Olympus 5077PR) was used to

drive the transmitters with 400 V, 250 kHz square pulses. Ultrasonic signals received by PZT

receivers were amplified by 30 dB, and then digitized by a PICO oscilloscope (PICO5242B,

Pico Technology, Cambridgeshire, UK) with a sampling rate of 6.25 MS/s and transferred

to a computer. Signals were averaged 600 times to improve the signal to noise ratio (S/N).

Measurements were taken every day at 02:15 am EST. All sensors were connected to a multi-

plexer (Agilent 34970 and 34903) for sequential scanning. Each time one pair of transmitter

and receiver were activated for sensing, and the multiplexer would switch the transmitters

or receivers from one sensor to another one. A LabVIEW program was developed to control

the data acquisition. The ultrasonic monitoring started on April 24 in 2017. A surveillance

camera was used to monitor the status of the equipment.

Figure 8.7: Schematic diagram of the ultrasonic monitoring system.

8.3 Temperature and Expansion Histories

Temperatures of three concrete specimens had been monitored every hour since the concrete

cast date (7/24/2016). The temperature and expansion data were provided by the University

of Tennessee-Knoxville research team. Figure 8.8 shows the temperature histories of the three

concrete blocks. The temperature increased to more than 55 ◦C immediately after the cast

137



due to the hydration heat. After about four weeks curing in the room temperature, the three

blocks were conditioned in an environmental chamber at temperature of 38◦C and 95% RH.

This process lasted for about 300 days. Then the chamber temperature was decreased to

room temperature (about 24◦C) to reduce the ASR reactivity. In the period of 665 days to

745 days, the chamber temperature was increased to 38◦C again, and then decreased to the

room temperature after 745 days. The first visible crack appeared on the lateral sides of the

UASR specimen before 150 days [4].

Figure 8.8: Temperature histories of the three concrete blocks since concrete cast

Figure 8.9: Temperature histories of the three concrete blocks after ultrasonic monitoring

When the ultrasonic monitoring started at the concrete age of 275 days (4/25/2017),

extensive cracks have been observed on the UASR specimens. Figure 8.9 shows the speci-

men temperature history after the ultrasonic monitoring started. Figure 8.10 presents the

expansion history of three specimens. Figure 8.10(a) shows the complete history record of

the volumetric expansion for the three specimens. The ASR specimen and the ASR confined
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specimen show similar volumetric expansion histories while the control specimen has little

change and even shows small shrinkage. The two ASR specimens shows fast volumetric

expansion rate before the concrete age of 330 days when the chamber was operated in high

temperature (38◦C). When the chamber temperature decreased to 24◦C, the expansion pro-

cess becomes very slow. The expansion is also affected by the temperature variation in the

period of 665 days to 745 days when the chamber temperature increased to 38◦C again.

Figure 8.10(b) shows the expansion histories in Z direction of the three specimens. The

CASR specimen has the largest expansion in the Z direction, since it was confined in both

X and Y directions, and could only expand in the Z direction. Figure 8.10(c) shows the

expansion histories in the Z direction after ultrasonic monitoring started. At beginning,

the control, UASR and CASR specimens have expansions of -0.003%, 0.191% and 0.266%

respectively, while the expansions change to -0.009%, 0.258% and 0.346% at the end of the

ultrasonic monitoring. The Control specimen has minor shrinkage after the monitoring with

a relative expansion of -0.006%. The UASR specimen has a relative expansion of 0.067% and

the CASR specimen has a relative expansion of 0.084%. The expansion details during the

ultrasonic monitoring period are summarized in Table 8.3. In this report, all analyses focus

on measurements in the Z-direction, because the expansion is dominated in Z direction for

both ASR specimens, and the ultrasonic wave monitoring also measures wave propagation

in the Z direction.

Table 8.3: Expansion details during the ultrasonic monitoring period

Start(275 days) End (876 days) Relative expansion
Control -0.003% -0.009% -0.006%
ASR 0.191% 0.258% 0.067%

ASR confined 0.266% 0.346% 0.084%
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(a) Volumetric expansion of the three specimens
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Figure 8.10: Expansion histories of the three concrete specimens
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8.4 Ultrasonic Monitoring Results

This section first presents ultrasonic signals recorded on three concrete specimens. Then

the ultrasonic signals are analyzed using continuous wavelet analysis. Finally, the relative

velocity changes due to ASR development and temperature variation are calculated.

8.4.1 Time and frequency domain signals

Figure 8.11 show time domain signals of the sensor pair (R1,T2) on the three concrete speci-

mens at the age of 325 days. The signal for the control specimen (Figure 8.11(a)) has higher

amplitude and longer duration than the signals from two ASR specimens, which indicate

lower wave attenuation and high level of wave diffusivity in the the control specimen. The

signal of the UASR specimen (Figure 8.11(b)) has lower amplitude, but longer tail than the

signal of CASR specimen (Figure 8.11(c)). It is believed that the lateral confinement and/or

confining steel plates may affect the ultrasonic wave propagation. A part of ultrasonic energy

may directly pass through the confining steel plates, which give a signal with high initial

amplitude but shorter duration, similar to ultrasonic signals propagating in homogeneous

materials.
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Figure 8.11: Time domain signals for sensor pair (T1,R2) at age of 325 days: (a) Control,
(b) UASR, (c) CASR.
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Figure 8.12 shows frequency domain signals of the sensor pair (R1,T2) on the three

concrete specimens at the age of 325 days (blue curves) and 675 days (red curves). The

energy of the signal for the control specimen (Figure 8.12(a)) spreads in the frequency range

of 20 kHz to 130 kHz, with most energy focused in the range of 40 kHz to 60 kHz. The signal

for UASR specimen has much lower amplitude and shows relatively higher low frequency

components, which is attributed to attenuation of high frequency components due to crack

damage (see Figure 8.12(b)). By comparing the amplitude spectra at 325 days and 675

days, the control specimen signals do not show much difference; the UASR signals show

some attenuation of the high frequency content in the signal of 675 days (Figure 8.12(b)).

Overall, the signals recorded at these two different days do not show too much difference,

although the expansions were still increasing from 325 days and 675 days. Therefore, the

conventional linear analysis parameters (frequency or attenuation) are insensitive to the ASR

damage development.
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Figure 8.12: Amplitude spectra of ultrasonic signals for sensor pair (T1,R2) at age of 325
days (blue) and 675 days (red) on: (a) Control, (b) UASR, (c) CASR specimens.
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8.4.2 Relative velocity change histories

In this study, CWI analysis was adopted to track the daily change of wave velocity in

the concrete specimens. The relative velocity change histories using signals of sensor pair

(R1,T2) are shown in Figure 8.13(b) for all three specimens. The wave propagation direction

of (R1,T2) is perpendicular to the main cracking plane (X-Y plane).

Although both ASR specimens demonstrated continuing expansions during the ultrasonic

monitoring period, the wave velocity only showed about 1% change in all three specimens.

Contrary to expectation, the velocity on both ASR specimens did not decrease with contin-

uing damage, instead showed some increase from the initial value. Therefore, it is impossible

to differentiate the ASR damaged specimens from the control specimen based on velocity

measurement only.

Comparing to the temperature history in Figure 8.13(a), we can find the relative velocity

change is greatly affected by the temperature variation. The relative velocity change increases

when the temperature decreases. The relative velocity change histories recorded by another

sensor pairs (T1,R1) is shown in Figure 8.13(c), which gives similar trends as Figure 8.13(b).

Results for other sensor pairs (T2,R3) and (T2,R4) are not shown in the report since they

show similar trends as presented in Figure 8.13(b).

Comparing the trend of temperature variation and relative velocity change, we notice

the velocity curves almost have mirror relationships with the temperature curves, which

indicates that the relative velocity change and temperature variation have strong negative

correlation relationships. This phenomenon is similar to the results observed on the medium-

scale concrete specimens, and further discussed in the next section.
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Figure 8.13: Temperature (a) and relative velocity histories measured by (b) sensor pair
(T1,R2), and (c) by sensor pair (T1,R1).

8.5 Nonlinear Analysis of Ultrasonic Wave Using Ther-

mal Modulation

The experimental results presented above indicate that the temperature variations has sig-

nificant influence on the relative velocity change measurements, and the velocity change due

to damage is overshadowed by the temperature effect. The temperature effect is usually

treated as pollution to the recorded data, and various temperature compensation methods

have been proposed [90]. However, the results presented in Figure 8.13 indicate that the

temperature effects on different specimens are different, i.e., the relative velocity measure-
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ment on a sound concrete specimen cannot be used to correct the temperature effect on a

damaged specimen.

On another aspect, the different responses of three concrete specimens to temperature

variations motivate us to investigate the relationship between relative velocity change and

temperature change, and propose the thermal modulation technique of nonlinear ultrasonic

wave to characterize microcracking damage in concrete. In this analysis, the temperature

variation is used as the driving force to excite nonlinear behavior of material and modulate

the high frequency ultrasonic wave propagation in concrete. Based on the results on the three

specimens, we found that the damaged concrete specimens show larger relative velocity

changes with temperature than the control specimen. Therefore, a thermal modulation

coefficient is proposed to evaluate to the nonlinear parameter and damage level of concrete.
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Figure 8.14: Five periods for the temperature histories of the concrete specimens

The specimen temperature history (Figure 8.14) can be divided into five periods, and

the thermal modulation analyses were applied to each period. Th relative velocity change

and expansion in each period are calculated using the measurements on the first day of each

period. All the following results are based on the signals of the sensor pair (T1,R2).

Period 1 (day 275 to day 340) In period 1, the relative expansions of the UASR and

CASR specimens were 0.0288% and 0.0366% while the Control barely had no expansion (see

Figure 8.15). The temperature history for this period is shown in Figure 8.16(a), and the

relative velocity changes are show in Figure 8.16(b) for the three specimens. The relative

velocity change on the CASR specimen is more sensitive to temperature variation than the

other two specimens, which indicates the CASR specimen has the most damage in the vertical

direction among the three specimens.
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Figure 8.15: Period 1: relative expansion in Z direction.
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Figure 8.16: Period 1: (a) temperature histories, and (b) relative velocity histories.

Period 2 (day 340 to day 394) For period 2, the relative expansions of the UASR and

CASR specimens were 0.0023% and 0.0017% (see Figure 8.17), temperature and relative

velocity change histories are shown in Figure 8.18(a)(b). The large temperature change

in period 2 enables thermal modulation analysis on ultrasonic velocity. Figure 8.19 shows

the relative velocity vs. temperature correlation curves for the three specimens, and linear

relationships are observed between the dv/v and temperature for all three curves. The

thermal modulation coefficients are defined as the slopes of the linear fitting lines, which are

4.9×10−4/◦C, 8.0×10−4/◦C, and 11.4×10−4/◦C for the Control, UASR and CASR specimens,

respectively. The specimen with high damage level demonstrates high thermal modulation

coefficient, and trend of thermal modulation coefficients matches well with the damage levels

of the three specimens.
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Figure 8.17: Period 2: relative expansion in Z direction.
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Figure 8.18: Period 2: (a) temperature histories, (b) relative velocity histories
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Period 3 (day 394 to day 666) The UASR and CASR specimens showed an expansion

of 0.0089% and 0.0122% respectively, while the Control shows small shrinkage (see Figure

8.20). Although the temperature was nearly constant around 24◦C (see Figure 8.21(a)), the

relative velocity on all specimens increased (see Figure 8.21(b)). For the control specimen,

the velocity increase might be caused by continuing hydration and strength improvement;

however, the velocity increase on the ASR specimens cannot be explained when the specimens

showed further microcracking damage and expansion (Figure 8.20). More detailed study is

needed to understand the material property change during this period. Small temperature

variations also caused strong fluctuations on the relative velocity curves for the two ASR

specimens, but not on the control specimen. The expansion curves (Figure 8.20) are also

affected by temperature fluctuation, and similar conclusion can be obtained for the ASR and

control specimens.
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Figure 8.20: Period 3: relative expansion in Z direction.
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Figure 8.21: Period 3: (a) temperature histories, (b) relative velocity histories
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Period 4 (day 667 to day 709) In period 4, the relative expansions of the UASR and

CASR specimens were 0.0235% and 0.0297% while the Control specimen had no expansion

(see Figure 8.22). The specimen temperature gradually increased to 38◦C, held at 38◦C for

about 23 days (see Figure 8.23(a)), and then dropped to 26◦C. In Figure 8.23(b), the relative

velocity changes show opposite trends as the temperature histories.
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Figure 8.22: Period 4: relative expansion in Z direction.
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Figure 8.23: Period 4: (a) temperature histories, (b) relative velocity change histories

The correlation curves between the relative velocity change and the temperature are

shown in Figure 8.24. For the temperature elevating stage, the Control specimen’s curve

shows good linearity, while the curves for the two ASR specimens do not have good linearity.

However, the two curves for ASR specimens still have larger slopes than the curve for the

Control specimen. When temperature becomes stable, the relative velocity changes of the

three specimens still have small increase: ∆v=0.111%, ∆v=0.186% and ∆v=0.328% for

the three specimens respectively. We observe that specimen with higher damage level has
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Figure 8.24: Period 4: correlation curves between relative velocity change and temperature.

higher velocity increase than the specimen with lower damage level under stable temperature

conditions.

For the temperature descending stage, all correlation curves for the three specimens

show very good linearity and the slopes of the fitted curves are shown in the figure. The

thermal modulation coefficients for the three specimens are 5.0×10−4/◦C, 8.8×10−4/◦C and

11.8×10−4/◦C for the Control, UASR, and CASR specimens, respectively. These three

coefficients are very close to the values obtained in period 2 (see Figure 8.19). These results

validate the repeatability of the thermal modulation method.

Period 5 (day 719 to day 866) In period 5, the relative expansions (Z-direction) of

UASR and CASR specimens were 0.0027% and 0.0020% while the Control had small shrink-

age (see Figure 8.25). The specimen temperatures had small variations around 25◦C, which

is shown in Figure 8.26(a). The relative velocity change histories of the three specimens

are shown in Figure 8.26(b). The Control specimen had an almost stable velocity after 730

days, while the relative velocity changes for the two ASR specimens keep increasing during

the same period. By correlating the relative velocity change with the temperature in Figure

8.27, we found the curves for two ASR specimens still show larger slopes than the curve of

the Control specimen.

Summary of findings for all periods By summarizing the findings from all periods, we

observed the following common features in all periods:

• Temperature variation affects expansion and ultrasonic wave velocity measurements.
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Figure 8.25: Period 5: relative expansion in Z direction.
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Figure 8.26: Period 5: (a) temperature histories, (b) relative velocity change histories.
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Figure 8.27: Period 5: correlation curves between relative velocity change and temperature.
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• The temperature effects are not equal on all concrete specimens. Specimens with

higher level of cracking damage demonstrate higher sensitivity to temperature varia-

tion than low-damaged or undamaged specimens. Good linear relationships are found

between the relative velocity change and temperature. This property relates a nonlin-

ear behaviour of concrete excited by thermal modulation, and motivated the authors

to propose the thermal modulation technique for concrete evaluation using nonlinear

ultrasonic waves.

• All specimens showed increase of velocity when the temperature was held stable, and

the ASR specimens showed large increase of velocity than the control specimen, even

though they also experienced continuing expansion (i.e. damage). The mechanism is

still unclear.

8.6 Irreversible Temperature Effect

In the previous section, we observed that the relative velocity change has strong negative

linear relationship with the temperature, i.e., dv/v increases when temperature decrease, and

vice versa. However, we found the relative velocity change did not return to its original value

when temperature went through a closed cycle, as shown in Figure 8.28. Figure 8.28 shows

the histories of temperature, relative velocity change and expansion in Z direction of the

three specimens from 666 days to 715 days. The temperature first increased from 23.7◦C to

around 37.2◦C at 677 days, then kept stable at 38◦C until 698 days, and eventually decreased

to 23.7◦C (see Figure 8.28(a)) at 715 days. Meanwhile, the relative velocity change showed

an opposite trend with temperature history, while the expansion showed a similar trend with

the temperature. Base on the temperature history, three periods (increase, stable, decrease)

are used to discuss the temperature effect.

Table 8.4: Variation of temperature, relative velocity change and expansion in periods I and
III

Parameter Temperature Relative velocity change Expansion
Period I III I III I III
Control 13◦C −13.1◦C -0.748% 0.670% 0.002% -0.001%
ASR 13◦C −13.1◦C -2.680% 1.313% 0.026% -0.006%
ASR confined 13.1◦C −12.9◦C -2.680% 1.058% 0.032% -0.008%

Table 8.4 summarizes the variations of temperature, relative velocity change and expan-

sion (Z-direction) for the three specimens in periods I and III. The temperature increased
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about 13◦C. The relative velocity of the Control specimen returned to its original value (see

Figure 8.28(b)) after the temperature cycle, and the net expansion was very small comparing

to the expansion histories of the two ASR specimens (see Figure 8.28(c)).

The two ASR specimens first showed decrease of the relative velocity in period I and

then an increases in period III. Their relative velocities did not return to the initial values,

instead had uncovered values of -1.41% and -0.94% at 715 days. Their expansions increased

by 0.026% and 0.032 % in period I and decreased by -0.006% and -0.008% in period III,

which indicates that the expansions of the two specimens did not return to their original

values when temperature went back to 23.7◦C.

The three specimens all had very similar temperature changes in periods I and III. For the

control specimen, its relative velocity returned to zero. However, for the two ASR specimens,

their relative velocity changes did not return to their original values. We believe this behavior

was caused by the microcracking damage in the ASR specimens. The relative velocity change

in the heating process (period I) was higher than in the cooling process (period III). The

temperature sensitivities of the relative velocity change are different in heating and cooling

processes for damaged material, which is a typical behavior of nonlinear hysteresis. This

phenomenon was also observed by Niederleithinger et al. [91], and might provide additional

information about the damage evaluation of materials.
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Figure 8.28: Relative velocity change and temperature histories from 666 to 718 days.
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9 Acoustic Emission Monitoring on Full-Scale

Specimens

9.1 AE Experimental Setup

One of the primary advantages of acoustic emission is the ability to assess ongoing damage

with access to only one side of an object, such as an external containment wall or similar

structure. The advantage of acoustic emission over similar one sided methods such as digital

image correlation, visual inspection, and similar approaches is that acoustic emission is

sensitive not only to surface defects but also to damage as it progresses within the structure.

To better understand the capabilities and limitations of acoustic emission monitoring for

this application, three full-scale and realistically reinforced concrete block specimens at the

University of Tennessee Knoxvile were utilized. The three specimens have been described

in previous chapters, and are referred to as confined, unconfined, and control. A rigid

steel frame was employed to create confinement. Two specimens were cast with reactive

aggregate, while the third served as a control. Soltangharaei et al. [92] and Hayes et al.

[4] provide detailed information regarding steel reinforcement and concrete mixture designs.

More information may be found in [92].

Schematic representations of the specimens are shown in Figure 1. A chamber was built

to monitor and manage the relative humidity and temperature of the environment. Alkali-

tolerant strain transducers and fiber optic extensometers (long-gauges) were employed to

measure the internal strain in the specimen. Instrumentation is described in [4].

Each of the reactive specimens had four acoustic emission sensors attached to the bottom

of the specimen and three acoustic emission sensors embedded within the specimen. The

four sensors attached to the bottom of the specimen represent sensor positions and types

as they would potentially be placed on an interior wall for an existing nuclear containment.

These sensors were of the resonant type as this type of sensor is more sensitive to damage
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Figure 9.1: Test specimens and AE sensor positions. [92].

growth when compared to wideband sensors when the frequency range is properly selected.

Past experience has shown that sensors in the frequency range of 40 – 60 kHz meet the in-

situ monitoring needs of reinforced concrete systems and for this reason sensor type R6I-UC

(manufactured by Mistras Group Inc., Princeton Junction, New Jersey) were used on the

exterior surface. This sensor type is resonant (R) with elevated frequency response in the

range of 40 – 60 kHz (6), I stands for integrated preamplification, and is waterproofed for

underwater usage (UC). To offset the effect of gravity and to ensure that the sensor remained

attached without supervision and over an extended period of time, pvc tubing was placed

between the floor of the chamber and the sensor attachment. The sensors were isolated from

the floor with neoprene pads.

The embedded sensors were installed to represent a potential means of monitoring facili-

ties from the construction phase forward. Wideband sensors (type WDI-UC, also manufac-
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tured by Mistras Group, Inc., where WD stands for wideband and I stands for integrated

preamplification) were utilized for the embedded sensors as this type of sensor is more suit-

able for obtaining frequency based response which can be useful for understanding damage

types, such as micro-cracking, crack coalescence, and delamination. Two sensors were uti-

lized in the control specimen to provide a baseline and to verify that the other sensors were

primarily recording signals due to damage growth in the reactive specimens, as opposed to

environmental noise in the chamber itself. Sensor locations and means of attachment are

shown in Figures 9.1 and 9.2.

Figure 9.2: AE sensor locations [92].

A 16-channel Sensor Highway II (SHII) was utilized as the primary data collection system

(manufactured by Mistras Group, Inc.). The sample rate was set to 1,000 kHz. The pre-

trigger time was set to 256 µs; hit definition time (HDT) and hit lockout time (HLT) were

set to 400 and 200 micro-seconds (µs), respectively. The test threshold was set to 32 dB

and was determined onset as the lowest threshold that could be used without picking up

background noise.
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9.2 Methodology

To better understand the AE data and associated damage mechanisms of the reactive spec-

imens a machine learning approach was developed. AE data was divided into subsets by

implementation of an agglomerative hierarchical clustering approach [93]. Figure 9.3 depicts

a schematic flow chart of the clustering approach [92]. Resonant sensors were attached and

began recording data at 51 days after curing, while the internal AE sensors began recording

from the casting day onward.

(a) (b)

Figure 9.3: Schematic flow chart of the clustering approach. (a)Feature extraction, (b) Data
clustering.

Filtering the data to limit the amount of non-relevant data is an important step in post-

processing of acoustic emission AE signals. To minimize non-genuine data two different

filtering approaches were created for the internal and external sensors. The filtering process

depends on the sensitivity and placement of the sensors. For example, the external sensors

are inherently more sensitive than the internal sensors and are also more sensitive to non-

audible environmental noise sources, such as those that may be caused by arc welding or

electrical switches, which may be present in the chamber.
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The data set was filtered for the interior and external sensors to exclude AE signals below

32 dB and 41 dB, respectively. The Swansong filtering method was used to further filter the

signals ([65, 66]). In this method, high amplitude AE signals are assumed to have a long

duration and vice versa [61]. Consequently, false signals are divided into two categories: long

and short duration with a low and high amplitude, respectively.

9.3 Pattern recognition

Internal AE sensor data provides a more consistent comparison between the specimens. The

pattern recognition findings revealed three clusters for each specimen. For the confined

specimen these are referred to as Cluster-1, Cluster-2, and Cluster-3; and for the unconfined

specimen the clusters are referred to as Cluster-4, Cluster-5, and Cluster-6. To reasonably

compare the data the signals must be normalized. The average normalized signal energy for

all six clusters in the frequency domain for both the confined and unconfined specimen is

shown in Figure 9.4.

(a) Confined specimen. (b) Unconfined specimen.

Figure 9.4: Average normalized signal energy for each cluster.

The six clusters were related to low, medium, and high-frequency ranges. In the confined

specimen, Cluster 1 contains 69 percent of the energy in the range of 0-100 kHz; Cluster

2 contains 42 percent of the energy in the range of 50-150 kHz; and Cluster 3 contains 51

percent of energy in the range of 150-300 kHz.

In the unconfined specimen, Cluster 4 contains 62 percent of its energy in the range

of 0-150 kHz; Cluster 5 has 49 percent of its energy in the range of 150-300 kHz; and

Cluster 6 contains 54 percent of energy in the range of 300 and 450 kHz. Cluster 3 in
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the confined specimen and Cluster 5 in the unconfined specimen have similar frequency

content. Signal features such as rise time, duration, amplitude and others are a means of

discriminating between different signals and are utilized in the pattern recognition approach

(more information can be found in [92]). Normalized signal features for the confined and

unconfined specimen and for each of the six clusters are shown in Figure 9.5. In this figure

the age of the specimens (concrete age) is included along with the signal features.

(a) Confined specimen.

(b) Unconfined specimen.

Figure 9.5: Normalized signal features [92]

A correlation is observed between the frequency content of the signal clusters and the

rise angle values (rise time over amplitude ratio). The higher the frequency components are

in a signal, the lower the rise angle value the signal generally possesses. In the unconfined

specimen, Cluster-5 and Cluster-6 (medium and high frequencies) exhibit higher hit rates

with increased concrete age when compared to Cluster-4 (low frequency), and the average

amplitude of signals for the clusters with higher frequency components is slightly higher than

for signals in Cluster-4.
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Figure 9.6 shows the cumulative signal strength (CSS) variation for the confined and

unconfined specimens and for each of the six clusters as a function of concrete age. The

highest value of CSS attained in each specimen was used to normalize the data. The expan-

sion strain rate in terms of time decreases around 150 days after casting, and this is referred

to as an inflection point. The inflection point in volumetric strain is generally understood

to be an important feature in the modeling of the ASR process. In modeling of the ASR

process, the latency and characteristic times are often experimentally determined based on

the location of the inflection point.

(a) Confined specimen.

(b) Unconfined specimen.

Figure 9.6: Normalized cumulative signal strength [92]

In Figure 9.6 the variation of normalized cumulative signal strength in terms of the age

of the concrete for each cluster is presented. In the confined specimen, the signals with the

highest frequency components (Cluster-3) have dominant CSS from an early age and CSS

of Cluster-2 is close to that of Cluster-3 up to the concrete age of 150 days. After 150 days,

the CSS rate for the high frequency data (Cluster-3) increases, while the medium and low

frequency clusters continue with approximately the same rate. In the unconfined specimen,

the low frequency cluster (Cluster-4) is prominent up to approximately 150 days. After this
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time, the clusters with the higher frequency components (Cluster-5 and Cluster-6) become

prominent.

A difference was observed around the time of the inflection point in both reactive speci-

mens. The most notable trend was an increase in the higher frequency clusters in this general

time frame.

The distribution of total AE signal strength for the classified clusters and sensors at

different ages of the concrete (66, 150, 195 days) are shown in Figure 9.7, referred to as

signal strength contribution factors (SSCF). The 66th day and 195th day were selected to

illustrate the trend of data at the beginning and end of the time window. The 150th day

was selected because in both reactive specimens there was a notable change in the rate of

CSS of the clusters with high-frequency components in comparison to the lower frequency

components. Figures on the left show results of the confined specimen and the figures to the

right show data from the unconfined specimen.

In the confined specimen, the SSCF for Cluster-3 increases with time, particularly after

150 days. Most of the AE energy for Cluster-3 is concentrated in the sensor near the mid-

thickness of the specimen after 100 days. The SSCF for Cluster-1 is negligible compared to

other clusters. In the unconfined specimen, the SSCF of the clusters with high-frequency

components (Cluster-5 and Cluster-6) increases with time. There is no obvious energy con-

centration in the sensor located at mid-thickness of the specimen, which is different from

what is observed in the confined specimen. In both reactive specimens, the SSCF declines in

low-frequency signals and increases in high-frequency signals with time. The signal frequency

trend initiates primarily after 150 days in this specimen. In the unconfined specimen, the

frequency content evolution of AE signals is obvious from an earlier stage of ASR reaction

(66 days) and is more significant after the inflection point at 150 days.

The confined specimen has a higher extensional strain along the Z direction than the

unconfined specimen (approximately 42% more at 195 days). This expansion leads to tension

through the thickness, and as there is no reinforcement through the specimen thickness it

is susceptible to crack formation. In the unconfined specimen, the expansion strain is more

evenly distributed between the X-Y plane and the thickness. Therefore, the tension is more

uniformly distributed in the entire specimen in comparison to the confined specimen. This is

potentially reflected in the AE data, where the sensor at mid-height of the confined specimen,

has a larger SSCF than the unconfined specimen (e.g., 65% for the confined specimen versus

35% for the unconfined specimen at 195 days).
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(a) (b)

(c) (d)

(e) (f)

Figure 9.7: Distribution of total AE signal strength in terms of clusters and sensors. (a) Age
of 66 days for the confined specimen; (b) Age of 66 days for unconfined specimen at the; (c)
Age of 150 days for the confined specimen; (d) Age of 150 days for unconfined specimen; (e)
Age of 195 days for confined specimen; (f) Age of 195 days for the unconfined specimen [92]
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As mentioned, the frequency of AE signals progresses from low to high as the concrete

ages. This may be attributable to the formation of cracking through the coarse aggregate

due to ASR progression. The crack formation inside the aggregate is expected to have

higher frequency components than the cement matrix and interfacial transition zone (ITZ).

However, different theories do exist relating to crack formation in concrete due to ASR (more

information can be found in [92].

As mentioned, 150 days serves as an inflection point of the volumetric strain curve, after

which point expansion rates decrease. In addition, the first visible cracks were observed at

the age of 150 days on the sides of the unconfined specimen. Cracks could not be traced in

the confined specimen on the sides due to the steel confinement frame.

9.4 Conclusion

The activities generated by ASR were monitored in large-scale reinforced concrete speci-

mens using acoustic emission. The primary purpose of this investigation was to achieve a

better understanding of how acoustic emission may be best utilized in a field environment.

In this case the specimens were generally representative of a reinforced concrete external

containment with no shear reinforcement. Sensor were applied to the outside surface of the

specimen as would be done for an existing containment and sensors were also embedded

within the specimens as would be potentially the case for monitoring from the construction

phase forward. Embedding of sensors in this way is thought to be a relatively new ap-

proach. Both the embedded and externally applied sensors provided useful data throughout

the duration of the testing period. Acoustic emission has the advantage of needing access

to only one side of a structural system and commercial off the shelf (COTS) technology

is available for field deployment. A wide range of sensor types is available as are a wide

range of COTS data acquisition systems. A challenge with acoustic emission is the same

as its main advantage, namely the extremely high sensitivity to damage growth. Acoustic

emission differs from most other nondestructive evaluation (NDE) methods in the sense that

it is a passive method of health monitoring meaning that damage growth (often in the form

of crack formation, extension, and coalescence) itself generates the acoustic emission data.

For the case of structures such as the specimens described here it is feasible to detect crack

formation from a distance of approximately six feet from any given sensor. Resonant sen-

sors are generally more sensitive than wideband sensors, however wideband sensors provide

more rich data content in the frequency range, which is useful for better understanding the
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data, particularly when discriminating between different types of damage. In this work an

agglomerative hierarchical algorithm was used to classify different acoustic emission data

types based on the energy-frequency dependent features to study and better understand

the damage mechanisms in the specimens with different boundary conditions (confined and

unconfined). This approach to data analysis and interpretation proved to be useful for the

study described and should also prove useful in an actual field environment. Approaches to

data interpretation are rapidly evolving and it is likely that other newer approaches will also

be useful to field applications as more techniques become widely available.

A few conclusions from this study are offered below.

• A significant portion of the total data (in terms of cumulative signal strength) was

recorded by an embedded sensor located near mid-thickness of the confined specimen. A

similar sensor also located and mid-thickness in the unconfined specimen recorded less acous-

tic emission data when compared to the sensor in the confined specimen. This observation

agrees with the physical understanding of the damage process in these different specimens,

as the confined specimen exhibited increased out-of-plane expansion when comparison to

the unconfined specimen. This means that cracking and crack distribution is expected to

be more pronounced in the confined specimen, particularly near the mid-thickness of this

specimen. Either through additional testing or through simulation it seems feasible that a

correlation between crack behavior and acoustic emission data could potentially be achieved.

• Frequency content of acoustic emission signals is one means to differentiate between

modes of damage in reinforced concrete structures. Frequency content is affected by source to

sensor distance due to the effect of attenuation, however, in relatively densely instrumented

specimens such as those used in this study this effect is minimized. In both the confined and

the unconfined specimen, the frequency content evolved from generally lower frequencies at

the beginning of the monitoring period to higher frequency toward the end of the period.

The onset of higher frequencies began later in the confined specimen when compared to

the unconfined specimen. High frequency signals have been associated with cracking in the

aggregate [94] and this in turn is associated with later and more serious stages of damage

in reinforced concrete structures. Therefore, it may be speculated that cracking through the

aggregates initiated earlier in the unconfined specimen. One potential explanation for this

behavior may be that the damage mechanism for the confined specimen was the development

of delamination type cracking at mid-height through the paste relatively early in the process

followed by cracking through the aggregates. This explanation is supported by the higher

strain observed in the out of plane strain readings for this specimen. Damage mechanisms
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in reinforced concrete are complex and overlapping, and therefore clear differentiation from

on damage mechanism to the next is not expected.

• The rate of CSS increases at the inflection point where the curvature of the strain

curve changes from positive to negative. The inflection point location in terms of concrete

age depends on the kinetics of the ASR reaction and diffusion process. Determining the

inflection point, latency and characteristic time are experimentally estimated, which are

important parameters for modeling. The inflection point location in terms of concrete age

may potentially be estimated from the variation in CSS rate change of clustered AE data.

• Monitoring of a structural system with acoustic emission can provide useful information

regarding condition based maintenance and/or retrofit. For example, one potential time of

action for treating affected structures is around the inflection point in the volumetric strain

curve which may potentially be approximated through acoustic emission data. This point

coincided with the observation of first visible surface cracking. Treatment methods such

as injection of lithium solution is a chemical alternative to mitigate ASR. Another is the

removal of moisture through coatings and sealers such as silane sealers and bituminous or

elastomeric coatings.
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[56] G. Renaud, S. Callé, and M. Defontaine, “Remote dynamic acoustoelastic testing: Elas-

tic and dissipative acoustic nonlinearities measured under hydrostatic tension and com-

pression,” Applied Physics Letters, vol. 94, no. 1, p. 011905, 2009.
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