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Abstract

Heat transfer coefficient closure models for pebble bed reactors are built using a data-driven approach
by leveraging the capabilities of an Evolutionary Algorithm entitled Particle Swarm Optimization
(PSO). In the present work, the Computational Fluid Dynamics code nekRS was used in order to
collect the high-fidelity flow data for a core with 1,568 pebbles. To characterize the heat transfer,
multiple concentric regions were considered to extract the physical quantities of interest, e.g./
the Reynolds number. The PSO algorithm is employed as part of an inverse problem targeting
determine what are the coefficients for a Nusselt number correlation to match the collected data.
Such correlation should follow any given format that is defined a priori. Finally, two correlations are
proposed, one with an implicit dependence on the pebbles’ wall temperatures and another expressed
as a fully explicit correlation depending on the flow conditions and the position within the core.
Anyway, given the generic nature of the proposed approach, correlations following different formats
could be tested.

Preliminary results for the high-fidelity simulation of a fast MSR core are presented. The
target Reynolds number is currently 20K, with the expectation that this will increase, pending
the availability of further computational resources. These simulations will be used to inform lower
fidelity models, including a coarse CFD turbulence model in Pronghorn. Additionally, they will
serve as a reference for the RANS models in Nek5000/NekRS.
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1 Introduction

To develop the next generation of nuclear reactors will require accurate, fast-running, lower fidelity
simulation tools designed for the express purpose of capturing the complicated physics associated
with the proposed designs. These tools will need to be flexible enough to account for the wide
variety of reactor types, while maintaining a high standard for accuracy. To accomplish this goal
will require a modern approach to generating the underlying models used by these fast-running
tools, relying on both traditional modeling techniques as well as data-driven techniques powered by
novel Artificial Intelligence (AI) algorithms.

The focus of this work is on the use of high-fidelity CFD simulations to inform models for use in
these fast-running tools. In particular, Large Eddy Simulations (LES) of flow through a pebble bed
reactor, and flow through a Molten Salt Fast Reactor (MSFR) core are being performed with the
NekRS and Nek5000 CFD tools. Data generated from these simulations is being used to inform
model development for the lower fidelity tool, Pronghorn. The focus for the pebble bed reactor is
in the evaluation of the use of AI to inform the development of heat transfer correlations. This
has the potential to allow for the integration of large amounts of perspective data to enhance the
ability of Pronghorn to accurately capture heat transfer phenomena in pebble beds. For the MSFR,
more traditional methods are being pursued. Once completed, the LES data will be used to inform
turbulence models integrated in the coarse CFD capability of Pronghorn. This will aid in the
prediction of flow phenomena in the complex geometries associated with molten salt fueled reactor
designs.

2 Heuristic algorithms for Pronghorn model development

Developing models that can accurately characterize the flow in randomly packed beds has been
the subject of much research in the past few decades. Correlations for pressure drop and heat
transfer were developed specifically for beds of randomly packed pebbles using experimental data.
Application of these correlations is particularly interesting for Pebble-Bed Reactor (PBR) designs,
a class of Generation IV of nuclear power reactors. These type of reactors features spherical fuel
elements called pebbles, each of which consists of thousands of TRISO particles that are dispersed
in a pyrolytic graphite material. The present work focuses on building heat transfer closure models
for PBRs using high-fidelity data obtained via Computational Fluid Dynamic (CFD) simulation.
We leverage the capabilities of an Evolutionary Algorithm entitled Particle Swarm Optimization
(PSO) to address the inverse problem of determining the coefficients of any given correlation format
such that the collected data is matched.

The goal of the present work is to develop tools that should couple closure models obtained
from lower-length-scale simulations to engineering-length-scale ones. This is an existing demand
in the development of Cardinal [1], a new platform for lower-length-scale simulation of pebble-bed
cores. In the context of the present work, we employ the lower scale simulator NekRS to derive heat
transfer formulations that might be supplied to engineering scale codes such as Pronghorn [2] and
Mammoth [3].
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Many correlations are available in the literature considering specifically randomly packed beds of
pebbles. Refs. [4, 5] proposes correlations for the pressure drop in PBRs. The empirical correlation
developed in Ref. [5] by the German Nuclear Safety Standards Commission (KTA) is particularly
useful for nuclear applications. Furthermore, KTA also provides a heat transfer correlation that is
also widely used [6].

These correlations are valuable tools for the development of PBRs as they allow calculating
relevant design parameters, e.g. pressure drop and heat transfer capabilities, for the complex flow
around fuel pebbles. Not only the above-mentioned KTA correlation, but also many others have
been implemented in lower-fidelity codes such as Pronghorn [2] and PEBBED [7] to aid in analyzing
PBRs.

The present work employs a PSO algorithm provided with high-fidelity simulation data to
obtain the coefficients of two correlations with a priori defined form. Interestingly, this technique
has already been successfully used to optimize a combinatorial problem of a Nuclear Reactor
Reload Problem (NRRP) [8]. Large Eddy Simulation (LES) of a core with 1,568 pebbles have been
carried out using the Computational Fluid Dynamics (CFD) code NekRS [9] to collect high-fidelity
distributions of velocity and temperature. Multiple concentric regions were considered to extract
the physical quantities of interest to characterize the heat transfer, e.g. the local Reynolds number.
Two correlation formats have been considered. The first featuring an implicit dependence on the
pebbles’ wall temperatures and the second is expressed as a fully explicit formulation depending on
the flow conditions and the spatial position within the core. We show that the lower-length-scale
simulator (NekRS) aided with the PSO algorithm can provide correlations in an off-line fashion
which can be used in engineering scale tools. Another possible option that may be explored in
the future is to concurrently provide dynamic closures from the former to the latter. Finally, the
strategy proposed here is completely data-driven. Hence, in principle it could be employed for any
type of correlation of interest.

Here we investigate the capability of a heuristic algorithm entitled Particle Swarm Optimization
to retrieve the coefficients of a given Nusselt number correlation. PSO is classified as an Evolutionary
Algorithm that intends to mimic swarm intelligence. This technique, along with others such as
Neural Networks and fuzzy logic, are considered to be Computational Intelligence (CI) algorithms,
a branch of the broader field of Artificial Intelligence (AI) [10].

There are two main advantages in using PSO instead of other techniques to carry out the present
work. First, it has fewer parameters to adjust and the values for these parameters have been widely
discussed in the literature [11]. Second, it is well suited to problems featuring continuum variables,
which is the case here since the set of parameters that we are looking for are assumed to be real
numbers. The PSO algorithm is described in the next section. Later, Section 2.4 describes how this
algorithm has been employed for the task of building a new Nusselt number correlation.

2.1 Heat transfer coefficients from literature

Engineering scale codes devoted to PBR analysis often use heat transfer coefficient correlations
available in the literature valid for beds of spherical pebbles. Pronghorn [2] is able to use the
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correlation provided by the German Nuclear Safety Standards Commission (KTA) [5], Eq. (1).

Nu = 1.27
Pr1/3Re0.36

ε1.18
+ 0.033

Pr0.5Re0.86

ε1.07
(1)

This correlation is valid for 100 ≤ Re ≤ 105, and a bed height greater than four times the pebble
diameter. It uses local values for the Reynolds and Prandtl numbers, meaning that the definition of
Re = ρŪDpeb/µ should be applied. Here, Ū is the intrinsic phase velocity.

It should be noted that special attention is given to the outer ring where the coolant is in contact
with the solid walls of the core. Heat transfer occurs through the thermal boundary layer, which is
generally much smaller than the pebble diameter. For turbulent regimes, heat removal is carried
out mainly by convection in the outer ring provided the fact that the solid thermal conductivity
was found to not have a significant impact on the wall heat transfer coefficient [12]. For this region,
Pronghorn should employ Eq. (2), a correlation experimentally verified by Achenbach in Ref. [13]
which is valid within 50 ≤ Re ≤ 2× 104.

Nu =

(
1−

Dpeb

Dbed

)
Re0.61Re1/3 (2)

2.2 Particle Swarm Optimization (PSO)

Kennedy and Eberhart first proposed the Particle Swarm Optimization algorithm in 1995 [14]. This
method features a metaheuristic algorithm based on the concept of swarm intelligence and it is
capable of solving complex optimization problems with multiple variables and objectives.

The swarm individuals are termed as particles. The key idea of the algorithm is that each particle
balances its own (local) knowledge and the swarm (global) knowledge when exploiting a continuous
domain. The algorithm mimics the social behavior present in swarms, where all the individuals can
share information among themselves. In nature, for instance, this capability helps the swarm to
find a position in terms of latitude and longitude where the survival conditions are optimized, e.g.
maximizing the availability of food and minimizing the threat of predators. Considerable effort was
spent by previous authors [14] to abstract the social behavior often observed in swarms of animals,
e.g. birds or fish, to develop the PSO algorithm.

In essence, an optimization problem seeks to either minimize or maximize a function f(X),
which in turn features a search problem of the variable X in its domain. In the PSO algorithm,
X is termed as position variable, in reference to the search for latitude and longitude as in the
above mentioned example, whereas f(X) is often called the fitness function. Considering that the
problem being addressed has n variables, each particle of the swarm, i, spans a solution vector
Xt

i = (xi, 1, xi, 2, ..., xi, n)T throughout many iterations until a given criteria is met.

Each one of all P particles in a swarm represents a position vector X which is updated on every
iteration t with a velocity vector of the same format V t

i = (vi, 1, vi, 2, ..., vi, n)T . Equations (3 and 4)
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show how these two variables are updated.

V t+1
i = w · V t

i + c1 · r1 · (pbesti −X
t
i ) + c2 · r2 · (gbest −Xt

i ) (3)

Xt+1
i = Xt

i + V t+1
i (4)

A brief description of each of these equations is provided below. For the velocity, Eq. (3):

• w · V t
i – is the inertial term and it accounts for the influence of a particle’s previous motion on

a current one. The parameter w is the inertia weight and should have a constant and positive
value. This parameter balances the global search (when higher values are used) and the local
search (when lower values are used instead). Thus, adjusting the importance of this term may
favor either a local or a global search for an optimum solution.

• c1 · r1 · (pbesti − Xt
i ) – is the own-cognition term and it represents a particle’s individual

knowledge about the domain being explored. This term accounts for the influence of the best
solution ever found by a single particle pbesti when the particle is updating its solution Xt

i to
the next iteration.

• c2 · r2 · (gbest −Xt
i ) – is the swarm-cognition term and it represents the knowledge of all the

individuals of the swarm about the domain being explored. This term plays a similar role as
the previous one, but it accounts for the influence of the best solution ever found by any of the
particles, gbest. Both c1 and c2 are social-cognition parameters and they must have constant
and positive values. However, r1 and r2 are random values following a uniform distribution.

For the position, Eq. (4):

• The previous position of all particles Xt
i is updated to a new one Xt+1

i after the velocity vector
is updated considering the three terms described above.

It should be noted that although there are different versions of the PSO algorithm available,
Eqs. (3 and 4) feature the inertial formulation proposed by Shi and Eberhart [15]. Finally, Figure 2.1
provides the pseudocode for the PSO algorithm.

2.3 LES of a Pebble Bed Reactor

Large Eddy Simulation is performed using NekRS as it is able to leverage modern GPU computing
capabilities to perform large simulations. NekRS is a new GPU-oriented version of Nek5000 [16],
an open-source CFD code developed at Argonne National Laboratory. It can link to Nek5000 and
leverage both of its pre- and post-processing utilities. Details of NekRS performance and capabilities
in nuclear applications can be found in [17].
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Figure 2.1: Particle Swarm Optimization algorithm pseudocode.

The present work considered one case with 1,568 pebbles targeting a porosity of ε = 0.4. A
hexahedral-element mesh has been developed for this case based on a tessellation of a Voronoi
diagram [18]. It should be noted that this case models the contact points between pebbles by
including a small gap. This configuration is part of a geometry simplification to avoid numerical
issues caused by the large deformations imposed on the mesh caused by these regions.

In the considered case, the flow is at Reb = 20, 000, a Prandtl of Pr = 0.8, and a unity heat flux,
i.e. q′′ = 1, is applied at the surface of all pebbles. Furthermore, the boundaries of the core have
an insulated boundary condition for the temperature field. It should be noted that the Reynolds
number definition considered here is Reb = ρvDpeb/µ. In this definition, ρ is the density, µ is the
dynamic viscosity, Dpeb is the diameter of the pebbles, and v is the Darcy velocity. The Darcy
velocity, also known as superficial velocity or extrinsic velocity [2], can be related to the phasic
velocity, u, as v = uε, and represents the fluid velocity averaged over the entire medium (both solid
and fluid). Finally, as it will be shown, sufficient time-averaging has been considered to ensure
statistically converged results.

2.4 Data-driven approach with PSO to model the heat flux in Pebble Bed Reactors

High-fidelity data provided by NekRS is averaged over several smaller subdomains within the pebble
bed where the physical quantities of interest have been computed. These subdomains break up the
full pebble bed core into several concentric annular regions of uniform thickness along the axis of
the core. an example of which is shown in Figure 2.2.

It should be noted that Figure 2.2 is merely representative as the quantities of rings and layers
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Figure 2.2: Time-averaged temperature field showing the concentric regions used to characterize the
flow field, showing (a) a longitudinal cross-section view of the core with (b) a transverse view.

are arbitrarily represented. In the actual setup, 5 layers have been considered in the streamwise
direction where each is subdivided into 4 concentric regions. These regions have been defined such
that each one of them contains at least one pebble in the radial direction and roughly two layers of
pebbles in the streamwise direction.

The bulk Nusselt number is calculated and compared to available correlations from the literature.
A similar procedure to the one described in [19] is employed to obtain the average Nusselt numbers
in each of the regions. First, the time-average temperature fields for the fluid T̄b and for the heated
walls T̄w are calculated. The local-average Nusselt number is then calculated from:

N̄u =
q′′

T̄w − T̄b
Dh

k
(5)

Where k is the conductivity and the standard hydraulic diameter in a porous medium is defined
as [2]:

Dh =
4ε

6(1− ε)
Dpeb (6)

Two correlation formats have been considered in order to employ the PSO algorithm to model
the Nusselt number. These were and implicit correlation, Eq. (7), which depends on the heated
wall temperature Tw, and an explicit correlation, Eq. (8), with a spatial dependence of the radial
distance r within the core.
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Nu = A
PrBReC(Tw − Tb)D

εE
(7)

Nu = AReBPrC +D

(
1− r

Rbed

)E

ReFPrG (8)

Each proposed form attempts to account for the variability in the local porosity through two
different mechanisms. The implicit form, Eq. (7) includes the local porosity directly as a parameter,
whereas the explicit form Eq. (8) includes a radial position dependence. These correlations are
tailored to be employed using local values for both Reynolds and Prandtl numbers. This way, the
Reynolds number must be computed according to Re = ρŪDpeb/µ rather than the Reb definition
provided in Section 2.3. Here, Ū represents the fluid velocity averaged over only the fluid domain in
a given region, and it is referred to as the intrinsic phase velocity.

From the PSO perspective, the set of coefficients provided by Eqs. (7 and 8) features the
position variable X to be determined in order to minimize the fitness function f(X). That is, the
position variable of a particle i at a certain iteration t of the PSO algorithm should be written
as Xt

i = (At
i, B

t
i , C

t
i , D

t
i , E

t
i )

T considering Eq. (7) and Xt
i = (At

i, B
t
i , C

t
i , D

t
i , E

t
i , F

t
i , G

t
i)
T for Eq. (8).

Furthermore, the fitness function should be developed aiming to reflect some engineering knowledge
of the problem being addressed in order to avoid the algorithm converging to a nonsense solution.
For this reason, defining this function is a key aspect not only in the PSO algorithm but also in any
other Evolutionary Algorithm [20]. The function used in the present work is

f(X) =

N∑
j=1

|N̄uj −Nu∗j | (9)

The index j indicates the region from Figure 2.2 and N represents the total of regions being
evaluated by the PSO algorithm. For the present work, N = 16 given that the first layer of concentric
regions is not being evaluated due to entrance effects. Continuing, N̄uj represents the Nusselt
number calculated from the LES using Eq. (5) whereas Nu∗j is the Nusselt number provided by a
particle in the swarm. These two quantities are calculated based on local values of region j.

Finally, the PSO simulations were performed by setting the parameters to P = 600 particles, an
inertial weight of w = 0.01. Additionally, c1 = 1.8 and c2 = 2.2 are chosen such that their sum is
4.0 and a global attractor is formed, which helps the convergence process [21].

2.5 Results and discussion

The time-averaged Nusselt numbers is computed according to Eq. (5) for various regions of the core,
Figure 2.2. After reaching a statistically steady-state, the 1,568 pebbles case was run for six more
flow-through time units to collect statistics such that fully converged results were obtained.
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Then, the PSO algorithm is employed in order to determine the coefficients of the two proposed
correlations provided by Eqs. (7 and 8) such that it best fits into the obtained local Nusselt numbers.
The convergence of the fitness function throughout 200 iterations for both implicit and explicit
formats is shown in Figure 2.3.

0 20 40 60 80 100 120 140 160 180 200
200

400

600

800

1000

1200

1400

1600

1800

Figure 2.3: Fitness improvements considering both implicit and explicit formats provided by Eqs. 7
and 8 respectively.

It is clear from Figure 2.3 that both explicit and implicit formats converge to similar values.
However, it should be noted that the implicit format has a clear advantage as it features a faster
convergence than the explicit one. A potential explanation for that is the fact that Eq. (7) depends
on fewer parameters and it also provides more physical information about the problem being
addressed, which in turn may help to find an optimum solution. Still, the implicit format imposes a
drawback due to its dependence on Tw, which requires an iterative scheme if this format is used in
an engineering scale simulator such as Pronghorn.

The parameter values obtained by the PSO algorithm are provided in Eqs. (10 and 11) for the
implicit and the explicit formats respectively.

Nu = 6.95
Pr0.41Re0.63(Tw − Tb)−1.31

ε1.15
(10)

Nu = 5.74Re0.52Pr1.85 − 0.12

(
1− r

Rbed

)−2.2
Re0.19Pr1.35 (11)

Figure 2.4 presents the Nusselt number spatially-averaged over the streamwise direction as a
function of the radial distance. In this plot, the Pronghorn predictions were obtained by applying the
KTA correlation, Eq. (1), for the inner regions whereas the outer region results from the Achenbach
correlation, Eq. (2).
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Figure 2.4: Spatial-average over the streamwise direction of the Nusselt number depending on the
radial distance.

Figure 2.5 shows the distributions of the signed relative errors between the NekRS results and
the PSO correlations considering the 16 concentric regions on which these two correlations were
developed. In general, the errors are centered at ε = 0.0% for both implicit and explicit formats.
Thus, it can be inferred from these histograms that the PSO correlations are in good agreement
with the calculated values from the CFD simulation.

Interestingly, reasonable agreement is observed between the results obtained via LES using
NekRS and the predictions made by employing the correlations available in Pronghorn. This was
somewhat unexpected as the NekRS model does not account for pebble-to-pebble contact. However,
as expected the PSO-derived correlations show much better agreement. Table 2.1 reports the
maximum relative errors between the correlations shown in Figure 2.4 and the NekRS results. Errors
are given in percentages of the NekRS results.

Table 2.1: Relative errors errors between the coefficient correlations for the Nusselt number and the
results obtained using NekRS.

Correlation ε(%)

Eqs. (1 and 2) (Pronghorn) 15.3
PSO (implicit) 4.3
PSO (explicit) 5.0

9



Figure 2.5: Histogram of signed relative errors considering the concentric regions used to build the
two PSO correlations.

3 LES model of a fast MSR core

In addition to the development of data-driven closure models for pebble bed reactors, an exploratory
investigation is also conducted in this modeling and simulation campaign for the molten salt reactor
(MSR). The related efforts are beneficial to the Pronghorn development, especially on the turbulence
modeling for MSR related applications. The Molten Salt Reactor (MSR) stands out as a promising
candidate among advanced nuclear reactor concepts with its improved passive safety characteristics
and high thermal efficiency. In MSRs, fissile material (fuel) is dissolved in a molten salt, which
is typically chloride or fluoride based. This represents a significant paradigm shift compared to
traditional light-water or other advanced reactors which use solid fuel rods. Among the MSRs,
there are fast spectrum MSRs with flowing fuel salt through open cores, such as the MSFR concept
designed as part of the Euratom EVOL (Evaluation and Viability of Liquid Fuel Fast Reactor
Systems) project. This concept has been selected as the main reference in this study due to its
large negative temperature and void reactivity coefficient. One primary feature of the MSFR is the
absence of solid moderators or flow channels inside the core compared to regular thermal-neutron
MSR designs. The core cavity walls thus serve as the major constraint to achieve specific internal
flow distribution. Since the fuel in an MSFR is already in a liquid state, the melting point of the fuel
is no longer a limiting factor in the reactor design, completely eliminating a major safety concern.
However, this brings its own set of design challenges. For example, one major challenge that comes
with the MSFR design is the configuration of multiple inlet channels entering the bottom of the core
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at relatively high velocities. It is found out that such configuration is prone to generate large-scale
re-circulation zones that could potentially cause temporal and spatial instabilities in the reactor
power distribution and subsequent excessive temperatures. Other major design challenges associated
with the MSFR include: (i) the need of accurately tracking the delayed neutron precursors, (ii) the
lack of suitable thermal-hydraulic closures for high-Prandtl fluid like the chloride or fluoride based
molten salts, and etc.

To address the related design challenges, high-quality databases are demanded to better model
the fundamental thermal-hydraulic phenomena in a fast MSR system. Because of the potential
high costs associated with building relevant experimental facilities, the CFD approach is becoming
increasingly attractive to produce the needed reference data, especially the LES method given
the necessary computational resources. In this study, we perform the LES simulations of a 3-D
MSFR full core model to shed light on the complex thermal-hydraulic phenomena in the MSFR
core cavity. The case setups and preliminary results are detailed in the following sections. The
present investigation lays a solid foundation as we are leveraging the high-fidelity CFD capabilities
to improve the prediction accuracy of lower-fidelity nuclear reactor design code, such as Pronghorn.
Specifically, results from the LES model will be used to benchmark turbulence models implemented
using the coarse CFD capability of Pronghorn.

3.1 Case setup and preliminary results

The specific reactor model considered herein is based upon the MSFR concept developed under the
Euratom EVOL project [22, 23]. The reference MSFR is a 3000 MW fast-spectrum reactor with
three different circuits: the fuel circuit, the intermediate circuit and the power conversion circuit. In
the fuel circuit, there are 16 groups of pumps and heat exchangers around the core. A representative
full core model is created for the MSFR core cavity using the Nek5000. Leveraging the existing
MSFR studies published in the literature, the “Geometry II” investigated by Rouch et al. [23] is
selected as the reference geometry for our CFD simulations. The related investigations will first
focus on the velocity distributions in the core cavity, which is used to demonstrate the applicability
of NEAMS CFD code (i.e., Nek5000) in MSFR related thermal-fluid problems. The next step is to
include more physics in the MSFR simulations, such as the heating and the tracking of delayed
neutron precursors, which will be investigated in the near future. Since a full-core wall-resolved
LES of the MSFR core requires a considerable amount of computing power1, a demonstrative full
core LES case with the coarsened mesh and relatively low-polynomial order is conducted with the
Nek5000, which is used to prove the feasibility of a high-fidelity CFD model of the 3-D MSFR
full-core.

The MSFR core has a height of 1.6 m along the centerline, and a height of 2.65 m in the
peripheral region. The reactor radius ranges from 1.05 to 1.53 m. The peripheral wall is a curved
surface, which resembles the shape of an hourglass. The geometric model and mesh are generated
using the open source meshing software, GMSH [24]. The entire model consists of the core cavity

1A quick estimation shows that it requires over 3 million spectral elements, or 1 billion grid points to perform the
wall-resolved LES of MSFR full core at Re = 250, 000 (a quarter of the expected Reynolds number under the normal
operating condition).
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region and the inlet and outlet channels. Our scoping study shows that the curved cavity walls and
the bent inlet/outlet elbows are essential in producing a relatively uniform velocity distribution
inside the core cavity. Moreover, the inlet channel is extruded accordingly to have a more developed
inflow condition when the molten salt enters the core, while the extrusion of outlet helps prevent
the back-flow issue. As shown in Figure 3.1, sixteen external loops are considered in the 3-D model
around the MSFR core. Note that the ex-core components in the primary loop, such as the pumps
and heat exchangers, are not modeled in this work. Future work may consider modeling these
components via porous media models, especially for the heat exchanger regions. Some preliminary
results from the 3-D MSFR full core simulations is discussed in the next section.

Figure 3.1: The structure and computational grid of the 3-D MSFR full core model.

As mentioned earlier, a demonstrative full-core LES case is simulated on a coarsened mesh of
660,000 elements at a polynomial order of 5. The corresponding Reynolds number is about 20,000
based on the mean velocity through minimum core diameter. A turbulent outflow treatment is
applied on the outflow faces to avoid the back-flow issue. As shown in Figure 3.2, strong turbulence is
being developed at the core bottom where the molten salt is injected into the core cavity. The regions
of large velocity fluctuation correspond well to the high TKE spots revealed by the RANS simulations
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shown in Figure 3.3. The LES simulation is likely under-resolved due to the limited computational
resources currently available, because a wall-resolved LES would require a considerable amount of
CPU-hours to carry out on leadership class supercomputers. Having said that, it is clear that a 3-D
MSFR full core LES is feasible. The related simulations are an important stepping stone as we are
trying to leverage high-quality CFD calculations to enhance the prediction accuracy of coarse-grid
CFD and/or reactor system codes used in actual MSFR design efforts.

Figure 3.2: A snapshot of developing turbulent velocity field in 3-D MSFR full-core model at Re =
20K.

4 Conclusions and Continuing Work

The PSO algorithm proved to be capable of retrieving the coefficients of correlations considering
different formats, hence featuring an effective data-driven approach to obtain closure models. Besides
that, the correlations available in Pronghorn also proved to be, to some extent, in agreement with
NekRS results. For future work, other algorithms may be tested besides the PSO, e.g. the Genetic
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Figure 3.3: The steady-state solution fields of non-dimensional velocity (a) and turbulent kinetic
energy (b) from the 2-D RANS simulation at Re = 40K.

Algorithm (GA) and Neural Networks. Additionally, more conditions should be considered when
obtaining the correlations by varying not only the Reynolds or the Prandtl numbers, but also and
the porosity. Finally, given the generic nature of the present strategy, other coefficient correlations
will be also investigated. For instance, in [25] a drag coefficient correlation was manually adjusted
such that Pronghorn results matched NekRS. This way, the capabilities of heuristic algorithms may
be useful to address this and other kinds of problems.

Initial results for the practical use of LES for performing high-fidelity simulations of turbulent
flow and heat transfer in a full MSFR core have been shown. The proposed simulations will be
continued on the available computational resources at moderate Reynolds numbers to provide a
benchmark for the coarse CFD models implemented in Pronghorn. We expect to be able to begin
providing converged results for Re = 20,000 by the end of FY21. Additionally, higher Reynolds
numbers will be simulated as leadership class resources become available into FY22.
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