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(1) OVERVIEW

INTRODUCTION

Remap is the transfer of numerical fields from a computa-
tional domain to another. Itis said to be conservative when
some extensive quantity is preserved during this transfer.
For instance, one may want to preserve the material mass
while remapping the density field defined on a source
mesh to a target mesh. Remap is necessary for:

* interpolating fields from a distorted mesh to an
improved one in an indirect Arbitrary Lagrangian-
Eulerian simulation (ALE in short).

* linking internal and external fields in a multi-physics
simulation pipeline.

* interpolating data from different numerical codes.

Conservative schemes have long been of particular interest
for ALE simulations [1]. In such simulations, the mesh is
allowed to evolve in time along with the material such as
depicted in Figure 1. In that case, the mesh is smoothed to
prevent cells distorting or tangling, and all fields computed
on the old mesh are remapped to the new one. Remap
schemes such as advection-based and intersection-based
remaps [2] are often integrated within ALE hydrodynamics
codes such as FLAG [3]. They are also useful for other multi-
physics applications such as Amanzi [4] (to assimilate
scattered input data from observation sources), and for code-
to-code linking problems such as in Ingen [5]. However, this
tight integration has led to a proliferation of remap schemes
that cannot be easily shared between simulation codes. To
address this issue, standalone conservative remap software
has been developed such as the closed source overlink [6]
from Lawrence Livermore National Laboratory, the legacy
REMAP3D code [7] from Los Alamos National Laboratory, or
the globally conservative open-source DTK code [8] from
Ock Ridge National Laboratory.

Portage is currently the only actively developed open
source library that performs locally conservative remap.
It provides a lightweight and extensible interface that
can easily be customized and integrated into simulation
codes. Portage supports general polyhedral mesh fields

remap up to a second-order accuracy, while preserving
integral quantities of interest and numerical bounds.
It supports remap between particle fields as well, and
provides means to perform mesh remap using the
particle remap engine. Portage is designed to scale to
thousands of cores on distributed architectures through
MPI and OpenMP (using Nvidia’s Thrust wrapper).

IMPLEMENTATION AND ARCHITECTURE
Features
Portage supports three types of remap:

* Intersection-based remap is a conservative scheme
that relies on exact intersection of source and target
meshes. It first identifies the candidate source cells
that may potentially overlap each target cell. It then
computes two moments of intersection (volume and
centroid) between each target cell and overlapping
source cells (Figure 2). Finally, it interpolates the target
cell value from the candidate source cells values
using the moments of intersection as weights [2].

* Advection-based remap is a conservative scheme
specifically designed for meshes with the same
topology but with different node positions. As
described earlier, this need arises from ALE
hydrodynamic simulations when the mesh is slightly
smoothed to prevent cell distortion induced by the
Lagrangian fluid motion. Here, the remap is formulated
as an advection or fluxing of integral quantities in/
out of each cell through its faces. Any quantity that is
fluxed out of a cell is added into one of its neighbors,
so the method is intrinsically conservative. In this
algorithm, the interpolation weights are deduced from
the flux volumes, which is less expensive - but less
accurate - than the previous remap scheme [9].

* Particle remap is a specific scheme for point clouds.

In this method, source fields are reconstructed by
means of local regression [10]. Here a shape function
is attached to each source point (scatter form) or each
target point (gather form). The algorithm first identifies
the source points included in the support of the shape

EULERIAN mesh

LAGRANGIAN mesh

ALE mesh

Figure 1 Mesh deformation in an ALE simulation [1].
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function of a target point (Figure 3) which are included
in the zone delimited by the user-defined smoothing
lengths which control the number of points used for
the local regression. It then computes the weights

by evaluating the shape function and its derivatives
on each point. Finally, it approximates the value on
each target point using those weights. Despite its high
accuracy, this remap method is not conservative.

Each step can be processed in parallel with the granularity
of a single point or cell.

Design
Portage has a modular design. It relies on extensive
c++ templating of all remap steps, allowing client codes
to extend, adapt or replace them by customized ones.
Besides, most of its core methods are designed to
have no side-effects to ease their parallelization and
their individual reuse. Portage’s components and their
interactions are given in Figure 4.

Portage takes the source and target domains along
with fields data as inputs, and then outputs remapped
flelds on the target domain. Here a domain can be

\/

—

source: voronoi mesh

target: cartesian grid source cells

search for overlapping

intersect cells,

compute weights interpolste

Figure 2 Illustration of intersection-based remap.

gather: shape function support
centered at target point (red)
it is evaluated at source points (blue).

scatter: shape functions supports
centered at sources points (blue)
they are evaluated at a target point (red).

Figure 3 Illustration of particle-based remap.
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Figure 4 Portage software design and workflow.
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a mesh or a point cloud. For multi-material fields, it
requires the material volume fractions on the source
domain as depicted in Figure 5, and which corresponds to
the proportion of each material on each cell. The remap
workflow consists of six stages:

1. Redistribution: this optional step is only necessary for
distributed domains with a mismatch between the
source and target partitions. In that case, some source
entities (points or cells) are reassigned among MPI
ranks such that each target subdomain is overlapped by
the corresponding source subdomain. This eliminates
the need for communications in the remaining steps.

2. Interface reconstruction: this optional step is only
required for multi-material fields and is performed
by a dedicated plugin called Tangram. It recovers the
interface between different materials by computing
the material polygons on each source cell, given their
volume fractions and, optionally, their centroids for a
second-order remap accuracy.

3. Search: this step identifies and retrieves the source
entities that are necessary to interpolate the value of
a given target entity. The algorithm depends on the
remap scheme:

* intersection: collects the source cells that may
overlap the target cell.

» advection: collects the source cell itself and a
subset of its neighbors.

* particle: collects the source points included in the
support of the shape function of a target point in
scatter form, and vice-versa for gather form.

4. Computation of weights: this step computes the
contribution weights of each identified source entity
to reconstruct the value on a given target entity.
Again, the algorithm depends on the remap scheme:

* intersection: computes the moments of
intersection (volume and centroids) of each
candidate source cell that overlaps the target
cell.

* advection: computes the moments of each swept
polyhedron (volume and centroids) formed by the
displacement of each face of the source cell.

* particle: computes and accumulates the values of
the shape functions and their derivatives on each
point given by the search step.

5. Interpolation: this step reconstructs the target entity

values by interpolating them using the computed
weights. For mesh remap, the gradient of the source
field is required to achieve a second-order accurate
reconstruction. It is computed in Portage by a least-
squares method. Here, values can be limited using
Barth-Jespersen’s limiter [11], except at domain
boundaries because boundary conditions are not yet
supported. For particles, we use the term estimation
as recovered values may pass near the data not
necessarily through it.

. Repair: this step is only necessary in case of

mismatch between source and target mesh
boundaries. Here, remapped values are fixed to
enforce the conservation of integral quantities.
Portage exposes three options to fix partially
overlapped cells:

* constant-preserving: no field value perturbations
but not conservative.

* locally-conservative: conservative but
perturbations may occur: constant fields may not
remain constant.

* shifted-conservative: conservative with minimal
perturbations but values are shifted: constant
field remains constant but with a different value.
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f3;006 f]2;025

u“l ul! u|2 u32

f'3=o.60 fu=°'15

20,00 1,,=0.30
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and material fields 'u' on pure material polygons
on source mesh of source mesh
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at a time
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Volume fractions
and fields for
target cell, 't'

Remap volume fractions

Figure 5 Additional step involved in multi-material remap.
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It is also possible to extrapolate values to empty cells in
the target mesh.

Driver

A driver is the interface that exposes the remap
capabilities to the client simulation code. Writing a driver
allows client codes to mix, match, or extend specialized
remap components for their particular needs. Portage
comes with a few drivers to ease the design of custom
ones and several apps to show common remap use
cases. Each driver is templated on core components
(interface reconstruction, search, weight computation,
interpolation) for each remap method (intersection,
advection, particle) and on mesh type. If the simulation
code provides a mesh with a set of queries that conforms
with the mesh wrapper interface, then no data recopy is
involved. Portage embeds five built-in drivers:

* uberdriver: an easy to use mesh remap class.

» coredriver: a low-level mesh driver that allows finer
control on remap steps.

* mmdriver: a legacy monolithic mesh remap driver.

 driver_swarm: a dedicated particle remap driver.

* driver_mesh_swarm_mesh: a mesh remap driver
that relies on particle kernels.

using namespace Portage;

A basic example of a single-material mesh remap using
coredriver methods (using default parameters where
possible) is given in Listing 1. A list of available options
for remap components is given in Table 1. Each of them is
templated on source and target domains as well as field
entity types.

SCALABILITY
Portage is designed for high performance computing
clusters. It relies on both MPI and OpenMP to leverage
the hybrid parallelism exposed by such architectures.
Here we present some scaling results on a simple multi-
material problem in Figure 6. Tests are run on a cluster
formed by 256 dual-socket nodes (Intel Broadwell
with 18 cores per-socket at 2.1 Ghz). Here we consider
a cell-centered three-material field remap with 3D
cartesian grids and a simple t-junction material
distribution on the domain. The source and target grids
have 403 and 1202 cells respectively. To ease memory
pressure, we set a single MPI rank per node and 16
threads per rank explicitly pinned on cores using KMP_
AFFINITY=granularity=core,compact.

The total execution time and the remap time are
depicted in black and red respectively. The time spent
on material interface reconstruction - which is only

std: :vector<std: :string> fields = {"density”, "temperature’};

using Remap = CoreDriver<dim, entity, Mesh, State>;

Remap remap(source_mesh, source state, target_mesh, target state);

auto candidates = remap.search<SearchKDTree>() ;
auto weights = remap.intersect_meshes<IntersectR2D> (candidates) ;
bool mismatched = remap.check_mismatch (weights) ;

for (auto&& field : fields) {

auto grad = remap.compute_source_gradient (field) ;
remap . interpolate_mesh_var<double, Interpolate_2ndOrder> (field, weights, &grad)
if (mismatched) { remap.fix_.mismatch (field, field); }

}

Listing 1 Example of using a driver for remap.
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STEP

ALGORITHM

DESCRIPTION

SEARCH

SearchSimple
SearchKDTree
SearchSimplePoints

SearchPointsByCells

search using bounding-box (2D)
search using a k-d tree
basic quadratic search for particles

linear search for particles using a virtual cell

WEIGHTS

IntersectRnD
IntersectSweptFace

Accumulate

compute exact n-polytopes intersection
compute moments of advected regions
evaluate and sum shape functions/derivatives

options: shape kernels and geometry, basis, estimators

INTERPOLATE

Interpolate_1stOrder
Interpolate_2ndOrder

Estimate

first-order interpolation of mesh values
second-order interpolation with limiters

n-order approximation of particle values

Table 1 Driver options for remap steps.

elapsed (s)

256

128

32

16

I ] 1 I 1

8 16 32 64 128 256
ranks (16 threads each)
remap —®— mesh-init
total --—x--- interface — -
linear --------

Figure 6 Scaling of multi-material remap in a hybrid parallel setting.

performed on multi-material cells - is shown in purple.
Here, the workload per rank is impacted by the uneven
distribution of multi-material cells. Despite the workload
imbalance, a reasonable scaling is still achieved.

QUALITY CONTROL
Portage is tested on Linux with Gnu and Intel compilers.
It provides over 200 unit and functional tests as part of

a Travis continuous integration setup using the Github
workflow. In particular, they ensure that remap algorithms:

* are bounds preserving,
* provide the expected order of accuracy,
* are conservative.

The code coverage in the latest release is 67% as shown
in Figure 7.
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Codecov Report

The diff coverageis n/a .

@@ Coverage Diff @@
## master #32 +/- ##
Coverage 67.56% 67.56%

Files 77 77

Lines 12368 12368

Branches 2013 2013

Hits 8357 8357

Misses 3455 3455

Partials 556 556

Merging #32 into master will not change coverage.

Figure 7 Code coverage in latest release.

(2) AVAILABILITY
OPERATING SYSTEM

Portage is designed for high performance computing .
clusters. Hence it is primarily targetted to Linux.

PROGRAMMING LANGUAGE
Portage is written in C++14.

ADDITIONAL SYSTEM REQUIREMENTS

None.

DEPENDENCIES
minimal:

thrust: a wrapper for OpenMP.
https://github.com/thrust/thrust
tcmalloc: fast memory allocation.
https://github.com/google/tcmalloc

LIST OF CONTRIBUTORS
All contributors are or were affiliated with Los Alamos
National Laboratory.

r3d: exact polytope intersection.
https://github.com/devonmpowell/r3d
cinch: build utilities and options.
https://github.com/laristra/cinch
wonton: mesh wrappers and helpers.
https://github.com/laristra/wonton

optional:

ja'li: distributed mesh infrastructure.
https://github.com/lanl/jali

tangram: interface reconstruction.
https://github.com/laristra/tangram
lapack: linear algebra kernels.
http://www.netlib.org/lapack

current: Angela Herring, Christopher Malone, Daniel
Shevitz, Evgeny Kikinzon, Hoby Rakotoarivelo, Jan
Velechovsky, Konstantin Lipnikov, Navamita Ray and
Rao Garimella.

previous: Brendan Krueger, Charles Ferenbaugh,
Christopher Sewell, Gary Dilts, Ondej ertik, Michael
Rogers and Rachel Ertl.

SOFTWARE LOCATION
Archive

Name: Portage

Persistent identifier: https://github.com/laristra/portage/
releases

Licence: Bsp

Publisher: Angela Herring

Version published: 2.2.3

Date published: 27/04/2020

DOI: 10.5281/zenodo.4571000

Code repository

Name: Portage
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Persistent identifier: https://github.com/laristra/portage
Licence: Bsb

Date published: 01/09/2017

Support: \We will use the GitHub “issues” feature as well
as email (portage@lanl.gov) to maintainers for support.

LANGUAGE
English.

(3) REUSE POTENTIAL

Portage is an extensible and mesh-agnostic library.
Its unique design allows it to be re-used in a variety of
applications such as:

* field remap in ALE simulations,
* multi-physics code-to-code field remap,
+ operator-split intra-code linking.

Portageisactively developed, supported and continuously
released. Bugs and feature requests can be notified using
theissue tracker on Github, as well as any question related
to the software. User support may be reached by email at
portage@lanl.gov. We welcome community contributions
through pull requests.
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