

# Final Report

**Federal Agency and Organization to Which Proposal is Submitted:** U.S. Department of Energy

**Federal Grant No.** DE-FE-0023684

**Project Title:** Integrated Water-Gas-Shift Pre-combustion Carbon Capture Process

**Principal Investigator:** Dr. Gökhan O. Alptekin  
TDA Research, Inc.  
12345 W. 52nd Avenue  
Wheat Ridge, CO 80033-1916  
(303) 422-7819

**Submission Date:** February 4, 2022

**Recipient Organization:** TDA Research, Inc.  
12345 W. 52nd Avenue  
Wheat Ridge, CO 80033-1916  
(303) 422-7819

**Project/Grant Period:** October 1, 2014 to September 30, 2021

**Program Manager:** Diane R. Madden  
DOE Office of Fossil Energy NETL  
626 Cochran's Mill Road  
P.O. Box 10940  
Pittsburgh, PA 15236-0940

# **Integrated Water-Gas-Shift Pre-combustion Carbon Capture Process**

## **Final Report**

**Dr. Gökhan O. Alptekin  
Dr. Ambalavanan Jayaraman  
Michael Bonnema  
David Gribble**

**TDA Research, Inc.  
12345 W. 52nd Avenue  
Wheat Ridge, CO 80033-1916  
(303) 422-7819**

**Mr. Chakravarthy Sishtla**

**Gas Technology Institute  
1700 South Mount Prospect Road  
Des Plaines, IL 60018-1804  
(847) 768-0558**

**Dr. Ashok Rao**

**Advanced Power & Energy Program  
University of California, Irvine  
CA 92697-3550  
(949) 824-7302 ext. 11345**

## **Disclaimer**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions or authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

## Abstract

TDA Research, Inc (TDA) has developed a highly efficient integrated WGS pre-combustion carbon capture technology and demonstrated its techno-economic viability for use in the Integrated Gasification Combined Cycle (IGCC) power plants that process coal. The new system uses a warm gas CO<sub>2</sub> scrubber integrated with a Water-Gas-Shift (WGS) catalyst to capture greater than 90% of the carbon emissions, which does not increase the cost of electricity (COE) as much as conventional carbon capture technologies.

The integrated WGS/CO<sub>2</sub> removal reactor contains both a high temperature physical adsorbent capable of removing CO<sub>2</sub> above the dew point of the synthesis gas and a commercial WGS catalyst to convert CO and H<sub>2</sub>O into H<sub>2</sub> and CO<sub>2</sub>. The integrated operation of the WGS catalyst and the CO<sub>2</sub> sorbent in a single process step drives the equilibrium-limited WGS reaction towards hydrogen without the need to add large amounts of water to the synthesis gas. When coupled to an IGCC the reduced steam input greatly increases the power cycle efficiency and reduces the cost of carbon capture. Our preliminary system analysis results suggested that maintaining the H<sub>2</sub>O:CO molar ratio close to that required by the reaction stoichiometry (i.e., H<sub>2</sub>O:CO = 1.0) rather than using an excess of steam (e.g., 2.0 is commonly used as the basis of various DOE analyses) will improve the absolute process efficiency by more than 2% (over a current efficiency of 34%). The process intensification provided by combining the two unit operations in the same reactor will also reduce the capital cost and improve the process economics.

In this project we demonstrated the techno-economic viability of the new process by: 1) demonstrating it in field tests, and 2) carrying out a high-fidelity engineering design and an economic analysis. We fabricated an 8-bed high temperature PSA system to run the full cycle sequence and demonstrated the integrated WGS pre-combustion carbon capture process, including the thermal management subsystems. We completed over 30,000 adsorption desorption cycles, showing stable catalyst and sorbent performance and completed a techno-economic analysis showing the merits of the integrated WGS carbon capture process.

In collaboration UCI, we also completed a high-fidelity process design and economic analysis for the combined WGS based pre-combustion CO<sub>2</sub> capture system integrated with IGCC power plants operating on coal based E-Gas<sup>TM</sup> and GE gasification systems. This analysis was completed on the basis of the DOE Rev 2a baseline study, operating on Illinois No. 6 bituminous coal integrated with regular state-of-the-art cold gas and TDA's warm gas clean-up based CO<sub>2</sub> capture system (without integration with WGS). We see that the net plant efficiency was the highest for TDA's warm gas capture system when integrated with the last water gas shift stage at 34.7% vs 34.1% for the warm gas capture based system when it is not integrated with the WGS step. The increase in heat rate for the integrated WGS carbon capture system is about 12% over the cold gas cleanup based carbon system (Selexol<sup>TM</sup>). The cost of carbon capture including TS&M is estimated to be \$35.8 per tonne (\$25.8 per tonne when excluding the TS&M costs) for integrated WGS based capture system. This is much lower than DOE's target for transformational carbon capture technologies of \$30 per tonne excluding TS&M costs.

## Table of Contents

|                                                                       |    |
|-----------------------------------------------------------------------|----|
| Abstract.....                                                         | 4  |
| Table of Contents.....                                                | 5  |
| List of Tables.....                                                   | 6  |
| List of Figures .....                                                 | 7  |
| Executive Summary .....                                               | 10 |
| 1.    Introduction .....                                              | 12 |
| 2.    TDA's Integrated WGS and CO <sub>2</sub> Capture Process .....  | 13 |
| 3.    Project Objectives .....                                        | 15 |
| 3.1    Work Plan.....                                                 | 15 |
| 4.    Accomplishments .....                                           | 16 |
| 5.    Results .....                                                   | 20 |
| 5.1    Task 1. Project Management and Planning (PMP) .....            | 20 |
| 5.2    Task 2. Detailed Design of the Test Skid .....                 | 22 |
| 5.2.1    CFD Modeling .....                                           | 23 |
| 5.2.2    Reactor Design.....                                          | 33 |
| 5.3    Task 3. Design Review and Hazard Analysis.....                 | 34 |
| 5.4    Task 4. Sorbent Manufacturing .....                            | 34 |
| 5.5    Task 5. Sorbent Evaluation .....                               | 35 |
| 5.6    Task 6. Reactor Design Optimization.....                       | 35 |
| 5.7    Task 8. Fabrication of Single Reactor .....                    | 38 |
| 5.8    Task 9. Evaluation of Single Reactor .....                     | 40 |
| 5.9    Task 10. Reactor Design Revisions .....                        | 42 |
| 5.10    Task 11. Fabrication of Single Reactor Revisions.....         | 43 |
| 5.11    Task 12. Evaluation of Single Reactor Revisions.....          | 43 |
| 5.12    Task 14. Critical Design Review.....                          | 44 |
| 5.12.1    Facilities Requirements .....                               | 44 |
| 5.13    Task 15. Fabrication of Field Test Unit.....                  | 46 |
| 5.14    Task 16, 19 Shakedown Testing of Integrated Skid.....         | 50 |
| 5.15    Task 20. Field Testing at Praxair.....                        | 53 |
| 5.16    Task 21. Field Test at Praxair #2 .....                       | 56 |
| 5.17    Tasks 7, 13, and 18. Long-Term durability Tests .....         | 63 |
| 5.18    Task 17. Process Design .....                                 | 66 |
| 5.18.1    Siemens F-class gas turbine in warm gas cleanup model ..... | 66 |
| 5.18.2    Performance improvement and integration concepts .....      | 66 |
| 5.18.3    System Sizing and Costing .....                             | 69 |
| 5.19    Task 22. System Analysis .....                                | 71 |
| 5.19.1    IGCC Cases .....                                            | 71 |
| 5.19.2    Fischer-Tropsch Cases .....                                 | 71 |
| Appendix A.....                                                       | 73 |

## List of Tables

|                                                                                                                                         |    |
|-----------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1. Project Milestone Log. ....                                                                                                    | 20 |
| Table 2. Main properties used in the 2-D 8-Bed Model. ....                                                                              | 23 |
| Table 3. Variation on modeling assumptions to adsorption and WGS reaction rate kinetics.....                                            | 27 |
| Table 4. Heat Management Schemes for the Integrated WGS/CO <sub>2</sub> Separation Sorbent Reactor .....                                | 32 |
| Table 5. Partially Shifted Synthesis Gas Composition entering WGS/CO <sub>2</sub> capture unit.....                                     | 33 |
| Table 6. 10CFM unit reactor size estimate. ....                                                                                         | 33 |
| Table 7. Heat Management Schemes for the Integrated WGS/CO <sub>2</sub> Separation Sorbent Reactor .....                                | 42 |
| Table 8. Facilities requirements for the 10 scfm integrated WGS and CO <sub>2</sub> capture skid.....                                   | 45 |
| Table 9. Boundary Conditions from Current Model.....                                                                                    | 61 |
| Table 10. Performance summary.....                                                                                                      | 68 |
| Table 11. Cost of the combined WGS with CO <sub>2</sub> capture system on \$2011 basis.....                                             | 69 |
| Table 12. Comparison of different CO <sub>2</sub> capture system with E-GasTM based IGCC power plants. Rev. 2a - \$2011 cost basis..... | 70 |

## List of Figures

|                                                                                                                                                                                         |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1.3-D layout of the 10 scfm integrated WGS and CO <sub>2</sub> capture field test unit. ....                                                                                     | 10 |
| Figure 2. TDA's 10 cfm field unit installed at Praxair's testing location.....                                                                                                          | 10 |
| Figure 3. Temperature contours (C) for injection velocity corresponding to 1.0 gal/h total (right) and 0.4 gal/h total (left) split between two axial injectors (Config. C) .....       | 10 |
| Figure 4. WGS catalyst activity during the long-term durability test of integrated WGS catalyst/CO <sub>2</sub> sorbent bed in bench-scale.....                                         | 11 |
| Figure 5. CO <sub>2</sub> loading in sorbent/catalyst cycling data.....                                                                                                                 | 11 |
| Figure 6. TDA's CO <sub>2</sub> capture system integrated with CoP's E-Gas™ gasifier.....                                                                                               | 13 |
| Figure 7. The CO <sub>2</sub> partial pressure swing that drives the TDA's integrated WGS/CO <sub>2</sub> capture. PROCESS.....                                                         | 14 |
| Figure 8. Stream Summaries and PFD.....                                                                                                                                                 | 22 |
| Figure 9. Temperature comparison between baseline CFD model and dataset provided by TDA dated April 2013 (previously obtained as part of DE-FE0007966).....                             | 24 |
| Figure 10. Baseline model bed temperature on left (°C), adsorbed CO <sub>2</sub> in middle (mol/kg), and WGS reaction rate on right (kmol/m <sup>3</sup> -s) at 4.5 minutes.....        | 25 |
| Figure 11. Baseline model breakthrough as $y_{CO}$ and $y_{CO_2}$ at vessel outlet.....                                                                                                 | 26 |
| Figure 12. L-F Model.....                                                                                                                                                               | 27 |
| Figure 13. Derivation of adsorption rate constant $k_b$ .....                                                                                                                           | 27 |
| Figure 14. Impact of WGS parameter $a$ on outlet CO/CO <sub>2</sub> mole fractions at 4.5 minutes for baseline assumptions.....                                                         | 28 |
| Figure 15. Impact of parameter $k_b$ on outlet CO <sub>2</sub> mole fractions at 4.5 minutes by pre-exponential constant $A$ .....                                                      | 28 |
| Figure 16. Impact of increasing baseline viscous parameter by order of magnitude, with $k_b = 0.20$ , and an increased $k_1$ at 4.5 minutes.....                                        | 29 |
| Figure 17. Modified model breakthrough as $y_{CO}$ and $y_{CO_2}$ at vessel outlet.....                                                                                                 | 29 |
| Figure 18. Temperature comparison between modified "Case 3" CFD Model and April 2013 Dataset.....                                                                                       | 30 |
| Figure 19. Case 3 model bed temperature on Left (°C), adsorbed CO <sub>2</sub> in middle (mol/kg), and WGS reaction rate on right (kmol/m <sup>3</sup> -s) at 4.5 minutes.....          | 30 |
| Figure 20. Bed configurations for the integrated WGS/CO <sub>2</sub> sorbent reactor. ....                                                                                              | 31 |
| Figure 21. Reactor with cooling jacket (left) and cut-through of tube bundle submerged in bed & surrounded by sorbent/catalyst particles (right). ....                                  | 31 |
| Figure 22. TDA's 2" Bonnot laboratory screw extruder .....                                                                                                                              | 34 |
| Figure 23. TDA's 7" rotary kiln. ....                                                                                                                                                   | 34 |
| Figure 24. CO <sub>2</sub> breakthrough: 200°C, 300 psig, 50% CO <sub>2</sub> , 50%N <sub>2</sub> Inlet, 100% N <sub>2</sub> Regen, 250h <sup>-1</sup> .....                            | 35 |
| Figure 25. Different configurations explored in CFD modeling for catalyst distribution in the combined WGS/PSA beds.....                                                                | 35 |
| Figure 26. Temperature contours (C) for water injection flowrate corresponding to 2 gal/h (left) and 0.4 gal/h (right), resulting in overcooling along the injection side wall. ....    | 36 |
| Figure 27. Horizontal temperature profile at midpoint of the catalyst sorbent mixed layer (Config. A) $y=38.5"$ from bottom for various water injection flow rates (gal/hr).....        | 36 |
| Figure 28. Temperature contours (C) for injection velocity corresponding to 1.0 and 0.4 gal/h for axial injection with (right) and without (left) catalyst-only layer (Config. B) ..... | 36 |
| Figure 29. Temperature contours (C) for injection velocity corresponding to 1.0 gal/h total (right) and 0.4 gal/h total (left) , split between two axial injectors (Config. C) .....    | 37 |
| Figure 30. Horizontal temperature profile at midpoint of the top catalyst only layer (Config. C) for various water injection flow rates (gal/hr).....                                   | 37 |

|                                                                                                                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 31. Proportion of WGS reaction heat generated over length of combined catalyst/sorbent.                                                                  | 38 |
| Figure 32. 3-D Reactor Layout.....                                                                                                                              | 38 |
| Figure 33. Single test reactor.....                                                                                                                             | 38 |
| Figure 34. Injector supply setup.....                                                                                                                           | 39 |
| Figure 35. Micro dispensing valve and orifice water injection.....                                                                                              | 39 |
| Figure 36. Flow rate calibration for varying valve pulse times. ....                                                                                            | 39 |
| Figure 37. Adjustable separation screen. ....                                                                                                                   | 40 |
| Figure 38. Single bed reactor installed in testing apparatus. ....                                                                                              | 41 |
| Figure 39. Nozzle detail and installation in reactor .....                                                                                                      | 41 |
| Figure 40. Single reactor bed temperatures. ....                                                                                                                | 41 |
| Figure 41. Moles of CO converted. ....                                                                                                                          | 42 |
| Figure 42. Sorbent capacity. ....                                                                                                                               | 42 |
| Figure 43. Two tested bed configurations. ....                                                                                                                  | 43 |
| Figure 44. CO conversion .....                                                                                                                                  | 44 |
| Figure 45.3-D layout of the 10 scfm integrated WGS and CO <sub>2</sub> capture field test unit. ....                                                            | 44 |
| Figure 46. Vessel during fabrication (top), vessel insert during test for fit (bottom) .....                                                                    | 46 |
| Figure 47. Skid frame progress and vessel mounting.....                                                                                                         | 46 |
| Figure 48. Electrical back panel fabrication in process .....                                                                                                   | 47 |
| Figure 49. Upper (top) and lower (bottom) valves and manifolds.....                                                                                             | 48 |
| Figure 50. Sample system selection valves (left), analyzers (right). ....                                                                                       | 48 |
| Figure 51. MI cable installed on reactor vessels. ....                                                                                                          | 49 |
| Figure 52. Picture of the 10 cfm field test unit after completion with the insulation.....                                                                      | 49 |
| Figure 53. Water injection flow meters (left), high pressure water pump and pulse dampener (right).....                                                         | 50 |
| Figure 54. Single injector flow rates at 500 and 1000 psig inlet.....                                                                                           | 51 |
| Figure 55. TDA's 10 cfm field unit installed at Praxair's testing location.....                                                                                 | 51 |
| Figure 56. Reactors being loaded with catalyst and sorbent. ....                                                                                                | 52 |
| Figure 57. Location of injectors (left); sorbent and catalyst loading (right).....                                                                              | 52 |
| Figure 58. Water injection flow rate flow all beds.....                                                                                                         | 53 |
| Figure 59. Bed temperature data. Note: S/CO here indicates the Steam to CO ratio.....                                                                           | 54 |
| Figure 60. Gas compositions during 300 psig inlet pressure operation. ....                                                                                      | 55 |
| Figure 61. 100 psig syngas operation.....                                                                                                                       | 55 |
| Figure 62. Campaign # 2: Test #1 - 4 hours test 09/18/2020 – 14:45 to 18:45 hours.....                                                                          | 56 |
| Figure 63. Campaign # 2: Test #2 - 12 hours test 09/18/2020 19:30 to 09/19/2020 7:30.....                                                                       | 57 |
| Figure 64. Campaign # 2: Test #3 – 18.5 hours test 09/19/2020 07:30 to 09/20/2020 02:00....                                                                     | 57 |
| Figure 65. Campaign # 2: Test #4 – 18.5 hours tests 09/22/2020 15:30 to 09/23/2020 10:00....                                                                    | 58 |
| Figure 66. Campaign # 2: Gas compositions observed during the syngas testing.....                                                                               | 59 |
| Figure 67. Campaign # 2: Bed temperatures and water injection rates during the syngas testing. ....                                                             | 59 |
| Figure 68. Carbon dust accumulation downstream. ....                                                                                                            | 60 |
| Figure 69. Chart of Bed Temperatures from Field Dataset for Full Cycle (9/20) .....                                                                             | 61 |
| Figure 70. Comparing Inlet Syngas Composition. ....                                                                                                             | 61 |
| Figure 71. Spray Shown in Lower Reactor for Low and High Cases (Left/Right). ....                                                                               | 62 |
| Figure 72. Steady State Sorbed CO <sub>2</sub> without (Left) and with Spray Cooling in Low (Mid) and High Case (Right) [mol CO <sub>2</sub> /kg sorbent]. .... | 62 |
| Figure 73. Picture of the test apparatus.....                                                                                                                   | 63 |
| Figure 74. CO <sub>2</sub> loading in sorbent/catalyst cycling data.....                                                                                        | 64 |
| Figure 75. Adsorption (left) and regeneration (right) temperature and pressure. ....                                                                            | 64 |
| Figure 76. WGS catalyst activity during the long-term durability test of integrated WGS catalyst/CO <sub>2</sub> sorbent bed in bench-scale. ....               | 65 |

|                                                                                                                                                            |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 77. Event log.....                                                                                                                                  | 65 |
| Figure 78. Air Integration - Extraction air heat recovery configuration.....                                                                               | 67 |
| Figure 79. Performance tracking plot.....                                                                                                                  | 68 |
| Figure 80. Cost distribution for various sub-system in the combined WGS with CO <sub>2</sub> capture<br>(reported in \$2011 basis on a \$1,000 scale)..... | 69 |
| Figure 81. Normalized system cost per unit syngas flow as a function of CO/CO <sub>2</sub> molar ratio. .                                                  | 70 |

## Executive Summary

TDA Research, Inc (TDA) has developed a highly efficient integrated WGS pre-combustion carbon capture technology and demonstrated its techno-economic viability for use in Integrated Gasification Combined Cycle (IGCC) power plants that process coal. The new system uses a warm gas  $\text{CO}_2$  scrubber integrated with a Water-Gas-Shift (WGS) catalyst to capture greater than 90% of the carbon emissions, with a much lower cost of electricity (COE) increase than conventional carbon capture technologies.

The scrubber consists of a high temperature physical adsorbent capable of removing  $\text{CO}_2$  above the dew point of the synthesis gas and a commercial WGS catalyst to convert  $\text{CO}$  and  $\text{H}_2\text{O}$  into  $\text{H}_2$  and  $\text{CO}_2$ . The integrated operation of the WGS catalyst and the  $\text{CO}_2$  sorbent in a single process step drives the equilibrium-limited WGS reaction towards hydrogen, without the need to add large amounts of water to the synthesis gas. When coupled to an IGCC the reduced steam input greatly increases the power cycle efficiency and reduces the cost of carbon capture. Our preliminary system analysis results suggested that maintaining the  $\text{H}_2\text{O}:\text{CO}$  molar ratio close to that required by the reaction stoichiometry (i.e.,  $\text{H}_2\text{O}:\text{CO} = 1.0$ ) rather than using an excess of steam (e.g., 2.0 is commonly used as the basis of various DOE analyses) will improve the absolute process efficiency by more than 2% (over a current efficiency of 34%). The process intensification provided by combining the two unit operations in the same reactor also reduces the capital cost and improves the process economics.

In this project we demonstrated the techno-economic viability of the new process by: 1) demonstrating it in field tests, and 2) carrying out a high-fidelity engineering design (Figure 1). In collaboration with Gas Technology Institute (GTI) we designed and fabricated an 8-bed high temperature PSA system to run the full cycle sequence and demonstrated the integrated WGS pre-combustion carbon capture process (including the thermal management subsystems) in field tests at Praxair/Linde's facilities (Tonawanda, NY) using syngas generated by their Oxygen Transport Membrane (OTM) system (Figure 2).

GTI also carried out detailed CFD modeling of the integrated WGS pre-combustion carbon capture process and the thermal management subsystems. Figure 3

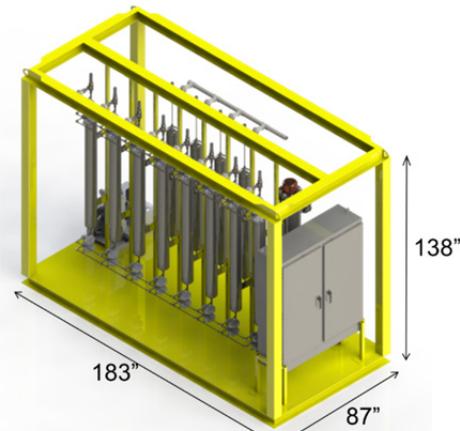



Figure 1. 3-D layout of the 10 scfm integrated WGS and  $\text{CO}_2$  capture field test unit.



Figure 2. TDA's 10 cfm field unit installed at Praxair's testing location.

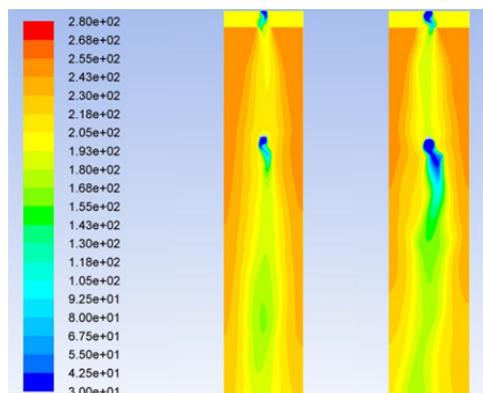



Figure 3. Temperature contours (C) for injection velocity corresponding to 1.0 gal/h total (right) and 0.4 gal/h total (left) split between two axial injectors (Config. C)

shows the Configuration C, which was identified to be one of the more optimal configurations that we developed for the integrated water injection nozzles that are used to remove the heat of WGS reaction from the integrated WGS precombustion reactor. We completed over 30,000 adsorption desorption cycles with the TDA's precombustion carbon capture sorbent integrated with the WGS catalyst in a bench-scale fixed reactor system, showing stable catalyst and sorbent performance. Figure 5 and Figure 4 shows the sorbent and catalyst performance over these long duration multiple cycle tests.

In collaboration with University of California Irvine (UCI) we completed a techno-economic analysis showing the merits of the integrated WGS carbon capture process. UCI completed a high-fidelity process design and economic analysis for the combined WGS based pre-combustion CO<sub>2</sub> capture system integrated to a IGCC power plant operating on either a coal based E-Gas<sup>TM</sup> or GE gasification system. This analysis was completed on the basis of DOE Rev 2a baseline study. We compared the net plant efficiency and cost of capture numbers for the E-Gas<sup>TM</sup> gasification system operating on Illinois No. 6 bituminous coal integrated with regular state-of-the-art cold gas and TDA's warm gas clean-up based CO<sub>2</sub> capture system (without integration with WGS). We see that the net plant efficiency was the highest for TDA's warm gas capture system when integrated with the last water gas shift stage at 34.7% vs 34.1% for the warm gas capture based system when it is not integrated with the WGS step. The increase in heat rate for the integrated WGS carbon capture system is about 12% over the cold gas cleanup based carbon system (Selexol<sup>TM</sup>). For E-Gas<sup>TM</sup> gasification technology the 1st year CO<sub>2</sub> capture cost without CO<sub>2</sub> transportation storage and monitoring (TS&M) for the Warm Gas Cleanup case is \$26/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$43/tonne. For General Electric's GEP type gasification technology the 1st year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M) for the Warm Gas Cleanup case is \$28/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$38/tonne. In the case of coal to liquids processes, the required selling price (RSP) with CO<sub>2</sub> TS&M included for the Fischer Tropsch synthesis of fuels was calculated to be \$120/bbl for the manufacture of naphtha and \$172/bbl for the diesel in the case of Cold Gas Cleanup, and \$115/bbl for the naphtha and \$166/bbl for the diesel in the case of Warm Gas Cleanup, a decrease of more than 3% for each of these coproducts.

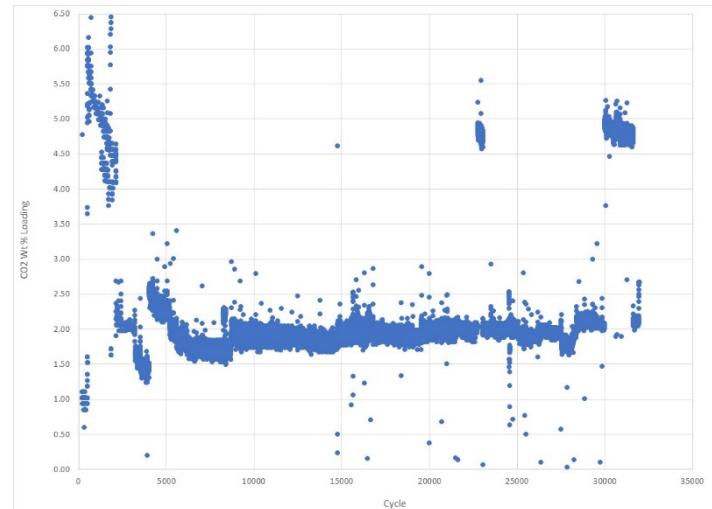



Figure 5. CO<sub>2</sub> loading in sorbent/catalyst cycling data.

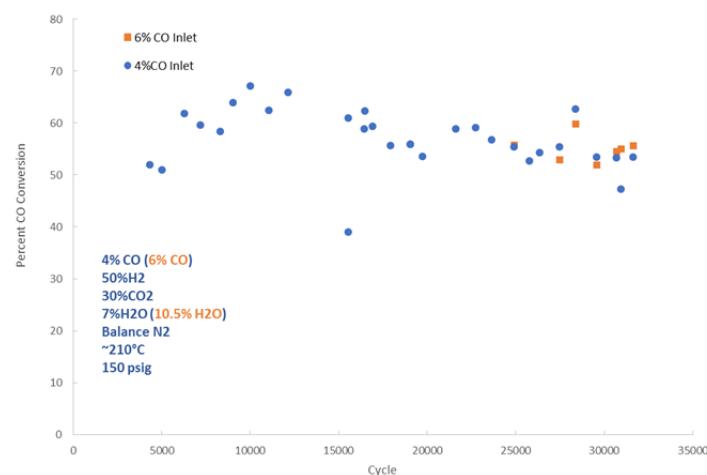



Figure 4. WGS catalyst activity during the long-term durability test of integrated WGS catalyst/CO<sub>2</sub> sorbent bed in bench-scale. The figure shows the percent CO conversion over 35,000 cycles for two different CO inlet concentrations: 4% CO (blue circles) and 6% CO (orange squares). The 4% CO inlet series shows higher conversion rates, starting around 52% and peaking near 70% around cycle 10,000. The 6% CO inlet series shows lower conversion rates, starting around 40% and peaking near 55% around cycle 25,000. The legend provides the following gas composition details: 4% CO (6% CO), 50% H<sub>2</sub>, 30% CO<sub>2</sub>, 7% H<sub>2</sub>O (10.5% H<sub>2</sub>O), Balance N<sub>2</sub>, ~210°C, 150 psig. The text below the figure discusses the techno-economic analysis, comparing the performance of the integrated WGS system with other gasification technologies and the cost of CO<sub>2</sub> capture.

## 1. Introduction

TDA Research, Inc (TDA) has developed a highly efficient integrated WGS pre-combustion carbon capture technology and demonstrated its techno-economic viability for use in the Integrated Gasification Combined Cycle (IGCC) power plants that process coal. The new system uses a warm gas CO<sub>2</sub> scrubber integrated with a Water-Gas-Shift (WGS) catalyst to capture greater than 90% of the carbon emissions, while maintaining a low cost of electricity (COE) increase compared to conventional carbon capture technologies.

The scrubber consists of a high temperature physical adsorbent capable of removing CO<sub>2</sub> above the dew point of the synthesis gas and a commercial WGS catalyst to convert CO and H<sub>2</sub>O into H<sub>2</sub> and CO<sub>2</sub>. The integrated operation of the WGS catalyst and the CO<sub>2</sub> sorbent in a single process step drives the equilibrium-limited WGS reaction towards hydrogen without the need to add large amounts of water to the synthesis gas. When coupled to an IGCC the reduced steam input greatly increases the power cycle efficiency and reduces the cost of carbon capture. Our preliminary system analysis results suggested that maintaining the H<sub>2</sub>O:CO molar ratio close to that required by the reaction stoichiometry (i.e., H<sub>2</sub>O:CO = 1.0) rather than using an excess of steam (e.g., 2.0 is commonly used as the basis of various DOE analysis) will improve the absolute process efficiency by more than 2% (over a current efficiency of 34%). The process intensification provided by combining the two unit operations in the same reactor will also reduce the capital cost and improve the process economics.

The overall objective of this work was to develop an integrated WGS/pre-combustion carbon capture technology to eliminate CO<sub>2</sub> emissions from Integrated Gasification Combined Cycle (IGCC) power plants. Our specific goal was to demonstrate the techno-economic viability of the new process by: 1) demonstrating it in large-scale slipstream tests, and 2) carrying out a high fidelity engineering design. TDA's process uses an advanced physical adsorbent to selectively remove CO<sub>2</sub> from coal-derived synthesis gas above its dew point. Before we started this project the sorbent's performance had been well-characterized in representative bench-scale experiments and several slipstream field tests using actual coal-derived synthesis gas (DE-FE-0000469; DE-FE-0013105). We had also carried out proof-of-concept evaluations for the integrated WGS/CO<sub>2</sub> removal process and showed that our process can remove carbon with a much higher process efficiency than with the Selexol<sup>TM</sup> solvent (DE-FE-0007966; DE-FE-0012048).

In this project, we developed, built and tested a slipstream test unit to further demonstrate the merits of the integrated process. We fabricated an 8-bed high temperature PSA system to run the full cycle sequence and demonstrated the integrated WGS pre-combustion carbon capture process. We completed over 30,000 adsorption desorption cycles in a bench-scale fixed reactor system, showing stable performance and completed a techno-economic analysis showing the merits of the integrated WGS carbon capture process.

## 2. TDA's Integrated WGS and CO<sub>2</sub> Capture Process

TDA's integrated WGS catalyst/high temperature CO<sub>2</sub> scrubber system uses a warm gas CO<sub>2</sub> scrubber based on pressure swing adsorption (PSA) integrated with a Water-Gas-Shift (WGS) catalyst to capture greater than 90% of the carbon emissions with a smaller cost increase in the electricity (COE) caused by competing processes. Figure 6 shows a simplified schematic of our technology integrated with an IGCC plant based on E-Gas™ Gasifier (we used the E-Gas™ system as an example, the proposed technology will work with any gasifier type). In a typical IGCC plant, following the gasifier, the synthesis gas passes through a high temperature heat recovery system that generates high quality steam for the steam cycle. The particulate removal is carried out with high temperature filters, where the char is recycled back to the gasifier.

The particulate-free gas then feeds a water scrubber that operates at 371°C; water scrubbing effectively removes halides, ammonia and some of the trace metals, as well as the water-soluble Na and K compounds (e.g., NaCl, KCl). The high gas temperature prior to the scrubber prevents the condensation of alkali compounds in the process equipment upstream of the scrubber (as suggested by literature and TDA experiments). The equipment downstream of the scrubber is also protected as the alkali concentration of the gas will be significantly reduced. The relatively low temperature ensures high solubility and capture of contaminants, and limits the amount of water introduced to the synthesis gas.

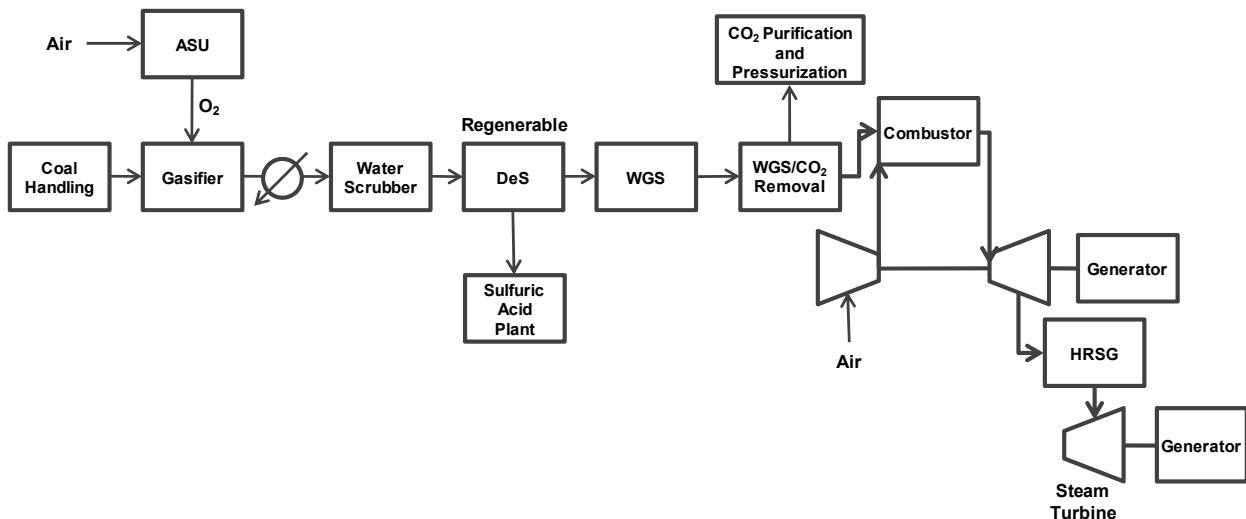



Figure 6. TDA's CO<sub>2</sub> capture system integrated with CoP's E-Gas™ gasifier.

Following the water scrubber, the syngas will be desulfurized using a regenerable zinc oxide based sorbent (similar to RVS-1 or Z-Sorb developed by Research Triangle Institute (RTI) and Conoco Phillips (CoP) later Chicago Bridge and Iron (CB&I) and now licensed by Sinopec, respectively). After the desulfurizer, the gas passes through a stand-alone WGS catalyst bed, using a commercial WGS catalyst such as Sud-chemie's Sour Shift catalyst or Shiftmax-series shift catalyst. This first stage WGS catalyst bed effectively converts most of the CO and H<sub>2</sub>O into H<sub>2</sub> and CO<sub>2</sub>. This partially shifted synthesis gas is then sent to our integrated WGS and CO<sub>2</sub> capture bed (that is the basis of our project); this bed uses a combination of low temperature shift catalyst (such as ShiftMax-120 from Sud-Chemie) and TDA's pre-combustion warm gas CO<sub>2</sub> capture sorbent to produce additional hydrogen and capture the CO<sub>2</sub> in a single step.

The integrated WGS/CO<sub>2</sub> capture block consists of a WGS/CO<sub>2</sub> separation system (the high temperature PSA system, which uses a mixed bed of WGS catalyst and TDA's CO<sub>2</sub> sorbent) and a purification/compression system, which further treats the CO<sub>2</sub> stream from the separation unit to produce a pure, pressurized CO<sub>2</sub> product that meets pipeline specifications. TDA's high temperature PSA-based WGS/CO<sub>2</sub> separation system converts the residual CO into CO<sub>2</sub> (achieving overall CO conversions as high as 98+% with an average of 96.4%) while capturing 90% of the carbon from the synthesis gas as CO<sub>2</sub> and produces a CO<sub>2</sub>-lean synthesis gas (primarily H<sub>2</sub> and H<sub>2</sub>O) that is sent to the gas turbine. Any gases trapped in the voids of the sorbent and the reactor ullage space are recovered at an intermediate pressure and recycled back to the synthesis gas feed to ensure high H<sub>2</sub> recovery in the CO<sub>2</sub> separation unit. A steam purge at lower pressure is used to fully regenerate the sorbent.

A CO<sub>2</sub> rich stream, consisting primarily of H<sub>2</sub>O and CO<sub>2</sub> (along with some CO and H<sub>2</sub> impurities) is sent for further purification and compression to produce high purity CO<sub>2</sub> at 2,200 psig that can be sent for sequestration. For CO<sub>2</sub> purification a catalytic combustor is used to burn any residual syngas with oxygen. In this approach pure oxygen is used to oxidize any H<sub>2</sub>, CO and CH<sub>4</sub> remaining in the concentrated CO<sub>2</sub> stream, converting them into CO<sub>2</sub> and H<sub>2</sub>O. After dehydration, CO<sub>2</sub> was pressurized. The catalytic combustion of impurities provided a CO<sub>2</sub> product whose purity is comparable to that achieved by Selexol<sup>TM</sup>.

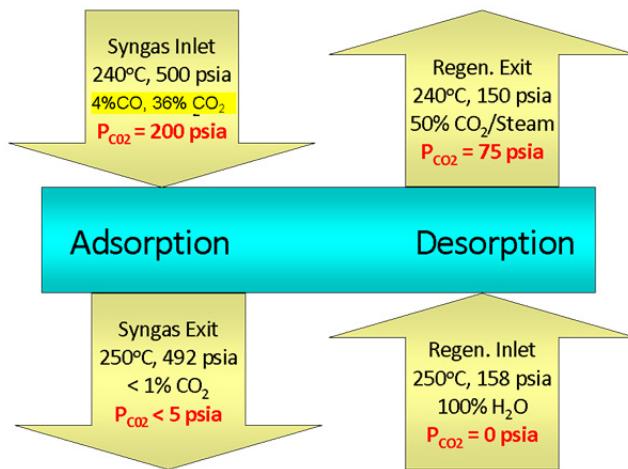



Figure 7. The CO<sub>2</sub> partial pressure swing that drives the TDA's integrated WGS/CO<sub>2</sub> capture.

### 3. Project Objectives

In this project TDA Research proposed to work with the Gas Technology Institute (GTI), University of California, Irvine (UCI), Praxair, Indigo Power Systems, the National Carbon Capture Center (NCCC) and Chicago Bridge & Iron (CB&I). We will optimize the reactor design using CFD and kinetic modeling. Based on the new design, we will modify the cycle sequence to optimize CO<sub>2</sub> capture and H<sub>2</sub> recovery. We will also design a fully-equipped slipstream test unit with 10 SCFM (280 SLPM) raw synthesis gas treatment capacity that will allow us to prove the viability of the new technology. Two field tests will be carried out: at the Power Systems Development Facility (PSDF) at the NCCC, Wilsonville, AL using syngas generated from air blown gasifier and another at pilot gasification facility at Praxair, Tonawanda, NY using oxygen blown gasifier. All results will feed into a techno-economic analysis supported with Aspen Plus™ simulation to calculate the impact of the integrated WGS/CO<sub>2</sub> capture system on plant efficiency and the cost of electricity; all analyses will be consistent with DOE/NETL Cost Estimation Guidelines.

#### 3.1 Work Plan

The project tasks were completed in three budget periods:

**Budget Period 1:** In Budget Period 1 we will carry out the design of the field test unit and complete sorbent manufacturing based on the existing Manufacturing/Quality Assurance Plans. We will work with GTI to carry out a detailed design of the sorbent reactors, using a multi-component adsorption and CFD simulation models developed in our earlier work. We will design the slipstream test unit, based on the input and with the full approval of NCCC and CB&I. We will also initiate a long-term sorbent life evaluation, running 8,000 cycles. Budget Period 1 is complete.

**Budget Period 2:** In Budget Period 2, we will complete evaluation of a single integrated reactor and revise our design and commence with the fabrication of the unit. We will continue with the long-term sorbent tests, running 20,000 cycles. Budget Period 2 is complete.

**Budget Period 3:** In Budget Period 3, we will complete sorbent life tests with 30,000 cycles. We will complete all shakedown, troubleshooting and test trials to ensure flawless operation of the unit before shipping to the demonstration sites. We were initially scheduled to carry out the two test campaigns (one each) at the National Carbon Capture Center (NCCC), Wilsonville, AL and the Wabash River IGCC plant to optimize the system operation and assess its durability under synthesis gas derived from oxygen fired gasifier. However, both the sites have shut down and been decommissioned, so neither could be a host site for this project. TDA secured Praxair (Tonawanda, NY) as the alternate site and will carry out two test campaigns at Praxair site. We will complete the design of the TDA process and also carry out a high-fidelity system analysis i.e., engineering and cost analysis based on vendor quotes for an integrated IGCC power plant and a gasification based CTL plant. Based on the test results we will complete an economic evaluation to accurately estimate the cost of removal of CO<sub>2</sub> using DOE/NETL Cost Estimation Guidelines and complete an Environmental, Health and Safety (EHS) assessment.

## 4. Accomplishments

The accomplishments in this project were:

### Task 1. Project Management and Planning

- We updated the PMP based on comments from DOE project manager and submitted for approval on November 7, 2014 (Milestone 1-1)
- We had a kick-off meeting with DOE on January 9, 2015 over a web conference and presented the project overview (Milestone 1-2)
- We were initially scheduled to carry out the two test campaigns (one each) at the National Carbon Capture Center (NCCC), Wilsonville, AL and the Wabash River IGCC plant to optimize the system operation and assess its durability under synthesis gas derived from oxygen fired gasifier. However, both the sites were shut down and decommissioned during the course of this project. So, TDA held discussions with Praxair and secured access to their Oxygen Transport Membrane (OTM) test facility located in Tonawanda, NY as the alternate site to carry out two test campaigns.
- Due to changes in the field test site and the delays in access to the tests site due to COVID-19, we requested and received no-cost-time-extensions (NCTEs) to complete the project by September 2021
- We held annual review meetings and participated in DOE sponsored topical meetings as required through the course of the project.
- We successfully completed the project and held the Final Review Meeting remotely via webex telecon on August 30, 2021 in which we provided a comprehensive review of the project to the DOE project manager and the gasification team. This completed the Milestone 3-7 on August 30, 2021

### Task 2. Detailed Design of the Test Skid

- We carried out the detailed design of the 10 scfm test skid including the 8-bed high temperature PSA beds with integrated WGS catalyst and completed the reactor sizing to provide a basis for CFD modeling
- As part of this task, GTI carried out the CFD model development of the integrated WGS pre-combustion carbon capture process
  - GTI initially completed the calibration of the 2D adsorption CFD model before extending the model to include the integrated WGS and finally extended it to 3-D computational space
  - GTI used the CFD model of the 10 scfm test bed and optimized the heat management scheme
- We completed the detailed design of the 10 scfm test skid, and a preliminary design package was shared with our partners on June 30, 2015 (Milestone 1-3)

### Task 3. Design Review and Hazard Analysis

- We completed the initial Design Review and Process Hazard Analysis (PHA) for our 10 cfm test skid on September 30, 2015 (Milestone 1-4)

### Task 4. Sorbent Manufacturing

- As part of this task, we worked on improving the volumetric capacity of the sorbents in the scaled up production batches
- We completed the production of sorbents for the field test making about 0.5 m<sup>3</sup> of sorbent on March 31, 2016 (Milestone 1-5)

**Task 5. Sorbent Evaluation**

- We evaluated the scaled-up sorbent samples in a bench-scale test set up and picked the sample with high CO<sub>2</sub> breakthrough capacity.

**Task 6. Reactor Design Optimization**

- GTI continued CFD modeling work and optimized the numbers and position of the direct water injection nozzles for heat management of the integrated WGS precombustion carbon capture process, completing Milestone 1-6 on March 31, 2016.

**Task 7. Long-term Durability Tests up to 8,000 cycles**

- We carried out the multiple cycle life tests in the bench-scale using a modified fixed bed test apparatus that can do counter current flows during adsorption and desorption
- We completed 8,000 adsorption/ desorption cycles with TDA's precombustion CO<sub>2</sub> capture sorbent integrated with WGS catalyst in a bench-scale system on May 14, 2018 (Milestone 1-7)

**Task 8. Fabrication of Single Reactor**

- We completed the fabrication of the single test reactor that was used to optimize our final design for the reactors used in the field test unit.

**Task 9. Evaluation of Single Reactor**

- We completed the single reactor tests with the 10 scfm test reactor and explored the use of mechanical steam injectors, which provided us the flexibility to place the injectors inside the PSA beds

**Task 10. Reactor Design Revisions**

- We revised the reactor test bed configuration to determine the efficacy of the sorbent/catalyst layer layout on CO conversion

**Task 11. Fabrication of Single Reactor Revisions**

- We completed the single reactor design revisions and fabricated the new reactor configuration

**Task 12. Evaluation of Single Reactor Revisions**

- We tested the second reactor configuration in the lab using simulated synthesis gas and observed that when using configuration 1, the CO conversion yielded on average 3.5% more CO conversion than configuration 2, completing Milestone 2-1 on June 30, 2016.

**Task 13. Long-term Durability Tests up to 20,000 cycles**

- We continued the multiple cycle life tests of the integrated WGS precombustion carbon capture bed in the bench-scale fixed bed test apparatus and completed over 20,000 cycles on September 1, 2018 (Milestone 2-3).

**Task 14. Critical Design Review**

- We completed the critical design review and commenced the fabrication of the 10 scfm field test unit on May 31, 2016 (Milestone 2-2).

**Task 15. Fabrication of Field Test Unit**

- We completed the fabrication of the 10 scfm field test unit on May 31, 2017 (Milestone 2-4)

**Task 16. Shakedown Testing of Gas Processing Skid**

- We completed shakedown tests of the gas processing side of the skid on June 30, 2017 (Milestone 2-5)

**Task 17. Process Design**

- We worked with Indigo Power Systems (IPS) to optimize the concepts and input for integration of the advanced gas turbines into the IGCC to maximize performance
- We updated the AspenPlus® models previously developed by UCI for TDA's integrated WGS pre-combustion capture process integrated to an IGCC power plant
- We completed the sizing and costing for the integrated WGS carbon capture reactor system based on the stream data from the AspenPlus® process model.
- We completed the full-scale process /system design for the CO<sub>2</sub> capture system (Milestone 3-3) on March 30, 2020.

**Task 18. Long-term Durability Tests up to 30,000 cycles**

- We completed over 30,000 cycles in the multiple cycle life tests of the integrated WGS precombustion carbon capture bed in the bench-scale fixed bed test apparatus on November 13, 2018 (Milestone 3-4).

**Task 19. Shakedown Testing of the Slipstream Unit**

- We completed shakedown tests of the integrated WGS test skid in July 31, 2017 (Milestone 3-1) and the unit was shipped to Praxair for field tests

**Task 20. Field Test at Praxair #1**

- We loaded the reactors with catalyst and sorbent and installed the spacers and screens required for the water injection
- We made several trips to Praxair to carry out the initial shakedown and preliminary testing of the 10 SCFM field test unit
- We shared the data from our First field test campaign to our partner GTI so that they could use it in their CFD model validations
  - GTI updated their CFD models to match the exact amounts for the catalyst and sorbent layers
  - Based on the CFD model developed using exact amounts for the catalyst and sorbent layers, GTI ran several steady state simulations, including a baseline (no spray cooling) with and without WGS reactions to verify that the CO<sub>2</sub> sorption process and WGS reactions aspects of the model were functional
- In this first test campaign, we carried out over 60 hours of testing and the tests were completed on June 30, 2018 (Milestone 3-2).
- In the summer of 2019, we went to Praxair and fixed the compressor which malfunctioned in the first test campaign and also verified that the heaters were still operational and flushed out the water injection system and verified that the injection valves and flow meters were functional
- We acquired larger filter housings to replace the smaller tee style filters that clogged so quickly during the last period of operation. This will provide longer periods of sustained operation. The filters were shipped directly to Praxair to be installed immediately before testing will begin.

**Task 21. Field Test at Praxair #2**

- We traveled to Praxair (now Linde) to repair and modify the apparatus and start the second test campaign
- We carried out tests between September 14 and 27, 2020 using both bottled gases (CO<sub>2</sub> in N<sub>2</sub> mixtures) as well as syngas generated by Linde's OTM panel
- Praxair (now acquired by Linde) was able to get their OTM system tests started shortly after our last travel to Praxair in September, 2020 in this second test campaign we ran for a total of 68 hours on syngas before an issue with condensate collection on Praxair/Linde's OTM panel forced a shutdown.
- Praxair's sump pump broke during this second test campaign with syngas from OTM, and we were able to restart the system remotely. However, we observed increases in pressure drop and issues with syngas flow out of the system.
  - With the help of one of Praxair's engineers, we observed that a large amount of sorbent was escaping the beds making its way downstream and plugging the lines and filters.
- Due to COVID-19 related travel restrictions to New York from Colorado, we could not get the sorbent beds reloaded and the sorbent retention problem fixed. Also, Praxair/Linde had a need coming up for the space we were using for the field tests, so we jointly made the decision to decommission the field unit with Praxair/Linde's help and had it shipped to TDA, completing Milestone 3-5 on December 31, 2020.
- We compiled the data from the Praxair Second Test Campaign to share with GTI for Model validation
- GTI completed CFD Model validation with the data from the Praxair Second Test Campaign

**Task 22. System Analysis**

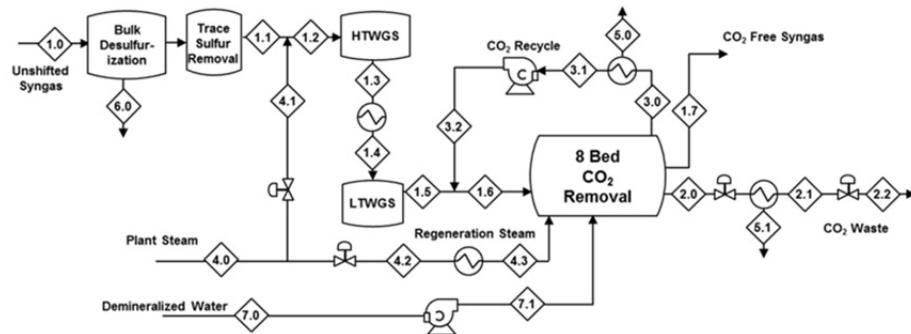
- In collaboration with UCI, we completed the Final TEA i.e., system and cost analysis completing the Milestone 3-6 on September 30, 2021
  - For E-Gas<sup>TM</sup> gasification technology 1st year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$26/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$43/tonne
  - For General Electric's GEP type gasification technology 1st year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$28/tonne which is lower than that for the Cold Gas Cleanup case at \$38/tonne
  - The required selling price (RSP) with CO<sub>2</sub> TS&M included for Fischer-Tropsch synthesis was calculated to be \$120/bbl for the naphtha and \$172/bbl for the diesel in the case of Cold Gas Cleanup, and \$115/bbl for the naphtha and \$166/bbl for the diesel in the case of Warm Gas Cleanup, a decrease of more than 3% for each of these coproducts

## 5. Results

### 5.1 Task 1. Project Management and Planning (PMP)

**PMP:** The project commenced on October 1, 2014 and we updated the PMP based on inputs from the DOE project monitor and submitted it to DOE on November 7, 2014 (Milestone 1-1). We had a kick-off meeting with DOE project manager at NETL on January 9, 2015 (Milestone 1-2). A project outline, including company overview and project approach, was presented to the DOE technical staff and other interested parties, including other research groups within the overall project scope. We were initially scheduled to carry out the two test campaigns (one each) at the National Carbon Capture Center (NCCC), Wilsonville, AL and the Wabash River IGCC plant to optimize the system operation and assess its durability under synthesis gas derived from oxygen fired gasifier. However, both the sites had shut down and decommissioned during the course of this project. So, TDA held discussions with Praxair and secured access to their Oxygen Transport Membrane (OTM) test facility located in Tonawanda, NY as the alternate site to carry out two test campaigns. Due to changes in the field test site and the delays in access to the tests site due to COVID-19, we requested and received no-cost-time-extensions (NCTEs) to complete the project by September 2021. We held annual review meetings and participated in DOE sponsored topical meetings as required through the course of the project. We held the Final Review Meeting remotely via webex telecon on August 30, 2021 in which we provided a comprehensive review of the project to the DOE project manager and the gasification team, and completed Milestone 3-7. We successfully completed all the project tasks on September 30, 2021. The project Milestone log is summarized in Table 1.

Table 1. Project Milestone Log.


| BP | ID  | Task No. | Title                                     | Description                                                                  | Planned Completion | Actual Completion | Verification Method                         |
|----|-----|----------|-------------------------------------------|------------------------------------------------------------------------------|--------------------|-------------------|---------------------------------------------|
|    |     |          | <b>Project Start Date</b>                 |                                                                              | <b>10/1/14</b>     |                   |                                             |
| 1  | 1-1 | 1        | Update Project Management Plan (PMP)      | Update PMP with inputs from DOE Federal Project Manager                      | 11/3/14            | 11/7/14           | PMP file                                    |
| 1  | 1-2 | 1        | Kickoff meeting                           | Kickoff Meeting at NETL                                                      | 12/1/14            | 1/9/15            | Topical Report - Initial TEA                |
| 1  | 1-3 | 2        | Preliminary Design Package                | Provide preliminary design package to field test site operators for feedback | 6/30/15            | 6/30/15           | Presentation file                           |
| 1  | 1-4 | 3        | Initial Design Review and Hazard Analysis | Complete initial design review and HAZOP                                     | 9/30/15            | 9/30/15           | Topical Report - Pilot Plant Design Package |
| 1  | 1-5 | 4        | Sorbent Manufacturing                     | Complete the production of the sorbent needed for field tests                | 3/31/16            | 3/31/16           | Sorbent Manufacturing Plan                  |
| 1  | 1-6 | 6        | Reactor design Optimizations              | Complete reactor design optimizations                                        | 3/31/16            | 3/31/16           | Results update                              |
| 1  | 1-7 | 7        | Long-term Durability Target               | Complete up to 8,000 cycles at bench-scale                                   | 5/14/18            | 5/14/18           | Results update                              |

|   |     |    | I                                        |                                                    |          |          |                                         |
|---|-----|----|------------------------------------------|----------------------------------------------------|----------|----------|-----------------------------------------|
| 1 | 1-8 | 1  | Annual Review Meeting                    | Present the BP1 results to DOE/NETL                | 3/31/16  | 3/31/16  | Preliminary EH&S Risk Assessment Report |
| 2 | 2-1 | 12 | Single Reactor Evaluations               | Complete Evaluation of revised single reactor      | 6/30/16  | 6/30/16  | Results update                          |
| 2 | 2-2 | 14 | Critical Design Review                   | Complete the final critical design review          | 5/31/16  | 5/31/16  | Site Approved SOP for the test skid     |
| 2 | 2-3 | 13 | Long-term Durability Target II           | Complete up to 20,000 cycles at bench-scale        | 10/31/18 | 9/1/18   | Results update                          |
| 2 | 2-4 | 15 | Fabrication of Field Unit                | Complete the fabrication                           | 5/31/17  | 5/31/17  | Pictures of the Skid                    |
| 2 | 2-5 | 16 | Shakedown Testing of Gas Processing Skid | Complete the Shakedown tests using simulated gases | 6/30/17  | 6/30/17  | Results update                          |
| 2 | 2-6 | 1  | Annual Review Meeting                    | Present the BP2 results to DOE/NETL                | 3/20/17  | 3/20/17  | presentation file                       |
| 3 | 3-1 | 19 | Shakedown Testing of Integrated Skid     | Complete the Shakedown tests using simulated gases | 7/31/17  | 7/31/17  | Results update                          |
| 3 | 3-2 | 20 | Field Tests at Praxair #1                | Complete Field Tests at Praxair #1                 | 6/30/18  | 6/30/18  | Results update                          |
| 3 | 3-3 | 17 | Process Design                           | Complete the full-scale system & process design    | 3/30/20  | 3/30/20  | Results update                          |
| 3 | 3-4 | 18 | Long-term Durability Target III          | Complete up to 30,000 cycles at bench-scale        | 6/28/19  | 11/13/18 | Results update                          |
| 3 | 3-5 | 21 | Field Tests at Praxair #2                | Complete Field Tests at Praxair #2                 | 8/30/21  | 12/31/20 | Results update                          |
| 3 | 3-6 | 22 | System Analysis                          | Complete System and Cost Analysis                  | 9/30/21  | 9/30/21  | Results update                          |
| 3 | 3-7 | 1  | Final Review Meeting                     | Present the BP3 results to DOE/NETL                | 12/31/21 | 8/30/21  | Presentation file                       |

## 5.2 Task 2. Detailed Design of the Test Skid

The primary objective of this project is to carry out a slipstream demonstration with a fully equipped prototype unit. The pilot scale unit is designed to treat at a minimum 300 slpm of synthesis gas flow with a minimum of 15 kg/hr CO<sub>2</sub> capture capability (based on the gas flow at Wabash River IGCC Plant).

### Process Flow Diagram (PFD) and Stream Summaries for the Pilot Test Unit



| Stream Number                    | 1.0              | 1.1           | 1.2        | 1.3        | 1.4        | 1.5        | 1.6                           | 1.7                         | 2.0                   | 2.1                       | 2.2                          | 3.0                | 3.1              | 3.2                     | 4.0         | 4.1       | 4.2         | 4.3                | 5.0               | 5.1               | 7.0            | 7.1   |      |
|----------------------------------|------------------|---------------|------------|------------|------------|------------|-------------------------------|-----------------------------|-----------------------|---------------------------|------------------------------|--------------------|------------------|-------------------------|-------------|-----------|-------------|--------------------|-------------------|-------------------|----------------|-------|------|
| Stream Name                      | Unshifted Syngas | 5-free Syngas | HTWGS Feed | HTWGS Exit | LTWGS Feed | LTWGS Exit | CO <sub>2</sub> Removal Inlet | CO <sub>2</sub> Free Syngas | CO <sub>2</sub> Waste | Dry CO <sub>2</sub> Waste | LP Dry CO <sub>2</sub> Waste | Occurr Depress Out | Compressor Inlet | CO <sub>2</sub> Recycle | Plant Steam | WGS Steam | Regen Steam | Cooled Regen Steam | Reycle Condensate | In-situ WGS Water | Injected Water |       |      |
| mol %                            |                  |               |            |            |            |            |                               |                             |                       |                           |                              |                    |                  |                         |             |           |             |                    |                   |                   |                |       |      |
| H <sub>2</sub> O                 | 20.14%           | 20.40%        | 41.06%     | 23.43%     | 23.43%     | 15.68%     | 14.36%                        | 23.81%                      | 55.74%                | 2.39%                     | 2.35%                        | 10.35%             | 1.06%            | 100.00%                 | 100.00%     | 100.00%   | 100.00%     | 99.98%             | 99.98%            | 100.00%           | 100.00%        |       |      |
| H <sub>2</sub>                   | 24.19%           | 24.50%        | 18.14%     | 35.76%     | 35.76%     | 43.52%     | 42.63%                        | 70.37%                      | 2.55%                 | 5.62%                     | 5.62%                        | 30.57%             | 33.74%           | 33.74%                  | 0.00%       | 0.00%     | 0.00%       | 0.00%              | 0.00%             | 0.00%             | 0.00%          | 0.00% |      |
| H <sub>2</sub> S                 | 1.27%            | 0.00%         | 0.00%      | 0.00%      | 0.00%      | 0.00%      | 0.00%                         | 0.00%                       | 0.00%                 | 0.00%                     | 0.00%                        | 0.00%              | 0.00%            | 0.00%                   | 0.00%       | 0.00%     | 0.00%       | 0.00%              | 0.00%             | 0.00%             | 0.00%          | 0.00% |      |
| CO                               | 36.49%           | 36.96%        | 27.37%     | 9.75%      | 9.75%      | 2.00%      | 1.82%                         | 0.06%                       | 0.00%                 | 0.00%                     | 0.00%                        | 0.03%              | 0.03%            | 0.03%                   | 0.00%       | 0.00%     | 0.00%       | 0.00%              | 0.00%             | 0.00%             | 0.00%          | 0.00% |      |
| CO <sub>2</sub>                  | 14.00%           | 14.18%        | 10.50%     | 28.12%     | 28.12%     | 35.87%     | 38.33%                        | 1.23%                       | 41.55%                | 91.66%                    | 57.07%                       | 62.88%             | 62.88%           | 0.00%                   | 0.00%       | 0.00%     | 0.00%       | 0.00%              | 0.02%             | 0.02%             | 0.00%          | 0.00% |      |
| N <sub>2</sub>                   | 1.20%            | 1.22%         | 0.90%      | 0.90%      | 0.90%      | 0.90%      | 0.88%                         | 1.40%                       | 0.05%                 | 0.11%                     | 0.11%                        | 0.62%              | 0.68%            | 0.68%                   | 0.00%       | 0.00%     | 0.00%       | 0.00%              | 0.00%             | 0.00%             | 0.00%          | 0.00% |      |
| HCN                              | 0.01%            | 0.01%         | 0.01%      | 0.01%      | 0.01%      | 0.01%      | 0.01%                         | 0.00%                       | 0.00%                 | 0.00%                     | 0.00%                        | 0.00%              | 0.00%            | 0.00%                   | 0.00%       | 0.00%     | 0.00%       | 0.00%              | 0.00%             | 0.00%             | 0.00%          | 0.00% |      |
| Other (Cl, Ar, NH <sub>3</sub> ) | 2.70%            | 2.73%         | 2.92%      | 2.02%      | 2.02%      | 2.62%      | 1.98%                         | 3.13%                       | 0.11%                 | 0.25%                     | 0.25%                        | 1.36%              | 1.51%            | 1.51%                   | 0.00%       | 0.00%     | 0.00%       | 0.00%              | 0.00%             | 0.00%             | 0.00%          | 0.00% |      |
| Vapor Fraction                   | 1                | 1             | 1          | 1          | 1          | 1          | 1                             | 1                           | 1                     | 1                         | 1                            | 1                  | 1                | 1                       | 1           | 1         | 1           | 1                  | 0                 | 0                 | 0              | 0     |      |
| Molecular Weight                 | g/mol            | 21.9          | 21.7       | 20.7       | 20.7       | 20.7       | 20.7                          | 21.5                        | 7.4                   | 28.3                      | 40.9                         | 40.9               | 28.0             | 29.1                    | 29.1        | 18.0      | 18.0        | 18.0               | 18.0              | 18.0              | 18.0           | 18.0  |      |
| Temperature                      | °C               | 193           | 193        | 193        | 330.0      | 190.0      | 220.0                         | 207                         | 200                   | 37                        | 37                           | 200                | 37               | 176                     | 176         | 315       | 288         | 288                | 200               | 37                | 37             | 20    | 20   |
| Pressure                         | °F               | 379           | 379        | 379        | 626        | 374        | 428                           | 405                         | 393                   | 99                        | 99                           | 392                | 99               | 349                     | 349         | 550       | 533         | 392                | 99                | 99                | 68             | 68    | 68   |
| Total Flow                       | gmol/h           | 558.0         | 748.4      | 1010.6     | 1010.6     | 1010.6     | 1010.6                        | 1111.4                      | 620.4                 | 901.8                     | 408.7                        | 408.7              | 111.2            | 100.8                   | 10.4        | 757.6     | 262.3       | 505.3              | 10.4              | 493.1             | 16.8           | 16.8  |      |
| SCFM                             | 10.0             | 9.9           | 13.3       | 13.3       | 13.3       | 13.3       | 14.7                          | 8.2                         | 11.9                  | 5.4                       | 5.4                          | 1.5                | 1.5              | 0.1                     | 10.1        | 3.5       | 6.7         | 0.0                | 0.0               | 0.0               | 0.0            | 0.0   |      |
| lb/h                             | 36.5             | 35.8          | 45.2       | 46.2       | 46.2       | 46.2       | 52.7                          | 10.1                        | 56.4                  | 36.8                      | 36.8                         | 6.9                | 6.5              | 0.7                     | 30.4        | 10.4      | 20.0        | 20.0               | 0.4               | 19.5              | 0.7            | 0.7   |      |
| Pressure                         | psig             | 357           | 354        | 352        | 345.2      | 345.2      | 337.9                         | 338                         | 331                   | 68                        | 25                           | 7                  | 73               | 73                      | 338         | 325       | 352         | 68                 | 68                | 73                | 25             | 68    | 1450 |
| C <sub>p</sub>                   | J/mol C          | 32.5          | 32.9       | 33.5       | 34.6       | 34.7       | 35.7                          | 35.8                        | 31.0                  | 38.4                      | 37.0                         | 37.0               | 38.1             | 34.5                    | 37.9        | 36.3      | 36.0        | 35.9               | 35.1              | 75.4              | 75.4           | 75.4  |      |
| Dew Point T <sub>dew</sub>       | °C               | 146.3         | 146.3      | 167.0      | 148.0      | 148.0      | 136.6                         | 133.9                       | 148.6                 | 120.6                     | 37.0                         | 26.3               | 84.4             | 37.0                    | 65.4        | 212.4     | 180.0       | 118.9              | -                 | -                 | -              | -     |      |
| Specific Gravity                 |                  | 12.0          | 11.8       | 11.2       | 8.5        | 11.1       | 10.2                          | 10.9                        | 3.7                   | 3.4                       | 3.6                          | 3.6                | 3.6              | 5.6                     | 15.7        | 7.1       | 8.1         | 1.8                | 2.1               | 1.0               | 1.0            | 1.0   |      |

Figure 8. Stream Summaries and PFD.

The test unit consists of two parts: (1) the Gas Conditioning Unit and (2) the combined WGS and high temperature pressure swing adsorption (PSA) based CO<sub>2</sub> Separation Unit. The primary function of the synthesis gas conditioning unit was to adjust the concentration and purity of the synthesis gas. The unit was originally designed for operation with both synthesis gas derived from air blown and oxygen blown gasifiers. We have used National Carbon Capture Center (NCCC) located in the Power Systems Demonstration Facility at Wilsonville, AL and the Wabash River IGCC power plant as model sites for the two cases, respectively. Because it is setup as a test site, the NCCC had all the capabilities of shifting the synthesis gas (converting the CO into CO<sub>2</sub> via water-gas-shift reaction), the Wabash River IGCC plant has no such capabilities. We have initially carried out the stream summary calculations for the NCCC test site using a sulfur free synthesis gas (Figure 8). The sulfur free synthesis gas (Stream 1.0) enters the Gas Conditioning Unit (GCU) where the gas is mixed with steam from the test site and enters the low temperature water gas shift sub-system, where the CO-rich synthesis gas is partially converted to CO<sub>2</sub> and H<sub>2</sub> before entering the PSA Unit. This partially shifted synthesis gas enters the PSA Unit and the gas flows through one of the PSA beds containing both sorbent and Low temperature WGS catalyst where the rest of the CO is converted to CO<sub>2</sub> and all the CO<sub>2</sub> in the synthesis gas is captured while the other beds are either depressurizing or being regenerated using steam purge.

### 5.2.1 CFD Modeling

In pursuit of a fully calibrated combined Water-Gas Shift (WGS)/CO<sub>2</sub> adsorption computational fluid dynamics (CFD) model, GTI worked with TDA to identify potential accuracy gaps in assumptions built into both the adsorption and WGS models. GTI investigated numerous available options and, in reviewing results, selected the simplest option that allowed for flexibility and required the fewest assumptions. By matching trends to the experimental data, absolute comparisons with temperature fields and breakthrough are used for calibration.

### Model Modifications to Setup

As mentioned previously concerning the modeling of the combined sorbent/WGS-catalyst mixture, the WGS reaction parameters from the *Review of the Water Gas Shift Reaction Kinetics*<sup>1</sup> document for the Sud-Chemie EX-2248 were very successful at describing the performance of the ShiftMax 230 WGS catalyst used in the experimental datasets. For reference, these inputs are shown in Table 2.

Table 2. Main properties used in the 2-D 8-Bed Model.

| Properties                      | External Porosity | Bulk Density (kg/m <sup>3</sup> ) | Bulk Heat Capacity (J/kg*K) | Bulk Thermal Conductivity (W/m*K) | Physical/Chemical Reaction Details                                                                                                                 |
|---------------------------------|-------------------|-----------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sorbent</b>                  | 0.3               | 354                               | 700                         | 0.5                               | <b>Absorption:</b><br>$k_b = 0.1788 \exp\left(-\frac{504.2}{T}\right);$<br><b>Desorption:</b><br>$k_b = 0.0405 \exp\left(-\frac{514.6}{T}\right);$ |
| <b>WGS-Catalyst</b>             | 0.3               | 1860                              | 546                         | 29.99                             | <b>WGS-Forwards*:</b><br>$k = 2.96e5 \exp\left(-\frac{5701.2}{T}\right);$<br>$r = kP_{CO}P_{H2O}$                                                  |
| <b>Sorbent/WGS-Catalyst Mix</b> | 0.3               | 440                               | 946                         | 12.17                             | N/A                                                                                                                                                |

\* For Süd-Chemie EX-2248, from Choi and Stenger (2003)

The following assumptions were used, to calibrate the model results to the dataset provided by TDA in a file dated April 2013; obtained as part of a prior DOE funded contract #DE-FE0007966 in a field test campaign at National Carbon Capture Center (NCCC) in April 2013:

- Inlet gas at 0.66 g/s is 7.52% CO, 9.14% CO<sub>2</sub>, 7.17% H<sub>2</sub>, 8.32% H<sub>2</sub>O, and balance N<sub>2</sub>. This mixture enters the reactor at 170°C.
- Operating pressure of the 4" ID, 32" long cylindrical vessel is 200 psig (caps of vessel are neglected). Internal wall temperatures are at 200°C.
- The upper 6.35" and lower 6.35" of the vessel are sorbent only, starting the simulation at 200°C and 170°C respectively. The center portion of the vessel, 18" tall, is initially 210°C. As the bulk of the mixed sorbent/catalyst bed is sorbent, 71% by volume and 61% by mass,

<sup>1</sup> Smith, B. et al. "Review of the Water Gas Shift Reaction Kinetics", Int'l Journal of Chemical Reactor Engineering, Vol. 8, 2010.

the viscous resistance constants for the sorbent alone from the prior modeling are still in use.

- As the sorption and, more importantly, catalyzed water gas shift (WGS) reaction occur primarily on solid surfaces, GTI initially investigated the use of surface chemical reactions, with a known site surface to volume ratio, as an alternative to a simplified gas-phase volumetric reaction. This value was estimated using the estimated site density for *Shiftmax* 230 of  $93.09\text{ m}^2$ , the known catalyst mass, and the vessel combined sorbent/catalyst volume of 3.914 L. The results proved inaccurate in comparison to volumetric reaction modeling, due to the assumed adsorption/desorption rate kinetics. For sake of simplicity, GTI continued with volumetric gas phase reactions, as is the case with the adsorption mechanism.

This basic methodology yields the following results:

- TemperatureField** – The temperature field within the bed is governed by (a) the large effect of the heat of adsorption, (b) the thermal diffusion within the bed and convection of the moving gases entering at  $170^\circ\text{C}$ , and (c) the influence of the constant temperature wall surface. In Figure 9, the general trends of each temperature probe from the April 2013 dataset are captured, but the magnitude of change is not correct.

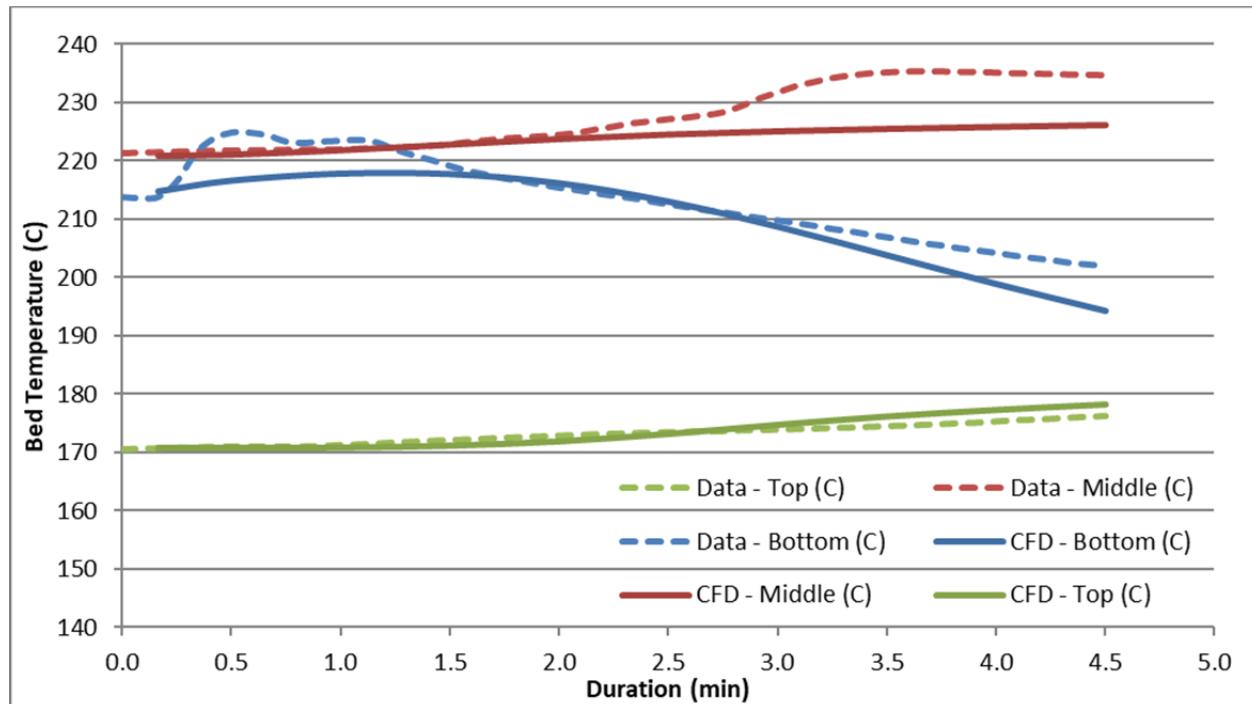



Figure 9. Temperature comparison between baseline CFD model and dataset provided by TDA dated April 2013 (previously obtained as part of DE-FE0007966).

It can be seen in Figure 9 that the middle temperature in the CFD model does not match that of the experimental dataset (the deviation approximately  $5^\circ\text{C}$  towards the end of the adsorption cycle), though the bottom and top sections show very good agreement. The  $5^\circ\text{C}$  under-heating in the middle is a function of the WGS reaction and under-predicting adsorption. Viewing the bed temperature distribution at the end of the 4.5 minute adsorption cycle (Figure 10) shows a high temperature at the transition from the bottom, sorbent-only, portion, to the middle, sorbent/catalyst, section. Concerning the distribution of adsorbed

$\text{CO}_2$ , also shown in Figure 10 in the middle diagram, this transition shows a relative minimum of adsorbed  $\text{CO}_2$  as the partial pressure of  $\text{CO}_2$  in this region is low prior to generation of  $\text{CO}_2$  from the WGS reaction. Thus, whereas the bulk of heating within the vessel is known to be from the heat of  $\text{CO}_2$  adsorption, this spike in temperature is in fact due to a compression of the WGS reaction zone, which can be seen in the right-hand diagram of Figure 10. The middle zone shows significant reaction rate decay with elevation, which is due to the artificially high WGS reaction rate, to be discussed in a later section.

- **Breakthrough** – Whereas the temperature field shows good agreement, though slight underestimation of the heat of adsorption, this is also reflected in the breakthrough. Figure 11 shows scaled output of CO and  $\text{CO}_2$  mole fractions (wet) that indicate (a) full breakthrough of  $\text{CO}_2$  occurs shortly after 3 minutes have elapsed, (b) that the  $\text{CO}_2$  “wave” is diffusing although the WGS reaction is clearly active as  $(y\text{CO}_2\text{out})/(y\text{CO}_2\text{in})$  exceeds 1.0, and (c) that CO consumption is not optimized, with unconverted carbon exiting the vessel. Note that concerning (c), that the WGS is showing near complete conversion, which would be represented by a value of  $(y\text{CO}_2\text{out})/(y\text{CO}_2\text{in}) = 1.822$  (without adsorption).

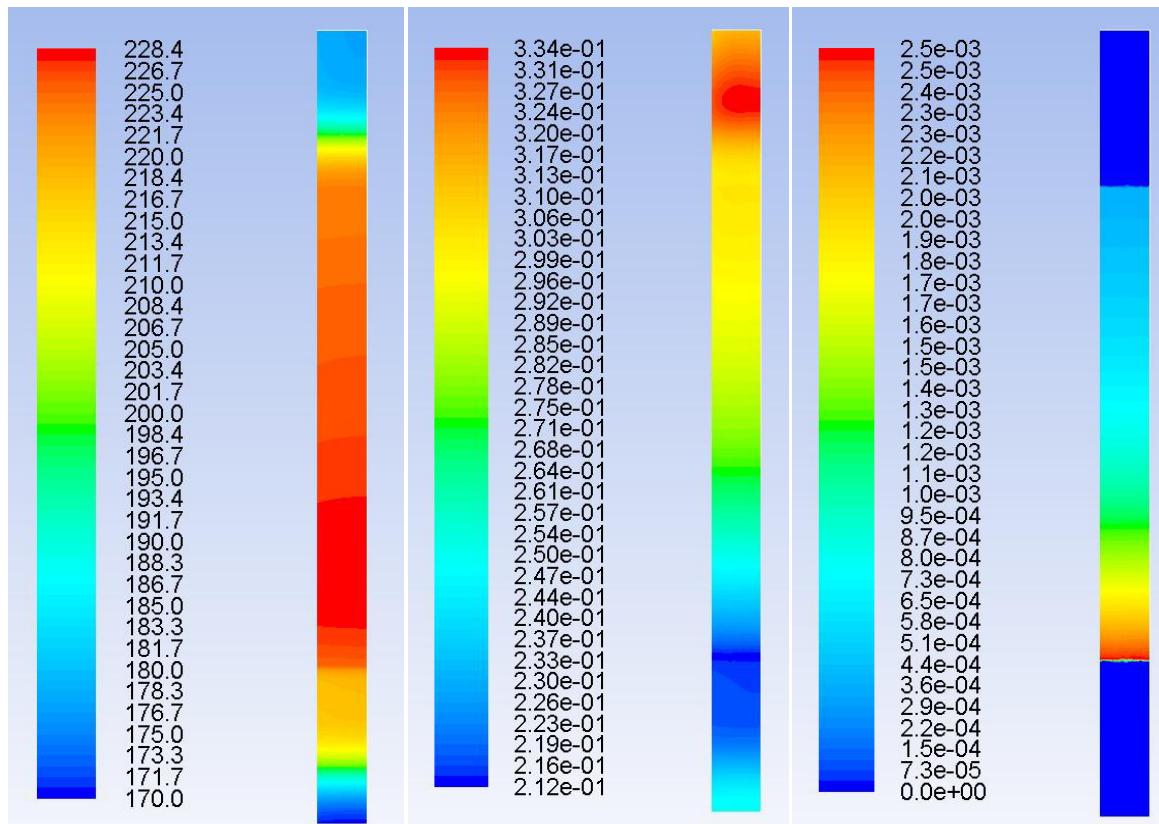



Figure 10. Baseline model bed temperature on left ( $^{\circ}\text{C}$ ), adsorbed  $\text{CO}_2$  in middle (mol/kg), and WGS reaction rate on right ( $\text{kmol}/\text{m}^3\text{-s}$ ) at 4.5 minutes.

From this baseline model, it is apparent that the assumptions outlined previously lead to:

- Inadequate adsorption rate of  $\text{CO}_2$ , leading to earlier breakthrough of  $\text{CO}_2$  and lower than expected release of the heat of adsorption (lower peak temperatures). The adsorption mechanism must be adjusted.
- Maldistribution of the WGS reaction, simultaneously yielding slight excess unconverted CO in the exhaust and a drop by an order of magnitude of WGS reaction rate along the

elevation of the combined sorbent/catalyst portion. As the WGS forward reaction is thermodynamically favored at lower temperatures, increasing the bed temperatures through greater  $\text{CO}_2$  adsorption will further affect this issue, thus slight adjustments to the WGS reaction rate may be necessary.

### Modification – Water-Gas Shift Rate Parameters

The Arrhenius rate parameters outlined in Table 2 yield a rate constant  $k_{\text{WGS}}$  which is determined for a specific case as outlined in the reference. This reference indicates that the test case is slightly different than what it is used to approximate the *Shiftmax* catalysts used in the calibration testing. The reference data from Choi and Stenger are for: (a) a lower  $\text{CO}/\text{H}_2\text{O}$  ratio of 1:2 compared to close to 1:1 in the TDA data and (b) finer grain catalyst pellets at 200-250  $\mu\text{m}$  versus the 0.13" long pellets in the TDA data (3,300  $\mu\text{m}$ ). These are competing effects, as the former will result in underprediction while the latter will result in overprediction. The sensitivity of an adjustment to the pre-exponential factor  $A$ , which acts as volumetric efficiency adjustment relative to the reference data, will be explored as well. With competing dynamics, it is not certain how to approach this calibration *a priori*.

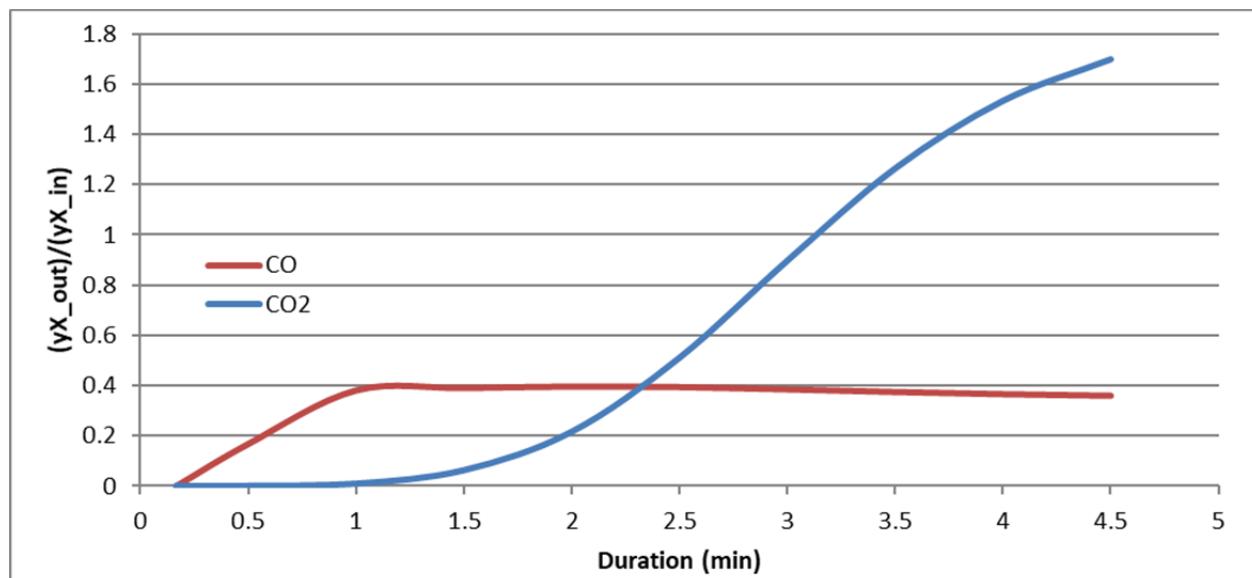



Figure 11. Baseline model breakthrough as  $y_{\text{CO}}$  and  $y_{\text{CO}_2}$  at vessel outlet.

### Modification - $\text{CO}_2$ Adsorption Rate

Using the established Langmuir-Freundlich model ("L-F" model), the maximum adsorbed  $\text{CO}_2$  capacity of the vessel with a  $\text{CO}_2$  partial pressure of 35.8 psia<sup>2</sup> and a temperature of 200°C is 0.395 mol  $\text{CO}_2$ /kg sorbent. As the bed has 2.12 kg and the combined inlet molar flow of  $\text{CO}/\text{CO}_2$  is 0.246 mol/min, breakthrough would occur with this simple 1-D analysis after 3.4 minutes. Incidentally, this is rather close to the results shown in Figure 11, noting that the results are biased low by incomplete  $\text{CO}$  conversion and high by modeling a non-zero thickness  $\text{CO}_2$  "wave". Per input from TDA<sup>3</sup>, laboratory data from the 4-bed system for a  $\text{CO}_2$  partial pressure of 38 psia at 200°C (close to these conditions), the total adsorbed  $\text{CO}_2$  was 0.59 mol/kg sorbent. Using the formulae outlined by TDA, shown in Figure 12, the parameter  $q_s$  was modified. This term, the adsorption capacity of the system (number of sites per mass of sorbent) is modified via the constant  $k_1$ . Through simple fitting of the aforementioned TDA

<sup>2</sup> Assumes 100%  $\text{CO}$  conversion.

<sup>3</sup> Email correspondence dated March 16<sup>th</sup>, 2015.

laboratory data, this constant is increased by 42.5%, which in effect recalibrates this value more accurately to these lower pressure data, whereas the constants in the model outlined in Figure 12 were fit to data up to partial pressures of 600 psia.

$$q = \frac{q_s BP^n}{1 + BP^n}$$

q (mol CO<sub>2</sub>/kg); P (psia)

$$q_s = k_1 e^{k_2/T}; B = k_3 e^{k_4/T}; n = k_5 e^{k_6/T}$$

Figure 12.L-F Model.

In addition to this recalibration of the term  $q_s$ , the impact the rate constant  $k_b$  is also examined. This constant, outlined in Figure 13, is based on lower pressure data, where the data published by TDA indicate that a CO<sub>2</sub> partial pressure of 12 psia results in a rate constant of 0.065 s<sup>-1</sup>, using the curve fit in Figure 13, this corresponds to a bed temperature of 225°C. By contrast, for the CFD calibration case of a partial pressure of up to 35 psia, the use of this curve fit may result in underestimation of the adsorption rate. In addition to adjusting the factor  $k_1$ , GTI also experimented with using higher, fixed rate constants for  $k_b$ , from 0.06 to 0.20 s<sup>-1</sup>. Note that per this model, wherein this rate constant is a function of bed temperature, for the range of bed temperatures expected between 170°C and 220°C, this yields a +/- 5% variation in rate constant, thus the error introduced by removing this temperature dependency is not expected to be large.

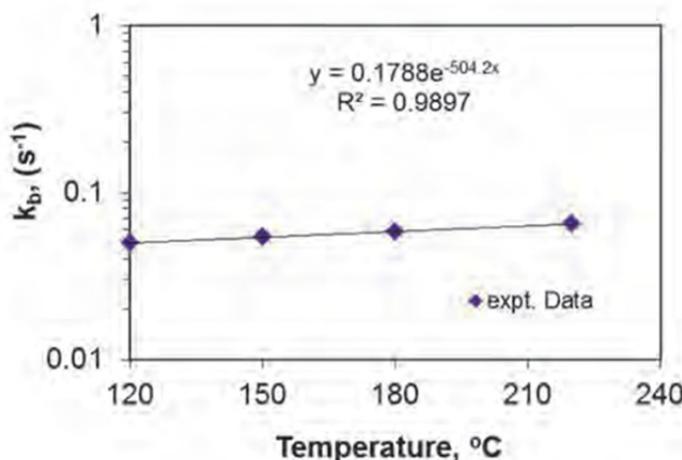



Figure 13. Derivation of adsorption rate constant  $k_b$ <sup>4</sup>. In Table 3, the parameters varied, their ranges, and the number of variants simulated are shown, summarizing inputs for a 25 case parametric run. Concerning the issue of CO<sub>2</sub> adsorption kinetics, the issue is well characterized and thus the analysis is limited; however, the WGS rate adjustment required several cases to understand impacts. Also sensitivity is taken to the fact that these issues are not independent, greater CO<sub>2</sub> adsorption drives the WGS reaction forward and greater conversion of CO yields more CO<sub>2</sub> to adsorb.

### Improvement of Baseline Model

In Table 3, the parameters varied, their ranges, and the number of variants simulated are shown, summarizing inputs for a 25 case parametric run. Concerning the issue of CO<sub>2</sub> adsorption kinetics, the issue is well characterized and thus the analysis is limited; however, the WGS rate adjustment required several cases to understand impacts. Also sensitivity is taken to the fact that these issues are not independent, greater CO<sub>2</sub> adsorption drives the WGS reaction forward and greater conversion of CO yields more CO<sub>2</sub> to adsorb.

Table 3. Variation on modeling assumptions to adsorption and WGS reaction rate kinetics.

| Calibration Concern          | Variable Input      | Lower Range | Upper Range | Variants |
|------------------------------|---------------------|-------------|-------------|----------|
| Insufficient CO <sub>2</sub> | Adjustment to $k_1$ | 1.0         | 1.425       | 2        |

<sup>4</sup> Alptekin, G. "A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO<sub>2</sub> Capture" prepared by TDA Research for the US DOE, Contract DE-FE0000469 (2012).

|                     |                          |      |      |   |
|---------------------|--------------------------|------|------|---|
| Adsorption          | Constant Value for $k_b$ | 0.06 | 0.20 | 4 |
| WGS Rate Adjustment | Adjustment to A          | 0.3  | 1.5  | 5 |

First, examining the impact of the WGS rate adjustment, retaining the original assumptions outlined in Table 2 otherwise, the direct impact of these changes to the WGS rate constant values on CO conversion is clear per Figure 14, which is to be expected. With a lower value for A, the additional CO<sub>2</sub> decreases with a proportional increase of CO, however this impact is not linear, due to the aforementioned interactions. Thus, adjusted in isolation, a lower value of A increases time to breakthrough, but by an inaccurate method of decreasing the conversion rate.

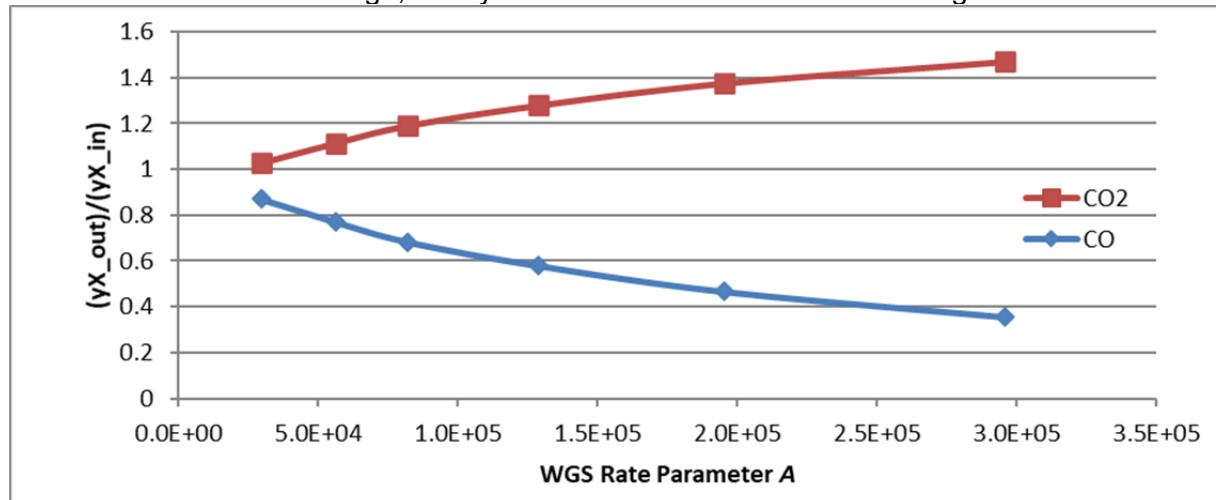



Figure 14. Impact of WGS parameter  $a$  on outlet CO/CO<sub>2</sub> mole fractions at 4.5 minutes for baseline assumptions.

Adjusting the value  $k_1$ , increasing by 42.5% as indicated previously, and varying a constant value for the adsorption rate constant  $k_b$ , the impact appears to be muted shown in Figure 15. Note that the impact of adjusting  $k_1$ , shown for the  $A = 2.96 \times 10^5$  case, is significant in comparison to the final CO<sub>2</sub> value shown in Figure 11, a decrease in 35% and near alignment with predicted breakthrough at 4.5 minutes duration. Thus, while the parameter  $k_b$  has a less significant impact, the higher value of 0.20 clearly yields results more in line with test data.

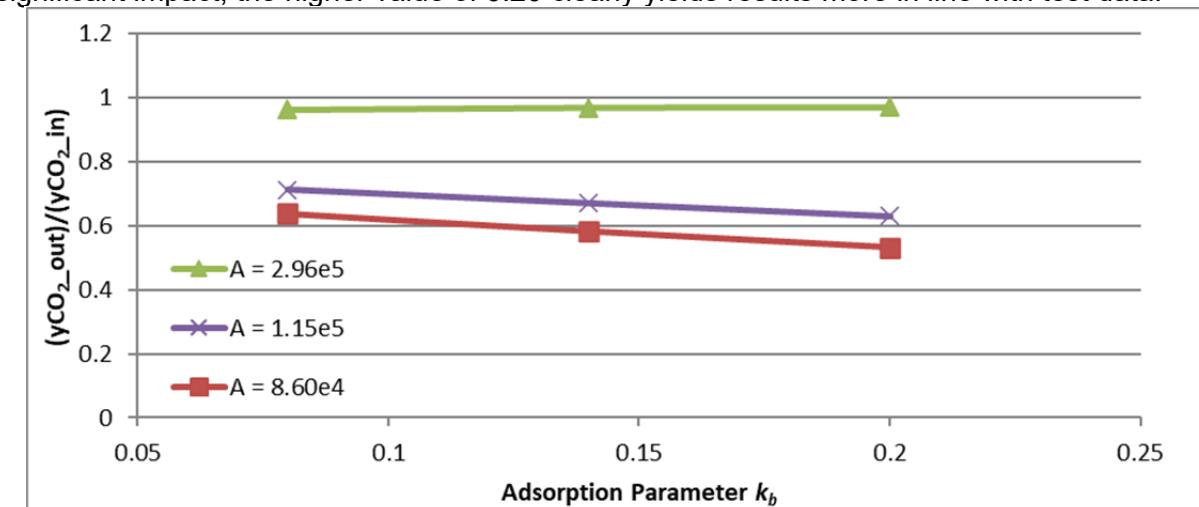



Figure 15. Impact of parameter  $k_b$  on outlet CO<sub>2</sub> mole fractions at 4.5 minutes by pre-exponential constant A.

In a final case, the impact of viscous resistance parameters are studied, where the baseline model assumed that the pressure loss of the sorbent-only bed (from prior analysis) was sufficient for this bed with portions of mixed sorbent/catalyst, where these viscous parameters correspond to pressure drops of 1.2 psi and 11.6 psi respectively. This impact is shown below in Figure 16, highlighting the increase in outlet  $\text{CO}_2$  with a greater pressure drop. For a greater pressure loss, it is feasible that downstream of the vessel inlet, the lower local partial pressure of  $\text{CO}_2$  yields reduced local adsorption rates, hence higher outlet  $\text{CO}_2$  in the gas phase.

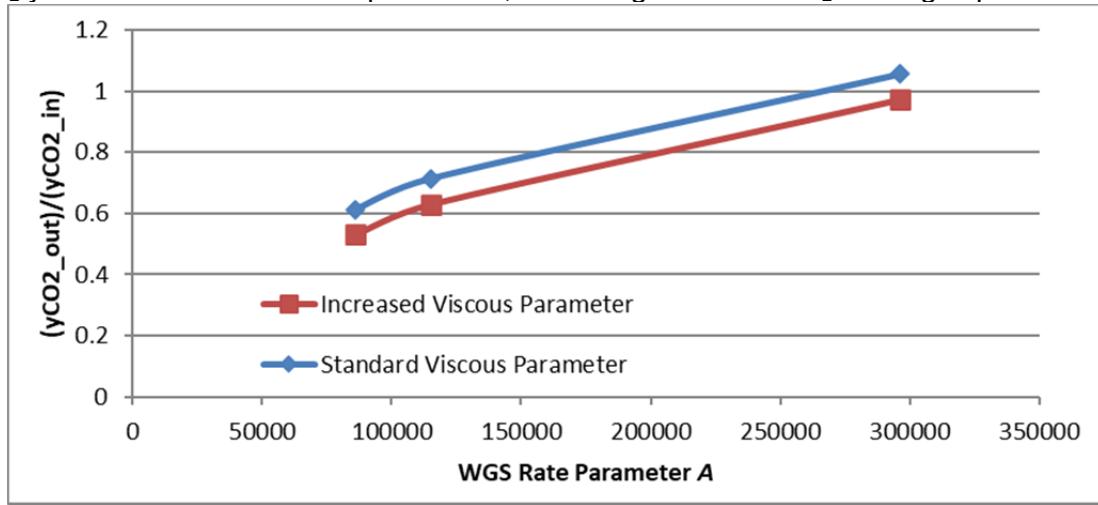



Figure 16. Impact of increasing baseline viscous parameter by order of magnitude, with  $k_b = 0.20$ , and an increased  $k_1$  at 4.5 minutes.

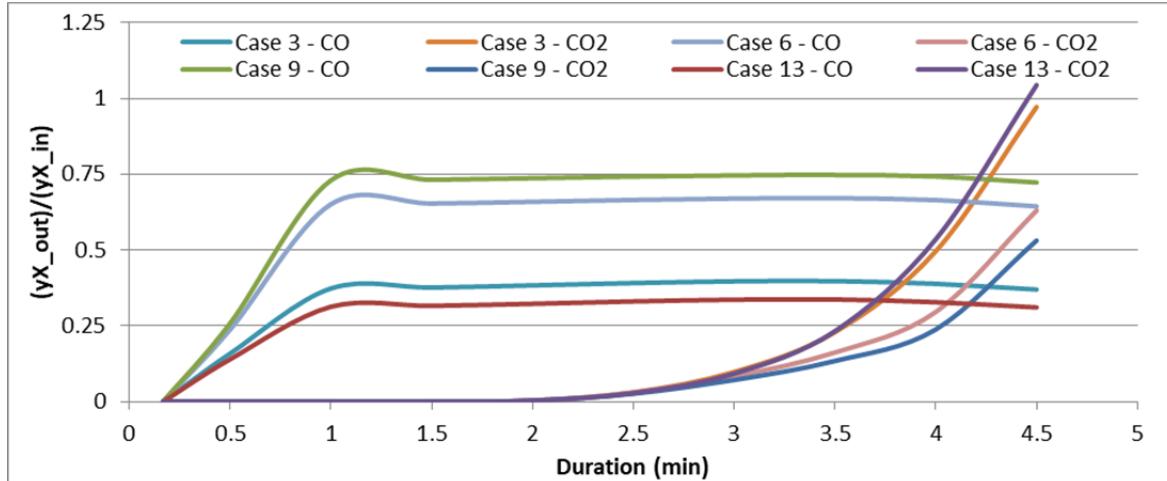



Figure 17. Modified model breakthrough as  $y_{\text{CO}}$  and  $y_{\text{CO}_2}$  at vessel outlet

Examining the breakthrough data for those cases with  $k_1$  increased by 42.5%,  $k_b = 0.20$ , and  $A$  varied from baseline values ( $2.96\text{e}5$ ) as “Case 3”, to reduced values shown in Figure 15 of  $1.15\text{e}5$  (Case 6) and  $8.6\text{e}4$  (Case 9), these data are summarized in Figure 17. Additionally, the impact of increasing the WGS shift reaction parameter  $A$  by 25% is captured in Case 13. For all cases, the impact of the adsorption parameter adjustments is clear, with breakthrough duration<sup>5</sup> increased for all cases. The impact of slowing the WGS reaction, shown moving from Cases 3 to 6 to 9, is inaccurate, as it delays breakthrough by limiting the CO conversion. Including

<sup>5</sup> Breakthrough defined as when outlet scaled  $\text{CO}_2$  mole fraction is equal to 1.0.

assessment of other cases not shown, Case 3 provides the best agreement with breakthrough while requiring fewer ad hoc adjustments, only the increase in  $k_1$  and value of  $k_b$  at a constant  $0.20 \text{ s}^{-1}$ .

Examining this “Case 3”, shows promising results as the CO outlet is unaffected compared to baseline predictions (Figure 11), but breakthrough is nearly exact at the target of 4.5 minutes. The comparison to the bed temperature field is shown in Figure 18 for this case, which shows slightly better agreement than in Figure 11. As such, this Case 3 was used primarily going forward.

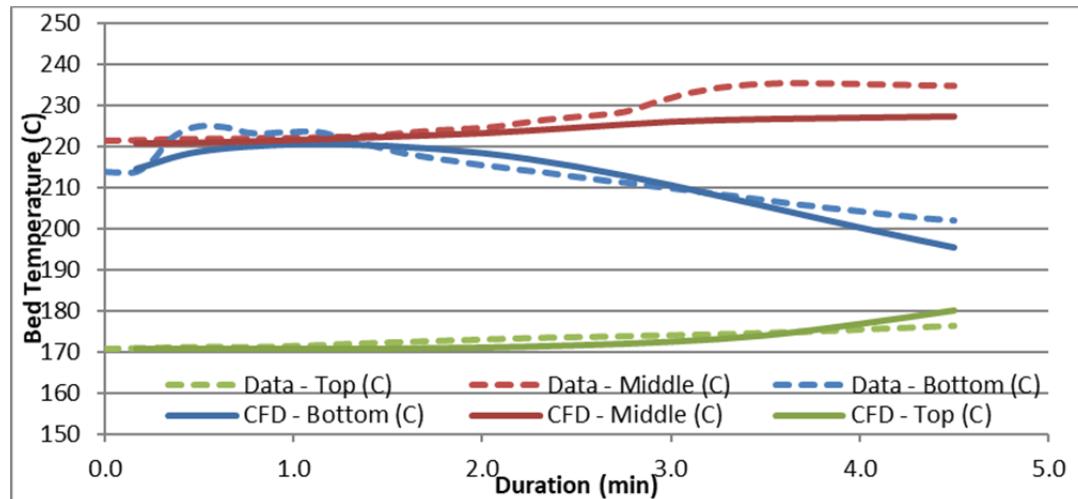



Figure 18. Temperature comparison between modified “Case 3” CFD Model and April 2013 Dataset

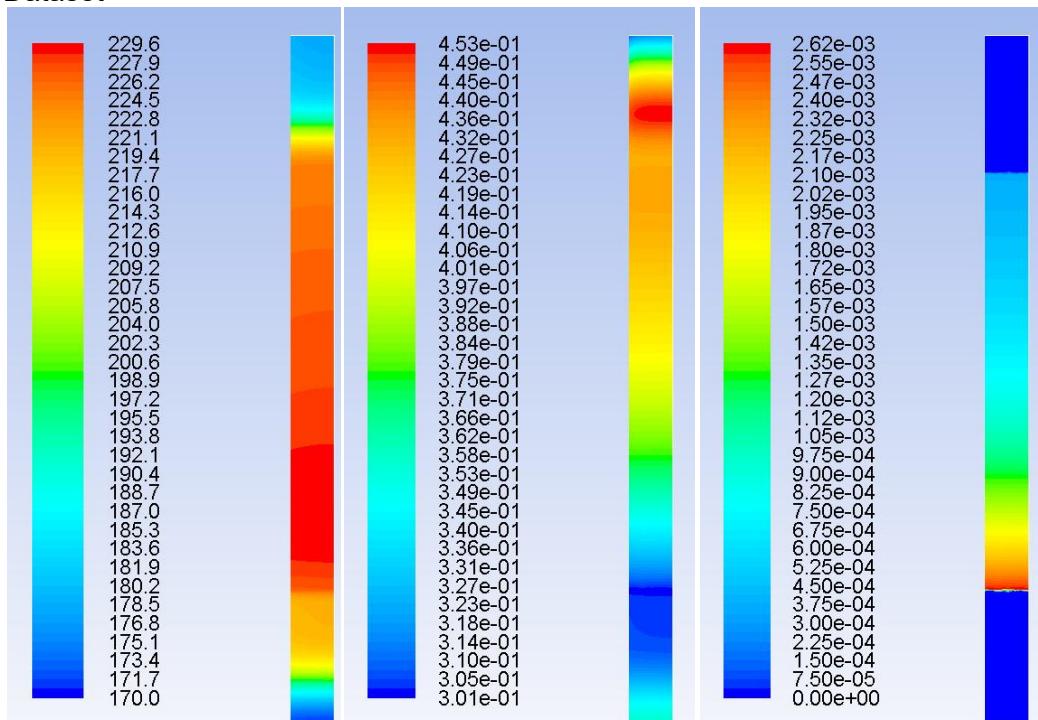



Figure 19. Case 3 model bed temperature on Left ( $^{\circ}\text{C}$ ), adsorbed  $\text{CO}_2$  in middle (mol/kg), and WGS reaction rate on right (kmol/ $\text{m}^3\text{-s}$ ) at 4.5 minutes.

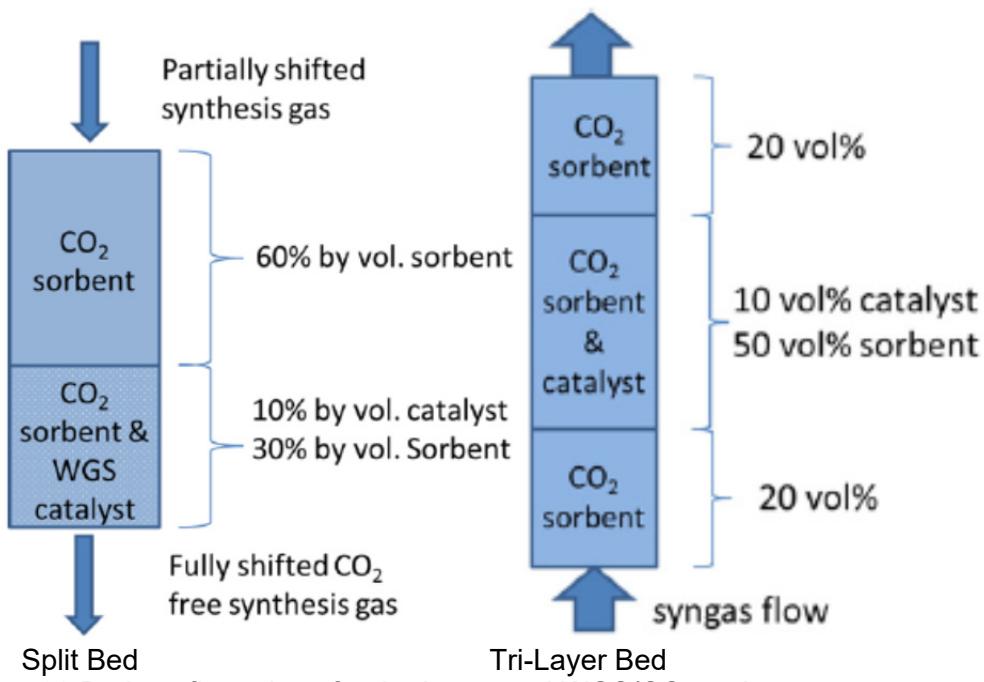



Figure 20. Bed configurations for the integrated WGS/CO<sub>2</sub> sorbent reactor.

#### Thermal Management Schemes for Integrated WGS catalyst/CO<sub>2</sub> Capture System

The Integrated WGS catalyst/CO<sub>2</sub> Capture System for evaluation of thermal management schemes identified in this task will therefore integrate the 2<sup>nd</sup> low temperature WGS subsystem with the CO<sub>2</sub> removal unit. Two possible configurations of the integrated WGS/CO<sub>2</sub> sorbent reactor with a catalyst/sorbent ratio of 10% by volume are shown in Figure 20. In-order to limit the temperature rise to  $\leq 40^{\circ}\text{C}$  (for optimum sorbent performance) in the integrated WGS/CO<sub>2</sub> sorbent reactor the combined heat released by the exothermic WGS and CO<sub>2</sub> adsorption reactions needs to be removed using an effective method. To accomplish this, two heat removal schemes, a cooling jacket surrounding the reactor and tubes or coils or slotted/multi-orifice tubes submerged in the reactor with water as cooling medium were selected for initial evaluation. Examples of cooling jackets and submerged tubes are shown in Figure 21.

Table 5 is a summary of all the heat management systems that were explored during this project. Next we describe the process as well as advantages and disadvantages of each system.

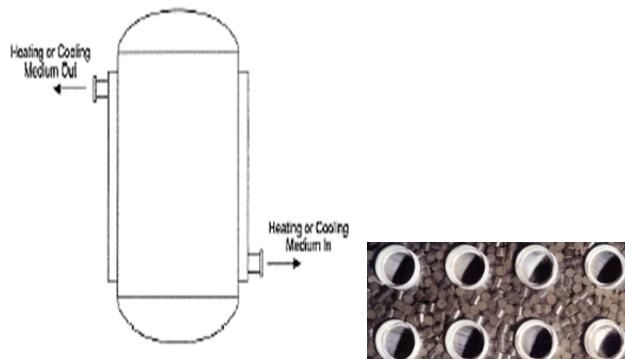



Figure 21. Reactor with cooling jacket (left) and cut-through of tube bundle submerged in bed & surrounded by sorbent/catalyst particles (right).

Table 4. Heat Management Schemes for the Integrated WGS/CO<sub>2</sub> Separation Sorbent Reactor

| Description                                                                                                                                                                                          | Advantages                                                                                                                                                                                                                                                                                                     | Potential Issues                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>External Processes</b>                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
| Cooling jacket (full or dimpled) surrounding the reactor and using water or other heat transfer fluids, e.g. synthetic organic or silicone.                                                          | <ul style="list-style-type: none"> <li>Provides good coverage of reactor outer surface area and simple to construct.</li> <li>Dimpled jacket allows construction from light gauge metals while maintaining strength and providing adequate heat transfer area.</li> </ul>                                      | <ul style="list-style-type: none"> <li>May require high fluid flow rates for adequate heat transfer.</li> <li>For exothermic reactions, a jacketed vessel has the disadvantage that the area/volume ratio decreases with increasing scale.</li> </ul> |
| Half-pipe or limpet coil jacket welded on the outside of the vessel to provide more contact area versus a cooling coil wrapped around the vessel.                                                    | <ul style="list-style-type: none"> <li>Improvement over the jacket to obtain good heat transfer of the cooling fluid around the reactor periphery.</li> </ul>                                                                                                                                                  | <ul style="list-style-type: none"> <li>Limited amount of surface coverage.</li> </ul>                                                                                                                                                                 |
| <b>Internal Processes</b>                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
| Tube coils or straight or finned tubes or slotted or perforated tubes submerged in the bed wherein water as coolant flows through the tubes.                                                         | <ul style="list-style-type: none"> <li>Large heat transfer area can be provided, especially with finned tubes.</li> <li>Results in good heat transfer.</li> </ul>                                                                                                                                              | <ul style="list-style-type: none"> <li>Impose additional pressure drop to syngas flow, and affect bed temperature distribution.</li> </ul>                                                                                                            |
| Evaporative cooling by direct injection of water through a porous sintered stainless steel membrane tube such as the Pall Accusep Inorganic Membrane.                                                | <ul style="list-style-type: none"> <li>Provides steam for WGS and effectively utilizes water heat capacity.</li> <li>Localized temperature control in the WGS /sorbent portion of bed.</li> <li>Low resistance to coolant flow, high surface area, and good thermal conductivity for heat transfer.</li> </ul> | <ul style="list-style-type: none"> <li>Synchronization of water injection rate with heat removal rate could be a challenge.</li> </ul>                                                                                                                |
| Shell-and-tube type heat exchanger, wherein the catalyst and sorbent are packed inside tubes and water in the shell side as coolant.                                                                 | <ul style="list-style-type: none"> <li>Effective heat transfer due to intimate coolant contact.</li> </ul>                                                                                                                                                                                                     | <ul style="list-style-type: none"> <li>Complex valving and manifolding to attain uniform gas flow through tubes and perform PSA.</li> </ul>                                                                                                           |
| Cool feed syngas from the upstream WGS stage to below dew point so that the gas has suspended droplets of water that evaporate on contact with the catalyst/sorbent bed material to provide cooling. | <ul style="list-style-type: none"> <li>Liquid water flashing/evaporation provides better heat removal than vapor injection.</li> </ul>                                                                                                                                                                         | <ul style="list-style-type: none"> <li>Control of water content in the syngas stream may be a challenge.</li> <li>Risk of catalyst or sorbent damage due to thermal shock.</li> </ul>                                                                 |

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Advantages                                                                                                                                                                            | Potential Issues                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>Heat pipe or thermosyphon submerged in bed. A sealed system containing a liquid, which when vaporized transfers heat under isothermal conditions. The heat pipe has three major operating zones: evaporator, adiabatic section and condenser. In the case of simple pipe design, liquid returns from the condenser via a wick structure. The wick is designed to provide a capillary pumping action. In the thermosyphon there is no wick structure and liquid is returned to the evaporator by gravity.</p> | <ul style="list-style-type: none"> <li>Can achieve high heat transfer in the system.</li> <li>WGS catalyst can be coated on the heat pipe surface in contact with sorbent.</li> </ul> | <ul style="list-style-type: none"> <li>External scheme required to cool heat transfer fluid for reuse.</li> <li>Same issues as with submerged tube coils.</li> </ul> |

## 5.2.2 Reactor Design

We also estimated the reactor size for the 10 CFM Integrated WGS/CO<sub>2</sub> capture system based on the expected composition of partially shifted synthesis gas for Wabash River Field test conditions. We used the estimate from our Aspen modeling of the full-scale system with bituminous coal and E-Gas<sup>TM</sup>gasifier for the 1<sup>st</sup> WGS stage. Table 5 shows the composition of the raw synthesis gas entering our field test unit and the partially shifted synthesis gas composition entering WGS/CO<sub>2</sub> capture unit. Table 6 shows the reactor size estimated for the 10 CFM Integrated WGS/CO<sub>2</sub> capture system. The reactors will use a 6" Sch 40 pipe and end caps made of stainless steel.

Table 5. Partially Shifted Synthesis Gas Composition entering WGS/CO<sub>2</sub> capture unit.

| Stream Name      |         | Raw Syngas entering gas conditioning skid | WGS/CO <sub>2</sub> removal feed |
|------------------|---------|-------------------------------------------|----------------------------------|
| H <sub>2</sub> O | mol. %  | 19.9%                                     | 10.6%                            |
| H <sub>2</sub>   | mol. %  | 23.9%                                     | 44.4%                            |
| H <sub>2</sub> S | mol. %  | 1.3%                                      | 0.0%                             |
| CO               | mol. %  | 36.1%                                     | 4.7%                             |
| CO <sub>2</sub>  | mol. %  | 13.8%                                     | 36.1%                            |
| N <sub>2</sub>   | mol. %  | 2.4%                                      | 2.0%                             |
| Other            | mol. %  | 2.7%                                      | 2.21%                            |
| Temperature      | °C      | 193.8                                     | 200                              |
| Pressure         | PSIG    | 356                                       | 350                              |
| Total flow       | gmol/hr | 621.6                                     | 759.6                            |
|                  | SCFM    | 8.2                                       | 10.0                             |

Table 6.10CFM unit reactor size estimate.

|                          |            |
|--------------------------|------------|
| Partially shifted Syngas | 10.0 scfm  |
| CO <sub>2</sub> flow     | 13.3 kg/hr |
| CO <sub>2</sub> Captured | 95%        |
|                          | 12.6 kg/hr |
| CO <sub>2</sub> Capacity | 4.0% wt.   |
| Adsorption step time     | 1.5 min    |
| Sorbent needed           | 7.9 kg     |
|                          | 22.9 L     |
| Sorbent density          | 0.345 kg/L |
| Catalyst needed          | 2.2 kg     |
|                          | 1.2 L      |
| Catalyst density         | 1.833 kg/L |
| Total Bed volume         | 24.1 L     |
| Bed Internal Diameter    | 6.07 "     |
| Bed Length               | 50.9 "     |
| L/D                      | 8.4        |

### 5.3 Task 3. Design Review and Hazard Analysis

TDA performed an initial design review and Process Hazard Analysis (PHA) on the field test unit design. The objectives of the PHA were to identify hazards that could lead to consequences of interest and implement design or operational methods to mitigate these risks. The consequences of interest that was explored were injury to personnel, endangerment to the public and the environment, significant equipment damage and system downtime. The system was broken down into separate nodes while each piece of equipment in that node underwent a deviation analysis. For each deviation, potential causes along with their potential consequences were hypothesized. From there, each deviation was assigned a level of risk based on the criteria stated above. If the risk was deemed significant, a list of current safeguards (pressure relief valve, interlocks and alarms, etc.) was created to ensure that there was a low probability that a high-level consequence would occur. If the current design's safeguards were deemed inadequate, a design change was recommended and implemented.

Along with safeguards, a detailed operations manual was created in order to operate the apparatus safely. The manual details system start-up, operation and executing the experimental testing plans and properly shutting down the system.

Lastly a Failure Mode and Effects Analysis (FMEA) was performed on the system. This report assigned rankings to various failures according to their severity and likelihood. For example, a severe event (potential life-threatening injuries/death and/or >2 million dollars in damage) with a high probability is given a high ranking where lower-level events (no potential injuries and/or little to no damage) is given a low ranking. Every moderate to high level ranking was analyzed for potential measures that can lower their rankings to low or negligible. These measures can include both design and operational implementations. The risks are then reevaluated and assigned another ranking which takes into account these measures

For the integrated WGS/CO<sub>2</sub> sorbent system, a total of 219 events were identified. 155 of these are considered negligible or low risk. 15 events are considered moderate risk and 49 events are considered high risk. After taking into account the safety measures of the design and operation of the system and reevaluating the risk ranking, all 219 events were considered negligible to low risk.

### 5.4 Task 4. Sorbent Manufacturing

As part of this task, we worked on improving the volumetric capacity of the sorbents in the scaled-up production batches. We used high throughput production equipment including a Littleford plow mixer and a Bonnot 2" laboratory stainless steel screw extruder to make 1/16" pellets (Figure 22). These pellets were then carbonized and activated using a Bartlett and Snow



Figure 22. TDA's 2" Bonnot laboratory screw extruder

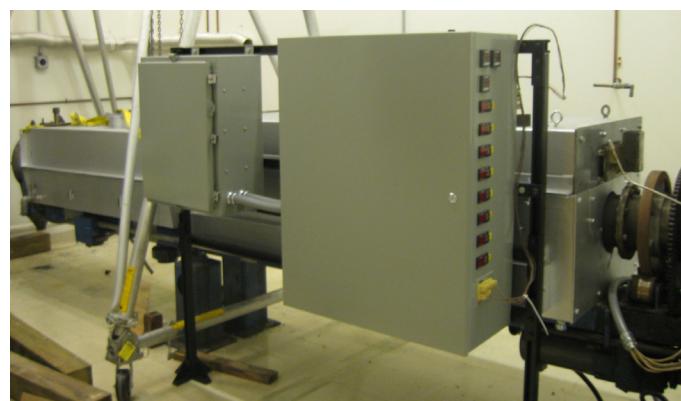



Figure 23. TDA's 7" rotary kiln.

continuous rotary kiln (Figure 23). The rotary kiln is electrically heated and has a 7" Inconel tube that can be heated up to 1100°C. The carbon precursor is fed into the kiln using a single screw feeder. It has a computer control system using Labview software. It has all the safety features needed to operate safely and an afterburner to process the off gases in an environmentally sound manner.

Finally, following the preparation procedures for the best scaled-up batch, we completed the production of sorbents for the field test about 0.5 m<sup>3</sup> on March 31, 2016 (Milestone 1-5)

### 5.5 Task 5. Sorbent Evaluation

The sorbent prepared in our large rotary were evaluated in a bench-scale test set up. Figure 24 shows the CO<sub>2</sub> breakthrough results from two of the formulations being evaluated, each had a different active precursor and the surface area (AMS-185 was 1,000+ m<sup>2</sup>/g while AMS-235 was between 400-500 m<sup>2</sup>/g).

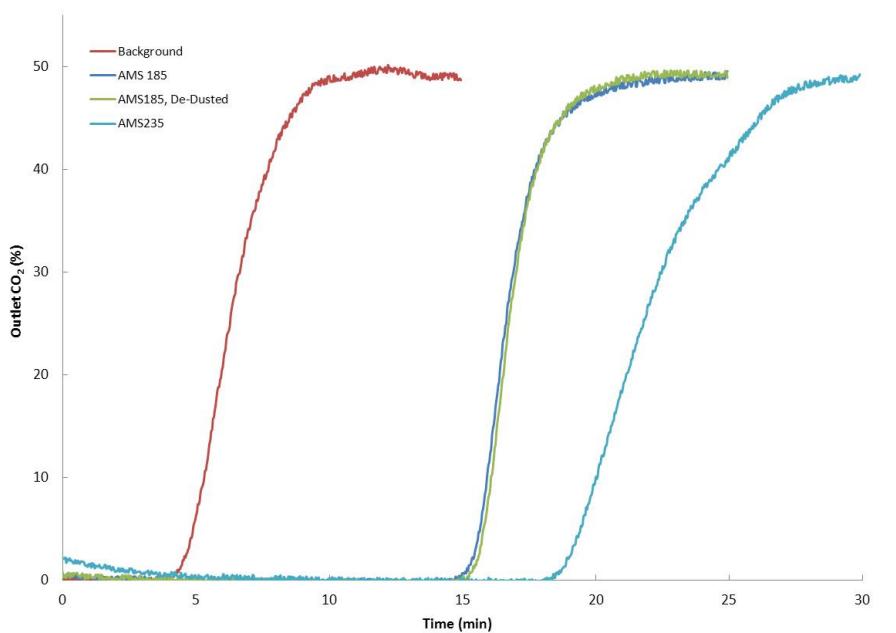



Figure 24. CO<sub>2</sub> breakthrough: 200°C, 300 psig, 50% CO<sub>2</sub>, 50%N<sub>2</sub> Inlet, 100% N<sub>2</sub> Regen, 250h<sup>-1</sup>

### 5.6 Task 6. Reactor Design Optimization

In order to optimize the reactor design, we modeled a 10 scfm reactor (6" ID vessel), with three configurations – distributed catalyst (configuration A), a single catalyst layer (configuration B), and a dual catalyst layer (configuration C) with all cases having the same quantity of catalyst (5% of total vessel volume). Figure 25 shows the three configurations. The total heat release from the shift reaction for the 10 scfm test skid is approximately 350 W and the goal for direct water injection is to absorb this heat with minimal hot/cold spots. The heat absorption takes place in three phases, sensible heat (18%), phase change (40%), and superheat (42%), assuming peak bed temperature is 250°C for a baseline water flow rate of ~0.6 lb/hr. We also evaluated both axial and radial injection. In axial injection case, water is sprayed co-current with syngas flow and in the radial injection case water is sprayed from side of vessel, which resulted in partial quenching of the shift reaction with

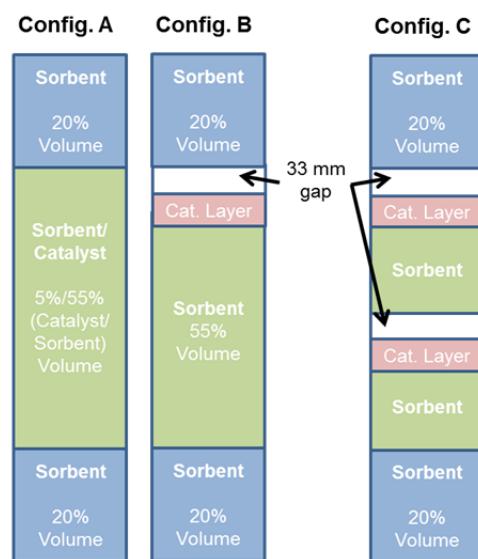



Figure 25. Different configurations explored in CFD modeling for catalyst distribution in the combined WGS/PSA beds.

liquid water streaming along one side (Figure 26).

### Axial Injection – Distributed Catalyst (Config. A)

Axial injection of water results in a cooling pattern similar to that of embedded tubes (3), with good temperature distribution 1-2 dia. downstream of catalyst section, but hot spots remain near spray and overcooling occurs after 3 dia. downstream. For higher water injection rates, an instability develops that may represent a physical phenomenon, whereby zones along spray path have the shift reaction quenched, spray condenses, shift reaction recovers, re-vaporizes the spray and so forth. This results in mildly oscillatory temperature field. Figure 27 shows the horizontal temperature profile at midpoint of the catalyst sorbent mixed layer ( $y=38.5$ " from bottom) for various water injection flow rates (gal/hr).

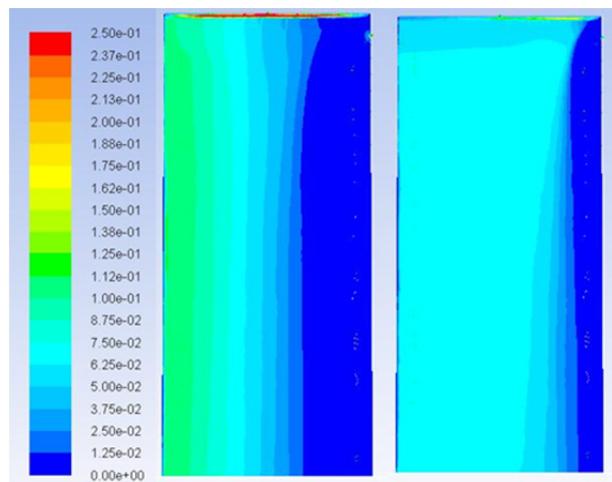



Figure 26. Temperature contours (C) for water injection flowrate corresponding to 2 gal/h (left) and 0.4 gal/h (right), resulting in overcooling along the injection side wall.

### Axial Injection – Catalyst-Only Layer (Config. B)

Similar to the distributed catalyst configuration (A), we observed that hot spots remain near spray and overcooling occurs after 3 dia. downstream. For higher water injection rates oscillations were seen. The impact on the temperature field is more dynamic, as spray precools the syngas prior to exposure to catalyst layer. The resulting temperature field is similar to embedded tubes (3 tubes). This shows that we can eliminate three internal cooling tubes by having a single water injector. Figure 28 shows the temperature contours for single catalyst layer and axial injection (config. B)

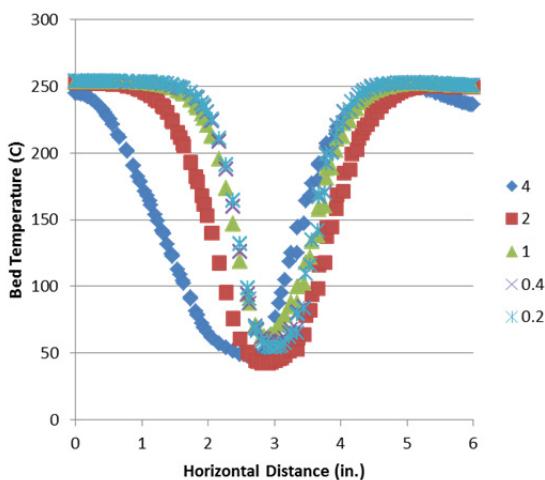



Figure 27. Horizontal temperature profile at midpoint of the catalyst sorbent mixed layer (Config. A)  $y=38.5$ " from bottom for various water injection flow rates (gal/hr).

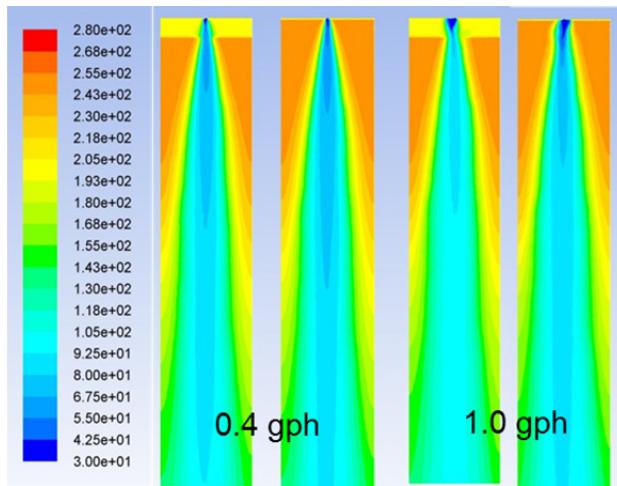



Figure 28. Temperature contours (C) for injection velocity corresponding to 1.0 and 0.4 gal/h for axial injection with (right) and without (left) catalyst-only layer (Config. B).

### Two Axial Injection – Two Catalyst-Only Layers (Config. C)

This configuration provided the best (optimal) heat management, providing even cooling and temperature control. The two injectors provided the operational flexibility to control the temperature individually in the two catalyst layer zones. This configuration also minimized the downstream overcooling in comparison to other injector options. Figure 29 shows the temperature contours for two axial injections with two catalyst layers (Config. C). Figure 30 shows the horizontal temperature profile at midpoint of the top catalyst only layer ( $y=38.5$ " from bottom) for various water injection flow rates (gal/hr).

We performed CFD modeling work pertaining to the optimization of the number and position of the direct water injection for heat management in the integrated WGS/CO<sub>2</sub> sorbent 6-inch reactor. Although axial spray-cooling proved effective at limiting bed temperatures to 200°C and below while avoiding over-cooling, the radial distribution of a single nozzle per elevation proved to be sub-optimal. The case of low (left) and high (right) water flow rates for two spray nozzles, each above a 33 mm (1.3") gap followed by a

catalyst-only layer and a sorbent-only layer is shown in Figure 29. The temperature contours indicate that the peripheral sections of the bed are not cooled substantially until downstream of the second spray nozzle. This suggests that the radial distribution of nozzle spray is insufficient. Additionally, the even spacing of two elevations of nozzles may be insufficient as well. From prior test data and baseline CFD simulation validation, it is known that the bulk of heat liberated from the water-gas shift (WGS) reaction occurs in the top of the vessel. Figure 31 shows for the validated baseline simulation of the 6" vessel (no integrated cooling), the proportion of heat generated by the WGS reaction as a function of distance. Using this data, 50% of the total WGS heat of reaction is liberated within the first third of the catalyst/sorbent bed. Thus, it is critical to focus cooling on this upper section, while adequately cooling the lower sections without quenching the WGS reaction. It was therefore decided to continue the modeling effort by grouping it into two segments: (1) optimization of nozzle quantity/placement for a single elevation (top) and (2) optimization of multi-nozzle/multi-elevation.

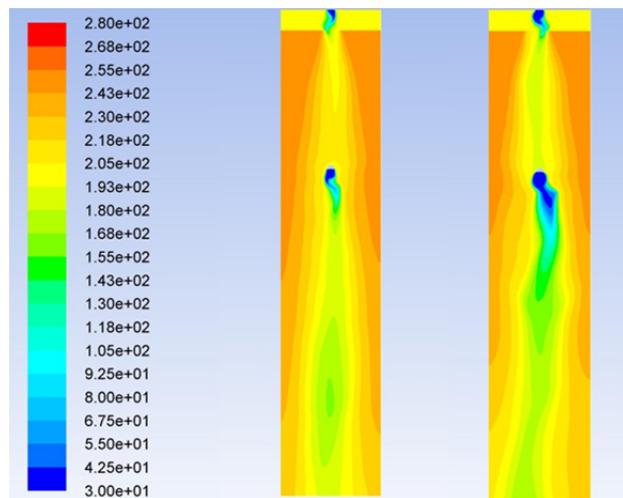



Figure 29. Temperature contours (C) for injection velocity corresponding to 1.0 gal/h total (right) and 0.4 gal/h total (left), split between two axial injectors (Config. C).

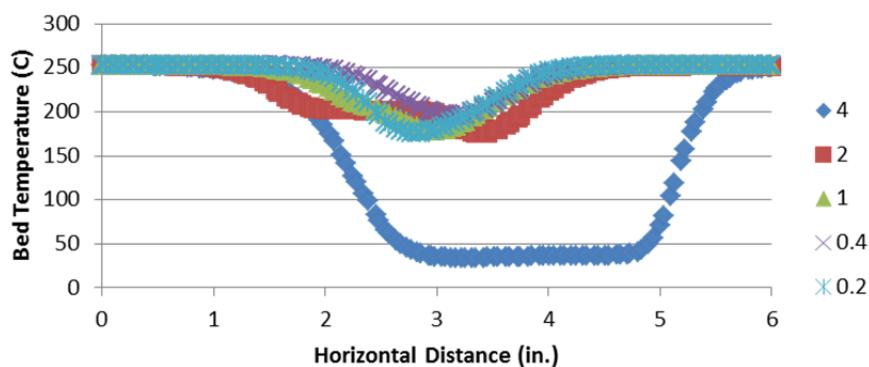



Figure 30. Horizontal temperature profile at midpoint of the top catalyst only layer (Config. C) for various water injection flow rates (gal/hr).

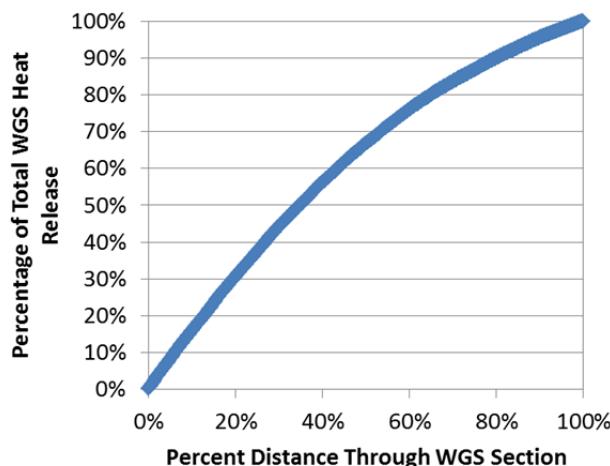



Figure 31. Proportion of WGS reaction heat generated over length of combined catalyst/sorbent.

## 5.7 Task 8. Fabrication of Single Reactor

The single test reactor (Figure 32) was made from 6-inch schedule 40 304 SS steel pipe with 300# 304 SS flanges. The inlet and outlet are 1" VCR glands. The reactor was built in three sections in order to gain access to the internals of reactor once it's been built. This was done to allow testing of different bed configurations in order to optimize each sorbent/catalyst section. The reactor was wrapped in heating tapes and insulated. Removable internal baffles were made to separate each section and allow a gap for the water to be sprayed. These baffles consist of two circular perforated plates joined by threaded rod. Around the edge is a Teflon gasket, which prevents sorbent from moving between the baffle and the wall of the reactor.

Figure 33 shows the fully fabricated single reactor. The single test reactor was hydrostatically tested to 2.5 times the operating pressure and was held for 2 hours to determine if there were any leaks.

We tested various water injection methods on a bench scale. One of the challenges of the water injection is to get the water to spray evenly in the reactor in order to properly mix with the syngas. In the previous phase of the project (DE-FE-0012048), we used a gasoline direct injector to inject high pressure water into the reactor. The injector is a solenoid type that operates on 60 VDC. We built an injector driver consisting of a microprocessor and MOSFET solid state relays to pulse the injector as fast as 100  $\mu$ s. The

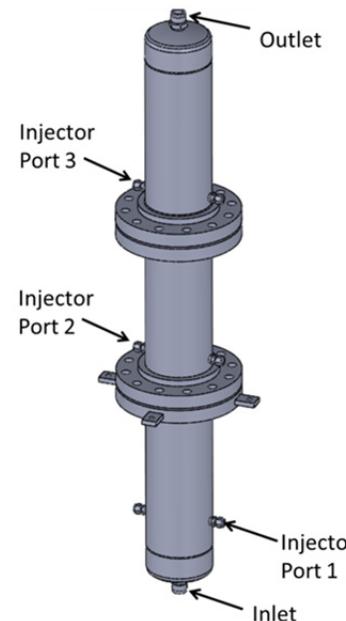



Figure 32. 3-D Reactor Layout.

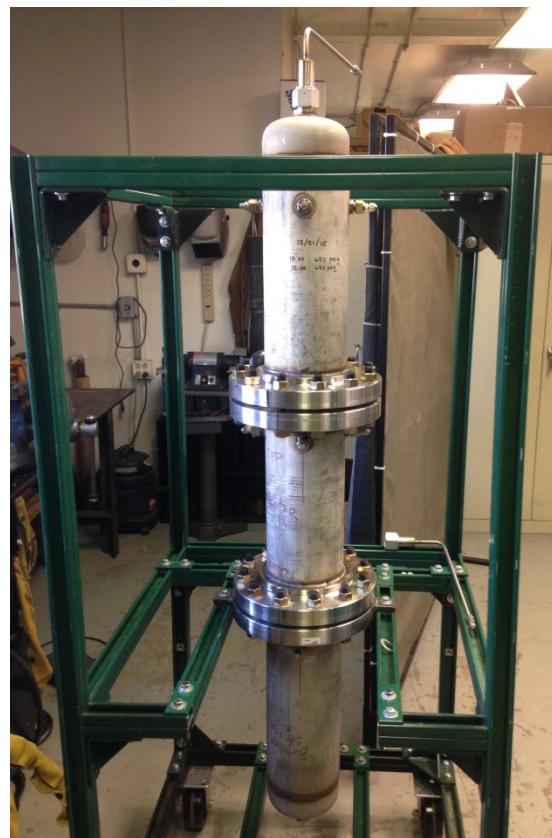



Figure 33. Single test reactor.

injectors were installed into the reactors so that tip of the injector was perpendicular to the flow of syngas. This worked well for our smaller test reactors which were 4" in diameter. However, the CFD modeling done by GTI in this project showed that spraying from the side of a larger reactor will not provide efficient mixing and cooling the syngas and the sorbent/catalyst bed. Their suggestion was to get the injector inside the vessel and spray the water in a counter current direction to the syngas.

Since the injectors used in the previous project were electronically operated, it meant they would always have to be installed from the side of the reactor in order to leave the solenoid outside of the reactor.

The injector supply will be similar to the diagram shown in Figure 34. DI water is supplied to a low pressure tank where a high pressure piston pump pressurizes the water to >1000 psig. Pressure in the surge reservoir and the injector lines are maintained by a back pressure regulator.

We tested various methods for water injection and upon settling on a design, we bench tested the following setup which involved attaching an orifice of approximately 0.015 in diameter to the end of a 1/16 in line which is attached to the outlet of a micro dispensing valve capable of pressures to 1200 psig. The setup is shown Figure 35. The dispensing valve can cycle as fast as 5 ms and the timing is controlled by the driver electronics developed in previous experiments. When the valve opens, a slug of high pressure liquid is sent to the orifice which atomizes the water. By the duty cycle of the valve, we can accurately and repeatedly control the amount of water injected into the reactor. Shown in Figure 36 is the calibration curve of the amount of water injected based on varying the valve delay and "on" time. Varying the valve "on" time also can control the quality of spray with

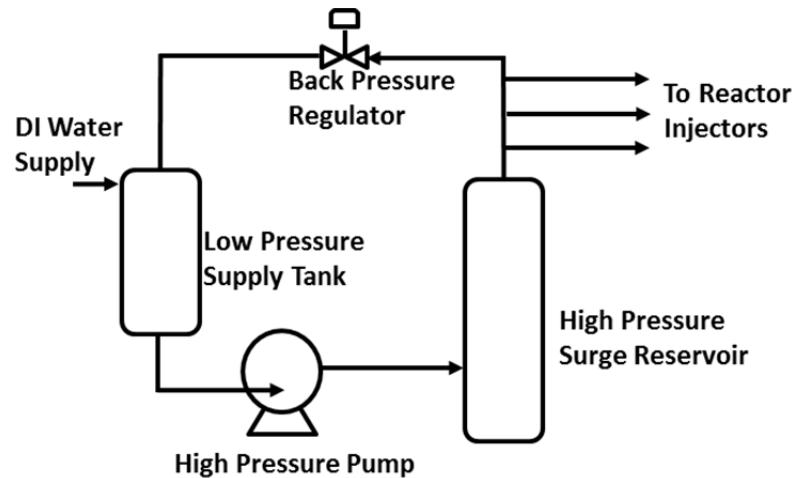



Figure 34. Injector supply setup.

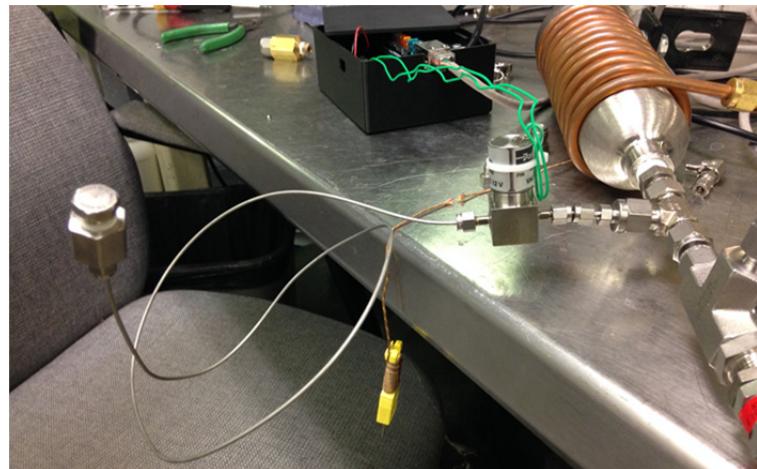



Figure 35. Micro dispensing valve and orifice water injection.

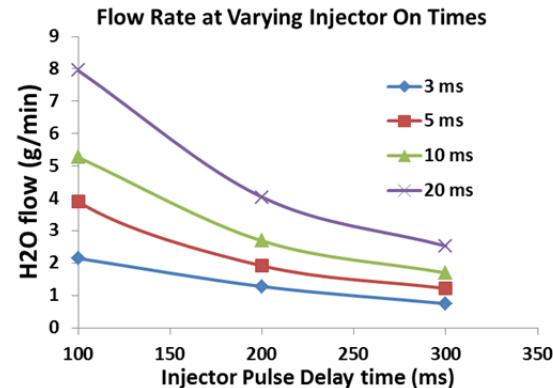



Figure 36. Flow rate calibration for varying valve pulse times.

longer times having better atomization. By increasing the delay time, the amount of water can be decreased to the amount needed. For a 10 SCFM apparatus, we need 5 g/min of water to be injected to the reactor. If 3 orifices are used, they will have to flow 1.7 g/min which this system will be capable of doing. Another advantage of this system is that all mechanical and electrical components are located outside the vessel and away from heat.

The bed is heated by a series of heat tapes to maintain bed temperatures of 180-220 C. The reactor was filled with 20 vol% of Shiftmax 230 LTWGS catalyst and the rest with TDA2015 sorbent. The total volume of the test reactor is 25L. A total of 3 water injectors were inserted at the points. Syngas flows from the bottom of the reactor to the top while sorbent regeneration N<sub>2</sub> flow countercurrent from the top of the reactor to the bottom. The bottom section of the reactor is filled with just sorbent. The second section from the bottom contains half of the total catalysts in a layer sandwiched between two layers of sorbent. A thermocouple was installed in the center of the catalyst layer. The third section from the bottom contains the other half of catalyst homogeneously mixed with sorbent. The fourth section contains only sorbent in order to adsorb the remaining CO<sub>2</sub> that is generated from the WGS sections.

### 5.8 Task 9. Evaluation of Single Reactor



Figure 37. Adjustable separation screen.

In this task, we evaluated the performance of the single test reactor evaluations.

Adjustable screens were fabricated as shown in Figure 37. The support screens can travel up and down the reactor on three support columns that are welded to the inside of the reactor. Once the desired location is determined, set screws lock the screen in place. This mechanism will allow us to test various injection locations to determine where the ideal placement of the water injection points is. The screens are also used to divided the bed into sections and allow a space for the injected water to vaporize and mix with the crossflowing syngas. We installed the reactor in an existing testing apparatus to flow simulated syngas at flowrates up to 10 SCFM (Figure 38). The position of the 3 water injectors in the reactor is shown in Figure 37 (inset).

The water injection is done via 0.035 in orifice and water is pulsed to it via a micro dispensing solenoid valve as shown in Figure 39. The injection orifice is installed in a fashion so that the spray is countercurrent to the syngas flow. This was done to promote good mixing and vaporization.

Figure 40 shows the bed temperatures during a period of testing. There is a thermocouple in each bed section. The left side of the vertical black line is the bed temperatures during water injection. The inlet steam:CO was fixed at 1 (which is identical to that of NCCC's). Water was injected at a rate to raise the overall steam:CO to 1.5. The right side is also operating at a steam:CO 1.5 but without water injection. On average, the bed temperatures rose approximately 20°C when operating at the same steam:CO without the water injection.



Figure 38. Single bed reactor installed in testing apparatus.

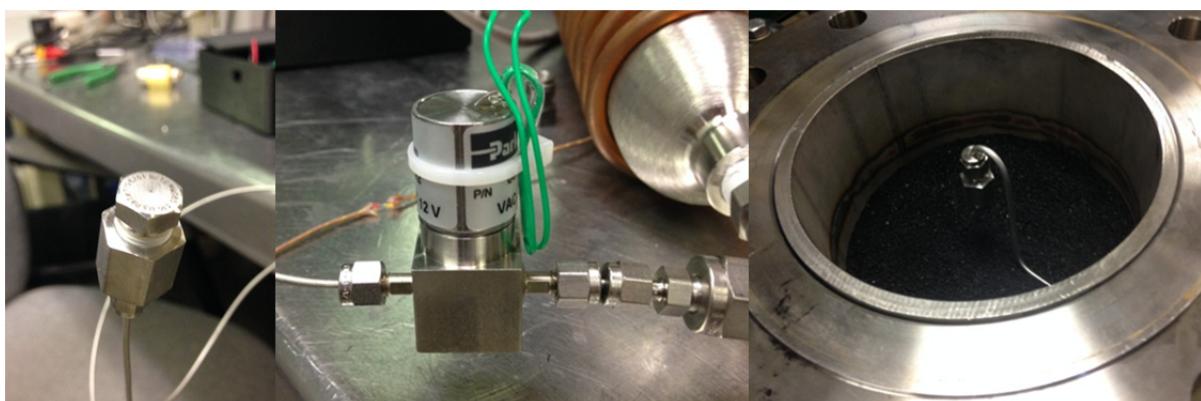



Figure 39. Nozzle detail and installation in reactor

Figure 41 shows the moles of CO that were converted in the bed via WGS. When the bed was operating with the water injection, the amount of CO converted was upwards of 20% more than the CO converted without water injection at the same steam:CO ratio.

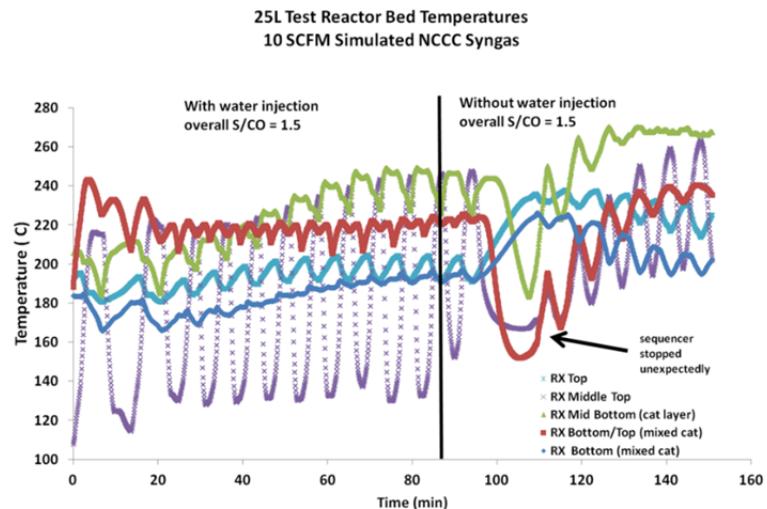



Figure 40. Single reactor bed temperatures.

Figure 42 shows the sorbent CO<sub>2</sub> capacity with and without water injection. On a whole the capacity was slightly lower with water injection. This could be due to the localized decrease in CO<sub>2</sub> partial pressure due to the increase in water vapor near areas of injection.

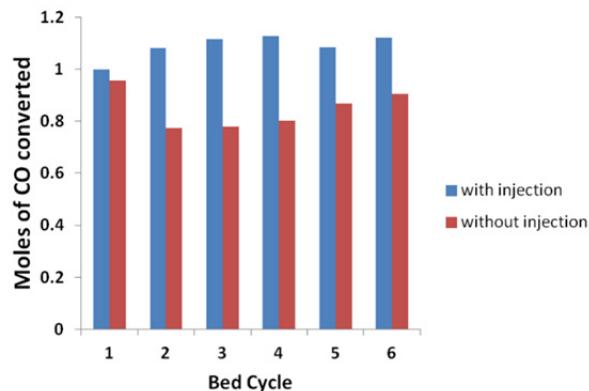



Figure 41. Moles of CO converted.

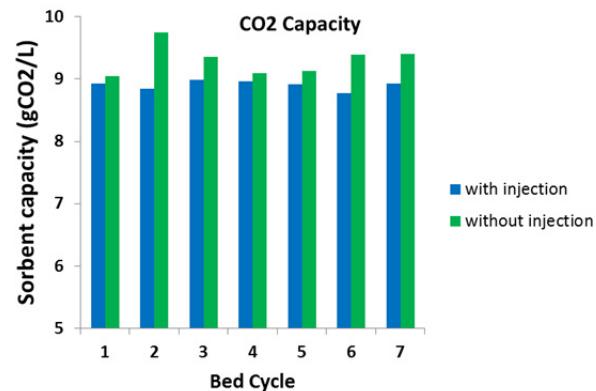



Figure 42. Sorbent capacity.

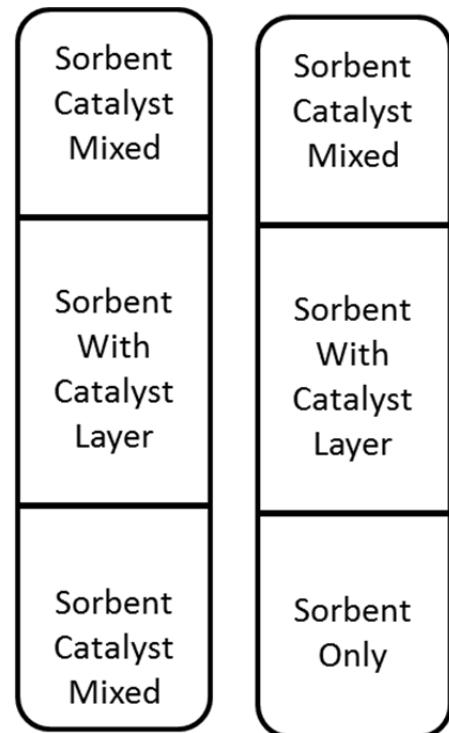
## 5.9 Task 10. Reactor Design Revisions

Based on the CFD model development and assessment of heat management options, the advantages (pros) and disadvantages (cons) of the various heat management schemes explored are summarized in Table 7. We observed that radial injection used in previous project (DE-FE0012048) is a poor method particularly for beds of larger diameter. So we picked axial water injection.

Table 7. Heat Management Schemes for the Integrated WGS/CO<sub>2</sub> Separation Sorbent Reactor

| Cooling Method | Type         | Pro                                                                                               | Con                                                                                                                                |
|----------------|--------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Jacket         | Full/Partial | Full jackets, over partial jackets, perform OK through higher CO conversion. Simple to implement. | Radial quenching, poor temp. distribution, lowest CO conversion                                                                    |
| Embedded Tubes | Central      | Lower quenching of WGS reaction than jackets                                                      | Radial uniformity is low                                                                                                           |
|                | Distributed  | Best radial heat management, partial tube length within combined WGS/sorbent bed is best.         | Three tubes needed for 6" reactor, the number of internal tubes and cost becomes prohibitive when extended to full scale reactors. |

|                 |             |                                                                                                                                                                   |                                                                                                                                                                                                                                                                            |
|-----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Injection | Axial (1/2) | Performs similarly to distributed, embedded tubes, and the heat management is excellent. Multiple injectors show favorable T control and operational flexibility. | Tradeoff between hot spots and overcooling, difficult to optimize for single injector option. With multiple injections along axial direction, we get optimal temperature control and flexibility in controlling each zone separately by altering the water injection rate. |
|                 | Radial      | Easier to implement than axial injection                                                                                                                          | Radial jet penetration is poor, resulting in quenching and poor radial heat management                                                                                                                                                                                     |


We then revised the reactor configuration and explored a second configuration to determine the efficacy of the sorbent/catalyst layer layout on CO conversion. Both the first and the revised configuration consisted of 20 vol% of identical LTWGS catalyst. The two configurations are shown in Figure 43. In configuration 1, half the catalyst resided in the middle of the bed as a solid layer while the other half is equally mixed in the upper and lower parts of the vessel. In configuration 2 (also called as single reactor design revision), half the catalyst resides in a layer in the middle of the reactor while the other half is mixed in the top portion of the vessel only.

### 5.10 Task 11. Fabrication of Single Reactor Revisions

We fabricated the new reactor configuration by having the three segments as shown in Figure 43 and had the single bed reactors hooked up to the bench-scale test setup shown in Figure 38.

### 5.11 Task 12. Evaluation of Single Reactor Revisions

We tested the two bed configurations with syngas flow from both directions i.e., from top-to-bottom and bottom-to-top. Both configurations were tested using the same inlet CO concentrations and Steam to CO ratio of 1.2. Figure 44 shows a difference in the total CO conversion. Using configuration 1, the CO conversion yielded on average 3.5% more CO converted than configuration 2.



**Configuration 1 Configuration 2**

Figure 43. Two tested bed configurations.

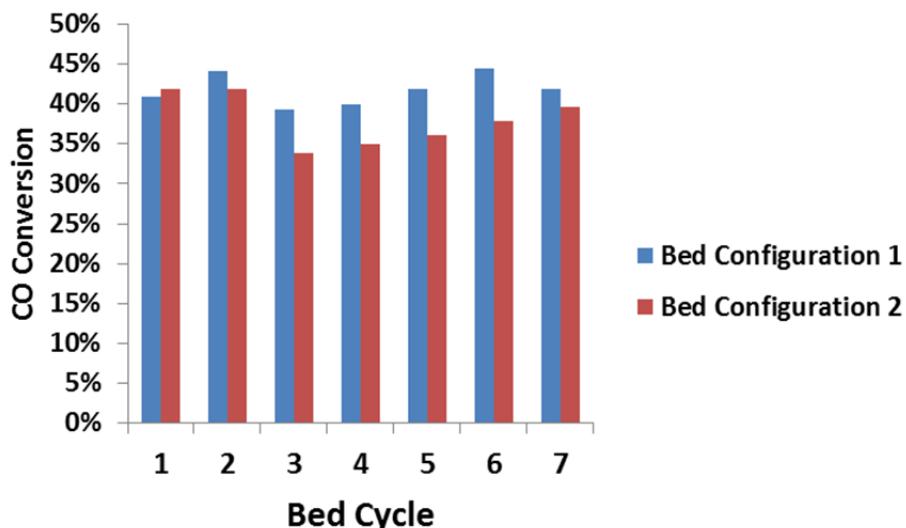



Figure 44. CO conversion

## 5.12 Task 14. Critical Design Review

Before finalizing the Test Unit's P&IDs, we completed a critical design review, which included a thorough Process Hazard Analysis (PHA) was performed in conjunction with engineers from Sinopec, Southern Company operators of the Power Systems Demonstration Facility (PSDF) at the National Carbon Capture Center and operators of other potential demonstration sites. The PHA ensured that all aspects of the Test Unit are safe for operation and complies with onsite rules and regulations. A safe operating procedure was also developed to ensure that safe operation of the test unit is always followed. A detailed Failure Modes and Effects Analysis (FMEA) was carried out by TDA to identify safety vulnerabilities and correct them in the design.

### 5.12.1 Facilities Requirements

The 3-D sketch for the overall system is shown in Figure 45. The 10 scfm skid included limited gas conditioning capabilities eliminating the need for a separate gas processing skid. The facilities requirements for the 10 scfm skid are summarized in Table 8.

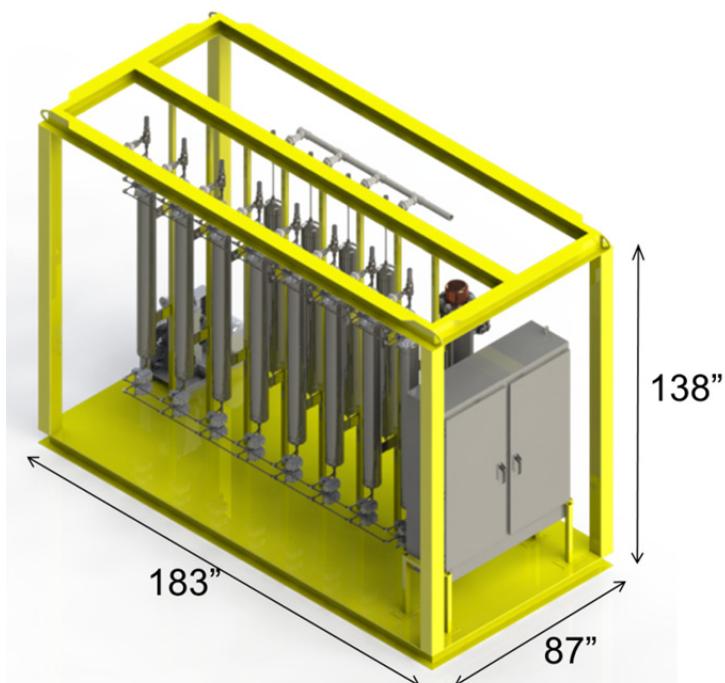

Figure 45.3-D layout of the 10 scfm integrated WGS and CO<sub>2</sub> capture field test unit.

Table 8. Facilities requirements for the 10 scfm integrated WGS and CO<sub>2</sub> capture skid.

| Utility Requirements        |                              |                                          |                               |
|-----------------------------|------------------------------|------------------------------------------|-------------------------------|
| Power                       |                              | Syngas Outlet                            |                               |
| Voltage                     | 480                          | Flow, scfm                               | 9.0                           |
| Max Current (Startup), Amps | 102                          | Pressure, psig                           | 7.0                           |
| Normal Current, Amps        | 36                           | Temperature, °F                          | 390                           |
| Syngas Supply               |                              | Connection Type                          | Swagelok Compression, 3/4 in  |
| Quality                     | Desulfurized, Unshifted      | CO <sub>2</sub> Waste Outlet             |                               |
| Nominal Flow, lb/hr         | 50.0                         | Flow, scfm                               | 9.0                           |
| Max Flow, lb/hr             | 60.0                         | Pressure, psig                           | 7.0                           |
| Temperature, °F             | 400                          | Temperature, °F                          | 390                           |
| Pressure, psig              | 200                          | Connection Type                          | Swagelok Compression, 3/4 in  |
| Connection Type             | Swagelok Compression, 1/2 in | Relief Vent                              |                               |
| Cooling Water Supply        |                              | Max Flow, scfm                           | 1043                          |
| Flow, gpm                   | 10.9                         | Connection Type                          | 2in pipe, 150# flange         |
| Temperature °F              | <95                          | Condensate Return                        |                               |
| Pressure, psig              | 60                           | Flow, gph                                | 2.4                           |
| Connection Type             | Swagelok Compression, 1in    | Pressure, psig                           | Amb                           |
| Cooling Water Return        |                              | Temperature, °F                          | Amb                           |
| Flow, gpm                   | 10.9                         | Connection Type                          | Swagelok Compression, 1/2 in  |
| Temperature °F              | <106                         | Nitrogen                                 |                               |
| Pressure, psig              | 35                           | Max Flow, scfm                           | 40 (during Skid Heat up Only) |
| Connection Type             | Swagelok Compression, 1 in   | Nominal Flow, scfm                       | 2.0                           |
| Steam                       |                              | Pressure, psig                           | 350                           |
| Flow, lb/hr                 | 15.1                         | Connection Type                          | Swagelok Compression, 1/2 in  |
| Pressure, psig              | 325                          | Instrument Air (may use N2 if necessary) |                               |
| Temperature, °F             | 600                          | Flow, scfm                               | 5.0                           |
| Connection Type             | Swagelok Compression, 1/2 in | Pressure, psig                           | 100                           |
|                             |                              | Connection Type                          | Swagelok Compression, 1/2 in  |
| Municipal Water             |                              |                                          |                               |
|                             |                              | Flow, gph                                | 0.5                           |
|                             |                              | Pressure, psig                           | <100                          |
|                             |                              | Connection Type                          | Swagelok Compression, 1/4 in  |

### 5.13 Task 15. Fabrication of Field Test Unit

For the fabrication of the field test unit, we used the vendor Springs Fab located in Colorado Springs, approximately 90 miles from TDA's office for the fabrication of the skid and the vessels. We had worked with Springs Fab in the past and felt confident in their abilities. We had a kickoff meeting on Aug 12, 2016 to finalize and approve the drawings for the skid and vessels. Fabrication began shortly after this meeting. On October 7, 2016 we visited Springs Fab to inspect the fabrication progress. We inspected one vessel before the final welding took place to ensure that the injector inserts we had designed would work.

Figure 46 shows one of the fully instrumented vessels during the fabrication process. The insert was test fitted to the reactor to determine the dimensions needed for it to fully slide down the length of the reactor. After test fitting the insert, the remaining vessels were fabricated.

On October 26, 2016, the skid fabrication was completed and powder coated. All the vessels other than the reactors were mounted to the skid (Figure 47). At the beginning of November 2016, the assembled skid was transported to a metal machine shop located 3 miles from TDA. Here we performed all the plumbing and wiring.

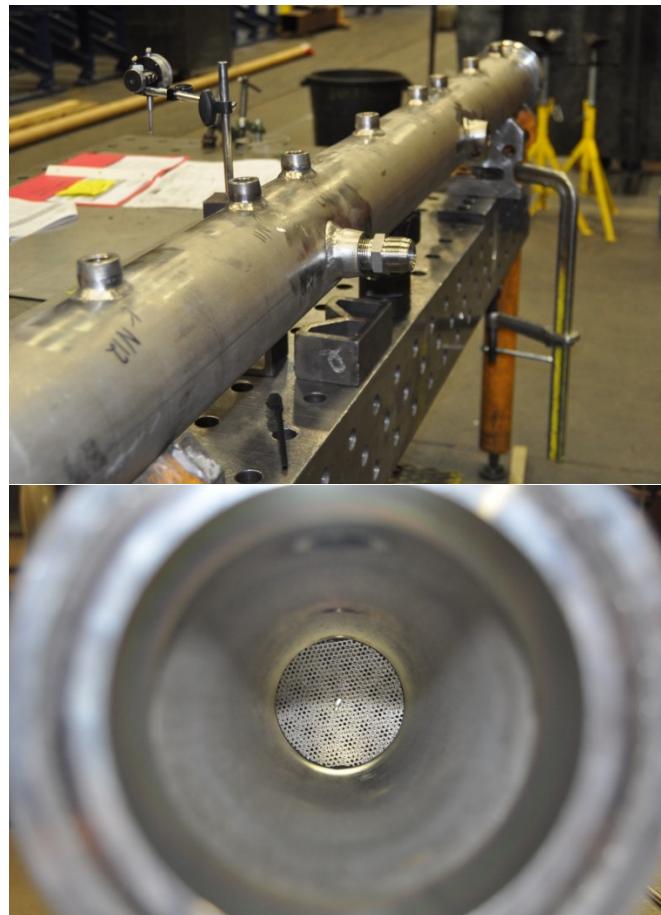



Figure 46. Vessel during fabrication (top), vessel insert during test for fit (bottom)



Figure 47. Skid frame progress and vessel mounting.

**Fabrication of Electrical Control Panel:** The fabrication of the electrical control panel was carried out by TDA at our Wheat Ridge, CO shop. The system control back-panel is the hardware interface between the provided plant power at 480 VAC, 125 amperes, 3-phase power and the data acquisition hardware required to control system function, collect system data, and provide safety features protecting both operation personnel and system/plant protection. Plant power will tie into a 125 ampere C1D2 disconnect, circuit breaker, knife switch (not shown, as it is external on the main skid) and then tie into the distribution blocks (shown top right in Figure 48).

The 3 $\phi$  power is distributed to an array of circuit breakers, 960 watt, 24VDC power supply, VFD controllers, 480-120VAC transformer, and contactors for heater control, system heaters and pump control. The 24VDC control voltage is transmitted to the low voltage side of the panel. The system control is managed by National Instrument cDAQ hardware. LabVIEW software is a system-design platform and development environment for

a visual programming language completed and tested in house by resident engineers. NI cDAQ-9133 embedded controller and cDAQ-9188 backplanes are populated with NI modules for command and control of the various instruments required in this system. NI modules including NI-9208 current input, NI-9213 thermocouple, NI-9265 current output, NI-9476 sourcing digital output, NI-9425 24V sinking digital input and NI-9477 5-60V sinking digital output are used in this data acquisition scheme. 24VDC is the main control voltage and is distributed from terminal block arrays to fuse blocks and then to relays, NI Module excitation power, Watlow EZ-Zone modules RMHA-1111-AAAA, RMHA-11CC-AAAA, RMEA-CCCC-AAAA, RMLA-55JJ-AAAA and RMAA-A3AA-AAAA, Ethernet network switch power, SSR on/off power, Advantech Touchscreen Monitor, Flow control valves, Pressure control valves, Level sensors (both high and low), Flow meters, Flow switch, Capacitance level transmitter, and Pressure transducers.

120VAC power is provided through a 5000VA Transformer and distributed to 120 VAC devices from the 120VAC terminal block array on the high voltage side of the back-plane. The product stream analyzer, Z-Purge, and system lighting is provided 120VAC power from this terminal block array.

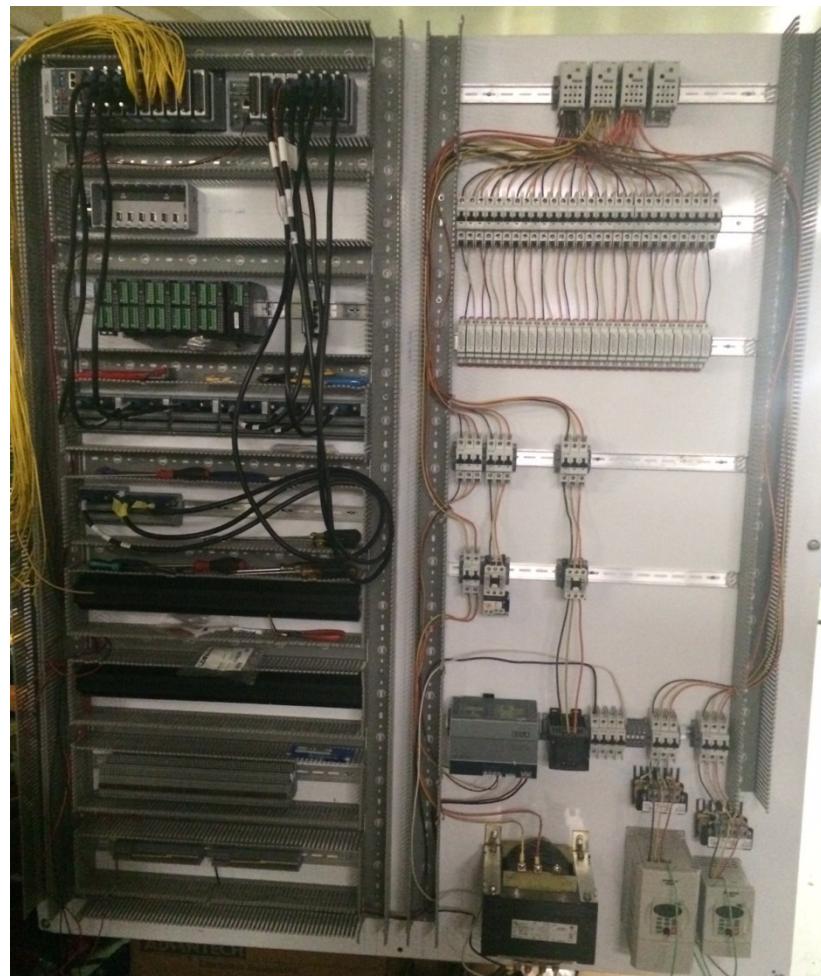



Figure 48. Electrical back panel fabrication in process

Once the skid arrived from the fabricators, TDA began the plumbing and assembly of the demonstration unit. The first step of the assembly was plumbing the upper and lower valve manifolds. Figure 49 shows how all 40 valves were assembled and mounted in ways to allow for flexing during heat up and cool down.

We worked with GTI to complete the fabrication of the field test unit, including the plumbing, electrical, heat trace and insulation of the sample system selection valves. GTI also procured the WGS shift catalyst from Clariant for use in the field test unit. Figure 50 shows the 20 valves that were used to simultaneously sample different sampling points throughout the system to two different analyzers.

We chose a MKS tunable spectrometer to measure the CO<sub>2</sub>, CO and other hydrocarbons. We have used this model instrument in a previous system involving syngas with high success and accuracy. The analyzer cannot analyze H<sub>2</sub> or other diatomic gases (N<sub>2</sub>, etc), therefore a separate H<sub>2</sub> analyzer was also installed. The two can work together to give a complete gas analysis for every stream in the system. Two sample chillers and water knockouts were also installed between the valves and the analyzer to eliminate condensed water from entering the analyzer.

The mineral insulated (MI) heating cable installation was also completed. Each sorbent reactor, LTWGS reactor, desulfurizer and accumulator vessels have mineral insulated heating cable installed on them to maintain process temperatures (Figure 51). MI cable is tolerant of the high temperatures required by the system while being Class 1 Div 2 electrically compliant. All process lines were also heat traced with MI cable.



Figure 49. Upper (top) and lower (bottom) valves and manifolds.



Figure 50. Sample system selection valves (left), analyzers (right).

The system was hydrostatically leak checked using a high-pressure pump with DI water. All

the lines and vessels were filled with DI water and pressurized to 600 psig and left for 30 minutes. The pressure was checked again to ensure no leaks were present. If the pressure dropped, the lines and fittings were inspected and tightened if necessary and the test was performed over again until no drop in pressure was observed.

After the system was deemed leak tight, the insulation was installed over all the heat traced vessels and lines. Mineral wool was used due to its high temperature capabilities. The vessels were covered in 3 in thick mineral wool while the smaller process lines received 1.5 in thick insulation. The thickness of insulation was chosen to not only prevent the outer surfaces from being a burn hazard but also to allow us to use much less powerful MI cables to maintain process temperature. The insulation was then covered with aluminum sheathing to keep moisture from penetrating into the insulation. All seams were caulked with silicon to further facilitate in keeping water out. Removable fiberglass jackets were

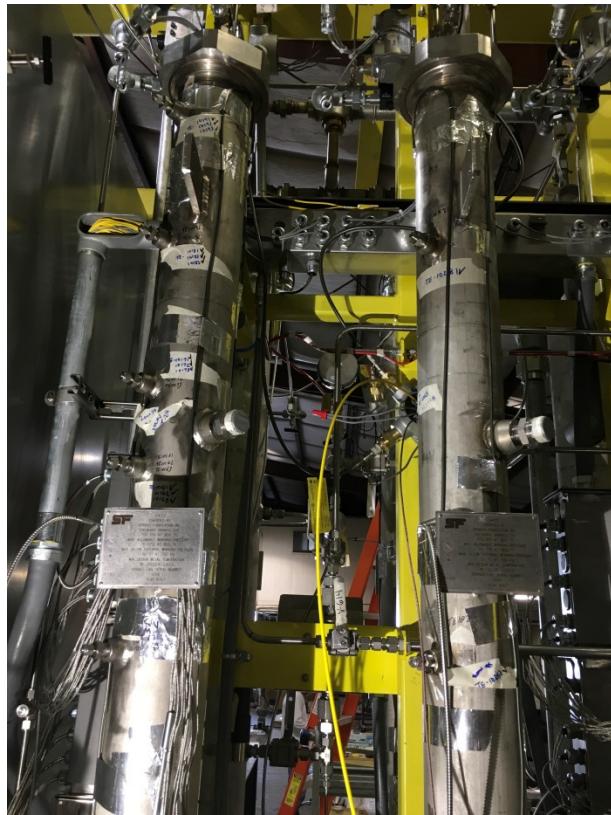



Figure 51. MI cable installed on reactor



Figure 52. Picture of the 10 cfm field test unit after completion with the insulation.

made for the top and bottoms of the sorbent reactors to facilitate in their removal so that we can load and unload the reactors when necessary.

Figure 52 shows the completed test unit after insulation and aluminum sheathing was completed. We were then able to progress to the system shake down testing before shipping it to the first testing location.

#### 5.14 Task 16, 19 Shakedown Testing of Integrated Skid

Once the insulation was finished, the system was powered with 480V power and every piece of equipment was tested and tuned. Both compressors were turned on to verify that their VFD controls were operating and programmed correctly. Every valve was actuated several times to verify that it was opening and closing correctly



Figure 53. Water injection flow meters (left), high pressure water pump and pulse dampener (right).

The high-pressure water injection system was thoroughly vetted by filling the system with DI water and operating the high-pressure diaphragm pump (Figure 53). A high-pressure pulse dampener was installed on the outlet of the pump to reduce the pressure spikes and pulsing flow from the diaphragm pump. The dampener consists of a bladder on one end and the process fluid on the other. The bladder was charged with 800 psig nitrogen. The gas bladder compresses during pump strokes and expands when the pump refills to help reduce pulsing. The system was brought to pressure and the solenoids were then operated with different duty cycles and two different inlet pressures. The sprayed water was collected in a graduated cylinder for exactly 2 mins to calculate actual water being sprayed. It was then compared to the mass flow meters indicated flow rate. Both values matched, verifying the flow meters were measuring the correct flow.

Figure 54 shows how we control the water flow by altering the duty cycle of the injection valves. The valves will operate a max differential pressure of 1000 psig but normal differential pressure will be 500 psig. As shown, the flowrate can be precisely altered by changing the duty cycle of the valve. Below 0.5% duty cycle, the valve is unable to open and close correctly. The required flow rate for a single injector is 3 mL/min so we are able to control in this range for both

differential pressures.

The flow meters were calibrated to produce a smooth output reading despite the pulsating flow. They have the ability to apply filters to smooth outlying data points, thereby producing a clean and consistent reading.

All the MI cable heat trace zones were turned on to auto tune the PID controllers. All zones reached their given set points without incident.

The inlet compressor was turned on and the system was pressurized with air to 400 psig to ensure everything worked as it should. This was the maximum outlet pressure the compressor could achieve since it's designed for 200 psig inlet and the compressed air was only 100 psig.

The flow control valves were tuned so that they closed and opened completely according to their given signals. The pressure control valves were operated according to their respective ranges and were found to be working as expected. The process flow meters were found to be operative. The main process heater was briefly turned on and found to heat up; without significant flow, we didn't want to overheat it.

After shaking down the system as much as possible at the fabrication location, the system was wrapped and shipped to Praxair on July 31, 2017. The unit was installed at their location (Figure 55)

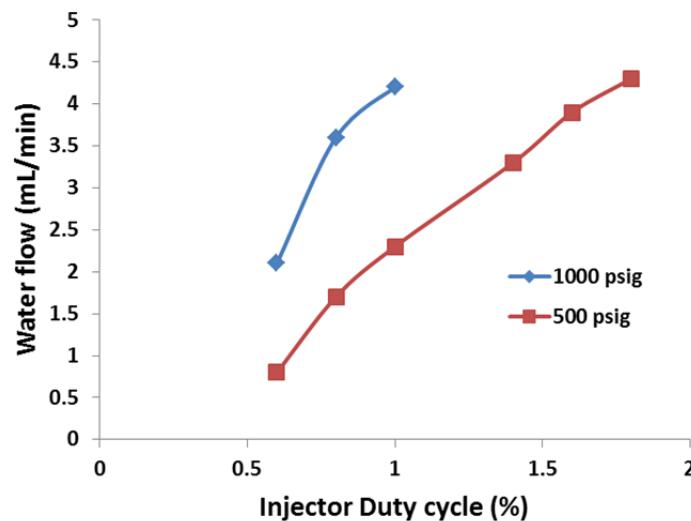



Figure 54. Single injector flow rates at 500 and 1000 psig inlet.



Figure 55. TDA's 10 cfm field unit installed at Praxair's testing location.

Once installed, TDA personnel traveled to Tonawanda, New York in order to fill the reactors with sorbent and catalyst and perform additional shakedown testing that couldn't be accomplished at the fabrication site.

After deployment of the unit at site (Figure 55), each reactor was individually unbolted from the center support for loading with catalyst and sorbent (Figure 56). A custom pivot arm was used to support the reactor and allow it to swing away from the frame in order to gain clearance to load the reactor (Figure 56, left). A spacer and set of screens were strategically placed at each injector port. Precise amounts of catalyst and sorbent was loaded into each section of the reactors.

The location of water injectors/distances, spacer width and sorbent bed lengths for each reactor are shown in Figure 57 left, while Figure 57 right shows the sorbent and catalyst distributions and weights in various sections of the reactor. During Budget Period 1, GTI performed CFD modeling work pertaining to direct water injection into a 6-inch reactor using the two



Figure 56. Reactors being loaded with catalyst and sorbent.

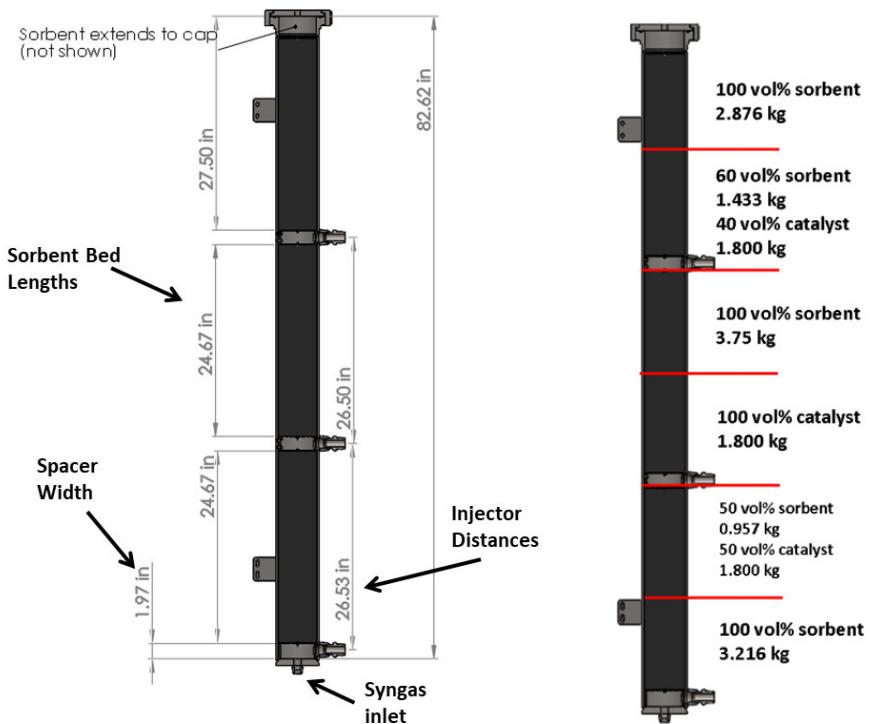



Figure 57. Location of injectors (left); sorbent and catalyst loading (right).

configurations (A & B) shown in Figure 25. Two injection methods, axial and radial, were considered using one 1/64" diameter orifice/nozzle. In axial injection, water sprayed co-current with syngas flow, with nozzle positioned at top of mixed sorbent/catalyst region ~ 10" downstream of vessel top. The purpose was to inject water close to the hottest portion of shift reaction and for the spray to have adequate coverage of the reactor bed. In radial injection water sprayed from the side of the vessel and positioned above the catalyst only layer, with an intention to have sensible heating of spray prior to contact with heat from shift reaction. The goal in this mode was to achieve lateral penetration of spray jet into the gap. The axial injection of water resulted in uniform cooling pattern as expected for embedded tubes in the bed. Radial injection resulted in partial quenching of shift reaction with liquid water streaming along one side and velocity contours of water rates causing overcooling or undercooling of the bed. However, with the small reactors used in the 10 cfm field unit, injections from the radial walls are still near the hottest zone in the reactor.

There were delays in the availability of the Praxair's Oxygen transport membrane modules (OTM) for the field tests at Praxair. Even though OTM modules are not needed for TDA's tests, the Praxair field test was planned to be an integrated test with Praxair's OTM modules. Therefore, these tests were re-scheduled for May of 2018.

### 5.15 Task 20. Field Testing at Praxair

Once Praxair's OTM unit was operational, TDA personnel traveled there to begin initial testing. Several trips were made between April and June, 2018.

We reduced the catalyst in the LTWGS reactor and all of the sorbent reactors by feeding in approximately 2% H<sub>2</sub> mixed with nitrogen in order to prevent a rapid temperature increase in the sorbent due to reduction of the metals in the catalyst. This process took several days to finish.

We worked with Praxair's safety department to verify everything was in compliance with their site safety requirements in order to start running.

Syngas was first introduced into the system on May 29, 2018. This was to test Praxair's shutdown system to ensure if our system had an alarm, their system would divert the syngas to a vent location with little to no impact on the pressure of their panel.

The water injection system was tested. The system showed that it was able to precisely and consistently control the addition of water down to 1 g/min. Figure 58 shows the flow rate of water at a continuous valve opening percentage for all the bottom injectors. The amount of water that is injected is determined by the cycle time of the injection valve. As shown, the amount of water that is injected into each bed is approximately 1.2 g/min +/- 0.3 g/min. At the 275 min mark, the middle injector was turned on for each bed while the bottom injector

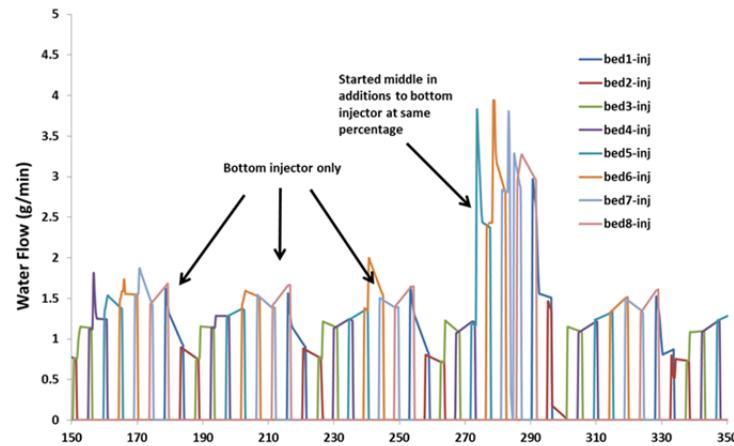



Figure 58. Water injection flow rate flow all beds.

remained on. The flow rate doubled. This shows that the injection system is able to control the water flow rate at a very precise level.

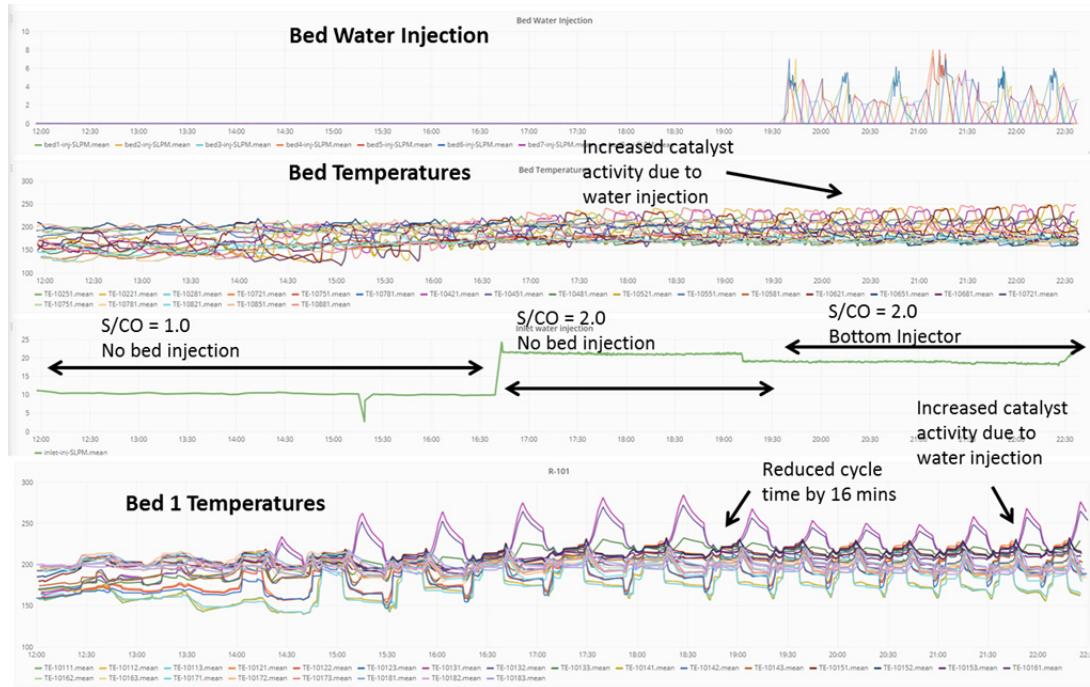



Figure 59. Bed temperature data. Note: S/CO here indicates the Steam to CO ratio

The first significant run using Praxair syngas came on June 6, 2018. The inlet syngas was cooled and the water was condensed out. It then was compressed to 300 psig. Water was reintroduced to bring it back to the same composition (10 vol%). The data in Figure 59 shows a period of operation where there was no bed injection but using the inlet water for shift at a steam:CO of 1.0. The inlet water concentration was then increased to a steam:CO of 2.0. Then the bottom injector of all the beds was turned on and the inlet water was reduced slightly to maintain an overall steam:CO of 2.0. The data in Figure 59 spans a period of 10.5 hours. Bed 1 has a full suite of thermocouples with 9 3-point profile probes evenly spaced along the bed. As observed, the bed began to increase in temperature with just the inlet water as the reactant and no cooling via injection. Once the inlet was increased to a steam:CO of 2.0, the temperature of the outlet of the mixed catalyst and sorbent zone began to increase rapidly to over 280 °C. At this point, the cycle time was dropped to see what impact it had on the CO<sub>2</sub> capture percentage. This caused the temperature in the catalyst zone to drop due to less gas being processed during the adsorption step. Shortly after the step time change, we began injecting water into the bottom injector of all the beds. This caused the temperature in the catalyst zone to begin to rise again, indicating that more CO was being converted than before. Unfortunately, a drain quit working and liquid water got into the system and had to be temporarily shut down. This shows that even injecting a minor portion of the full amount of water can increase WGS activity and influence bed temperature.

Figure 60 shows the gas compositions of the inlet, outlet and regeneration streams as well as the flow rates. There is only one gas measurement device on the system, so we cycled through different sampling points throughout the testing period. The inlet to the beds contained 10% CO while the outlet of the beds showed 0% CO, indicating that nearly all the CO was being shifted inside the reactors. The amount of the CO<sub>2</sub> in the outlet stream is high at an average of 14%.

The inlet flow was changed from 8.7 SCFM to 4.75 SCFM during the run and the CO<sub>2</sub> in the outlet didn't change. This would indicate the cycle time needs to be further reduced to prevent CO<sub>2</sub> breakthrough.

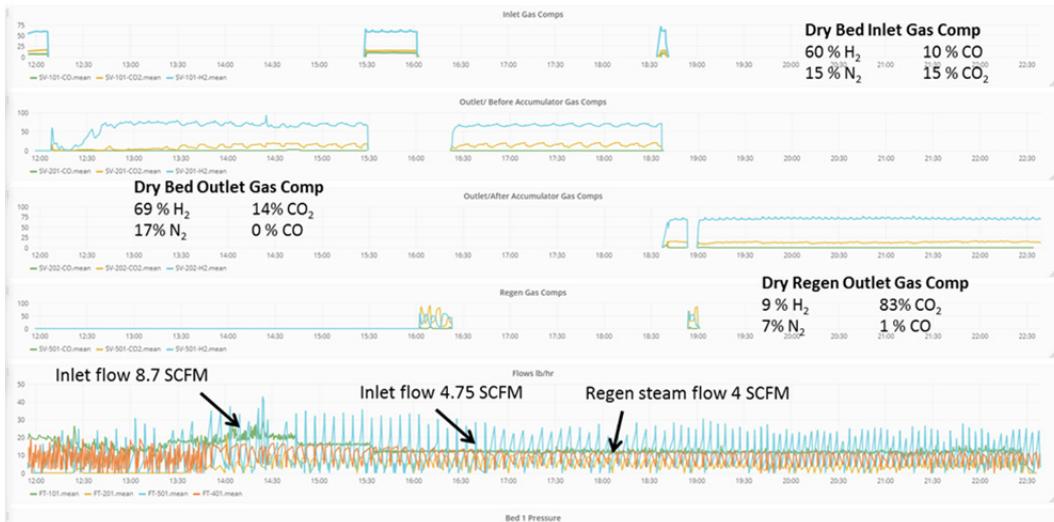



Figure 60. Gas compositions during 300 psig inlet pressure operation.

The regeneration stream contains an average of 9% H<sub>2</sub> and about 1% CO. This high amount of H<sub>2</sub> is due to the fact the co-depressurization or recycle was not in operation during this test. Once this part of the system is running, it would evacuate the residual gas in the reactor before regeneration and pump it back to the inlet. This will decrease the amount of H<sub>2</sub> and CO that is being wasted in the regen stream.



Figure 61. 100 psig syngas operation

As stated earlier, a level switch mal-functioned, preventing condensate from being pumped out of the system. This resulted in water getting into the compressor inlet, which damaged it. The compressor was bypassed and the system ran at Praxair's inlet pressure (100 psig) for an additional 48 hrs until Praxair had a shutdown of their system. The level switch problem was fixed, after which the condensate system was verified to be working as designed.

Figure 61 shows the gas compositions during this period. The inlet flow was maxed at 3.8 SCFM due to the reduced inlet pressure and the pressure drop through the system. The average carbon capture during this time period was 91%. The average outlet CO percentage in both the product syngas and regen stream was below the minimum detection limit of the analyzer which is 0.1%. This indicates a very high rate of conversion (near 100%) that occurred in the sorbent beds. The flowrate of syngas was low enough that bed water injection was unnecessary as the temperature of the bed remained relatively unchanged.

The test run from May 29, 2018 through June 30, 2018 was Field Test #1. The system was unable to be restarted in time for the end of Praxair's run on this panel.

We traveled to Praxair (now Linde) to repair and modify the apparatus and start the Campaign #2 testing, using both bottled gases (CO<sub>2</sub> in N<sub>2</sub> mixtures) as well as syngas generated by Linde's OTM panel. These tests were carried out between September 14 and 27, 2020.

### 5.16 Task 21. Field Test at Praxair #2

In the first week of the second test campaign, we added 2 mass flow controllers in order to flow bottled nitrogen and carbon dioxide gases into the system so that we can carry out additional tests while the OTM membrane is down. We replaced the small tee style filters with larger filters in order to run longer between clean outs, as sorbent dust is prevalent in PSA systems. We started the system and began running on the CO<sub>2</sub>/ N<sub>2</sub> mixture while their OTM was heating up. We ran a total of 57 hours under CO<sub>2</sub>/N<sub>2</sub> mixtures, demonstrating CO<sub>2</sub> capture between 63 to 100%.

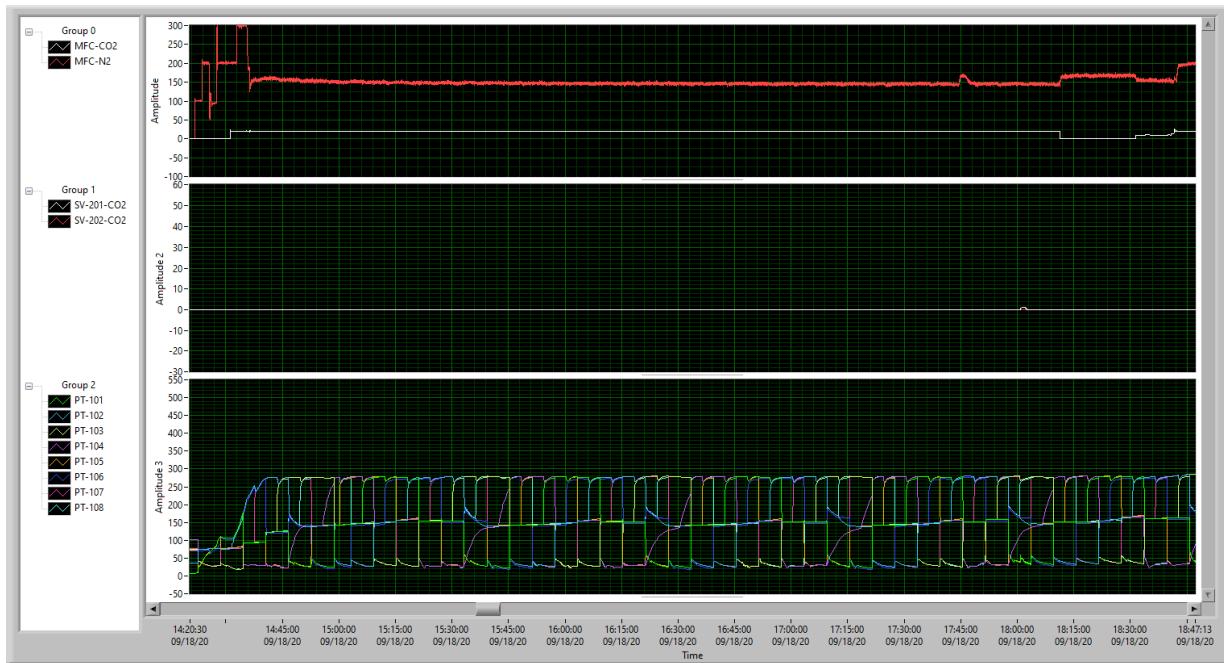



Figure 62. Campaign # 2: Test #1 - 4 hours test 09/18/2020 – 14:45 to 18:45 hours.

Figure 62 shows the result from the Test #1, which ran for 4 hours on 09/18/2020 between 14:45 to 18:45 hours (a total of 4 hours). The feed flow was 20 slpm CO<sub>2</sub> and 150 slpm N<sub>2</sub> at an adsorption pressure of 180 to 275 psig with desorption being carried out between 25 and 40 psig. We used a full cycle time of 48 min in these tests and did not observe any CO<sub>2</sub> in the high-

pressure syngas product, providing 100% CO<sub>2</sub> capture at CO<sub>2</sub> removal rates of 56.5 kg CO<sub>2</sub>/day.

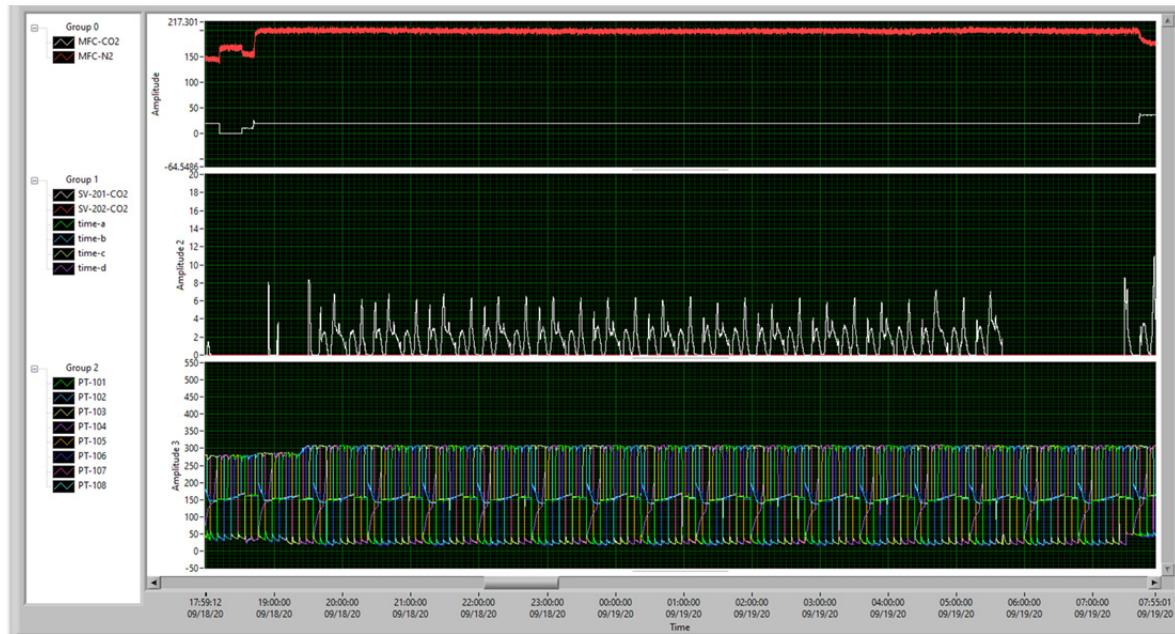



Figure 63. Campaign # 2: Test #2 - 12 hours test 09/18/2020 19:30 to 09/19/2020 7:30.

Figure 63 shows the result from the Test #2, which ran for 12 hours between 09/18/2020 19:30 to 09/19/2020 07:30 hours (a total of 12 hours). The feed flow was 20 slpm CO<sub>2</sub> and 200 slpm N<sub>2</sub> at an adsorption pressure of 280 to 300 psig with desorption being carried out at 20 psig. We used a full cycle time of 48 min in these tests and observed about 2.5% CO<sub>2</sub> by vol. in the high pressure syngas product, providing 80% CO<sub>2</sub> capture at CO<sub>2</sub> removal rates of 49.5 kg CO<sub>2</sub>/day.



Figure 64. Campaign # 2: Test #3 – 18.5 hours test 09/19/2020 07:30 to 09/20/2020 02:00.

Figure 64 shows the result from the Test #3, which ran for 18.5 hours between 09/19/2020 07:30 to 09/20/2020 02:00 hours (a total of 18.5 hours). The feed flow was varied between 20 to 85 slpm CO<sub>2</sub> and 150 to 200 slpm N<sub>2</sub> at an adsorption pressure of 300 to 400 psig with desorption being carried out at 50 psig. We used full cycle times between 32 and 48 minutes in these tests and observed between 0 and 15% CO<sub>2</sub> by vol. in the high-pressure syngas product, providing between 63.1 and 100% CO<sub>2</sub> capture at CO<sub>2</sub> removal rates between 56.5 and 170.8 kg CO<sub>2</sub>/day.

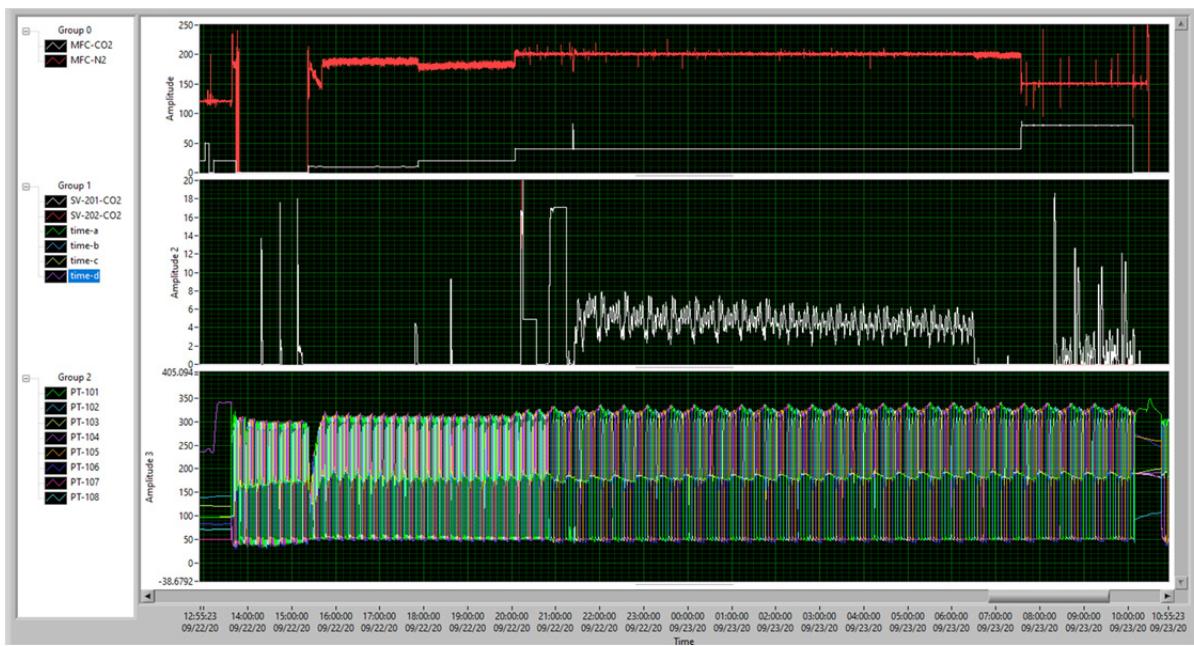



Figure 65. Campaign # 2: Test #4 – 18.5 hours tests 09/22/2020 15:30 to 09/23/2020 10:00.

Figure 65 shows the result from the Test #4, which ran for 18.5 hours between 09/22/2020 15:30 to 09/23/2020 10:00 hours (a total of 18.5 hours). The feed flow was varied between 10 to 40 slpm CO<sub>2</sub> and 150 to 190 slpm N<sub>2</sub> at an adsorption pressure of 300 to 325 psig with desorption being carried out at 50 psig. We used full cycle times between 16 and 32 minutes in these tests and observed between 0 and 4% CO<sub>2</sub> by vol. in the high-pressure syngas product, providing between 80 and 100% CO<sub>2</sub> capture at CO<sub>2</sub> removal rates between 28.3 and 213.1 kg CO<sub>2</sub>/day.

After Praxair's OTM panel was in operation, we began flowing syngas to the system. We compressed it to 350 psig for the feed pressure and desorption pressure was set at 50 psig using steam. The inlet flow rate was estimated to be approximately 250 SLPM and the regen flow rate was set at 100 SLPM.

We ran for a total of 68 hours on syngas before an issue with condensate collection on Linde's OTM panel forced a shutdown. The average inlet compositions were as follows: 75% H<sub>2</sub>, 17% CO<sub>2</sub> and 8% CO (Figure 66). The majority of the water in the inlet was condensed in order to compress the syngas. We did not carry out any WGS prior to the gas entering the integrated sorbent/catalyst beds. We used water injection to provide the necessary water for the WGS reaction occurring in the sorbent beds.

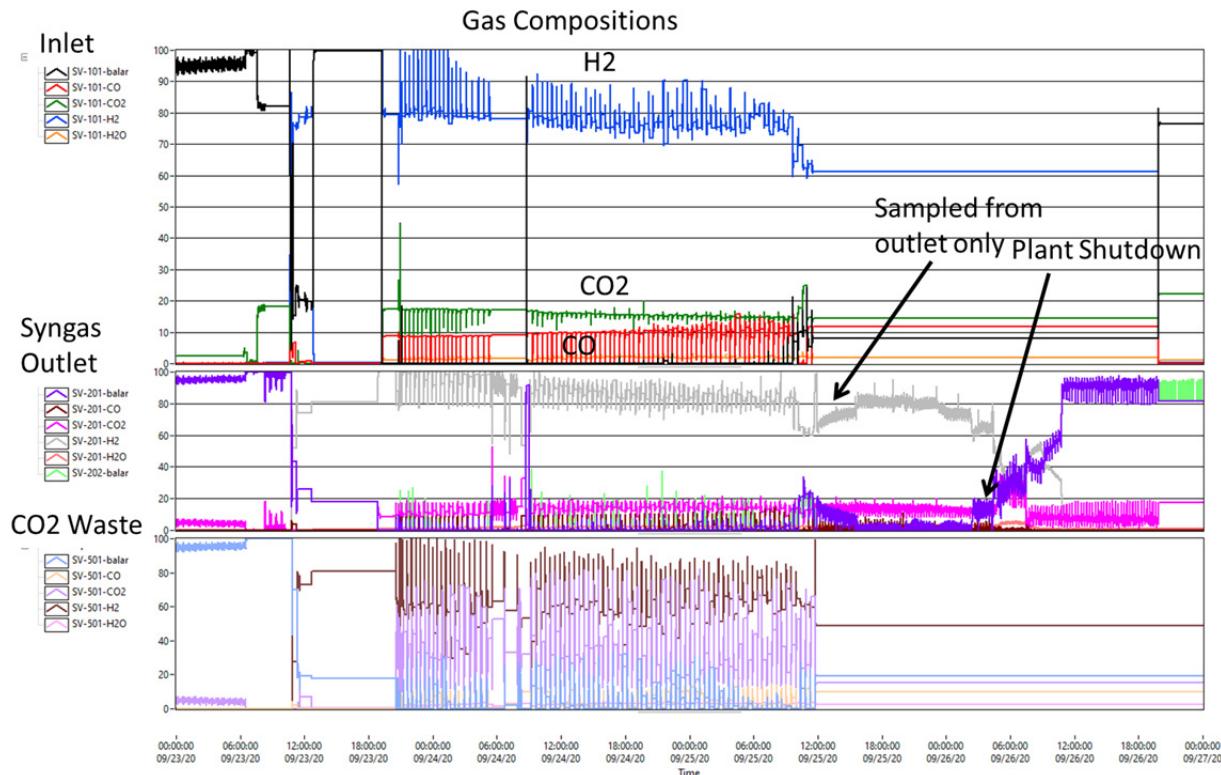



Figure 66. Campaign # 2: Gas compositions observed during the syngas testing.

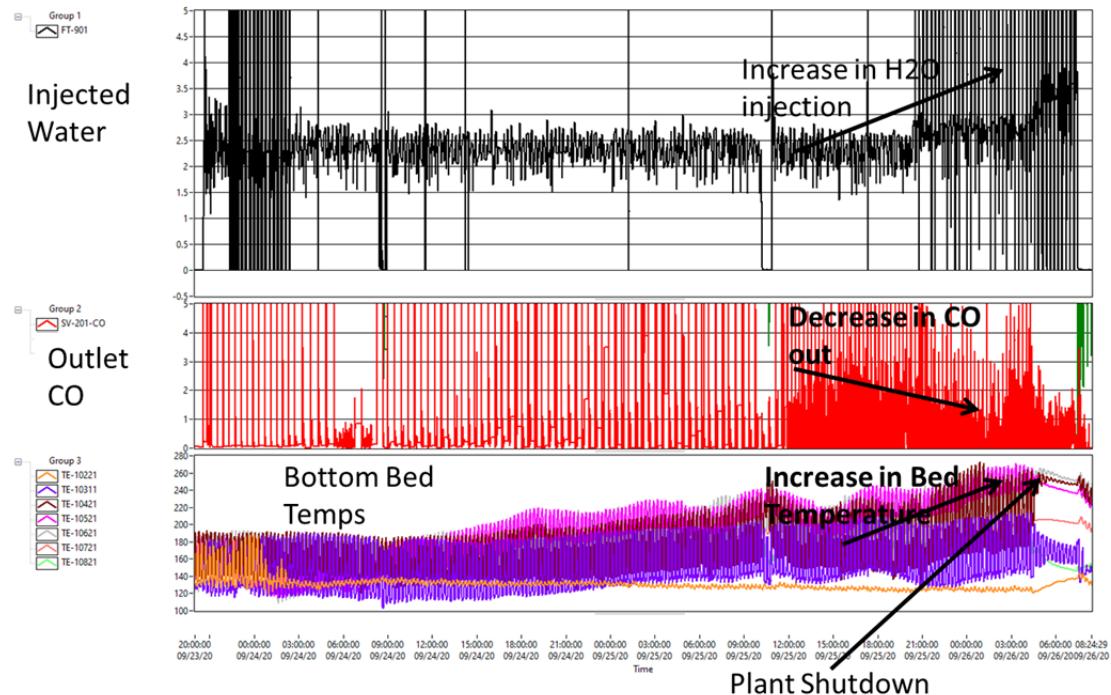



Figure 67. Campaign # 2: Bed temperatures and water injection rates during the syngas testing.

We were able to achieve 90-95% CO conversion within the bed at low steam to CO ratios (~1). We briefly increased the water injection amount by 25% and outlet CO dropped from 2% to sub 1% while the bed temperatures in the bottom (catalyst zone) rose by nearly 60C (Figure 67). This happened right before the plant shutdown, otherwise the plan was to keep increasing the injected water amount to see its effects on bed temperatures as well as get > 97% CO conversion.

Praxair's sump pump broke after we had returned to Colorado. We were able to restart the system remotely. However, we then observed increases in pressure drop and issues with flowing out of the system. With the help of one of Praxair's engineers, we observed that a large amount of sorbent was escaping the beds making its way downstream and plugging the lines and filters (Figure 68).

Many attempts were made to clean the system out in which we then ran on N<sub>2</sub> and CO<sub>2</sub> to see if the problem would go away. Unfortunately, it continued to be a problem. We concluded that more than one of the bed's retention screens must have been breached, allowing sorbent to escape. It was during this time, the state of New York heavily restricted travel from

other states including Colorado, which require us to do 2-week quarantine before we get on-site and we determined there was not enough time to make a trip to fix the issues. Also, Praxair required the space that our system was using to start up a new project they had for their OTM. It was determined that the system needed to be decommissioned and shipped back to Colorado. In early December, 2020 the system was disconnected, shrink wrapped and shipped back to Colorado where it resides on TDA's property.



Figure 68. Carbon dust accumulation downstream.

#### CFD Model Validation with Field Test Data:

With the calibrated CFD model setup from 2018 as the basis of simulation, the following changes in system operating conditions were modeled to approximate that of the operating test at a Praxair facility in September 2020 (Figure 69). These conditions include:

**Inlet syngas** had the average properties outlined in Table 9 below, during the 4.0 minute adsorption step. As compared to the calibration scenario (appendix), this case has a greater syngas flow rate (~1.5X) and greater concentration of CO (~2.0X), thus the maximum spray cooling necessary to absorb the WGS heat release is greater, at approximately 1.15 kW (~2.0 kg/h of cooling water).

**Water injection** is performed at the lowest injector only (middle and upper injectors are disabled), timed with the adsorption step only. Using a MW085 spray nozzle, the BETE MicroWhirl®, water is injected at 867 psig which per the nozzle's specification sheet corresponds to approximately 5.6 kg/h with a cone-shaped fog. Presumably this spray is in

excess of the aforementioned estimated cooling need to provide excess water to drive the WGS reaction.

**Regeneration steam**, while not used in this current analysis focusing on the adsorption step only, drives the sorbent regeneration step for 3.5 minutes each cycle with 100 SLPM of 50 psig steam at an inlet temperature of 110°C.

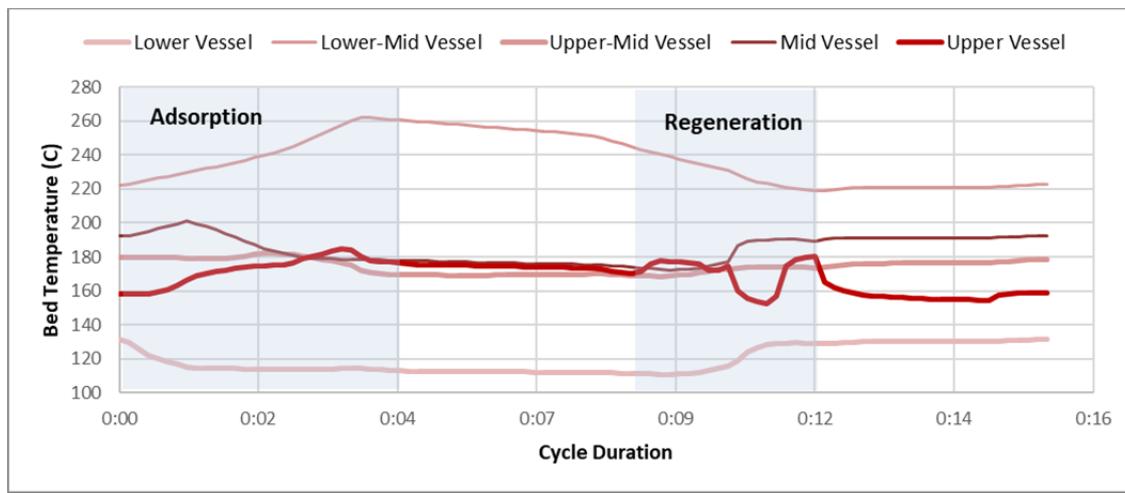



Figure 69. Chart of Bed Temperatures from Field Dataset for Full Cycle (9/20)

Using the calibrated model and these operating conditions, GTI ran a series of steady state

Table 9. Boundary Conditions from Current Model.

| Case           | Syngas Flow Rate (SLPM) | CO2 % | CO % | H2O % | H2 % | CH4 % | Inlet Temp. (°C) | Bed Pressure (PSIG) |
|----------------|-------------------------|-------|------|-------|------|-------|------------------|---------------------|
| Praxair (9/20) | 415 SLPM                | 16.6  | 9.3  | 1.0   | 73.1 | 0     | 130              | 324                 |

simulations to investigate the “worst case” scenario as with the 2018 update. The sequence of simulations began with a baseline step (no spray cooling or WGS), then added WGS reactions and gradually increased the spray mass flow rate to ensure numerical stability due to issues noted previously, including backflow and disproportionately high sorption rates at the inlet section. Figure 70 shows the comparison of the

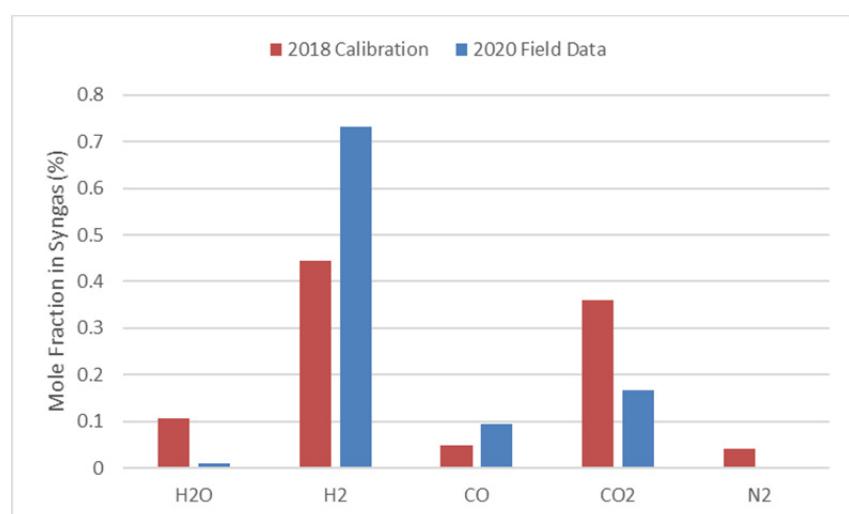



Figure 70. Comparing Inlet Syngas Composition.

synthesis gas composition used in our original CFD model calibration from tests at TDA in 2018 and the Praxair Tests in the Second Test Campaign in 2020.

The resulting sorbed CO<sub>2</sub> in the sorbent sections is shown in Figure 72, for the case with and without active spray cooling at the lowest level per above. Here, we can see that the impact of spraying from zero (left), to low spray (~50% of target), to high spray case (target flow) is not as significant as one would expect, the net volume of sorbed CO<sub>2</sub> in these cases at the peak case does not change substantially. These steady state solutions represent the peak sorption levels, primarily a function of bed temperatures for a given inlet concentration, and do not represent expected sorption levels for a cycling, multi-bed system. This is due to the fact the PraxairField tests during the second campaign was run with longer cycle times.

Figure 71 highlights the visualization of the spray which per the field dataset and resulting assumptions operates with a significantly higher throughput as compared to the original calibration dataset by a factor of ~20X. This significantly higher throughput, longer/narrower orifice, and higher source pressure pushes the limits of the embedded *plain orifice atomizer* model within the discrete phase particle modeling module. This modeling approach, originally calibrated in the aforementioned 2018 study, focused on calibrating the three spray nozzles to the expected level of cooling and WGS reaction heat absorption. This approach outlined in a prior update included an investigation of sensitivity of the *plain orifice atomizer* model parameters, including C<sub>A</sub>, L/D of the nozzle, total flow rate, and investigating the impact of gravity vs. syngas flow rate. While the range of C<sub>A</sub> and the modeling of gravity is fed forward to this case here, the boundary conditions impacting L/D and total flow rate are much higher than from the calibration dataset, ~8X and ~20X higher respectively. As noted, this extends beyond the structured limitations of the *plain orifice atomizer* due to the dynamic of droplet size distribution, cavitation, and other factors. Therefore, future modeling efforts should address the limitations of the orifice assumptions in the current model. There are 10 alternative models possible within the CFD code in addition to customized approaches (as were applied to CO<sub>2</sub> sorption).

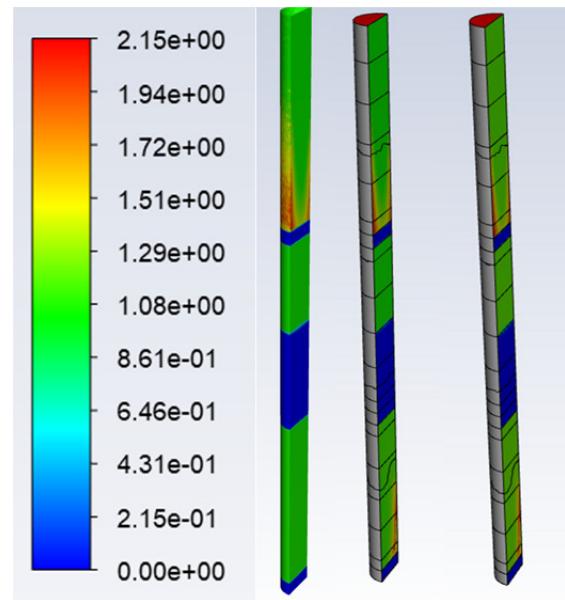



Figure 72. Steady State Sorbed CO<sub>2</sub> without (Left) and with Spray Cooling in Low (Mid) and High Case (Right) [mol CO<sub>2</sub>/kg sorbent].

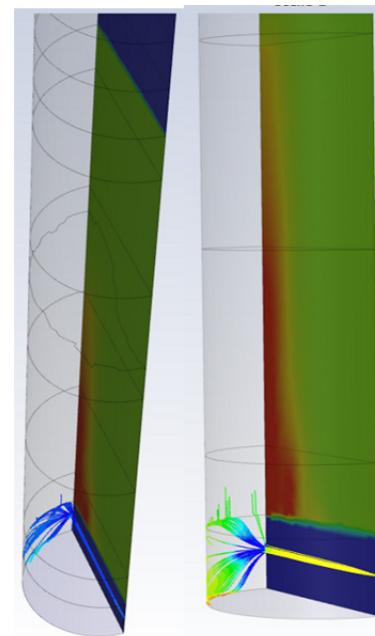



Figure 71. Spray Shown in Lower Reactor for Low and High Cases (Left/Right).

### 5.17 Tasks 7, 13, and 18. Long-Term durability Tests

Test System: We used an existing flow apparatus to evaluate the performance of the materials under representative conditions (Figure 73). The materials were exposed to a mixture of  $H_2$ ,  $CO$ ,  $CO_2$ ,  $H_2O$ , and  $N_2$ . Electronic mass flow controllers were used to introduce the gas streams of  $H_2$ ,  $CO$ ,  $CO_2$ , and  $N_2$ .  $H_2O$  was introduced into the system with a high-pressure liquid pump.

Prior to testing, these gases are heated to about  $160^\circ C$  and mixed before entering the reactor. The system

pressure is controlled with a Badger pressure control valve located at the downstream of the bed. The feed gas mixture is either directed through the sorbent/catalyst bed or through a by-pass loop for the analysis of the feed gas. The system is further plumbed so that the material can be tested by adsorbing with the gases entering from the top of the reactor and regenerating with a counter-current flow, or with the both the adsorption and regeneration gases from the top down.

The gas stream exiting the module or by-pass loop was then directed NOVA analyzer to determine the  $CO_2$ ,  $CO$ ,  $CH_4$  and  $H_2$  levels. In later testing a California Analyzer was used instead for  $CO_2$  and  $CO$ . Labview software was used to control the apparatus and provided us unattended operation capability, including tests overnight. Safety precautions were in place and in case of overheating, over pressurization, or hazardous gas leak, both hardware and software will automatically shutdown the system.

Material Cycling: Prior to testing the combined sorbent and catalyst bed, the sorbent itself was cycled over 1500 times in  $N_2$  and  $CO_2$ . This testing was done in advance to develop the programing for the system. After this testing was completed, some of the sorbent was removed and replaced with the catalyst. Half the catalyst was placed at the top of the bed and the other half was mixed with the remaining sorbent in a layer underneath.

Once the combined material was loaded the initial cycles were done in  $N_2$  and  $CO_2$  (cycles 1-~500 in Figure 74).  $H_2$ ,  $CO$  and  $H_2O$  were then added to the mixture (adsorb: 45-50%  $H_2$ , 30%  $CO_2$ , 7%  $H_2O$ , 2-4%  $CO$  and balance  $N_2$ , regen: 25%  $H_2O$ , and balance  $N_2$ ) and the initial adsorptions were done at 300 psig and the regenerations at 50 psig. The bed temperature has been maintained at  $\sim 200^\circ$  throughout the testing. (The adsorption temperature and regeneration profiles are given in Figure 75.). The  $CO_2$  loadings are calculated using only the inlet  $CO_2$ , not adding in the  $CO_2$  formed by the water gas shift reaction. Other minor changes made to the testing are show in the event log (Figure 77).



Figure 73. Picture of the test apparatus.

At cycle ~2000, we dropped the adsorption pressure to 150psig. At cycles 22,761 and 30,072 the pressure was again raised to 300 psig for periods of testing.

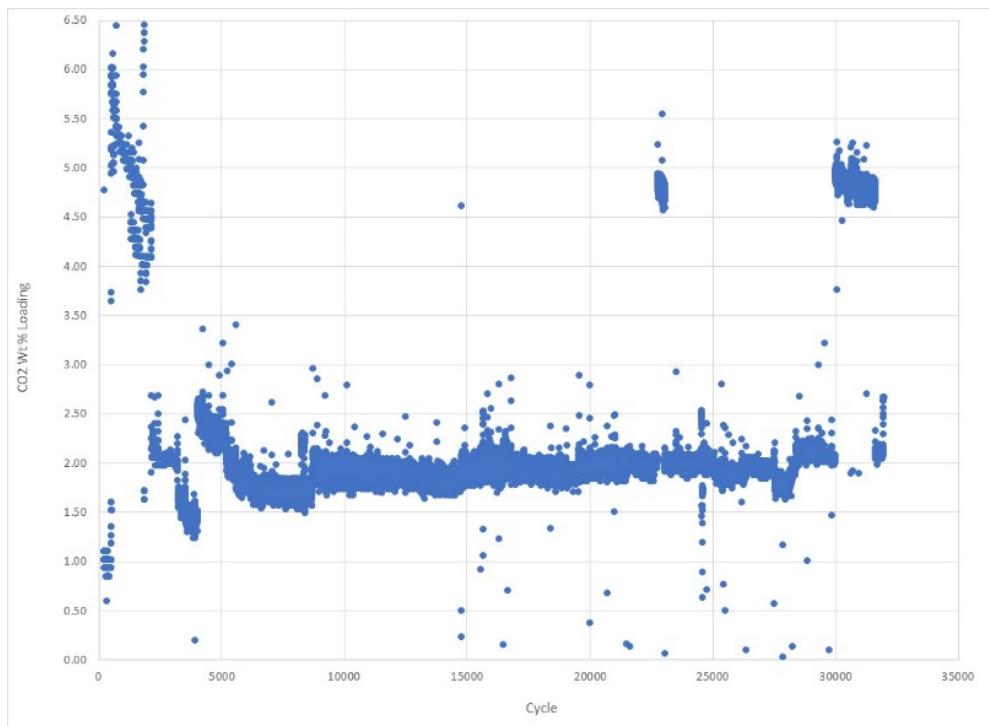



Figure 74. CO<sub>2</sub> loading in sorbent/catalyst cycling data.

Between cycles 25,363-26,350 we increased the CO inlet to 6% (lowering the CO<sub>2</sub> to maintain the carbon inlet) and increased the water (lowering the N<sub>2</sub> to maintain the total flow.) This didn't appear to harm the material, the performance constant when the CO was returned to the original inlet.

We also looked at the influence of water level in the regeneration gas increasing the inlet from the 33% H<sub>2</sub>O used in the majority of the testing to 50% between cycles 27,516 and 28,373. The bed's performance remained largely stable maintaining a CO<sub>2</sub> working capacity of 2% wt. CO<sub>2</sub> over the 31,600 cycles that were carried out in total.

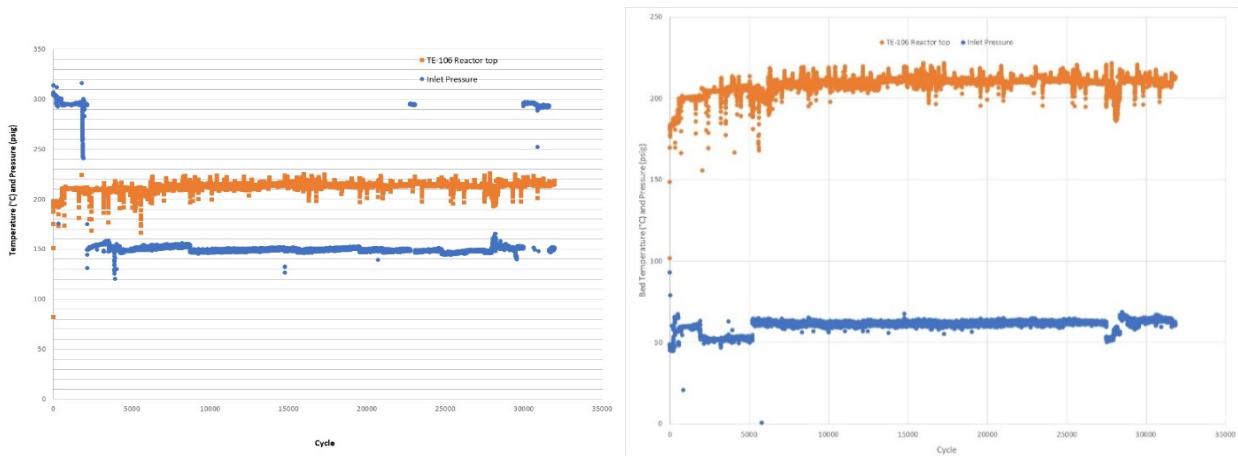



Figure 75. Adsorption (left) and regeneration (right) temperature and pressure.

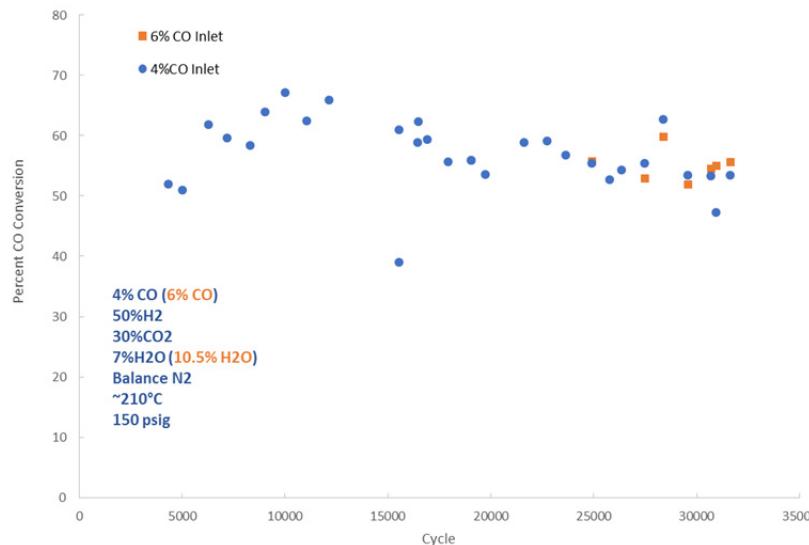



Figure 76. WGS catalyst activity during the long-term durability test of integrated WGS catalyst/CO<sub>2</sub> sorbent bed in bench-scale.

We also carried out tests intermittently to verify that the WGS catalyst maintained its activity by carrying out extended cycle tests that had a 15 min long adsorption step. In these tests we verified that the CO conversion remained the same between 50-60% after CO<sub>2</sub> breakthrough as we cycled the sorbent. In these tests the sorbent bed was saturated with CO<sub>2</sub> and the steady state conversion after the 15 min is reported. Hence, the CO conversion was much lower than those observed during the shorter cycles. In the shorted cycles during the long-term durability tests where we operate the sorbent bed to CO<sub>2</sub> breakthrough, the CO<sub>2</sub> sorbent shifts the WGS reaction equilibrium thereby allowing us to achieve CO conversion in excess of 95%. Figure 76 shows the CO conversion with a simulated syngas composition of 4% CO, 50% H<sub>2</sub>, 30% CO<sub>2</sub>, 7% H<sub>2</sub> in balance N<sub>2</sub> at 210°C and 150 psig. The data shown in square symbols were those extended cycles where we had 6% CO and 10.5% H<sub>2</sub>O in the simulated syngas stream.

| Cycle     | Event                                                                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Start N2 and CO2 Cycles, adjust cycle parameters                                                                                                                                                                 |
| 228       | Reduced Catalyst                                                                                                                                                                                                 |
| 232       | Start N2 and CO2 Cycles                                                                                                                                                                                          |
| 312       | Begin adding H <sub>2</sub> to the mixture                                                                                                                                                                       |
| 320       | Add CO <sub>2</sub> to the mixture                                                                                                                                                                               |
| 369       | Add CO <sub>2</sub> to the mixture, change regen to 33% H <sub>2</sub> O, 67% N <sub>2</sub>                                                                                                                     |
| 712       | Vent shut down, furnace temp increased a couple degrees                                                                                                                                                          |
| 1632      | Testing paused to re-wire alarms, restarted                                                                                                                                                                      |
| 1879      | H <sub>2</sub> cylinder runs low                                                                                                                                                                                 |
| 1913      | Replace H <sub>2</sub> Cylinder                                                                                                                                                                                  |
| 2161      | Change adsorption pressure to 150psig                                                                                                                                                                            |
| 2292      | Take bypass, check catalyst activity, wind, wind                                                                                                                                                                 |
| 2431      | Power bump, restart                                                                                                                                                                                              |
| 2788      | Recalibrate pump, flow low                                                                                                                                                                                       |
| 3211      | Power bump, restart                                                                                                                                                                                              |
| 3527      | Power bump, restart                                                                                                                                                                                              |
| 3693      | H <sub>2</sub> cylinder begins to run low                                                                                                                                                                        |
| 3914      | Replace H <sub>2</sub> cylinder                                                                                                                                                                                  |
| 3926      | Taking bypasses, flows off, Calibrate CO, CO2 MFCs, not significantly off                                                                                                                                        |
| 4036      | Calibrate N <sub>2</sub> and H <sub>2</sub> MFCs, H <sub>2</sub> significantly high, flow 1.5X expected                                                                                                          |
| 4244      | Power bump, restart                                                                                                                                                                                              |
| 4422      | Take bypass, check catalyst activity, wind, wind, restart                                                                                                                                                        |
| 4518      | Power bump, restart                                                                                                                                                                                              |
| 5031      | Take bypass, check catalyst activity                                                                                                                                                                             |
| 5055      | Vent alarm shut down, wind, wind, restart                                                                                                                                                                        |
| 5182      | Change sequence to drain every five cycle                                                                                                                                                                        |
| 5190-5200 | Change regeneration gas condition from 1.5ml N <sub>2</sub> , 0.5ml H <sub>2</sub> O (25% H <sub>2</sub> O), increasing water to 1.5ml (40% H <sub>2</sub> O), then N <sub>2</sub> to 2ml (33% H <sub>2</sub> O) |
| 5247      | Restart Cycles after power shut down                                                                                                                                                                             |
| 5348      | Decrease furnace temperature 2°C to 220°C                                                                                                                                                                        |
| 5413      | Restart Cycles after power shut down                                                                                                                                                                             |
| 5596      | Replaced analyzer and restarted                                                                                                                                                                                  |
| 5850      | CO off                                                                                                                                                                                                           |
| 6167      | CO back on                                                                                                                                                                                                       |
| 6182      | Replace CO analyzer                                                                                                                                                                                              |
| 6299      | Take bypass, check catalyst activity                                                                                                                                                                             |
| 6315      | Calibrate Pump and CO, CO2 analyzer                                                                                                                                                                              |
| 6738      | Change the regen cut off from 0.5% CO <sub>2</sub> to 0.6% CO <sub>2</sub>                                                                                                                                       |
| 7061      | Restart Cycles after power shut down                                                                                                                                                                             |
| 7213      | Change the regen cut off from 0.6% CO <sub>2</sub> to 0.7% CO <sub>2</sub>                                                                                                                                       |
| 7215      | Take bypass, check catalyst activity                                                                                                                                                                             |
| 8200-8400 | Decrease furnace temperature, increase pump flow, intermittent pump flow?                                                                                                                                        |
| 8338      | Take bypass, check catalyst activity                                                                                                                                                                             |
| 8732      | Restart Cycles after safety shut down (not associated with this testing)                                                                                                                                         |
| 8733      | Calibrate Pump and CO, CO <sub>2</sub> analyzer, MFCs                                                                                                                                                            |
| 8890      | Restart Cycles after power shut down                                                                                                                                                                             |
| 8891      | Decrease furnace temperature 2°C to 220°C (not associated with this testing)                                                                                                                                     |
| 9041      | Take bypass, check catalyst activity                                                                                                                                                                             |
| 9235      | Restart Cycles after safety shut down (not associated with this testing)                                                                                                                                         |
| 9254      | Restart Cycles after safety shut down (not associated with this testing)                                                                                                                                         |
| 10022     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 10102     | Restart Cycles after power outage                                                                                                                                                                                |
| 10242     | Decrease furnace temperature 2°C to 220°C, Recalibrate CO/CO <sub>2</sub> analyzer                                                                                                                               |
| 10299     | Restart Cycles after power outage                                                                                                                                                                                |
| 11052     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 12165     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 12478     | Restart Cycles after power outage                                                                                                                                                                                |
| 12664     | Recalibrate CO/CO <sub>2</sub> analyzer                                                                                                                                                                          |
| 13783     | Decrease furnace temperature 2°C to 220°C                                                                                                                                                                        |
| 14269     | Replace H <sub>2</sub> MFC (previous MFC gradually increasing flow), adjust mixture from 1 slm to 0.925 slm H <sub>2</sub> and increase N <sub>2</sub> flow for balance                                          |
| 14922     | Calibrate CO and CO <sub>2</sub> analyzer                                                                                                                                                                        |
| 15397     | Decrease furnace temperature 2°C to 220°C                                                                                                                                                                        |
| 15541     | Take bypass, check catalyst activity, Recalibrate H <sub>2</sub> MFC                                                                                                                                             |
| 15652     | Restart Cycles after safety shut down, clean and recalibrate pump                                                                                                                                                |
| 15976     | Calibrate analyzer, increase furnace temperature 2°C to 220°C                                                                                                                                                    |
| 16307     | Restart Cycles after power outage                                                                                                                                                                                |
| 16462     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 16467     | Calibrate CO and CO <sub>2</sub> MFCs, Calibrate analyzer                                                                                                                                                        |
| 16474     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 16512     | Restart Cycles after safety shut down, install new pump                                                                                                                                                          |
| 16531     | Replace pump, check catalyst activity                                                                                                                                                                            |
| 16782     | Restart Cycles after power outage                                                                                                                                                                                |
| 16939     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 17296     | Furnace Temperature dropped 2°C to 220°C, Regen pump flow adjusted to flow correctly                                                                                                                             |
| 17942     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 18398     | Restart Cycles after power outage                                                                                                                                                                                |
| 18874     | Decrease furnace temperature 2°C to 220°C, day                                                                                                                                                                   |
| 19041     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 19042     | Change pump and prime                                                                                                                                                                                            |
| 19061     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 19358     | Adjust pump flow                                                                                                                                                                                                 |
| 19386     | Adjust pump flow                                                                                                                                                                                                 |
| 19387     | Adjust pump flow                                                                                                                                                                                                 |
| 19388     | Calibrate analyzer, H <sub>2</sub> , N <sub>2</sub> and CO <sub>2</sub> MFC                                                                                                                                      |
| 19575     | Restart Cycles after safety shut down (not associated with this testing)                                                                                                                                         |
| 19733     | Calibrate analyzer                                                                                                                                                                                               |
| 19752     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 20697     | Computer stopped recording data, memory full                                                                                                                                                                     |
| 20889     | Replace all but shut down, leak from drain                                                                                                                                                                       |
| 21209     | Power pump, calibrate MFCs and restart                                                                                                                                                                           |
| 21487     | Calibrate analyzer                                                                                                                                                                                               |
| 21626     | Take bypass, check catalyst activity, adjust adsorption water flow                                                                                                                                               |
| 22820     | Adjust pump flow                                                                                                                                                                                                 |
| 22760     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 22761     | Start 100psig cycles                                                                                                                                                                                             |
| 23203     | Restart after alarm                                                                                                                                                                                              |
| 23057     | Calibrate analyzer and H <sub>2</sub> MFC                                                                                                                                                                        |
| 23058     | Start 150psig cycles                                                                                                                                                                                             |
| 23501     | Power bump, restart                                                                                                                                                                                              |
| 23551     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 23999     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 24337     | Pump begins to lose prime                                                                                                                                                                                        |
| 24607     | Pump re-primed                                                                                                                                                                                                   |
| 24767     | Take bypass, check catalyst activity, calibrations off                                                                                                                                                           |
| 24767     | Recalibrate analyzer, CO, CO <sub>2</sub> , H <sub>2</sub> and N <sub>2</sub> MFCs                                                                                                                               |
| 24903     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 25064     | CO2 flow set incorrectly, adjust from 29% to 28%, adjust N <sub>2</sub> balance                                                                                                                                  |
| 25363     | Power bump, restart ENCO test                                                                                                                                                                                    |
| 25421     | Rig memory fills, stops collecting data                                                                                                                                                                          |
| 25422     | Restart rig and re-start data collection                                                                                                                                                                         |
| 25505     | Restart Cycles after safety shut down (not associated with this testing)                                                                                                                                         |
| 25693     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 26661     | Recalibrate CO, CO <sub>2</sub> , H <sub>2</sub> and N <sub>2</sub> MFCs, adjust pump flow                                                                                                                       |
| 26795     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 26196     | Power bump                                                                                                                                                                                                       |
| 26350     | Take bypass, check catalyst activity, Switch back to 4% CO condition                                                                                                                                             |
| 26685     | Calibrate analyzer                                                                                                                                                                                               |
| 27093     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 27484     | Recalibrate CO, CO <sub>2</sub> , H <sub>2</sub> and N <sub>2</sub> MFCs                                                                                                                                         |
| 27500     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 27516     | Restart after power bump, start 50%H <sub>2</sub> O regeneration condition                                                                                                                                       |
| 27844     | Power bump                                                                                                                                                                                                       |
| 28238     | Restart after alarm                                                                                                                                                                                              |
| 28534     | Take bypass, check catalyst activity, Restart 33% H <sub>2</sub> O regeneration condition                                                                                                                        |
| 28539     | Fix water drain                                                                                                                                                                                                  |
| 29309     | Restart after power bump, calibrate analyzer                                                                                                                                                                     |
| 29458     | Take bypass, check catalyst activity, calibrate MFCs                                                                                                                                                             |
| 29566     | CO <sub>2</sub> flow low, adjust regulator pressure                                                                                                                                                              |
| 29779     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 29842     | Restart after power bump                                                                                                                                                                                         |
| 29986     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 30072     | Restart after power bump, 300psig cycles                                                                                                                                                                         |
| 30073     | Adjust pump flow                                                                                                                                                                                                 |
| 30264     | Restart computer                                                                                                                                                                                                 |
| 30497     | Calibrate analyzer, H <sub>2</sub> MFC                                                                                                                                                                           |
| 30634     | Take bypass, check catalyst activity, calibrate analyzer and MFCs                                                                                                                                                |
| 30706     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 30876     | Restart computer                                                                                                                                                                                                 |
| 30965     | Take bypass, check catalyst activity                                                                                                                                                                             |
| 31260     | Calibrate analyzer and MFCs                                                                                                                                                                                      |
| 31624     | Take bypass, check catalyst activity, 150 psig cycles                                                                                                                                                            |
| 31838     | Adjust furnace temperature                                                                                                                                                                                       |

Figure 77. Event log

## 5.18 Task 17. Process Design

UCI developed the Aspen Plus V9.0 models for the IGCC power plant and the F-T liquids coproduction case with the E-Gas gasifier for the cold gas and warm gas cleanup cases. They have utilized the performance of the advanced WGS + PSA reactor from the previous completed study (DE-FE-0012048) to start this current study. An analysis of the two F-T cases is showing that the degree of shifting required is very small, about 3% of the syngas is being shifted to provide suitable feed to the PSA unit (which produces H<sub>2</sub> for the F-T liquids hydrocracking and hydrotreating operations) while the entire feed gas to the F-T synthesis unit is the unshifted gas. Due to the ability of the iron-based F-T catalyst to promote water gas shift in situ, the F-T reactor requires a relatively low H<sub>2</sub>/CO molar ratio of 1:1 to 1.1:1 (we have used a ratio of 1.05) while the raw syngas produced by the E-Gas gasifier has H<sub>2</sub>/CO molar ratio 1.015. Thus, the advantage of the combined WGS+PSA unit has a minor effect on the overall plant performance in the case of FT liquid production.

However, we observed that TDA's integrated WGS/high temperature PSA (pressure-swing adsorption)-based Warm Gas Clean-up Technology can make a substantial improvement in the IGCC plant's thermal performance when the design objective is to achieve near zero emissions, including greater than 90% carbon capture. The increase in net plant efficiency for E-Gas™ is 3.5% point compared to an IGCC power plant using E-Gas technology with cold gas capture. So, in this project UCI updated process models in AspenPlus® for the Integrated WGS precombustion carbon capture process integrated to IGCC power plant.

In this project, as part of process design and optimization, we also worked with Indigo Power Systems (IPS) to optimize the concepts and input for integration of the advanced gas turbines into the IGCC to maximize performance. These included increasing the fidelity of the gas turbine model and the conversion of the turbine in the analysis to an advanced Siemens F-class gas turbine, assessment of results (Siemens vs. GE gas turbine) and improvements to the performance and integration concepts.

### 5.18.1 Siemens F-class gas turbine in warm gas cleanup model

Integrating the Siemens F-class gas turbine, with TDA's warm gas cleanup system results in the gas turbines operating on the shaft power limit, and with expander gas flow reduced by 19%, due to a 30% reduction in gas turbine inlet mass flow. To achieve the target 16:1 pressure ratio, expander Stage 1 nozzle throat is reduced to increase the Stage 1 pressure ratio from 1.85:1 to 1.95:1. Rotor inlet temperature is reduced from the 1404°C in the cold gas cleanup case to 1378°C, due to the higher concentration of water and carbon dioxide in the expander gas. Gas turbine gross power is 490.05 MW as the gas turbines are on the shaft power limit of 500 MW, net plant power is 635.60 MW, and net plant HHV thermal efficiency is 35.90%. The higher performance vs. the GE 7F is due to increased technology level, including a higher firing temperature. Exhaust temperature is 639°C, which is nominally higher than optimal, and which will be reduced during the performance improvement investigation via increased compressor pressure ratio.

### 5.18.2 Performance improvement and integration concepts

#### Syngas pressure requirements

The simulation results for the revised syngas delivery pressure requirements, in which the nitrogen delivery pressure to the syngas mixer was reduced from 32.89 bara to 25.57 bara,

yielded performance gains of 1.28 MW in net plant output (to 636.88 MW) and 0.08% points in net plant HHV thermal efficiency (to 35.98%), both due to reduced nitrogen compressor load.

#### Syngas dilution requirements and gas turbine air integration

Incorporating full air integration, excess nitrogen injection, and extraction air heat recovery into the previous case Siemens F-class IGCC with TDA's warm gas cleanup resulted in substantial performance improvement. Net plant output increased over 80 MW to 718.50 MW, and net plant HHC thermal efficiency increased 0.58% points to 36.56%. In addition to the performance improvement, the use of 100% air integration eliminates the air separation unit compressors and combines both ASU's into a single unit, both of which should yield reduced plant cost. The extraction air heat recovery configuration is shown in Figure 78 below. The gas turbines hardware is fully utilized, operating at the shaft power limit, and within 2% of the inlet flow limit.

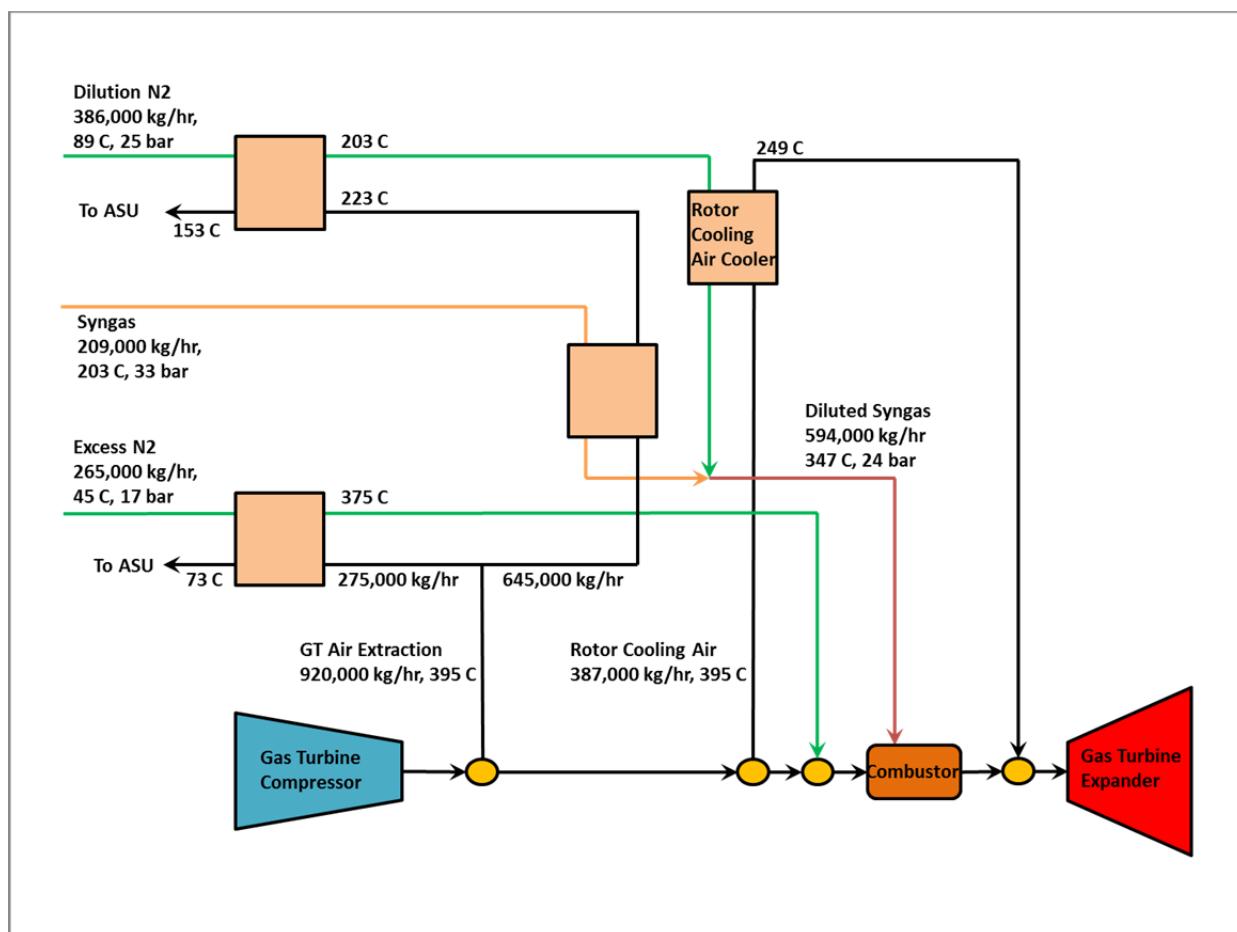



Figure 78. Air Integration - Extraction air heat recovery configuration.

#### Gas turbine pressure ratio

In the Siemens F-class turbine integrated with TDA's warm gas system, we updated syngas pressure requirements, and included full air integration, excess nitrogen injection, extraction air heat recovery, and with gas turbine pressure ratio increased to the 18.9:1 value of the original natural gas-fired Siemens F-class case. The simulation results indicate a loss in net plant output of 23.52 MW (to 694.97 MW) and a loss in net plant HHV thermal efficiency of 0.02% points (to 36.54%).

These results indicate that the optimal gas turbine pressure ratio is close to 16:1. In typical combined cycles, the optimal gas turbine pressure ratio occurs near that for a minimum approach to the first steam super-heater, but since we have air integration heat recovery, the effects of pressure ratio on that portion of the system cause the optimal pressure ratio to be lower. In particular, the increased pressure ratio caused additional unrecoverable heat loss in the extraction air heat recovery system.

#### Assessment of Results

The performance results are summarized in Table 10 below. The highest performance is achieved by Case A2 - Siemens F-class gas turbine with revised syngas pressure, full air integration, excess nitrogen injection, and extraction air heat recovery. This configuration yields advantages of 163.57 MW in net plant output and 1.96 percentage points in net plant thermal efficiency over the base Case A with GE 7F gas turbine and no air integration.

Table 10. Performance summary.

| Case      | Case Description                                            | Pressure Ratio | RIT (°C)    | EGT (°C)   | Gas Turbine Gross Power (MW) | Net Plant Power (MW) | Net Plant HHV Thermal Efficiency (%) |
|-----------|-------------------------------------------------------------|----------------|-------------|------------|------------------------------|----------------------|--------------------------------------|
| A         | GE 7F, Warm Gas Cleanup                                     | 16             | 1307        | 558        | 433.54                       | 554.93               | 34.60                                |
| A1        | Siemens SGT6-5000F, Warm Gas Cleanup                        | 16             | 1378        | 639        | 490.05                       | 635.60               | 35.90                                |
| A1'       | Case A1 + Revised Syngas Pressure                           | 16             | 1378        | 639        | 490.05                       | 636.88               | 35.98                                |
| <b>A2</b> | <b>Case A1' + 100% Air Integration, Excess N2 Injection</b> | <b>16</b>      | <b>1380</b> | <b>622</b> | <b>490.05</b>                | <b>718.50</b>        | <b>36.56</b>                         |
| A3        | Case A2 with original natural gas-fired pressure ratio      | 18.9           | 1382        | 593        | 489.93                       | 694.97               | 36.54                                |

The performance 'pathway' from Case A to Case A2 is shown schematically in the performance tracking plot of Figure 79 below.

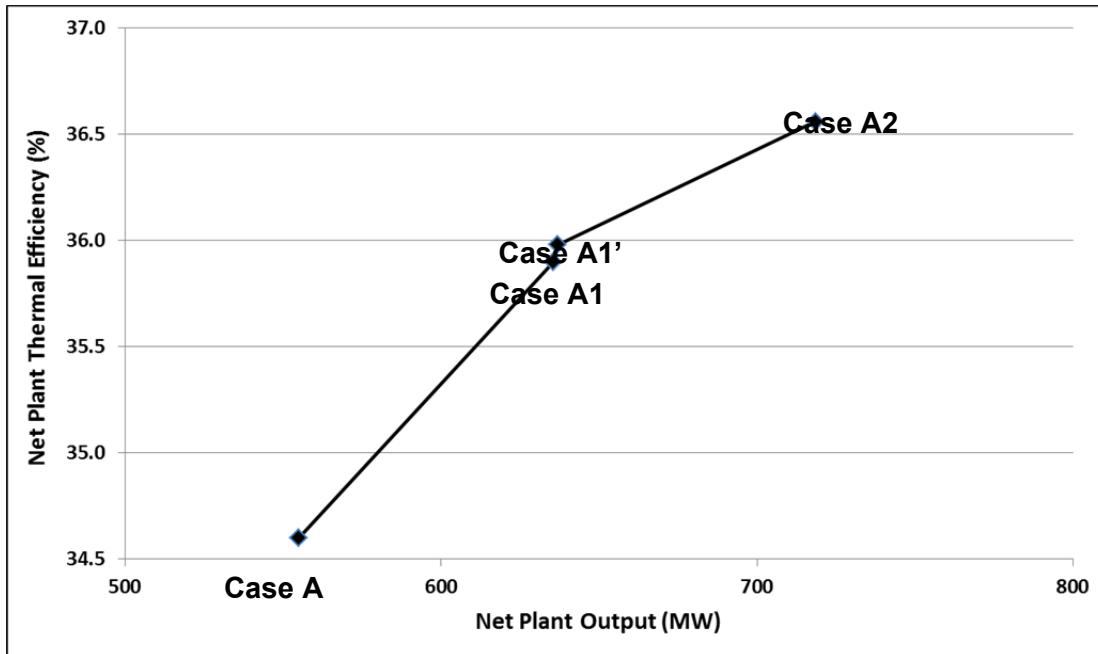



Figure 79. Performance tracking plot.

### 5.18.3 System Sizing and Costing

We completed the sizing and costing for the full scale combined WGS with CO<sub>2</sub> capture system. The results obtained for a design pressure of 39.4 bar and a design temperature of 260°C for a synthesis gas flow rate of 27,000 kmol/h containing 4.6% CO and 25.4% CO<sub>2</sub> achieving an overall CO conversion of 96+% is summarized in Table 11. The cost analysis was completed following DOE guidelines on a \$2011 basis.

Table 11. Cost of the combined WGS with CO<sub>2</sub> capture system on \$2011 basis.

| Item/Description                                | Scale          | \$ 1,000      | Contingencies |          |              |          | \$ 116,117 |           |                  |
|-------------------------------------------------|----------------|---------------|---------------|----------|--------------|----------|------------|-----------|------------------|
|                                                 | Equipment Cost | Material Cost | Labor         |          | Erected Cost | Eng Fee  | Process    | Project   | Total Plant Cost |
|                                                 |                |               | Direct        | Indirect |              |          |            |           | \$/kW            |
| <b>Vessels</b>                                  |                |               |               |          |              |          |            |           |                  |
| CO <sub>2</sub> Adsorption Vessels/Accumulators | \$ 19,996      | \$ 20,536     | \$ 19,436     |          | \$ 59,968    | \$ 5,997 | \$ 11,994  | \$ 14,992 | \$ 92,951        |
| Vessel Internals                                | \$ 2,565       |               |               |          | \$ 2,565     | \$ 257   | \$ 513     | \$ 641    | \$ 3,976         |
| <b>Vessel Valves</b>                            |                |               |               |          |              |          |            |           |                  |
| Vessel Valves                                   | \$ 2,363       |               | \$ 473        |          | \$ 2,836     | \$ 284   | \$ 567     | \$ 709    | \$ 2,363         |
| Train Isolation Valves                          | \$ 159         |               |               |          | \$ 159       | \$ 16    | \$ 32      | \$ 40     | \$ 159           |
| Spares                                          | \$ 129         |               |               |          | \$ 129       | \$ 13    | \$ 26      | \$ 32     | \$ 129           |
| Pressure Relief                                 | \$ 211         |               | \$ 42         |          | \$ 253       | \$ 25    | \$ 51      | \$ 63     | \$ 211           |
| <b>Compressor System</b>                        |                |               |               |          |              |          |            |           |                  |
| Recycle Compressors                             | \$ 5,018       | \$ 1,355      | \$ 1,480      |          | \$ 7,854     | \$ 785   | \$ 1,571   | \$ 1,963  | \$ 12,173        |
| Compressor Valves                               | \$ 98          |               |               |          | \$ 98        | \$ 10    | \$ 20      | \$ 25     | \$ 153           |
| Water Knockout                                  | \$ 170         | \$ 175        | \$ 165        |          | \$ 510       | \$ 51    | \$ 102     | \$ 128    | \$ 791           |
| <b>Heat Exchangers</b>                          |                |               |               |          |              |          |            |           |                  |
| Shell and Tube                                  | \$ 75          | \$ 53         | \$ 46         |          | \$ 174       | \$ 17    | \$ 35      | \$ 43     | \$ 269           |
| Valves                                          | \$ 197         |               |               |          | \$ 197       | \$ 20    | \$ 39      | \$ 49     | \$ 305           |
| <b>Water Injection System</b>                   |                |               |               |          |              |          |            |           |                  |
| High Pressure Water Pumps                       | \$ 447         | \$ 313        | \$ 303        |          | \$ 1,063     | \$ 106   | \$ 213     | \$ 266    | \$ 1,648         |
| Injection Valves                                | \$ 159         | \$ 111        | \$ 32         |          | \$ 302       | \$ 30    | \$ 60      | \$ 75     | \$ 468           |
| Nozzles/Piping                                  | \$ 240         | \$ 48         | \$ 48         |          | \$ 336       | \$ 34    | \$ 67      | \$ 84     | \$ 521           |

Figure 80 shows the distribution of the system cost between various subsystems. The vessel cost is the primary driver for the overall cost of the system. We also carried out sensitivity analysis varying the CO to CO<sub>2</sub> ratio and observed that very high CO to CO<sub>2</sub> ratio's the cost of combined WGS system start increasing (Figure 81).

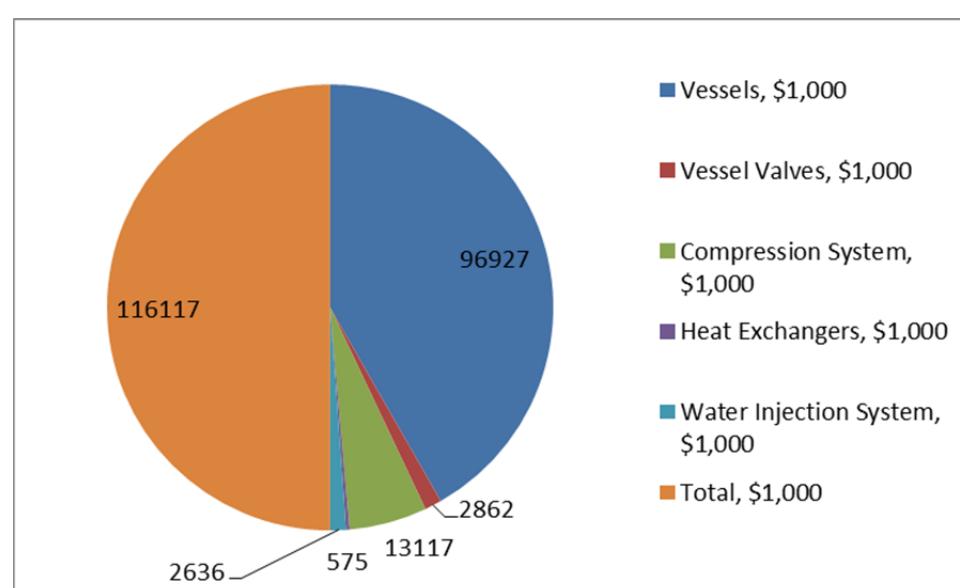



Figure 80. Cost distribution for various sub-system in the combined WGS with CO<sub>2</sub> capture (reported in \$2011 basis on a \$1,000 scale)

## Preliminary TEA

We completed the process design for the combined WGS based pre-combustion  $\text{CO}_2$  capture system integrated to the IGCC power plant operating on coal based E-Gas<sup>TM</sup> gasification system (Milestone 3-3). The system efficiency with preliminary cost numbers on a \$2011 basis is provided in Table 12. For comparison the net plant efficiency and cost of capture numbers for the E-Gas<sup>TM</sup> gasification system operating on Illinois No. 6 bituminous coal integrated with regular state-of-the-art cold gas and

TDA's warm gas clean-up based  $\text{CO}_2$  capture system (without integration with WGS) are provided. We see that the net plant efficiency was the highest for TDA's warm gas capture system when integrated with the last water gas shift stage at 34.7% vs 34.1% for the warm gas capture based system when it is not integrated with the WGS step. The increase in heat rate for the integrated WGS carbon capture system is about 12% over the cold gas cleanup based carbon system (Selexol<sup>TM</sup>). The cost of carbon capture including TS&M is estimated to be \$35.8 per tonne (\$25.8 per tonne when excluding the TS&M costs) for the integrated WGS based capture system. This is lower than DOE target for transformational carbon capture technologies of \$30 per tonne excluding TS&M costs.

Table 12. Comparison of different  $\text{CO}_2$  capture system with E-Gas<sup>TM</sup> based IGCC power plants. Rev. 2a - \$2011 cost basis

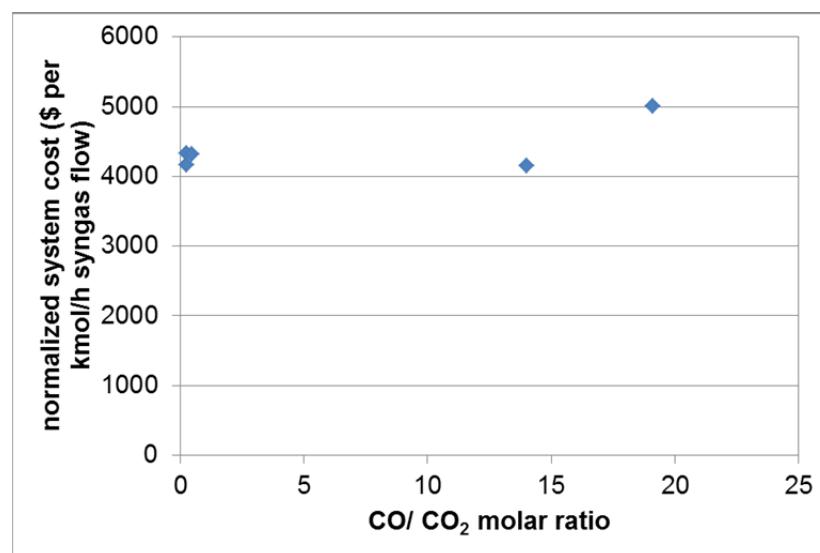



Figure 81. Normalized system cost per unit syngas flow as a function of CO/CO<sub>2</sub> molar ratio.

| Gasifier Type/Make                         | E-Gas                                     |                                                   |                                                   |
|--------------------------------------------|-------------------------------------------|---------------------------------------------------|---------------------------------------------------|
|                                            | 1                                         | 2                                                 | 2* (WGS/CO <sub>2</sub> )                         |
| Case                                       | 1                                         | 2                                                 | 2* (WGS/CO <sub>2</sub> )                         |
| CO <sub>2</sub> Capture Technology         | Cold Gas Cleanup<br>Selexol <sup>TM</sup> | Warm Gas Cleanup<br>TDA's CO <sub>2</sub> Sorbent | Warm Gas Cleanup<br>TDA's CO <sub>2</sub> Sorbent |
| CO <sub>2</sub> Capture, %                 | 90                                        | 90                                                | 90                                                |
| Gross Power Generated, kW                  | 710,789                                   | 670,056                                           | 693,542                                           |
| Gas Turbine Power                          | 464,000                                   | 425,605                                           | 427,980                                           |
| Steam Turbine Power                        | 246,789                                   | 244,450                                           | 265,562                                           |
| Syngas Expander Power                      | -                                         | -                                                 | -                                                 |
| Auxiliary Load, kW                         | 194,473                                   | 124,138                                           | 138,741                                           |
| Net Power, kW                              | 516,316                                   | 545,917                                           | 554,801                                           |
| Net Plant Efficiency, % HHV                | 31.0                                      | 34.1                                              | 34.7                                              |
| Coal Feed Rate, kg/h                       | 220,549                                   | 212,265                                           | 212,265                                           |
| Raw Water Usage, GPM/MW                    | 10.9                                      | 10.3                                              | 10.0                                              |
| Total Plant Cost, \$/kW                    | 3,464                                     | 3,042                                             | 2,990                                             |
| COE without CO <sub>2</sub> TS&M, \$/MWh   | 136.8                                     | 120.5                                             | 118.8                                             |
| COE with CO <sub>2</sub> TS&M, \$/MWh      | 145.7                                     | 128.6                                             | 126.7                                             |
| Cost of CO <sub>2</sub> Captured, \$/tonne | 53.2                                      | 37.4                                              | 35.8                                              |

## 5.19 Task 22. System Analysis

As part of the subcontract work, the Advanced Power and Energy Program (APEP) of the University of California, Irvine (UCI) has evaluated the combined water gas shift (WGS) reaction and high temperature pressure swing adsorption (PSA)-based CO<sub>2</sub> capture process being developed by TDA in IGCC and Fischer-Tropsch (F-T) liquids production plants. Process system simulations to assess the performance, cost and economics of this novel syngas decarbonization process for pre-combustion CO<sub>2</sub> capture technology applications ("Warm Gas Cleanup" cases) were made. The relative advantages in terms of performance and costs are compared to state-of-the-art conventional technology ("Cold Gas Cleanup" cases). Both E-Gas™ type (will simply be identified as "E-Gas") and General Electric's GEP type (will simply be identified as "GEP") gasifier cases with a bituminous coal were evaluated in IGCC applications. Coproduction of synthetic fuels (and chemicals) is gaining significant attention due to the synergy between electricity generation and coproduction, especially with intermittent renewables supplying a larger fraction of power to the grid. Coproduction of F-T liquids was evaluated with the E-Gas gasifier, again with Cold Gas Cleanup and with Warm Gas Cleanup. Detailed Techno-economic analysis results are provided in Appendix A.

### 5.19.1 IGCC Cases

Comparing the two E-Gas cases, the heat rate with the Warm Gas Cleanup employing TDA's combined WGS and CO<sub>2</sub> PSA reactor is 10.3% lower, while at the same time the plant cost on a \$/kW is reduced by about 12.7%, resulting in a decrease in the COE (with CO<sub>2</sub> TS&M costs included) by about 12.6%. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$26/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$43/tonne. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the SCPC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$47/tonne, again significantly lower than that for the Cold Gas Cleanup case at \$62/tonne.

Next, comparing the two GEP cases, the heat rate with the Warm Gas Cleanup employing TDA's combined WGS and CO<sub>2</sub> PSA reactor is 8.5% lower, while at the same time the plant cost on a \$/kW is reduced by about 6% resulting in a decrease in the COE (with CO<sub>2</sub> TS&M costs included) by about 7.7%. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$28/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$38/tonne. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the SCPC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$54/tonne, again significantly lower than that for the Cold Gas Cleanup case at \$61/tonne. Improvement in efficiency over the corresponding Cold Gas Cleanup case is less pronounced when compared to the E-Gas cases because in the Warm Gas Cleanup E-Gas case, the CH<sub>4</sub> content was allowed to be higher.

These 1<sup>st</sup> year CO<sub>2</sub> capture costs compared to the supercritical pulverized coal (SCPC) power plant without CO<sub>2</sub> capture for the above Warm Gas Cleanup cases are much higher than when compared to the IGCC power plant without CO<sub>2</sub> capture. Note however, that comparison to the SCPC power plant may not be fair since this comparison does not account for the other environmental benefits that the IGCC power plant offers over the SCPC.

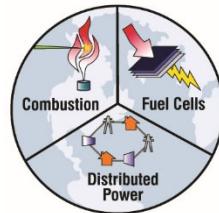
### 5.19.2 Fischer-Tropsch Cases

Both the Cold Gas Cleanup and Warm Gas Cleanup cases are designed for the same coal feed rate of 19,053 tonne/D (as received basis) consistent with the reference case summarized in DOE/NETL-2011/1477 which results in the production of 1,475 tonne/D naphtha and 3,632 tonne/D diesel in the Cold Gas Cleanup case, and 1,509 tonne/D naphtha and 3,601 tonne/D diesel in the Warm Gas Cleanup case. With the three GE 6B type gas turbine based combined cycles, the amount of excess power generated is 140 MW in the Cold Gas Cleanup case and as much as 253 MW in the Warm gas Cleanup case due to its higher efficiency. The majority of the power generated in these plants is by the steam turbine. The export power was credited at \$59.59/MWh while generating the 1<sup>st</sup> year required sales price (RSP) for the naphtha and for the diesel using the commercial fuel structure with capital charge factor of 0.218. The total plant cost for the Warm Gas Cleanup case is slightly lower than that of the Cold Gas Cleanup case (by about 1%). However, due to the significantly higher export power of the Warm gas Cleanup case, the RSP of the products is reduced over the Cold Gas Cleanup case. The RSP with CO<sub>2</sub> TS&M included was calculated to be \$120/bbl for the naphtha and \$172/bbl for the diesel in the case of Cold Gas Cleanup, and \$115/bbl for the naphtha and \$166/bbl for the diesel in the case of Warm Gas Cleanup, a decrease of more than 3% for each of these coproducts.

## **Appendix A**

Final Techno-economic Analysis

TDA's Integrated WGS precombustion carbon capture Technology


# **FINAL REPORT SUBMITTED TO TDA RESEARCH, Inc**

**Department of Energy Contract No. DE-FE-0023684**

## **Integrated Water-Gas-Shift Pre-combustion Carbon Capture Process**

**Prepared By**

**Advanced Power and Energy Program**



**University of California, Irvine**

*October 2021*

***DISCLAIMER***

*This report was prepared by the Advanced Power and Energy Program of the University of California, Irvine (UCI) as an account of work sponsored by TDA. Neither the Advanced Power and Energy Program nor TDA, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the Advanced Power and Energy Program or TDA or any agency thereof.*

## Table of Contents

|     |                                                                                 |    |
|-----|---------------------------------------------------------------------------------|----|
| 1   | Executive Summary .....                                                         | 4  |
| 1.1 | IGCC Cases.....                                                                 | 4  |
| 1.2 | Fischer-Tropsch Cases .....                                                     | 4  |
| 2   | Introduction.....                                                               | 5  |
| 3   | Study Approach .....                                                            | 5  |
| 3.1 | Process Design Basis and Methodology .....                                      | 5  |
| 4   | Process Descriptions: Electricity Only (Cases 1 through 4).....                 | 10 |
| 4.1 | Cold Gas Cleanup Cases 1 and 3 .....                                            | 10 |
| 4.2 | Warm Gas Cleanup Cases 2 and 4.....                                             | 10 |
| 5   | Process Descriptions: Fischer-Tropsch Liquids Coproduction (Cases 5 and 6)..... | 12 |
| 5.1 | Cold Gas Cleanup Case 5 .....                                                   | 12 |
| 5.2 | Warm Gas Cleanup Case 6 .....                                                   | 13 |
| 6   | Results and Discussion .....                                                    | 14 |
| 6.1 | IGCC Cases.....                                                                 | 14 |
| 6.2 | Fischer-Tropsch Cases.....                                                      | 15 |
| 7   | References and Bibliography .....                                               | 15 |

## 1 Executive Summary

As part of the subcontract work, the Advanced Power and Energy Program (APEP) of the University of California, Irvine (UCI) has evaluated the combined water gas shift (WGS) reaction and high temperature pressure swing adsorption (PSA)-based CO<sub>2</sub> capture process being developed by TDA in IGCC and Fischer-Tropsch (F-T) liquids production plants. Process system simulations to assess the performance, cost and economics of this novel syngas decarbonization process for pre-combustion CO<sub>2</sub> capture technology applications (“Warm Gas Cleanup” cases) were made. The relative advantages in terms of performance and costs are compared to state-of-the-art conventional technology (“Cold Gas Cleanup” cases). Both E-Gas™ type (will simply be identified as “E-Gas”) and General Electric’s GEP type (will simply be identified as “GEP”) gasifier cases with a bituminous coal were evaluated in IGCC applications. Coproduction of synthetic fuels (and chemicals) is gaining significant attention due to the synergy between electricity generation and coproduction, especially with intermittent renewables supplying a larger fraction of power to the grid. Coproduction of F-T liquids was evaluated with the E-Gas gasifier, again with Cold Gas Cleanup and with Warm Gas Cleanup.

### 1.1 IGCC Cases

Comparing the two E-Gas cases, the heat rate with the Warm Gas Cleanup employing TDA’s combined WGS and CO<sub>2</sub> PSA reactor is 10.3% lower, while at the same time the plant cost on a \$/kW is reduced by about 12.7% resulting in a decrease in the COE (with CO<sub>2</sub> TS&M costs included) by about 12.6%. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$26/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$43/tonne. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the SCPC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$47/tonne, again significantly lower than that for the Cold Gas Cleanup case at \$62/tonne.

Next, comparing the two GEP cases, the heat rate with the Warm Gas Cleanup employing TDA’s combined WGS and CO<sub>2</sub> PSA reactor is 8.5% lower, while at the same time the plant cost on a \$/kW is reduced by about 6% resulting in a decrease in the COE (with CO<sub>2</sub> TS&M costs included) by about 7.7%. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$28/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$38/tonne. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the SCPC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$54/tonne, again significantly lower than that for the Cold Gas Cleanup case at \$61/tonne. Improvement in efficiency over the corresponding Cold Gas Cleanup case is less pronounced when compared to the E-Gas cases because in the Warm Gas Cleanup E-Gas case, the CH<sub>4</sub> content was allowed to be higher.

These 1<sup>st</sup> year CO<sub>2</sub> capture costs compared to the SCPC without CO<sub>2</sub> capture for the above Warm Gas Cleanup cases are much higher than when compared to the IGCC without CO<sub>2</sub> capture. Note however, that comparison to the SCPC may not be fair since this comparison does not account for the other environmental benefits that the IGCC offers over the SCPC.

### 1.2 Fischer-Tropsch Cases

Both the Cold Gas Cleanup and Warm Gas Cleanup cases are designed for the same coal feed rate of 19,053 tonne/D (as received basis) consistent with the reference case summarized in DOE/NETL-2011/1477 which results in the production of 1,475 tonne/D naphtha and 3,632 tonne/D diesel in the Cold Gas Cleanup case, and 1,509 tonne/D naphtha and 3,601 tonne/D diesel in the Warm Gas Cleanup case. With the three GE 6B type gas turbine based combined cycles, the amount of excess power generated is

140 MW in the Cold Gas Cleanup case and as much as 253 MW in the Warm gas Cleanup case due to its higher efficiency. Majority of the power generated in these plants is by the steam turbine. The export power was credited at \$59.59/MWh while generating the 1<sup>st</sup> year required sales price (RSP) for the naphtha and for the diesel using the commercial fuel structure with capital charge factor of 0.218. The total plant cost for the Warm Gas Cleanup case is slightly lower than that of the Cold Gas Cleanup case (by about 1%). However, due to the significantly higher export power of the Warm gas Cleanup case, the RSP of the products is reduced over the Cold Gas Cleanup case. The RSP with CO<sub>2</sub> TS&M included was calculated to be \$120/bbl for the naphtha and \$172/bbl for the diesel in the case of Cold Gas Cleanup, and \$115/bbl for the naphtha and \$166/bbl for the diesel in the case of Warm Gas Cleanup, a decrease of more than 3% for each of these coproducts.

## 2 Introduction

As part of the subcontract work, the Advanced Power and Energy Program (APEP) of the University of California, Irvine (UCI) has evaluated the combined water gas shift (WGS) reaction and high temperature pressure swing adsorption (PSA)-based CO<sub>2</sub> capture process being developed by TDA in IGCC and Fischer-Tropsch (F-T) liquids production plants. Process system simulations to assess the performance, cost and economics of this novel syngas decarbonization process for pre-combustion CO<sub>2</sub> capture technology applications (“Warm Gas Cleanup” cases) were made. The relative advantages in terms of performance and costs are compared to state-of-the-art conventional technology (“Cold Gas Cleanup” cases). Both E-Gas<sup>TM</sup> type (will simply be identified as “E-Gas”) and General Electric’s GEP type (will simply be identified as “GEP”) gasifier cases with a bituminous coal were evaluated. Coproduction of synthetic fuels and chemicals is gaining significant attention due to the synergy between electricity generation and coproduction, especially with intermittent renewables supplying a larger fraction of power to the grid.

## 3 Study Approach

The overall plant analysis is performed in the context of a stand-alone gasification plant and the simulations are developed within the framework of Aspen Plus®. The plant simulation models developed by APEP in previous studies conducted for the DOE/NETL are modified as required. All the IGCC cases utilizing the TDA technology include the upstream sour WGS reactor followed by warm gas desulfurization before the syngas enters the 2<sup>nd</sup> shift reactor consisting of the combined WGS/CO<sub>2</sub> capture reactor since TDA’s testing has been primarily based on this configuration. Furthermore, a previous study conducted also under subcontract to TDA had shown that when deleting the 1<sup>st</sup> (sour) shift reactor and employing only the combined WGS/PSA reactor, the heat rate increased because more water (liquid) had to be injected into the combined WGS/PSA reactor. Inclusion of the 1<sup>st</sup> reactor (an adiabatic reactor) into the design allows the preheat of the feed gas to the warm gas desulfurization process without requiring an expensive feed/effluent interchanger with gas on both sides.

### 3.1 Process Design Basis and Methodology

Consistency is maintained between the cases developed under this study utilizing the TDA’s combined WGS reaction and high temperature PSA-based CO<sub>2</sub> capture process (**Warm Gas Cleanup cases**) with the plants with CO<sub>2</sub> capture utilizing current state-of-the-art syngas cleanup and CO<sub>2</sub> capture technology (**Cold Gas Cleanup cases**). Furthermore, the Cold Gas Cleanup cases are modeled such that consistency is maintained as much as possible with the corresponding cases in the following DOE NETL study reports while the economic analysis is revised to June 2011 basis.

- *Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity*, Revision 2a, September 2013, DOE/NETL-2010/1397.
- *Cost and Performance Baseline for Fossil Energy Plants, Volume 3a: Low Rank Coal to Electricity: IGCC Cases*, November 2010, DOE/NETL- 2010/1399.
- *Baseline Analysis of Crude Methanol Production from Coal and Natural Gas*, Revised October 15, 2014, DOE/NETL-341/101514.
- *Cost and Performance Baseline for Fossil Energy Plants, Volume 4: Coal-to-Liquids via Fischer-Tropsch Synthesis*, October 15, 2014, DOE/NETL-2011/1477.

Sizing of the reactor vessel and its costs for the combined WGS reaction and CO<sub>2</sub> PSA were developed by TDA along with the catalyst and adsorbent loadings.

All electricity only cases separate out 90% of the gaseous carbon compounds present in the syngas. The F-T liquids cases capture 91% CO<sub>2</sub> capture which in these cases is being defined as:

$$\text{CO}_2 \text{ capture, \%} = [1 - (C_{\text{OUT}} - C_{\text{INAIR}})/(C_{\text{INFEED}} * X_c - C_{\text{SYNPROD}})] * 100$$

where

$$C_{\text{OUT}} = C_{\text{HRSG}} + C_{\text{DRYER}}$$

C<sub>HRSG</sub> = moles CO<sub>2</sub> in the HRSG stack

C<sub>DRYER</sub> = moles CO<sub>2</sub> in the coal dryer stack

C<sub>INAIR</sub> = moles CO<sub>2</sub> in gas turbine suction air

C<sub>INFEED</sub> = moles Carbon in total coal feed

X<sub>c</sub> = Fractional carbon conversion in gasifier

C<sub>SYNPROD</sub> = moles Carbon in coproduct

### Site Conditions

The plant is designed for the following site specific conditions:

- International Standards Organization (ISO) (“mid-western”) site ambient conditions for:
  - Elevation: Mean sea level
  - Dry bulb temperature: 15°C
  - Relative humidity: 60%
- Mechanical draft cooling towers with 11°C temperature rise for the cooling water are used. The above ambient conditions correspond to a wet bulb temperature of 10.8°C. A cooling water supply temperature of 15.56°C (60°F) is used which correspond to a reasonable approach temperature to the wet bulb temperature.

The coal characteristics are presented in Table 1. The site characteristics are assumed to be the same as in the previously referenced DOE/NETL study reports:

- Location: Greenfield
- Topography: Level
- Transportation: Rail
- Ash/Slag Disposal: Off Site
- Makeup Water: Municipal (50%) / Groundwater (50%)
- Access: Landlocked, having access by rail and highway

- CO<sub>2</sub> Storage: Compressed to 15.3 MPa, transported 80 kilometers and sequestered in a saline formation at a depth of 1,239 m.

It is assumed that the land area required for the cold gas and the warm gas cleanup cases is the same. As in the previously referenced DOE/NETL studies, in all cases it is assumed that the steam turbine is enclosed in a turbine building, but the gasifiers are not enclosed. The following design parameters are not quantified for this study as these are considered site-specific, and allowances only for normal conditions and construction are included in the cost estimates.

- Flood plain considerations
- Existing soil/site conditions
- Water discharges and reuse
- Rainfall/snowfall criteria
- Seismic design
- Buildings/enclosures
- Fire protection
- Local code height requirements
- Noise regulations – Impact on site and surrounding area.

#### *Carbon Dioxide Product Specification*

The specifications for the CO<sub>2</sub> product are based on the typical purity obtained by the Selexol™ cold gas cleanup process which was used in the previously referenced DOE/NETL reports without any further purification. The concentration of N<sub>2</sub> and Ar in the CO<sub>2</sub> stream coming off TDA's PSA unit is similar to what is typically obtained from a Selexol™ unit, i.e., without any further purification. This is done to be consistent with the DOE analysis referenced earlier. Table 2 summarizes the CO<sub>2</sub> specifications used for this analysis.

#### *Case Matrix*

Table 3 summarizes the various cases developed in this study.

**Table 1. Coal Data**

| <b>Coal</b>            | <b>Bituminous</b> |              |
|------------------------|-------------------|--------------|
| Proximate Analysis     | As Received, %    | Dry Basis, % |
| Moisture               | 11.12             | 0            |
| Ash                    | 9.7               | 10.91        |
| Volatile Matter        | 34.99             | 39.37        |
| Fixed Carbon           | 44.19             | 49.72        |
| Total                  | 100               | 100          |
| Ultimate Analysis      |                   |              |
| Carbon                 | 63.75             | 71.72        |
| Hydrogen               | 4.50              | 5.06         |
| Nitrogen               | 1.25              | 1.41         |
| Sulfur                 | 2.51              | 2.82         |
| Chlorine               | 0.29              | 0.33         |
| Ash                    | 9.70              | 10.91        |
| Moisture               | 11.12             | 0.00         |
| Oxygen (by difference) | 6.88              | 7.75         |
| Total                  | 100               | 100          |
| Heating Value          |                   |              |
| HHV, kJ/kg             | 27,113            | 30,506       |
| HHV, Btu/lb            | 11,666            | 13,126       |
| LHV, kJ/kg             | 26,151            | 29,544       |
| LHV, Btu/lb            | 11,252            | 12,712       |
| Trace Components       |                   |              |
| Mercury, ppm           |                   | 0.15         |

**Table 2. CO<sub>2</sub> Pipeline Specification**

| Parameter Units                       | Parameter Value |
|---------------------------------------|-----------------|
| Inlet Pressure MPa (psia)             | 15.3 (2,215)    |
| Outlet Pressure MPa (psia)            | 10.4 (1,515)    |
| Inlet Temperature °C (°F)             | 35 (95)         |
| CO <sub>2</sub> Concentration, mole % | > 95            |
| N <sub>2</sub> Concentration          | not limited     |
| O <sub>2</sub> Concentration ppmv     | < 40            |
| Ar Concentration                      | not limited     |
| H <sub>2</sub> O Concentration ppmv   | < 150           |

**Table 3. Case Matrix**

| Case | Gasifier Type | Gas Treating                                  | Product(s)                |
|------|---------------|-----------------------------------------------|---------------------------|
| 1    | E-Gas         | Cold gas with Selexol                         | Electricity               |
| 2    | E-Gas         | Warm gas with TDA's WGS + CO <sub>2</sub> PSA | Electricity               |
| 3    | GE            | Cold gas with Selexol                         | Electricity               |
| 4    | GE            | Warm gas with TDA's WGS + CO <sub>2</sub> PSA | Electricity               |
| 5    | E-Gas         | Cold gas with Rectisol                        | F-T Liquids + Electricity |
| 6    | E-Gas         | Warm gas with TDA's WGS + CO <sub>2</sub> PSA | F-T Liquids + Electricity |

#### 4 Process Descriptions: Electricity Only (Cases 1 through 4)

Each of the reference Cold Gas Cleanup cases (Cases 1 and 3) was first modeled in Aspen Plus® and the overall thermal performance of the plant was compared to the corresponding case of the DOE/NETL baseline study in order to validate the Aspen Plus® model developed for the entire IGCC system. Changes in the plant configuration were made where necessary. The Warm Gas Cleanup cases (Cases 2 and 4) were then modeled in Aspen Plus® while maximizing consistency with the corresponding Cold Gas Cleanup cases.

##### 4.1 Cold Gas Cleanup Cases 1 and 3

The IGCC plants employing the cold gas cleanup and CO<sub>2</sub> capture technology consist of the following plant subsystems:

- Air Separation Unit (ASU)
- Coal Feed Preparation
- Gasification (similar to E-Gas™ or GEP gasifier)
- High Temperature Syngas Cooling and Scrubbing
- Two Stage Sour Shifting and Heat Recovery
- Cold Gas Syngas Desulfurization and Decarbonization or acid gas removal (AGR) using a two-stage Selexol™ process
- Claus Sulfur Recovery and Tail Gas Hydrogenation (followed by recycle to the acid gas removal unit)
- CO<sub>2</sub> Dehydration and Compression
- Gas Turbines (similar to GE FA class technology)
- Heat Recovery Steam Generators (HRSGs)
- Reheat Steam Turbine

The plants also have the necessary utilities (e.g. cooling water supply, make-up water treatment, plant and instrument air) to support the process units. Detailed process descriptions of these cases may be found in the previously referenced DOE/NETL reports.

##### 4.2 Warm Gas Cleanup Cases 2 and 4

The IGCC plants employing the warm gas cleanup and CO<sub>2</sub> capture technology consist of the following plant subsystems:

- ASU
- Coal Feed Preparation
- Gasification (similar to E-Gas™ or GEP gasifier)
- High Temperature Syngas Cooling and Scrubbing
- Warm Gas Cleanup (similar to RTI's process including H<sub>2</sub>SO<sub>4</sub> Unit)
- Heat Recovery and Combined Shifting and Regenerable Sorbent CO<sub>2</sub> Capture
- CO<sub>2</sub> Purification and Compression
- Gas Turbines (similar to GE FA class technology)
- HRSGs
- Reheat Steam Turbine

The plants also have the necessary utilities (e.g. cooling water supply, make-up water treatment, plant and instrument air) to support the process units.

The overall configurations of the warm gas cleanup IGCC plants with the combined reactor for WGS reaction and CO<sub>2</sub> PSA are shown in Figure 1 and Figure 2 for the E-Gas cases and Figure 3 and Figure 4 for the GEP cases. The corresponding stream data are presented in Table 4 and Table 5. Plant subsystems that are different from the corresponding Cold Gas Cleanup cases are described in the following.

Scrubbed gas is preheated to a temperature of 215°C in a feed/effluent exchanger and supplied to a sour shift reactor (in the case of the E-Gas gasifier case, a fraction of the raw syngas exiting the scrubber is compressed and recycled back to the gasifier system as raw syngas quench gas). Effluent from the reactor is then fed to a warm gas cleanup unit similar to RTI's process for removal of sulfur compounds utilizing a zinc titanate adsorbent in a fluidized bed. The performance of this unit as well as the production of H<sub>2</sub>SO<sub>4</sub> from the SO<sub>2</sub> in the regenerator off-gas was developed utilizing information available in the public domain. The regenerator off-gas after particulate removal is depressurized by expansion in a power recovery turbine before feeding it to the H<sub>2</sub>SO<sub>4</sub> unit. The on-site ASU provides the small amount of O<sub>2</sub> as required by the H<sub>2</sub>SO<sub>4</sub> unit in addition to supplying O<sub>2</sub> to the gasifier and the catalytic combustor used for CO<sub>2</sub> purification (to combust the residuals amounts of H<sub>2</sub>, CO and CH<sub>4</sub>). The hot syngas leaving the desulfurizer is cooled in an intermediate (IP) steam generator followed by the feed/effluent exchanger where the sour shift reactor feed gas is preheated. The partially shifted desulfurized syngas is further cooled in a medium pressure (MP) steam generator to a temperature of 210°C. Effluent from this exchanger is treated in TDA's expendable warm gas Hg removal system. The design uses lead-lag beds with 3 month change out. Some of the NH<sub>3</sub> and HCN are also removed by this process.

The treated syngas is then combined with recycle gas from TDA's combined WGS/PSA capture reactor for decarbonizing the syngas before it is combusted in the gas turbines. In the GEP case, a small fraction of the syngas bypasses the combined WGS/PSA capture unit to limit the overall carbon capture to 90%, the per-pass capture being significantly higher (about 98.1% of the CO<sub>2</sub> entering with the syngas is separated). The decarbonized syngas along with any bypassed syngas is sent directly to the gas turbine without requiring any humidification due to the large amount of steam introduced into the syngas in the TDA process. Regeneration is accomplished utilizing steam at a desorption pressure of about 10 barA. Two streams are regenerated, one consisting of "raw CO<sub>2</sub>," a mixture of CO<sub>2</sub>, steam and small amounts of residual syngas at a temperature of 190°C, and the other "recycle gas," with significant amounts of the combustibles (the other syngas components, mainly H<sub>2</sub>) at a temperature of 235°C for recycle to the CO<sub>2</sub> separation unit. The raw CO<sub>2</sub> is cooled in a series of heat exchangers while generating low pressure (LP) steam, vacuum condensate/makeup BFW heating and finally trim cooled against cooling water before it is compressed, preheated in a feed/effluent exchanger and fed to a catalytic (noble metal) combustor along with O<sub>2</sub> from the ASU to oxidize the small amounts of combustibles present in the raw CO<sub>2</sub> stream. The effluent from this combustor after generating high pressure (HP) steam is cooled in the feed/effluent exchanger. This is followed by vacuum condensate/makeup BFW heating and finally trim cooled against cooling water. It is then dehydrated and further compressed in an intercooled compressor to the final plant battery limits pressure as specified in the design basis.

The decarbonized syngas leaving the CO<sub>2</sub> separation (adsorption) unit at a temperature of 203°C with its accompanying unreacted steam is supplied to the gas turbines along with pressurized N<sub>2</sub> from the ASU. However, the amount of N<sub>2</sub> added to the gas turbine is significantly lower than that in the corresponding Cold Gas Cleanup case due to the large amount of water vapor present in the syngas. The combined cycle design is similar to the design in the Cold Gas Cleanup case that uses a reheat steam cycle.

## 5 Process Descriptions: Fischer-Tropsch Liquids Coproduction (Cases 5 and 6)

The overall configurations of the cold gas cleanup and warm gas cleanup plants with the combined reactor for WGS reaction and CO<sub>2</sub> PSA are shown in Figure 5 and Figure 6. The combined reactor for WGS reaction and CO<sub>2</sub> PSA for Case 6 is shown in Figure 7. The corresponding stream data for Case 6 are presented in Table 6.

The plant configurations are similar to those of the previously described corresponding electricity only cases except that the coproducing plants in addition to containing the synthesis unit have:

- In addition to coal, purge gas from the F-T synthesis unit (to limit the build up of the lighter hydrocarbons within the synloop) is supplied to the gasifiers where these hydrocarbons are partially oxidized to form additional syngas.
- Rectisol unit for acid gas removal instead of Selexol™ in the Cold Gas Cleanup Case 1 in order to minimize the sulfur content of the syngas, sulfur containing compounds such as H<sub>2</sub>S and COS being F-T synthesis catalyst poisons.
- Three GE 6B type gas turbines instead of two GE FA class type gas turbines to maximize coproduct production rate while generating enough power by the combined cycle to satisfy in-plant consumption.
- ASU's that provide a much lower fraction of pressurized N<sub>2</sub> for gas turbine injection than in the electricity only cases due to the lower gas turbine capacities.

Major differences existing in the configuration of the gas treatment and conditioning units are described in the following.

### 5.1 Cold Gas Cleanup Case 5

Majority of the scrubbed syngas is bypassed around the shift unit since the specified molar ratio of H<sub>2</sub> to CO of 1.05 in the feed to the first F-T synthesis reactor is already met. Note that the addition of purge gas from the F-T unit to the gasifier increases the H<sub>2</sub>/CO ratio in the syngas to above 1.0 which would not be the case with just the bituminous coal feed. The fraction of the syngas shifted is based upon the H<sub>2</sub> demand of the hydrotreating and hydrocracking of the F-T liquids. The shifted and the bypassed streams are combined and fed to the low temperature gas cooling unit where the syngas is cooled in a series of heat exchangers and bulk of the mercury removed as in the corresponding electricity only case, and then fed to a Rectisol unit for desulfurization and decarbonization. A fraction of the treated syngas leaving the Rectisol unit is provided to a PSA unit to provide H<sub>2</sub> required by the F-T liquids processing and the remainder to the F-T synthesis unit.

F-T unit makeup syngas is preheated to 193°C and expanded in a turboexpander from a pressure of 33.6 bar to 23.5 bar as required by the synloop. The turboexpander is connected to the motor assisted synloop recycle compressor. The expanded gas is combined with the synloop recycle gas after the recycle gas is cooled in a series of heat exchangers and treated in an amine wash unit to remove CO<sub>2</sub> to satisfy the required Riblette ratio [(FEED H<sub>2</sub> – FEED CO<sub>2</sub>)/(FEED CO + FEED CO<sub>2</sub>)] of 0.9837 at the reactor inlet. The combined stream is then preheated by a feed/effluent interchanger before being fed to a slurry reactor with Fe based catalyst particles suspending in an inert hydrocarbon liquid (a mineral oil). The mineral oil acts as a temperature moderator and a heat removal medium, transferring the heat of reaction from the catalyst surface via the liquid slurry to boiling water in an internal tubular heat exchanger. IP steam is generated from the heat. The major overall reactions occurring are: (2n+1) H<sub>2</sub> + n CO = H-(CH<sub>2</sub>)<sub>n</sub>-H + n H<sub>2</sub>O and CO + H<sub>2</sub>O = CO<sub>2</sub> + H<sub>2</sub>. The reactor effluent at 253°C is cooled against BFW, in the feed/effluent interchanger and then in a series of heat exchangers to condense out the liquids followed by preheating in a second interchanger before being fed into a second slurry reactor for additional

conversion. The effluent from this second rectifier at 253°C is cooled against BFW, in the feed/effluent interchanger and then in a series of heat exchangers to condense out the liquids. The condensate collected after removing the decanted water is fed to a distillation column operating at 2 bar to remove the light ends, the bottoms from which are then fed to a vacuum column operating at 0.04 bar. The overhead condensate is fed to a hydrotreater to produce the naphtha coproduct while the bottoms are treated in a hydrocracker to produce the diesel coproduct. The overhead vapors from these operations are combined with the PSA tail gas and purge gas and then compressed before being recycled to the gasifier. A fraction of the purge gas is preheated to a temperature of 203°C and supplied to the gas turbines in the combined cycle unit.

## 5.2 Warm Gas Cleanup Case 6

A major fraction of the scrubbed raw syngas is preheated to a temperature of 472°C in a feed/effluent exchanger and supplied to a warm gas cleanup unit similar to RTI's process for removal of sulfur compounds utilizing a zinc titanate adsorbent in a fluidized bed. The performance of this unit as well as the production of H<sub>2</sub>SO<sub>4</sub> from the SO<sub>2</sub> in the regenerator off-gas was developed utilizing information available in the public domain. The regenerator off-gas after particulate removal is depressurized by expansion in a power recovery turbine before feeding it to the H<sub>2</sub>SO<sub>4</sub> unit. The on-site ASU provides the small amount of O<sub>2</sub> as required by the H<sub>2</sub>SO<sub>4</sub> unit in addition to supplying O<sub>2</sub> to the gasifier and the catalytic combustor used for CO<sub>2</sub> purification (to combust the residuals amounts of H<sub>2</sub>, CO and CH<sub>4</sub>). The hot syngas leaving the desulfurizer is cooled in the feed/effluent exchanger. The remaining fraction of the scrubbed raw syngas is compressed and recycled back to the gasifier system as raw syngas quench gas. The desulfurized syngas is further cooled in a medium pressure (MP) steam generator to a temperature of 210°C. Effluent from this exchanger is treated in TDA's expendable warm gas Hg removal system. The design uses lead-lag beds with 3 month change out. Some of the NH<sub>3</sub> and HCN are also removed by this process.

Majority of the desulfurized syngas is bypassed around the combined WGS/CO<sub>2</sub> PSA reactor since the specified molar ratio of H<sub>2</sub> to CO of 1.05 in the feed to the first F-T synthesis reactor is already met. Note that the addition of purge gas from the F-T unit to the gasifier increases the H<sub>2</sub>/CO ratio in the syngas to above 1.0 which would not be the case with just the bituminous coal feed. The fraction of the syngas shifted is based upon the H<sub>2</sub> demand of the hydrotreating and hydrocracking of the F-T liquids. Syngas leaving the combined WGS/CO<sub>2</sub> PSA reactor is cooled and provided to a PSA unit to provide H<sub>2</sub> required by the F-T liquids processing and the remainder to the F-T synthesis unit.

F-T unit makeup syngas is preheated to 193°C, passed through a bed of ZnO (sandwiching a COS hydrolysis catalyst) to remove the trace amounts of sulfur compounds present, and expanded in a turboexpander from a pressure of 33.6 bar to 23.5 bar as required by the synloop. The turboexpander is connected to the motor assisted synloop recycle compressor. The expanded gas is combined with the synloop recycle gas after the recycle gas is cooled in a series of heat exchangers and treated in an amine wash unit to remove CO<sub>2</sub> to satisfy the required Riblette ratio [(FEED H<sub>2</sub> – FEED CO<sub>2</sub>)/(FEED CO + FEED CO<sub>2</sub>)] of 0.9837 at the reactor inlet. The combined stream is then preheated by a feed/effluent interchanger before being fed to a slurry reactor with Fe based catalyst particles suspending in an inert hydrocarbon liquid (a mineral oil). The mineral oil acts as a temperature moderator and a heat removal medium, transferring the heat of reaction from the catalyst surface via the liquid slurry to boiling water in an internal tubular heat exchanger. IP steam is generated from the heat. The major overall reactions occurring are: (2n+1) H<sub>2</sub> + n CO = H-(CH<sub>2</sub>)<sub>n</sub>-H + n H<sub>2</sub>O and CO + H<sub>2</sub>O = CO<sub>2</sub> + H<sub>2</sub>. The reactor effluent at 253°C is cooled against BFW, in the feed/effluent interchanger and then in a series of heat exchangers to condense out the liquids followed by preheating in a second interchanger before being fed into a second slurry reactor for additional conversion. The effluent from this second rectifier at 253°C is cooled against BFW, in the feed/effluent interchanger and then in a series of heat exchangers to condense out the

liquids. The condensate collected after removing the decanted water is fed to a distillation column operating at 2 bar to remove the light ends, the bottoms from which are then fed to a vacuum column operating at 0.04 bar. The overhead condensate is fed to a hydrotreater to produce the naphtha coproduct while the bottoms are treated in a hydrocracker to produce the diesel coproduct. The overhead vapors from these operations are combined with the PSA tail gas and purge gas and then compressed before being recycled to the gasifier. A fraction of the purge gas is preheated to a temperature of 203°C and supplied to the gas turbines in the combined cycle unit.

## 6 Results and Discussion

In this study, performance of the air separation unit, gasifier, AGR as well as the gas turbine for each of these cases was estimated by UCI, and it is recommended that in a more detailed phase of this development program, vendors be contacted for providing performance and cost data.

### 6.1 IGCC Cases

Performance summaries for the E-Gas cases are presented in Table 7 and those for the GEP cases are presented in Table 8, while Table 9 and Table 10 summarize the plant cost estimates. The process economics for the two sets of cases are all summarized in Table 11.

In the Cold Gas Cleanup cases, the gas turbine output was shaft limited while inlet air flow limited for the Warm Gas Cleanup cases due to the much higher moisture content of the syngas.

Comparing the two E-Gas cases, the heat rate with the Warm Gas Cleanup employing TDA's combined WGS and CO<sub>2</sub> PSA reactor is 10.3% lower, while at the same time the plant cost on a \$/kW is reduced by about 12.7% resulting in a decrease in the COE (with CO<sub>2</sub> TS&M costs included) by about 12.6%. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$26/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$43/tonne. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the SCPC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$47/tonne, again significantly lower than that for the Cold Gas Cleanup case at \$62/tonne. Note that the CH<sub>4</sub> content was allowed to be higher for the warm gas case since percentage carbon capture with TDA's process is higher compared to Selexol™ (gasifier performance for this Warm Gas Cleanup case was estimated by interpolating the performance of the E-Gas gasifier between the two DOE/NETL report cases with and without carbon capture<sup>1</sup>).

Next, comparing the two GEP cases, the heat rate with the Warm Gas Cleanup employing TDA's combined WGS and CO<sub>2</sub> PSA reactor is 8.5% lower, while at the same time the plant cost on a \$/kW is reduced by about 6% resulting in a decrease in the COE (with CO<sub>2</sub> TS&M costs included) by about 7.7%. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the corresponding IGCC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$28/tonne which is significantly lower than that for the Cold Gas Cleanup case at \$38/tonne. The 1<sup>st</sup> year CO<sub>2</sub> capture cost (without CO<sub>2</sub> TS&M included) compared to the SCPC (w/o CO<sub>2</sub> capture) for the Warm Gas Cleanup case is \$54/tonne, again significantly lower than that for the Cold Gas Cleanup case at \$61/tonne. Improvement in efficiency over the corresponding Cold Gas Cleanup case is less pronounced when compared to the E-Gas cases because in the Warm Gas Cleanup E-Gas case, the CH<sub>4</sub> content was allowed to be higher.

These 1<sup>st</sup> year CO<sub>2</sub> capture costs compared to the SCPC without CO<sub>2</sub> capture for the above Warm Gas Cleanup cases are much higher than when compared to the IGCC without CO<sub>2</sub> capture. Note however,

<sup>1</sup> In the two stage E-Gas™ gasifier, the relative amount of O<sub>2</sub> supplied to each stage may be varied (within limits) to vary the gasifier cold gas efficiency and the syngas composition including its CH<sub>4</sub> content.

that comparison to the SCPC may not be fair since this comparison does not account for the other environmental benefits that the IGCC offers over the SCPC.

## 6.2 Fischer-Tropsch Cases

Performance summary for the Cold Gas Cleanup and the Warm Gas Cleanup F-T liquids cases are presented in Table 12, while Table 13 summarizes the plant cost for the Cold Gas Cleanup and the Warm Gas Cleanup cases. The process economics for the two cases are summarized in Table 14.

Both the Cold Gas Cleanup and Warm Gas Cleanup cases are designed for the same coal feed rate of 19,053 tonne/D (as received basis) consistent with the reference case summarized in DOE/NETL-2011/1477 which results in the production of 1,475 tonne/D naphtha and 3,632 tonne/D diesel in the Cold Gas Cleanup case, and 1,509 tonne/D naphtha and 3,601 tonne/D diesel in the Warm Gas Cleanup case. With the three GE 6B type gas turbine based combined cycles, the amount of excess power generated is 140 MW in the Cold Gas Cleanup case and as much as 253 MW in the Warm gas Cleanup case due to its higher efficiency. Majority of the power generated in these plants is by the steam turbine. The export power was credited at \$59.59/MWh while generating the 1<sup>st</sup> year required sales price (RSP) for the naphtha and for the diesel using the commercial fuel structure with capital charge factor of 0.218. The total plant cost for the Warm Gas Cleanup case is slightly lower than that of the Cold Gas Cleanup case (by about 1%). However, due to the significantly higher export power of the Warm gas Cleanup case, the RSP of the products is reduced over the Cold Gas Cleanup case. The RSP with CO<sub>2</sub> TS&M included was calculated to be \$120/bbl for the naphtha and \$172/bbl for the diesel in the case of Cold Gas Cleanup, and \$115/bbl for the naphtha and \$166/bbl for the diesel in the case of Warm Gas Cleanup, a decrease of more than 3% for each of these coproducts.

## 7 References and Bibliography

1. *Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity*, Revision 2a, September 2013, DOE/NETL-2010/1397.
2. *Cost and Performance Baseline for Fossil Energy Plants, Volume 3a: Low Rank Coal to Electricity: IGCC Cases*, November 2010, DOE/NETL- 2010/1399.
3. *Cost and Performance Baseline for Fossil Energy Plants, Volume 4: Coal-to-Liquids via Fischer-Tropsch Synthesis*, October 15, 2014, DOE/NETL-2011/1477.
4. *Process Modeling Design Parameters*. Department of Energy, 2014. DOE/NETL-341/051314.
5. *Quality Guidelines for Energy System Studies: Carbon Dioxide Transport and Storage Costs in NETL Studies*. Pittsburgh, PA : Department of Energy, 2013. DOE/NETL-2013/1614.
6. *Cost Estimation Methodology for NETL Assessments of Power Plant Performance*. Pittsburgh : Department of Energy, 2011. 2011/1455.
7. *Capital Cost Scaling Methodology*. Pittsburgh : Department of Energy, 2013. 341/013113.
8. Siriwardane RV, Cicero DC, Jain S, Raghbir, Gupta P, Turk BS. *Durable zinc oxide-based regenerable sorbents for desulfurization of syngas in a fixed-bed reactor*. In: Fifth international symposium on gas cleaning at high temperature; September 17–20, 2002.

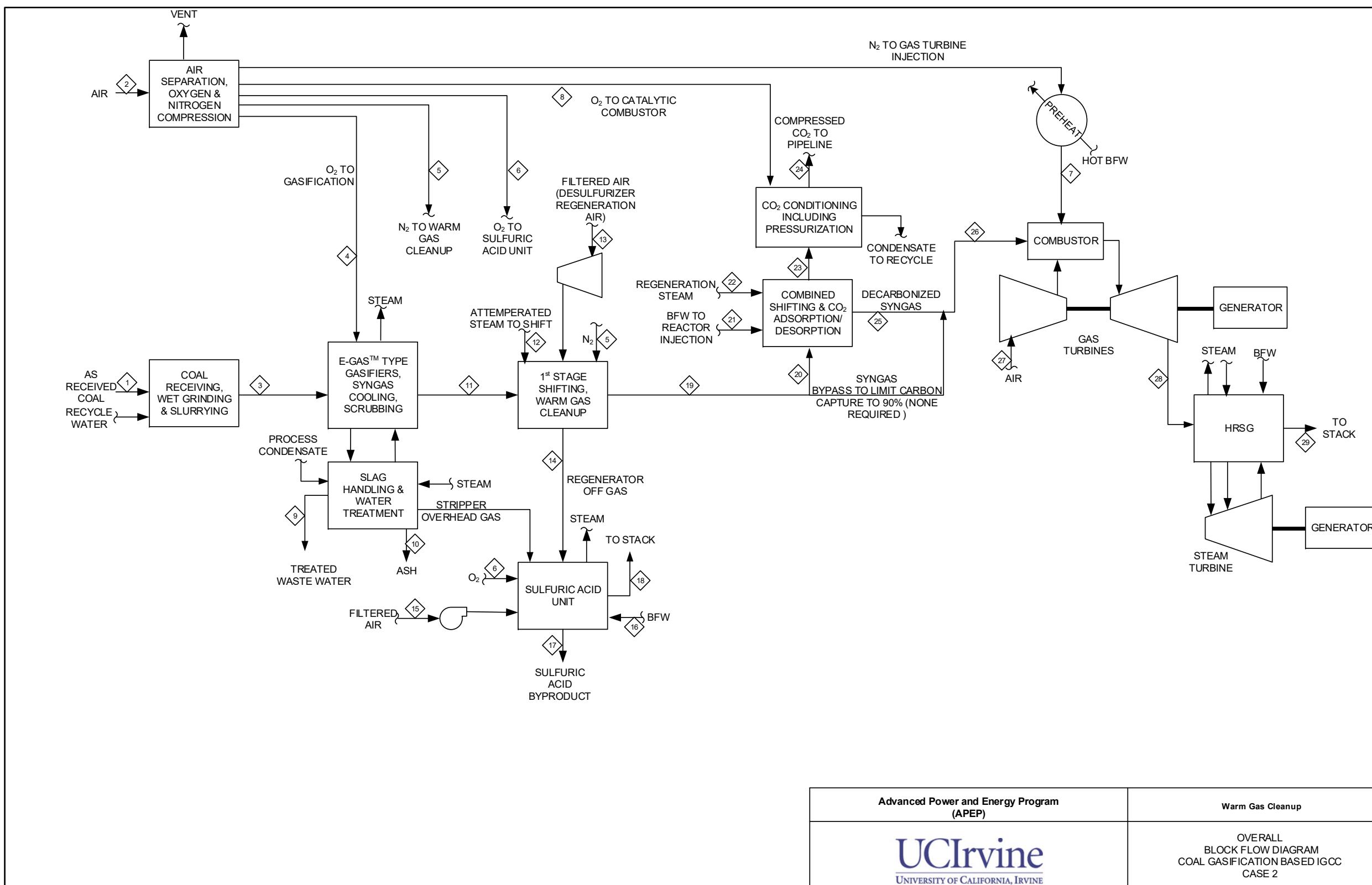
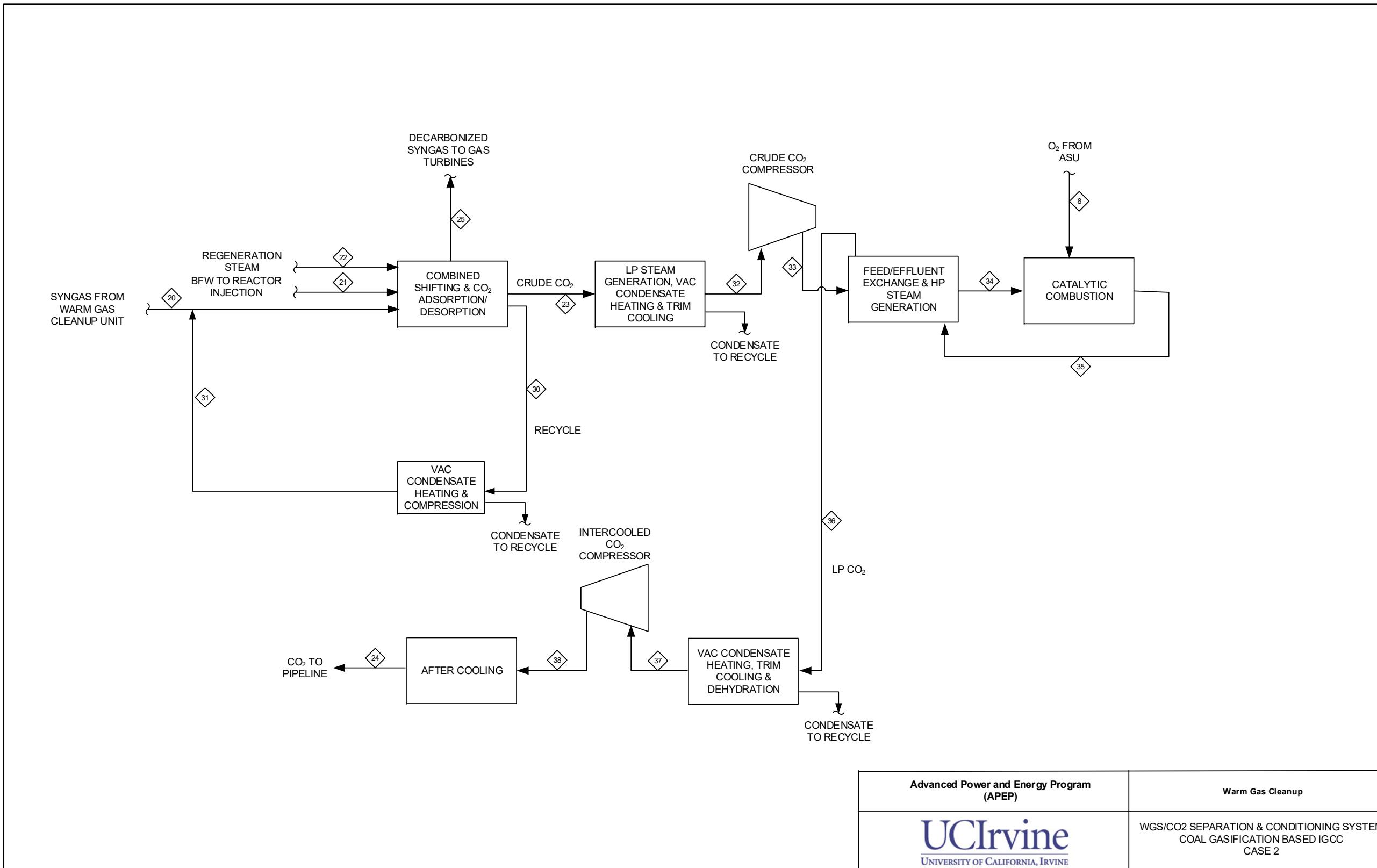



Figure 1. Block Flow Diagram for IGCC System - Case 2 (E-Gas Type Gasifier)



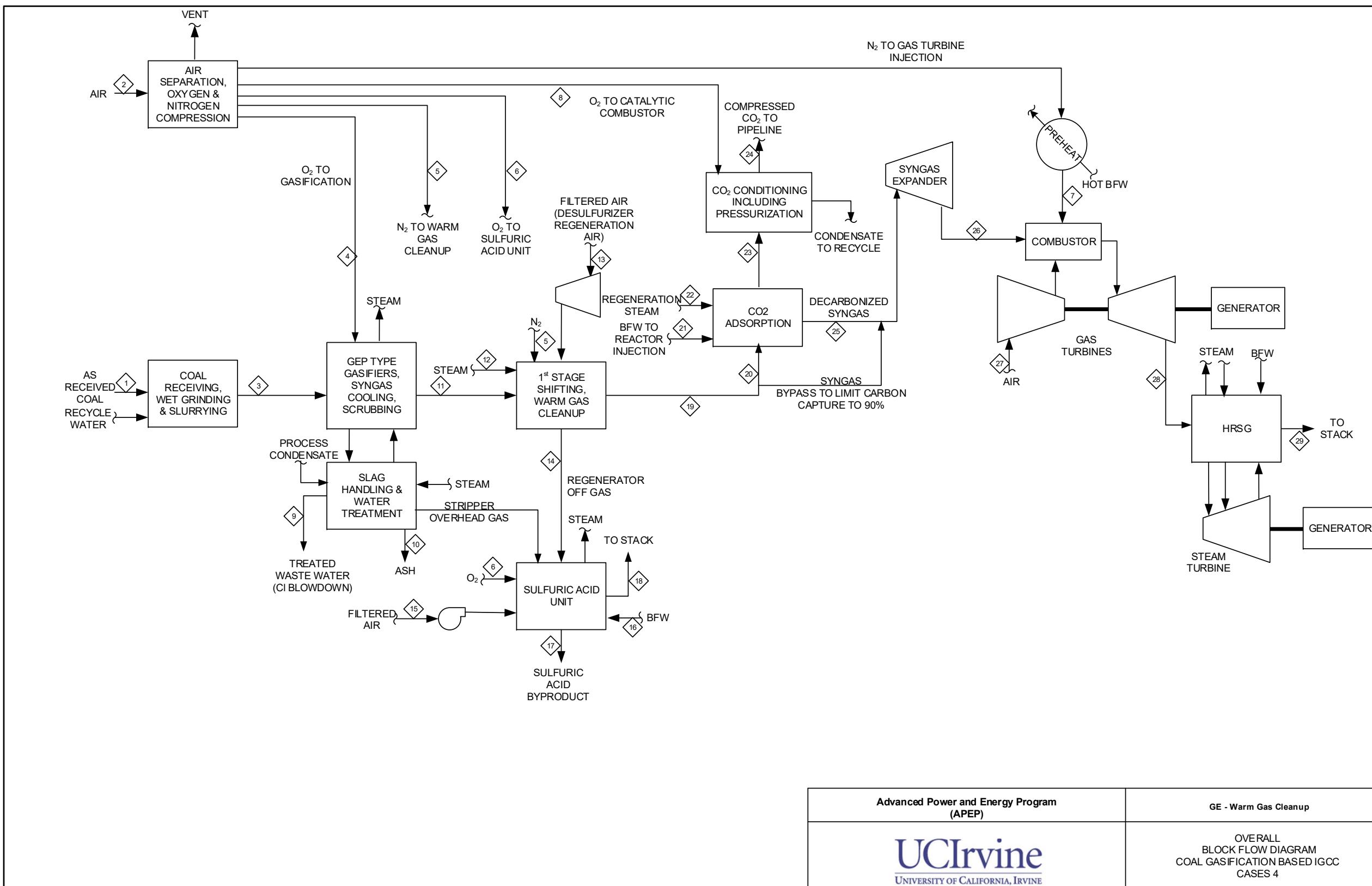


Figure 2. WGS and CO<sub>2</sub> PSA System - Case 2 (E-Gas Type Gasifier)

Table 4. Stream Data - Case 2 (E-Gas Type Gasifier)

| Stream No.           | 1       | 2       | 3       | 4       | 5     | 6     | 7       | 8     | 9           | 10        | 11      | 12    | 13     | 14     | 15     | 16    | 17     | 18     | 19      |
|----------------------|---------|---------|---------|---------|-------|-------|---------|-------|-------------|-----------|---------|-------|--------|--------|--------|-------|--------|--------|---------|
| Temperature, C       | 15      | 15      | 149     | 81      | 60    | 32    | 196     | 145   | 58          | 60        | 185     | 345   | 15     | 760    | 15     | 141   | 20     | 43     | 210     |
| Pressure, bar        | 1.01    | 1.01    | 57.92   | 50.33   | 41.20 | 8.62  | 30.52   | 20.50 | 3.10        | 1.01      | 38.78   | 51.02 | 1.01   | 34.99  | 1.01   | 8.00  | 1.01   | 1.01   | 34.85   |
| Vapor Fraction       | -       | 1.0     | -       | 1.0     | 1.0   | 1.0   | 1.0     | 0.0   | -           | 1.0       | 1.0     | 1.0   | 1.0    | 1.0    | 1.0    | -     | -      | 1.0    | 1.0     |
| Molar Flow, kmol/hr  |         | 25,638  |         | 5,096   | 270   | 100   | 11,110  | 163   | With Solids | Dry Basis | 28,727  | 0     | 1,265  | 1,441  | 505    | 162   | 169    | 1,796  | 26,943  |
| Mass Flow, kg/hr     | 212,637 | 739,707 | 299,986 | 164,023 | 7,569 | 3,228 | 311,793 | 5,240 | 26,830      | 21,703    | 584,439 | 0     | 36,506 | 46,538 | 14,570 | 2,917 | 16,301 | 51,047 | 545,499 |
| Fluid Avg Mol Wt     |         | 28.9    | 18.0    | 32.2    | 28.1  | 32.2  | 28.1    | 32.2  | 18.0        | -         | 20.3    | 18.0  | 28.8   | 32.3   | 28.9   | 18.0  | 96.5   | 28.4   | 20.2    |
| Fluid Mole Fractions |         |         |         |         |       |       |         |       |             |           |         |       |        |        |        |       |        |        |         |
| O2                   |         | 0.21    |         | 0.95    | 0.01  | 0.95  | 0.01    | 0.95  |             |           | 0.00    | -     | 0.21   | 0.01   | 0.21   | -     | -      | 0.07   | 0.00    |
| N2                   |         | 0.77    |         | 0.02    | 0.99  | 0.02  | 0.99    | 0.02  |             |           | 0.01    | -     | 0.77   | 0.86   | 0.77   | -     | -      | 0.91   | 0.01    |
| AR                   |         | 0.01    |         | 0.03    | 0.00  | 0.03  | 0.00    | 0.03  |             |           | 0.01    | -     | 0.01   | 0.01   | 0.01   | -     | -      | 0.01   | 0.01    |
| H2                   |         | -       |         | -       | -     | -     | -       | -     |             |           | 0.25    | -     | -      | -      | -      | -     | -      | -      | 0.42    |
| CO                   |         | -       |         | -       | -     | -     | -       | -     |             |           | 0.26    | -     | -      | -      | -      | -     | -      | -      | 0.08    |
| CO2                  |         | 0.00    |         | -       | -     | -     | -       | -     |             |           | 0.13    | -     | 0.00   | 0.00   | 0.00   | -     | -      | 0.00   | 0.31    |
| H2O                  |         | 0.01    |         | -       | 0.00  | -     | 0.00    | -     | 1.00        |           | 0.32    | 1.00  | 0.01   | 0.00   | 0.01   | 1.00  | 0.02   | 0.00   | 0.15    |
| CH4                  |         | -       |         | -       | -     | -     | -       | -     |             |           | 0.03    | -     | -      | -      | -      | -     | -      | -      | 0.03    |
| H2S                  |         | -       |         | -       | -     | -     | -       | -     |             |           | 0.01    | -     | -      | -      | -      | -     | -      | -      | 0.00    |
| NH3                  |         | -       |         | -       | -     | -     | -       | -     |             |           | 0.00    | -     | -      | -      | -      | -     | -      | -      | 0.00    |
| CL2                  |         | -       |         | -       | -     | -     | -       | -     |             |           | 0.00    | -     | -      | -      | -      | -     | -      | -      | 0.00    |
| HCN                  |         | -       |         | -       | -     | -     | -       | -     |             |           | -       | -     | -      | -      | -      | -     | -      | -      | -       |
| SO2                  |         | -       |         | -       | -     | -     | -       | -     |             |           | -       | -     | -      | -      | -      | -     | -      | -      | -       |
| H2SO4                |         | -       | -       | -       | -     | -     | -       | -     |             |           | -       | -     | -      | -      | -      | -     | 0.98   | -      | -       |
| Total                |         | 1.00    | 0.00    | 1.00    | 1.00  | 1.00  | 1.00    | 1.00  | 1.00        | 0.00      | 1.00    | 1.00  | 1.00   | 0.89   | 1.00   | 1.00  | 1.00   | 1.00   | 1.00    |

Table 4. Stream Data (Cont'd) - Case 2 (E-Gas Type Gasifier)

| Stream No.           | 20      | 21     | 22      | 23      | 24      | 25      | 26      | 27        | 28        | 29        | 30     | 31     | 32      | 33      | 34      | 35      | 36      | 37      | 38      |
|----------------------|---------|--------|---------|---------|---------|---------|---------|-----------|-----------|-----------|--------|--------|---------|---------|---------|---------|---------|---------|---------|
| Temperature, C       | 210     | 141    | 205     | 186     | 27      | 203     | 203     | 15        | 567       | 300       | 228    | 178    | 27      | 90      | 288     | 435     | 135     | 27      | 27      |
| Pressure, bar        | 34.85   | 144.79 | 10.34   | 10.34   | 152.70  | 32.89   | 32.89   | 1.01      | 1.05      | 0.99      | 9.89   | 34.65  | 9.58    | 20.00   | 19.79   | 19.10   | 18.55   | 17.79   | 152.70  |
| Vapor Fraction       | 1.0     | -      | 1.0     | 1.0     | -       | 1.0     | 1.0     | 1.0       | 1.0       | 1.0       | 1.0    | 1.0    | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | -       |
| Molar Flow, kmol/hr  | 26,927  | 1,818  | 9,755   | 17,921  | 10,091  | 20,334  | 20,350  | 109,670   | 134,485   | 134,485   | 2,991  | 2,745  | 10,310  | 10,310  | 10,324  | 10,358  | 10,358  | 10,085  | 10,085  |
| Mass Flow, kg/hr     | 545,165 | 32,759 | 175,743 | 580,419 | 443,972 | 168,823 | 169,157 | 3,163,970 | 3,644,920 | 3,644,920 | 82,146 | 77,721 | 443,336 | 443,336 | 443,549 | 448,789 | 448,789 | 443,794 | 443,794 |
| Fluid Avg Mol Wt     | 20.2    | 18.0   | 18.0    | 32.4    | 44.0    | 8.3     | 8.3     | 28.8      | 27.1      | 27.1      | 27.5   | 28.3   | 43.0    | 43.0    | 43.0    | 43.3    | 43.3    | 44.0    | 44.0    |
| Fluid Mole Fractions |         |        |         |         |         |         |         |           |           |           |        |        |         |         |         |         |         |         |         |
| O2                   | 0.00    | -      | -       | 0.00    | 0.00    | 0.00    | 0.00    | 0.21      | 0.11      | 0.11      | -      | -      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
| N2                   | 0.01    | -      | -       | 0.00    | 0.00    | 0.01    | 0.01    | 0.77      | 0.71      | 0.71      | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | -       | -       |
| AR                   | 0.01    | -      | -       | 0.00    | 0.00    | 0.01    | 0.01    | 0.01      | 0.01      | 0.01      | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
| H2                   | 0.42    | -      | -       | 0.01    | 0.00    | 0.64    | 0.64    | -         | -         | -         | 0.32   | 0.35   | 0.02    | 0.02    | 0.02    | -       | -       | 0.00    | 0.00    |
| CO                   | 0.08    | -      | -       | 0.00    | 0.00    | 0.01    | 0.01    | -         | -         | -         | 0.01   | 0.01   | 0.00    | 0.00    | 0.00    | -       | -       | 0.00    | 0.00    |
| CO2                  | 0.31    | -      | -       | 0.56    | 1.00    | 0.01    | 0.01    | 0.00      | 0.01      | 0.01      | 0.56   | 0.61   | 0.97    | 0.97    | 0.97    | 0.97    | 0.97    | 1.00    | 1.00    |
| H2O                  | 0.15    | 1.00   | 1.00    | 0.42    | -       | 0.29    | 0.29    | 0.01      | 0.16      | 0.16      | 0.09   | 0.01   | 0.00    | 0.00    | 0.00    | 0.03    | 0.03    | -       | -       |
| CH4                  | 0.03    | -      | -       | 0.00    | -       | 0.03    | 0.03    | -         | -         | -         | 0.02   | 0.02   | -       | -       | 0.00    | -       | -       | -       | -       |
| H2S                  | 0.00    | -      | -       | 0.00    | 0.00    | 0.00    | 0.00    | -         | -         | -         | 0.00   | 0.00   | 0.00    | 0.00    | -       | -       | -       | 0.00    | 0.00    |
| NH3                  | 0.00    | -      | -       | 0.00    | -       | -       | 0.00    | -         | 0.00      | 0.00      | -      | -      | -       | -       | -       | -       | -       | -       | -       |
| CL2                  | 0.00    | -      | -       | 0.00    | 0.00    | 0.00    | 0.00    | -         | -         | -         | -      | -      | 0.00    | 0.00    | 0.00    | -       | -       | 0.00    | 0.00    |
| HCN                  | -       | -      | -       | -       | -       | -       | -       | -         | -         | -         | -      | -      | -       | -       | -       | -       | -       | -       | -       |
| SO2                  | -       | -      | -       | -       | -       | -       | -       | -         | -         | -         | -      | -      | -       | -       | -       | -       | -       | -       | -       |
| H2SO4                | -       | -      | -       | -       | -       | -       | -       | -         | -         | -         | -      | -      | -       | -       | -       | -       | -       | -       | -       |
| Total                | 1.00    | 1.00   | 1.00    | 1.00    | 1.00    | 1.00    | 1.00    | 1.00      | 1.00      | 1.00      | 1.00   | 1.00   | 1.00    | 1.00    | 1.00    | 1.00    | 1.00    | 1.00    | 1.00    |



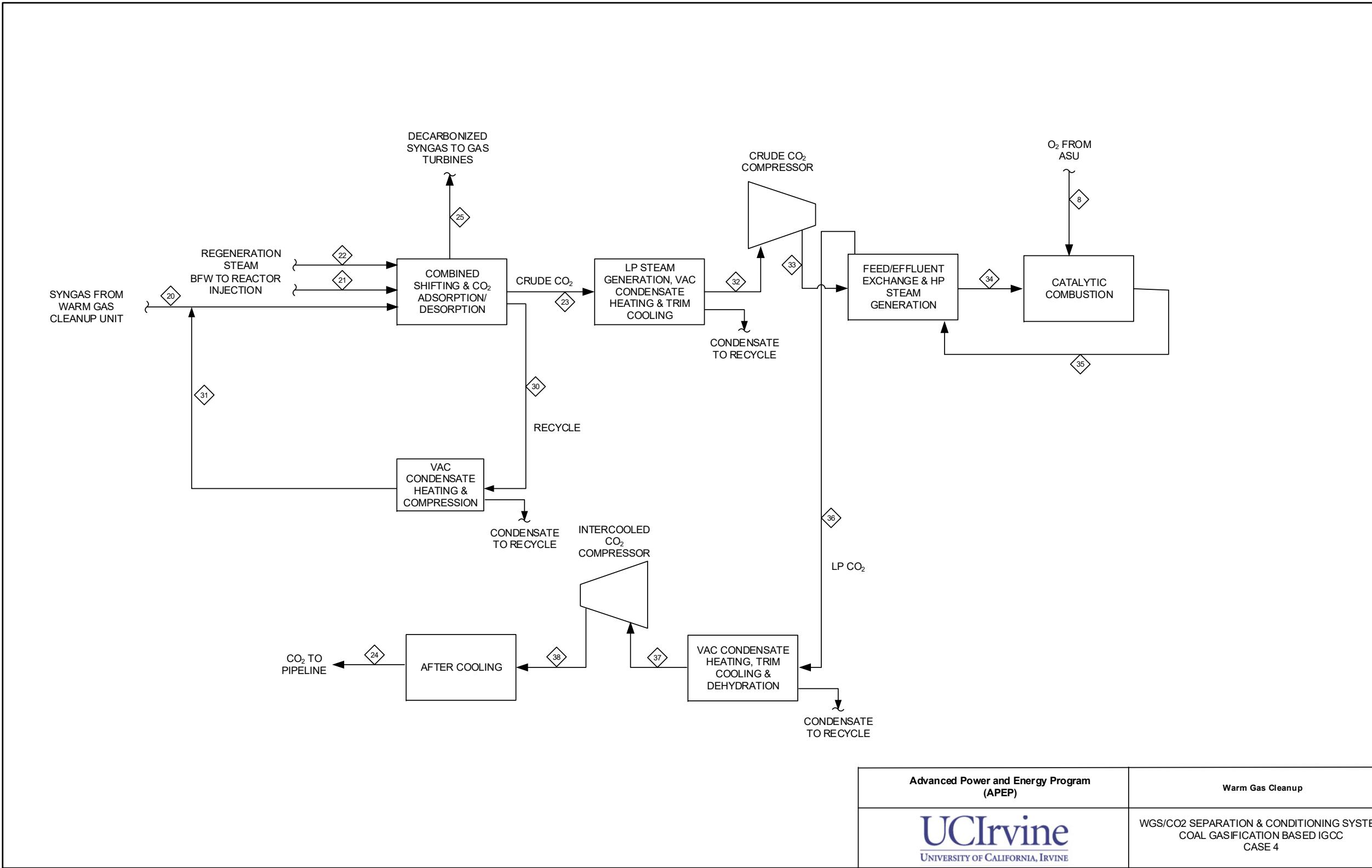
Advanced Power and Energy Program  
(APEP)

UCIrvine  
UNIVERSITY OF CALIFORNIA, IRVINE

GE - Warm Gas Cleanup

OVERALL  
BLOCK FLOW DIAGRAM  
COAL GASIFICATION BASED IGCC  
CASES 4

Figure 3. Case 4 (GEP Type Gasifier) - Block Flow Diagram for IGCC System



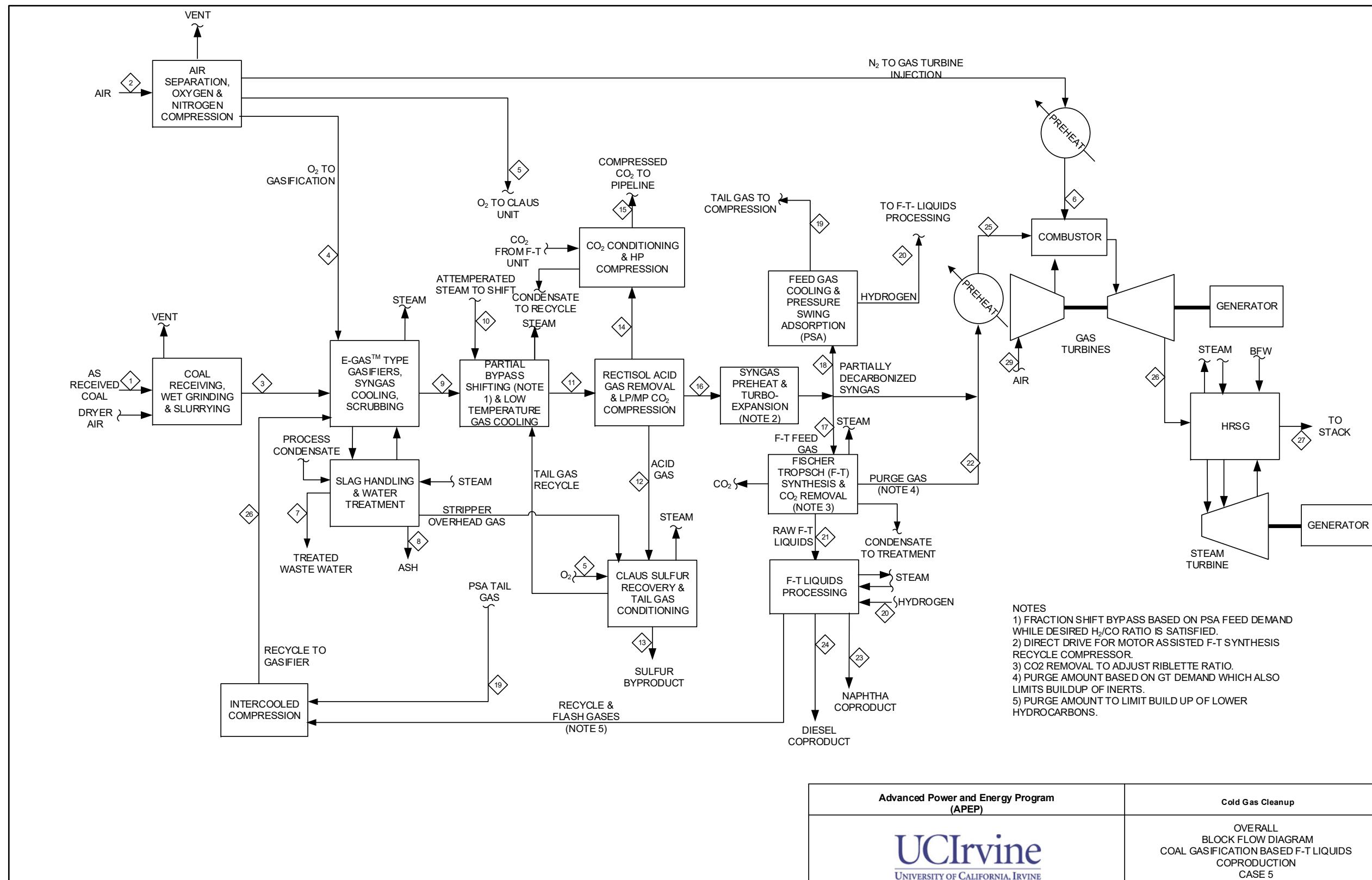


Figure 4. Case 4 (GEP Type Gasifier) – WGS and CO2 PSA System

Table 5. Case 4 (GEP Type Gasifier) – Stream Data

| Stream No.           | 1       | 2       | 3       | 4       | 5        | 6        | 7        | 8        | 9           | 10        | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18     | 19       |
|----------------------|---------|---------|---------|---------|----------|----------|----------|----------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|--------|----------|
| Temperature, C       | 15      | 15      | 77      | 93      | 60       | 32       | 196      | 145      | 57          | 60        | 206      | 404      | 15       | 760      | 15       | 141      | 20       | 43     | 198      |
| Pressure, bar        | 1.01    | 1.01    | 72.39   | 64.81   | 41.20    | 8.62     | 30.52    | 20.50    | 3.10        | 1.01      | 53.61    | 56.19    | 1.01     | 39.82    | 1.01     | 8.00     | 1.01     | 1.01   | 50.16    |
| Vapor Fraction       | -       | 1.0     | -       | 1.0     | 1.0      | 1.0      | 1.0      | 1.0      | 0.0         | -         | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | -        | -        | 1.0    | 1.0      |
| Molar Flow, kmol/hr  |         | 26,396  |         | 5,330   | 270      | 101      | 7,903    | 129      | With Solids | Dry Basis | 30,522   | 0        | 1,267    | 1,443    | 506      | 131      | 169      | 1,794  | 30,514   |
| Mass Flow, kg/hr     | 213,013 | 761,587 | 300,518 | 171,542 | 7,577    | 3,238    | 221,780  | 4,152    | 27,232      | 23,371    | 596,654  | 2        | 36,548   | 46,592   | 14,608   | 2,356    | 16,329   | 50,929 | 593,844  |
| Fluid Avg Mol Wt     |         | 28.9    | 18.0    | 32.2    | 28.1     | 32.2     | 28.1     | 32.2     | 18.0        | -         | 19.5     | 18.0     | 28.8     | 32.3     | 28.9     | 18.0     | 96.5     | 28.4   | 19.5     |
| Fluid Mole Fractions |         |         |         |         |          |          |          |          |             |           |          |          |          |          |          |          |          |        |          |
| O2                   |         | 0.21    |         | 0.95    | 0.01     | 0.95     | 0.01     | 0.95     |             |           | 7.23E-14 | -        | 0.21     | 0.01     | 0.21     | -        | -        | 0.06   | 7.23E-14 |
| N2                   |         | 0.77    |         | 0.02    | 0.99     | 0.02     | 0.99     | 0.02     |             |           | 0.01     | -        | 0.77     | 0.86     | 0.77     | -        | -        | 0.92   | 0.01     |
| AR                   |         | 0.01    |         | 0.03    | 0.00     | 0.03     | 0.00     | 0.03     |             |           | 0.01     | -        | 0.01     | 0.01     | 0.01     | -        | -        | 0.01   | 0.01     |
| H2                   |         | -       |         | -       | -        | -        | -        | -        |             |           | 0.25     | -        | -        | -        | -        | -        | -        | -      | 0.44     |
| CO                   |         | -       |         | -       | -        | -        | -        | -        |             |           | 0.26     | -        | -        | -        | -        | -        | -        | -      | 0.07     |
| CO2                  |         | 0.00    |         | -       | -        | -        | -        | -        |             |           | 1.01E-01 | 0.00E+00 | 3.00E-04 | 2.63E-04 | 3.00E-04 | 0.00E+00 | 0.00E+00 | 0.00   | 0.29     |
| H2O                  |         | 0.01    |         | -       | 1.84E-13 | -        | 1.88E-13 | -        | 1.00        |           | 3.71E-01 | 1.00E+00 | 1.08E-02 | 1.79E-03 | 1.04E-02 | 1.00E+00 | 2.01E-02 | 0.00   | 0.19     |
| CH4                  |         | -       |         | -       | -        | -        | -        | -        |             |           | 8.33E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | -        | 0.00   |          |
| H2S                  |         | -       |         | -       | -        | -        | -        | -        |             |           | 0.01     | -        | -        | -        | -        | -        | -        | -      | 1.08E-05 |
| NH3                  |         | -       |         | -       | -        | -        | -        | -        |             |           | 0.00     | -        | -        | -        | -        | -        | -        | -      | 0.00     |
| CL2                  |         | -       |         | -       | -        | -        | -        | -        |             |           | 0.00     | -        | -        | -        | -        | -        | -        | -      | 1.08E-07 |
| HCN                  |         | -       |         | -       | -        | 0.00E+00 | -        | 0.00E+00 | -           |           | -        | -        | -        | -        | -        | -        | -        | -      | -        |
| SO2                  |         | -       |         | -       | 0.00E+00 | -        | 0.00E+00 | -        |             |           | -        | -        | -        | -        | -        | -        | -        | -      | -        |
| H2SO4                |         | -       |         | -       | -        | -        | -        | -        |             |           | -        | -        | -        | -        | -        | -        | 0.98     | -      | -        |
| Total                |         | 1.00    | 0.00    | 1.00    | 1.00     | 1.00     | 1.00     | 1.00     | 1.00        | 0.00      | 1.00     | 1.00     | 1.00     | 0.88     | 1.00     | 1.00     | 1.00     | 1.00   | 1.00     |

Table 5. Case 4 (GEP Type Gasifier) – Stream Data (Cont'd)

| Stream No.           | 20       | 21     | 22      | 23       | 24       | 25       | 26       | 27        | 28        | 29        | 30       | 31       | 32       | 33       | 34       | 35       | 36       | 37       | 38       |
|----------------------|----------|--------|---------|----------|----------|----------|----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Temperature, C       | 198      | 141    | 220     | 186      | 27       | 203      | 195      | 15        | 569       | 153       | 235      | 218      | 27       | 90       | 288      | 410      | 135      | 27       | 27       |
| Pressure, bar        | 50.16    | 144.79 | 10.34   | 10.34    | 152.70   | 47.90    | 31.72    | 1.01      | 1.05      | 0.99      | 10.11    | 49.47    | 9.58     | 20.00    | 19.79    | 19.10    | 18.55    | 17.79    | 152.70   |
| Vapor Fraction       | 1.0      | -      | 1.0     | 1.0      | -        | 1.0      | 1.0      | 1.0       | 1.0       | 1.0       | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | -        |
| Molar Flow, kmol/hr  | 28,622   | 1,793  | 7,381   | 16,001   | 9,983    | 21,407   | 23,300   | 109,472   | 133,024   | 133,024   | 3,924    | 3,537    | 10,222   | 10,222   | 10,222   | 10,230   | 10,230   | 9,983    | 9,983    |
| Mass Flow, kg/hr     | 557,013  | 32,307 | 132,970 | 543,625  | 439,236  | 171,691  | 208,521  | 3,158,246 | 3,588,548 | 3,588,548 | 110,187  | 103,213  | 439,526  | 439,526  | 439,532  | 443,684  | 443,684  | 439,236  | 439,236  |
| Fluid Avg Mol Wt     | 19.5     | 18.0   | 18.0    | 34.0     | 44.0     | 8.0      | 8.9      | 28.8      | 27.0      | 27.0      | 28.1     | 29.2     | 43.0     | 43.0     | 43.0     | 43.4     | 43.4     | 44.0     | 44.0     |
| Fluid Mole Fractions |          |        |         |          |          |          |          |           |           |           |          |          |          |          |          |          |          |          |          |
| O2                   | 7.23E-14 | -      | -       | 1.99E-15 | 8.55E-06 | 9.52E-14 | 9.34E-14 | 0.21      | 0.11      | 0.11      | -        | -        | -        | -        | 3.11E-15 | 8.34E-06 | 8.34E-06 | 8.55E-06 | 8.55E-06 |
| N2                   | 0.01     | -      | -       | 0.00     | 0.00     | 0.01     | 0.01     | 0.77      | 0.70      | 0.70      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| AR                   | 0.01     | -      | -       | 0.00     | 0.00     | 0.01     | 0.01     | 0.01      | 0.01      | 0.01      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| H2                   | 0.44     | -      | -       | 0.01     | 2.11E-08 | 0.66     | 0.64     | -         | -         | -         | 0.31     | 0.34     | 0.02     | 0.02     | 0.02     | -        | -        | 2.11E-08 | 2.11E-08 |
| CO                   | 0.07     | -      | -       | 0.00     | 3.25E-09 | 0.01     | 0.01     | -         | -         | -         | 0.00     | 0.00     | 0.00     | 0.00     | -        | -        | 3.25E-09 | 3.25E-09 |          |
| CO2                  | 0.29     | -      | -       | 0.62     | 9.99E-01 | 9.22E-03 | 0.03     | 0.00      | 0.01      | 0.01      | 5.72E-01 | 0.63     | 0.97     | 9.72E-01 | 9.72E-01 | 9.75E-01 | 9.75E-01 | 9.99E-01 | 9.99E-01 |
| H2O                  | 0.19     | 1.00   | 1.00    | 0.36     | 0.00E+00 | 3.05E-01 | 0.30     | 0.01      | 0.17      | 0.17      | 1.06E-01 | 0.01     | 0.00     | 3.45E-03 | 3.45E-03 | 2.41E-02 | 2.41E-02 | 0.00E+00 | 0.00E+00 |
| CH4                  | 0.00     | -      | -       | 2.49E-05 | 0.00E+00 | 1.10E-03 | 0.00     | -         | -         | -         | 5.14E-04 | 0.00     | -        | 0.00E+00 | 3.89E-05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| H2S                  | 1.08E-05 | -      | -       | 3.22E-07 | 5.16E-13 | 1.43E-05 | 1.40E-05 | -         | -         | -         | 6.71E-06 | 7.45E-06 | 5.04E-07 | 5.04E-07 | 5.04E-07 | -        | 0.00E+00 | 5.16E-13 | 5.16E-13 |
| NH3                  | 0.00     | -      | -       | 0.00     | -        | -        | 6.80E-05 | -         | 1.19E-05  | 1.19E-05  | -        | -        | -        | -        | -        | -        | 0.00E+00 | 0.00E+00 | -        |
| CL2                  | 1.08E-07 | -      | -       | 2.96E-09 | 4.75E-15 | 2.12E-08 | 2.82E-08 | -         | -         | -         | -        | -        | 4.63E-09 | 4.63E-09 | 4.63E-09 | -        | 0.00E+00 | 4.75E-15 | 4.75E-15 |
| HCN                  | -        | -      | -       | -        | -        | -        | -        | -         | -         | -         | -        | -        | -        | -        | -        | -        | 0.00E+00 | 0.00E+00 | -        |
| SO2                  | -        | -      | -       | -        | -        | -        | -        | -         | -         | -         | -        | -        | -        | -        | -        | -        | 0.00E+00 | 0.00E+00 | -        |
| H2SO4                | -        | -      | -       | -        | -        | -        | -        | -         | -         | -         | -        | -        | -        | -        | -        | -        | -        | -        | -        |
| Total                | 1.00     | 1.00   | 1.00    | 1.00     | 1.00     | 1.00     | 1.00     | 1.00      | 1.00      | 1.00      | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     |



**Figure 5. Case 5 (E-Gas Type Gasifier) - Block flow diagram with Cold Gas Cleanup for F-T Liquids**

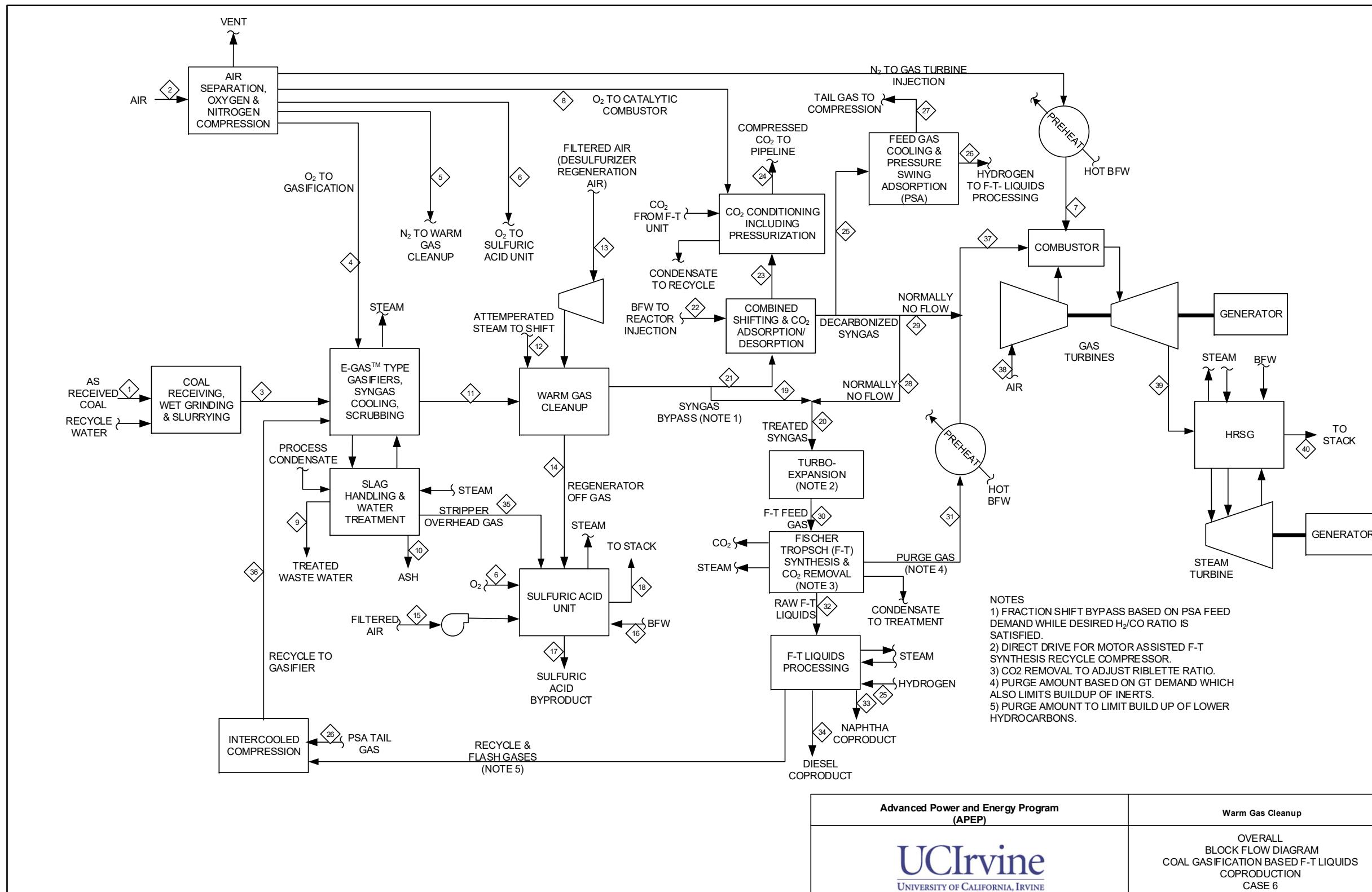
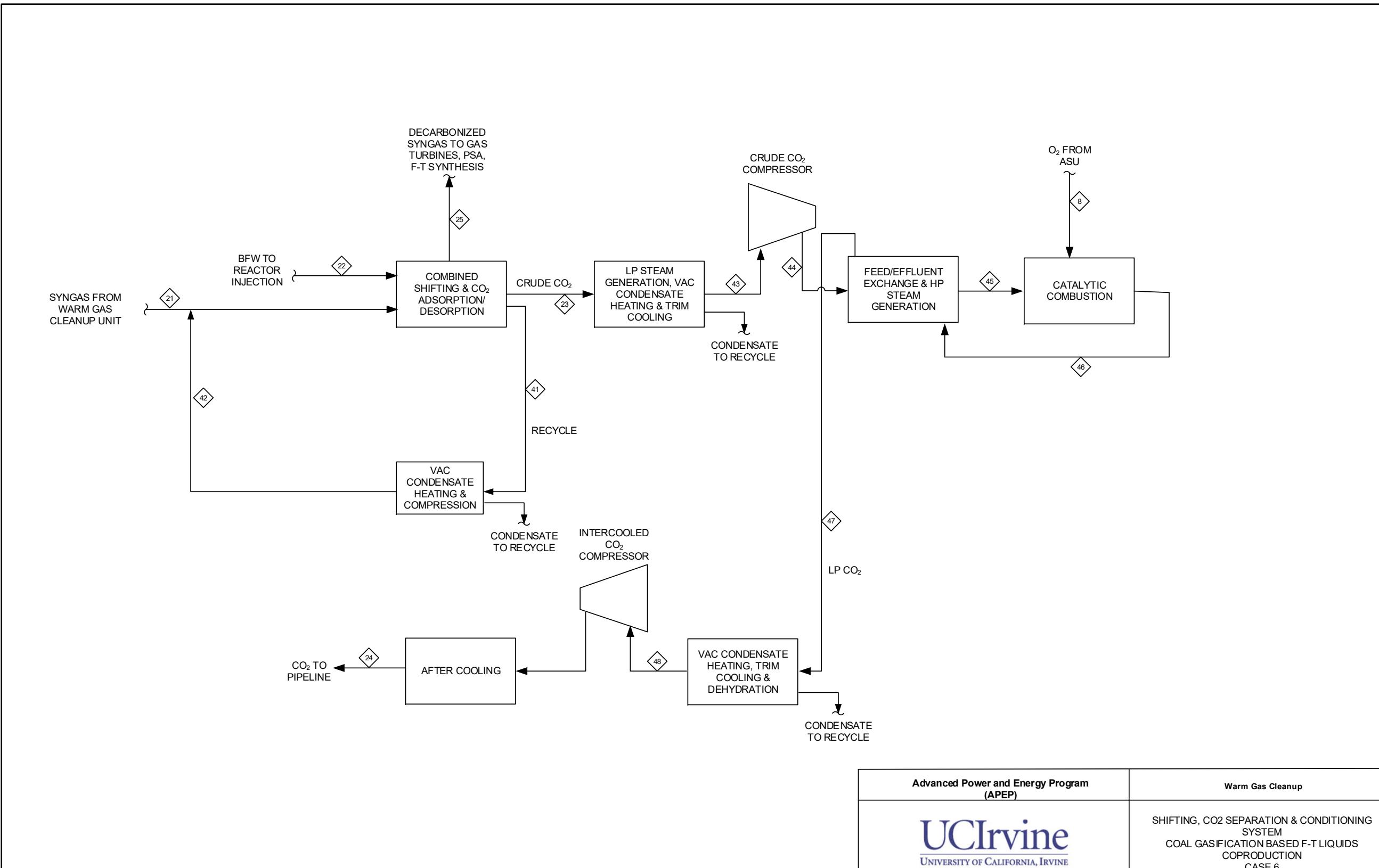




Figure 6. Case 6 (E-Gas Type Gasifier) - Block flow diagram with Warm Gas Cleanup for F-T Liquids



**Table 6. Case 6 (E-Gas Type Gasifier) – Stream Data**

| Stream No.                | 1       | 2    | 3         | 4       | 5      | 6      | 7       | 8           | 9         | 10      | 11        | 12    | 13      | 14      | 15     | 16     | 17     | 18      | 19        | 20        | 21     | 22     | 23     | 24        |
|---------------------------|---------|------|-----------|---------|--------|--------|---------|-------------|-----------|---------|-----------|-------|---------|---------|--------|--------|--------|---------|-----------|-----------|--------|--------|--------|-----------|
| Temperature, C            | 15      | -    | 149       | 88      | 60     | 19     | 196     | 145         | 54        | -       | 184       | 392   | 15      | 760     | 15     | 141    | 20     | 43      | 202       | 201       | 202    | 141    | 186    | 27        |
| Pressure, bar             | 1.01    | -    | 57.92     | 50.33   | 41.20  | 8.58   | 30.52   | 20.50       | 3.10      | 1.01    | 38.78     | 51.02 | 1.01    | 35.68   | 1.01   | 8.00   | 1.01   | 1.01    | 36.37     | 32.89     | 36.37  | 144.79 | 10.34  | 152.70    |
| Vapor Fraction            | -       | -    | -         | 1.0     | 1.0    | 1.0    | 1.0     | 1.0         | 0.0       | -       | 1.0       | 1.0   | 1.0     | 1.0     | 1.0    | -      | -      | 1.0     | 1.0       | 1.0       | 1.0    | -      | 1.0    | -         |
| Fluid Molar Flow, kmol/hr | 0       |      | 19,306    | 519     | 374    | 3,575  | 51      | With Solids | Dry Basis | 128,668 | 0         | 5,222 | 5,386   | 1,886   | 601    | 798    | 6,949  | 117,274 | 117,277   | 3,273     | 781    | 2,139  | 23,200 |           |
| Mass Flow, kg/hr          | 793,864 | 0    | 1,119,978 | 621,381 | 14,564 | 12,050 | 100,334 | 1,638       | 100,849   | 81,028  | 2,579,302 | 2     | 150,667 | 174,350 | 54,411 | 10,823 | 63,862 | 193,869 | 2,341,653 | 2,341,683 | 65,361 | 14,064 | 69,449 | 1,021,011 |
| Fluid Avg Mol Wt          | -       |      | 18.0      | 32.2    | 28.1   | 32.2   | 28.1    | 32.2        | 18.0      | -       | 20.0      |       |         |         |        |        |        |         |           |           |        |        |        |           |
| Fluid Mole Fractions      |         |      |           |         |        |        |         |             |           |         |           |       |         |         |        |        |        |         |           |           |        |        |        |           |
| O2                        |         | 0.00 |           | 0.95    | 0.01   | 0.95   | 0.01    | 0.95        |           |         | 0.00      | 0.00  | 0.21    | 0.03    | 0.21   | 0.00   | 0.00   | 0.05    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| N2                        |         | 0.00 |           | 0.02    | 0.99   | 0.02   | 0.99    | 0.02        |           |         | 0.01      | 0.00  | 0.77    | 0.84    | 0.77   | 0.00   | 0.00   | 0.89    | 0.01      | 0.01      | 0.01   | 0.00   | 0.00   | 0.00      |
| AR                        |         | 0.00 |           | 0.03    | 0.00   | 0.03   | 0.00    | 0.03        |           |         | 0.02      | 0.00  | 0.01    | 0.01    | 0.01   | 0.00   | 0.00   | 0.01    | 0.02      | 0.02      | 0.02   | 0.00   | 0.00   | 0.00      |
| H2                        |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.26      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.26      | 0.26      | 0.26   | 0.00   | 0.01   | 0.00      |
| CO                        |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.26      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.26      | 0.26      | 0.26   | 0.00   | 0.00   | 0.00      |
| CO2                       |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.12      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.12      | 0.12      | 0.12   | 0.00   | 0.56   | 1.00      |
| H2O                       |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        | 1.00      |         | 0.31      | 1.00  | 0.01    | 0.00    | 0.01   | 1.00   | 0.22   | 0.05    | 0.32      | 0.32      | 0.32   | 1.00   | 0.43   | 0.00      |
| CH4                       |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.02      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.02      | 0.02      | 0.02   | 0.00   | 0.00   | 0.00      |
| H2S                       |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| NH3                       |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.01   | 0.00      |
| HCN                       |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C3H8                      |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C4H10                     |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C5H12                     |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C9H20                     |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C9H18                     |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C15H32                    |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C15H30                    |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C20H40                    |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C21H44                    |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| C30H60                    |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| CH3OH                     |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| H2SO4                     |         | 0.00 |           | 0.00    | 0.00   | 0.00   | 0.00    | 0.00        |           |         | 0.00      | 0.00  | 0.00    | 0.00    | 0.00   | 0.00   | 0.78   | 0.00    | 0.00      | 0.00      | 0.00   | 0.00   | 0.00   | 0.00      |
| Total                     |         | 0.00 |           | 1.00    | 1.00   | 1.00   | 1.00    | 1.00        |           |         | 1.00      | 1.00  | 1.00    | 1.00    | 1.00   | 1.00   | 1.00   | 1.00    | 1.00      | 1.00      | 1.00   | 1.00   | 1.00   | 1.00      |

**Table 6. Case 6 (E-Gas Type Gasifier) – Stream Data (Cont'd)**

| Stream No.                | 25     | 26    | 27    | 28    | 29    | 30        | 31      | 32      | 33     | 34      | 35    | 36      | 37      | 38        | 39        | 40        | 41     | 42    | 43        | 44        | 45        | 46        | 47        | 48        |
|---------------------------|--------|-------|-------|-------|-------|-----------|---------|---------|--------|---------|-------|---------|---------|-----------|-----------|-----------|--------|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| Temperature, C            | 203    | 38    | 33    | 203   | 203   | 172       | 55      | 55      | 28     | 37      | 27    | 170     | 109     | 15        | 553       | 174       | 228    | 179   | 29        | 97        | 288       | 307       | 140       | 27        |
| Pressure, bar             | 32.89  | 32.55 | 1.36  | 32.89 | 32.89 | 23.50     | 23.50   | 3.00    | 1.72   | 1.72    | 2.07  | 50.00   | 23.50   | 1.01      | 1.05      | 0.99      | 9.89   | 34.65 | 9.24      | 20.00     | 19.79     | 19.10     | 18.55     | 17.79     |
| Vapor Fraction            | 1.0    | 1.0   | 1.0   | 1.0   | 1.0   | 1.0       | 1.0     | 0.1     | -      | -       | 1.0   | 1.0     | 1.0     | 1.0       | 1.0       | 1.0       | 1.0    | 1.0   | 1.0       | 1.0       | 1.0       | 1.0       | 1.0       | 1.0       |
| Fluid Molar Flow, kmol/hr | 3,005  | 1,443 | 385   | 3     | 3     | 116,860   | 5,117   | 1,227   | 397    | 713     | 332   | 11,883  | 8,695   | 40,383    | 48,083    | 48,083    | 402    | 337   | 23,329    | 23,329    | 23,330    | 23,357    | 23,357    | 23,200    |
| Mass Flow, kg/hr          | 29,652 | 4,287 | 4,171 | 30    | 30    | 2,334,548 | 112,540 | 237,717 | 62,887 | 150,061 | 5,906 | 252,290 | 212,904 | 1,165,040 | 1,377,944 | 1,377,944 | 10,584 | 9,411 | 1,022,231 | 1,022,230 | 1,022,241 | 1,023,879 | 1,023,879 | 1,021,011 |
| Fluid Avg Mol Wt          |        |       |       |       |       |           |         |         |        |         |       |         |         |           |           |           |        |       |           |           |           |           |           |           |
| Fluid Mole Fractions      |        |       |       |       |       |           |         |         |        |         |       |         |         |           |           |           |        |       |           |           |           |           |           |           |
| O2                        | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.21      | 0.11      | 0.11      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| N2                        | 0.01   | 0.00  | 0.09  | 0.01  | 0.01  | 0.01      | 0.08    |         |        | 0.00    | 0.00  | 0.08    | 0.46    | 0.77      | 0.73      | 0.73      | 0.01   | 0.01  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| AR                        | 0.02   | 0.02  | 0.04  | 0.02  | 0.02  | 0.02      | 0.11    |         |        | 0.00    | 0.00  | 0.10    | 0.07    | 0.01      | 0.02      | 0.02      | 0.01   | 0.01  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| H2                        | 0.55   | 0.97  | 0.64  | 0.55  | 0.55  | 0.26      | 0.39    |         |        | 0.00    | 0.00  | 0.42    | 0.23    | 0.00      | 0.00      | 0.31      | 0.36   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| CO                        | 0.00   | 0.00  | 0.04  | 0.00  | 0.00  | 0.26      | 0.04    |         |        | 0.00    | 0.00  | 0.04    | 0.02    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| CO2                       | 0.01   | 0.00  | 0.05  | 0.01  | 0.01  | 0.12      | 0.24    |         |        | 0.00    | 0.01  | 0.22    | 0.14    | 0.00      | 0.05      | 0.05      | 0.50   | 0.59  | 0.99      | 0.99      | 0.99      | 0.99      | 0.99      | 1.00      |
| H2O                       | 0.39   | 0.00  | 0.01  | 0.39  | 0.39  | 0.32      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.01      | 0.08      | 0.08      | 0.17   | 0.01  | 0.00      | 0.00      | 0.00      | 0.01      | 0.01      | 0.00      |
| CH4                       | 0.02   | 0.00  | 0.13  | 0.02  | 0.02  | 0.02      | 0.12    |         |        | 0.00    | 0.00  | 0.12    | 0.07    | 0.00      | 0.00      | 0.01      | 0.01   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| H2S                       | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| NH3                       | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.97  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| HCN                       | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C3H8                      | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C4H10                     | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.01    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C5H12                     | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C9H20                     | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.02    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C9H18                     | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C15H32                    | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.96    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C15H30                    | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.02    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C20H40                    | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C21H44                    | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| C30H60                    | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| CH3OH                     | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| H2SO4                     | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00      | 0.00    |         |        | 0.00    | 0.00  | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00   | 0.00  | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| Total                     | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00      | 1.00    | 0.00    | 0.00   | 1.00    | 1.00  | 1.00    | 1.00    | 1.00      | 1.00      | 1.00      | 1.00   | 1.00  | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      |

**Table 7. Performance Summary – E-Gas Type Gasifier based IGCC Cases**

| CASE                                               | 1        | 2                               |           |
|----------------------------------------------------|----------|---------------------------------|-----------|
| GASIFIER TYPE                                      | E-Gas    | E-Gas                           |           |
| GROSS POWER GENERATED (AT GENERATOR TERMINALS), kW |          |                                 |           |
| GAS TURBINE POWER                                  | 464,000  | 428,558                         |           |
| STEAM TURBINE POWER                                | 244,875  | 264,784                         |           |
| SYNGAS EXPANDER                                    |          |                                 |           |
| TOTAL POWER, kW                                    | 708,875  | 693,342                         |           |
| AUXILIARY LOAD SUMMARY, kW                         |          |                                 |           |
| COAL HANDLING                                      | 448      | 432                             |           |
| COAL GRINDING                                      | 2,269    | 2,188                           |           |
| COAL SLURRY PUMPS                                  | 629      | 632                             |           |
| SLAG/ASH HANDLING & DEWATERING                     | 1,118    | 1,086                           |           |
| AIR SEPARATION UNIT AUXILIARIES                    | 1,071    | 1,033                           |           |
| AIR SEPARATION UNIT MAIN AIR COMPRESSOR            | 65,689   | 52,410                          |           |
| OXYGEN COMPRESSOR                                  | 9,125    | 13,549                          |           |
| NITROGEN COMPRESSOR                                | 34,536   | 21,682                          |           |
| SYNGAS RECYCLE COMPRESSOR                          | 1,275    | 1,194                           |           |
| TAIL GAS RECYCLE COMPRESSOR                        | 5,396    | 25,617                          |           |
| CO2 COMPRESSOR                                     | 31,543   | 5,299                           |           |
| BOILER FEEDWATER & DEMIN PUMPS                     | 5,431    | 361                             |           |
| VACUUM CONDENSATE PUMP                             | 368      | 82                              |           |
| PROCESS CONDENSATE & SWS SYSTEMS                   | 51       | 3                               |           |
| HUMIDIFIER & BFW CIRCULATING PUMPS                 | 44       | COOLING WATER CIRCULATING PUMPS | 4,731     |
| COOLING WATER CIRCULATING PUMPS                    | 4,956    | COOLING TOWER FANS              | 2,389     |
| COOLING TOWER FANS                                 | 2,502    | AIR COOLED CONDENSER FANS       |           |
| AIR COOLED CONDENSER FANS                          |          | SCRUBBER PUMPS                  | 381       |
| SCRUBBER PUMPS                                     | 396      | DESULFURIZER UNIT               | 4,795     |
| SELEXOL UNIT                                       | 20,999   | GAS TURBINE AUXILIARIES         | 924       |
| GAS TURBINE AUXILIARIES                            | 1,000    | STEAM TURBINE AUXILIARIES       | 115       |
| STEAM TURBINE AUXILIARIES                          | 107      | H2SO4 UNIT                      | (3,601)   |
| CLAUS & TAIL GAS TREATING AUXILIARIES              | 204      | MISCELLANEOUS BALANCE OF PLANT  | 2,944     |
| MISCELLANEOUS BALANCE OF PLANT                     | 3,053    | TRANSFORMER LOSSES              | 2,568     |
| TRANSFORMER LOSSES                                 | 2,626    | TOTAL AUXILIARIES, kW           | 140,812   |
| TOTAL AUXILIARIES, kW                              | 194,835  | NET POWER, kW                   | 552,529   |
| NET POWER, kW                                      | 514,040  | NET PLANT EFFICIENCY, % HHV     | 34.45     |
| NET PLANT EFFICIENCY, % HHV                        | 30.91    | NET HEAT RATE                   |           |
| NET HEAT RATE                                      |          | kJ/kWh                          | 10,449    |
| kJ/kWh                                             | 11,648   | BTU/kWh                         | 9,904     |
| BTU/kWh                                            | 11,040   | CONDENSER COOLING DUTY          |           |
| CONDENSER COOLING DUTY                             |          | 10^6 kJ/h                       | 1,476     |
| 10^6 kJ/h                                          | 1,332.39 | 10^6 BTU/h                      | 1,399     |
| 10^6 BTU/h                                         | 1,262.86 | CONSUMABLES                     |           |
| CONSUMABLES                                        |          | AS-RECEIVED COAL FEED           |           |
| AS-RECEIVED COAL FEED                              |          | kg/h                            | 212,637   |
| kg/h                                               | 220,518  | lb/h                            | 468,864   |
| lb/h                                               | 486,242  | THERMAL INPUT, KWT HHV          | 1,603,713 |
| THERMAL INPUT, KWT HHV                             |          | RAW WATER USAGE                 |           |
| RAW WATER USAGE                                    |          | M^3/MIN                         | 21.52     |
| M^3/MIN                                            | 21.41    | GPM                             | 5,685     |
| GPM                                                | 5,657.13 | CARBON CAPTURED                 |           |
| CARBON CAPTURED                                    |          | %                               | 90.00     |
| %                                                  | 90.24    | tonne CO2/tonne dry coal        | 2.346     |
| tonne CO2/tonne dry coal                           | 2.353    |                                 |           |

**Table 8. Performance Summary – GEP Type Gasifier based IGCC Cases**

| CASE                                               | 3         |
|----------------------------------------------------|-----------|
| GASIFIER TYPE                                      | GEP       |
| GROSS POWER GENERATED (AT GENERATOR TERMINALS), kW |           |
| GAS TURBINE POWER                                  | 464,000   |
| STEAM TURBINE POWER                                | 259,517   |
| SYNGAS EXPANDER                                    | 6,189     |
| TOTAL POWER, kW                                    | 729,705   |
| AUXILIARY LOAD SUMMARY, kW                         |           |
| COAL HANDLING                                      | 452       |
| COAL GRINDING                                      | 2,292     |
| COAL SLURRY PUMPS                                  | 797       |
| SLAG/ASH HANDLING & DEWATERING                     | 1,137     |
| AIR SEPARATION UNIT AUXILIARIES                    | 1,100     |
| AIR SEPARATION UNIT MAIN AIR COMPRESSOR            | 68,069    |
| OXYGEN COMPRESSOR                                  | 10,763    |
| NITROGEN COMPRESSOR                                | 36,046    |
| SYNGAS RECYCLE COMPRESSOR                          | -         |
| TAIL GAS RECYCLE COMPRESSOR                        | 1,694     |
| CO2 COMPRESSOR                                     | 31,418    |
| BOILER FEEDWATER & DEMIN PUMPS                     | 4,739     |
| VACUUM CONDENSATE PUMP                             | 336       |
| PROCESS CONDENSATE & SWS SYSTEMS                   | 231       |
| HUMIDIFIER & BFW CIRCULATING PUMPS                 | 25        |
| COOLING WATER CIRCULATING PUMPS                    | 5,520     |
| COOLING TOWER FANS                                 | 2,787     |
| SCRUBBER PUMPS                                     | 72        |
| SELEXOL UNIT                                       | 19,251    |
| GAS TURBINE AUXILIARIES                            | 1,000     |
| STEAM TURBINE AUXILIARIES                          | 113       |
| CLAUS & TAIL GAS TREATING AUXILIARIES              | 206       |
| MISCELLANEOUS BALANCE OF PLANT                     | 3,084     |
| TRANSFORMER LOSSES                                 | 2,703     |
| TOTAL AUXILIARIES, kW                              | 193,833   |
| NET POWER, kW                                      | 535,872   |
| NET PLANT EFFICIENCY, % HHV                        | 31.90     |
| NET HEAT RATE,                                     |           |
| kJ/kWh                                             | 11,285    |
| BTU/kWh                                            | 10,696    |
| CONDENSER COOLING DUTY                             |           |
| 10^6 kJ/h                                          | 1,554     |
| 10^6 BTU/h                                         | 1,473     |
| CONSUMABLES                                        |           |
| AS-RECEIVED COAL FEED                              |           |
| KG/h                                               | 222,733   |
| lb/h                                               | 491,126   |
| THERMAL INPUT, KWT HHV                             | 1,679,861 |
| RAW WATER USAGE                                    |           |
| M^3/MIN                                            | 22.38     |
| GPM                                                | 5,913     |
| CARBON CAPTURED                                    |           |
| %                                                  | 90.31     |
| tonne CO2/tonne dry coal                           | 2.326     |

| CASE                                               | 4         |
|----------------------------------------------------|-----------|
| GASIFIER TYPE                                      | GEP       |
| GROSS POWER GENERATED (AT GENERATOR TERMINALS), kW |           |
| GAS TURBINE POWER                                  | 418,408   |
| STEAM TURBINE POWER                                | 267,865   |
| SYNGAS EXPANDER POWER                              | 8,822     |
| TOTAL POWER, KWE                                   | 695,094   |
| AUXILIARY LOAD SUMMARY, KWE                        |           |
| COAL HANDLING                                      | 432       |
| COAL MILLING                                       | 2,192     |
| COAL SLURRY PUMPS                                  | 722       |
| SLAG HANDLING & DEWATERING                         | 1,088     |
| AIR SEPARATION UNIT AUXILIARIES                    | 440       |
| AIR SEPARATION UNIT MAIN AIR COMPRESSOR            | 48,426    |
| OXYGEN COMPRESSOR                                  | 17,757    |
| NITROGEN COMPRESSOR                                | 15,593    |
| SYNGAS RECYCLE COMPRESSOR                          | -         |
| CO2 PURIFICATION & COMPRESSION                     | 28,079    |
| BOILER FEEDWATER & DEMIN PUMPS                     | 4,485     |
| VACUUM CONDENSATE PUMP                             | 308       |
| PROCESS CONDENSATE & SWS SYSTEMS                   | 504       |
| BFW CIRCULATING PUMPS                              | 6         |
| COOLING WATER CIRCULATING PUMPS                    | 4,937     |
| COOLING TOWER FANS                                 | 2,492     |
| AIR COOLED CONDENSER FANS                          |           |
| SCRUBBER PUMPS                                     | 69        |
| DESULFURIZER UNIT                                  | 4,800     |
| GAS TURBINE AUXILIARIES                            | 902       |
| STEAM TURBINE AUXILIARIES                          | 117       |
| H2SO4 UNIT                                         | (3,771)   |
| MISCELLANEOUS BALANCE OF PLANT                     | 2,949     |
| TRANSFORMER LOSSES                                 | 2,575     |
| TOTAL AUXILIARIES, KWE                             | 135,100   |
| NET POWER, KWE                                     | 559,994   |
| NET PLANT EFFICIENCY, % HHV                        | 34.86     |
| NET HEAT RATE                                      |           |
| KJ/KWH                                             | 10,328    |
| BTU/KWH                                            | 9,789     |
| CONDENSER COOLING DUTY                             |           |
| 10^6 KJ/H                                          | 1,501     |
| 10^6 BTU/H                                         | 1,422     |
| CONSUMABLES                                        |           |
| AS-RECEIVED COAL FEED                              |           |
| KG/H                                               | 213,013   |
| lb/h                                               | 469,694   |
| THERMAL INPUT, KWT HHV                             | 1,606,553 |
| RAW WATER USAGE                                    |           |
| M^3/MIN                                            | 21.54     |
| GPM                                                | 5,691     |
| CARBON CAPTURED                                    |           |
| %                                                  | 89.99     |
| tonne CO2/tonne dry coal                           | 2.318     |

**Table 9. Plant Cost Summary – E-Gas Type Gasifier based IGCC Cases**

| CASE                                   | 1            |
|----------------------------------------|--------------|
| ASU                                    | 273,006      |
| Fuel receiving, preparation & feeding  | 112,045      |
| Gasifier, syngas cooler & auxiliaries  | 311,129      |
| Gasification foundations               | 21,404       |
| Ash handling systems                   | 45,150       |
| Flare stack system                     | 3,707        |
| Shift reactors                         | 15,875       |
| LTGC & Syngas Humidification           | 51,143       |
| Blowback gas systems                   | 1,638        |
| Fuel gas piping                        | 1,930        |
| Gas cleanup foundations                | 1,942        |
| Hg Removal                             | 3,689        |
| Selexol                                | 243,545      |
| Claus & TG Recycle                     | 40,533       |
| CO2 compression & dehydration          | 67,009       |
| Gas turbine , generator & auxiliaries  | 159,009      |
| HRSG, ducting & stack                  | 54,095       |
| Steam turbine, generator & auxiliaries | 81,508       |
| Steam Condenser                        | 5,604        |
| Feedwater system                       | 20,082       |
| Water makeup + pretreating             | 2,336        |
| Other feedwater subsystems             | 4,112        |
| Service water systems                  | 7,113        |
| Other boiler plant systems             | 8,300        |
| Fuel oil system & nat gas              | 2,297        |
| Waste water treatment                  | 2,705        |
| Misc. power plant equipment            | 3,050        |
| Cooling water system                   | 39,997       |
| Accessory electric plant               | 106,463      |
| Instrumentationo & controls            | 32,460       |
| Improvement to site                    | 23,158       |
| Buildings & structures                 | 21,692       |
| Total                                  | 1,767,721    |
| <b>Specific plant cost, \$/kW</b>      | <b>3,439</b> |

| CASE                                  | 2            |
|---------------------------------------|--------------|
| ASU                                   | 263,327      |
| Fuel receiving, preparation & feeding | 109,386      |
| Gasifier, syngas cooler & auxiliaries | 302,531      |
| Gasification foundations              | 21,018       |
| Ash handling systems                  | 44,255       |
| Flare stack system                    | 3,640        |
| Warm gas desulfurization              | 33,528       |
| H2SO4 unit                            | 73,878       |
| Shift reactor & heat exchange         | 6,211        |
| Blowback gas systems                  | 1,620        |
| Fuel gas piping                       | 2,262        |
| Gas cleanup foundations               | 1,524        |
| Trace contaminant removal             | 4,206        |
| WGS/CO2 PSA                           | 129,110      |
| CO2 purification & heat recovery      | 28,917       |
| CO2 compression & drying              | 59,380       |
| Gas turbine, generator & auxiliaries  | 159,009      |
| HRSG, ducting & stack                 | 53,128       |
| Steam turbin, generator & auxiliaries | 86,091       |
| Steam condenser                       | 6,027        |
| Feedwater system                      | 17,503       |
| Water makeup & pretreating            | 2,345        |
| Other feedwater subsystems            | 4,347        |
| Service water systems                 | 6,931        |
| Other boiler plant systems            | 8,787        |
| Fuel oil system & nat gas             | 2,254        |
| Waste water treatment                 | 2,636        |
| Misc. power plant equipment           | 3,034        |
| Cooling water system                  | 38,680       |
| Accessory electric plant              | 105,407      |
| Instrumentationo & controls           | 32,307       |
| Improvement to site                   | 23,090       |
| Buildings & structures                | 21,613       |
| Total                                 | 1,657,979    |
| <b>Specific plant cost, \$/kW</b>     | <b>3,001</b> |

**Table 10. Plant Cost Summary – GEP Type Gasifier based IGCC Cases**

| CASE                                   | 3         |
|----------------------------------------|-----------|
| ASU                                    | 284,065   |
| Fuel receiving, preparation & feeding  | 115,143   |
| Gasifier, syngas cooler & auxiliaries  | 310,284   |
| Gasification foundations               | 19,084    |
| Ash handling                           | 55,505    |
| Soot Recovery + SARU                   | 7,056     |
| Shift reactors                         | 22,137    |
| Syngas scrubber + LTGC                 | 26,440    |
| Fuel gas piping                        | 1,752     |
| Gas cleanup foundations                | 1,821     |
| Hg Removal                             | 4,161     |
| Selexol                                | 257,485   |
| Claus & TG Recycle                     | 40,805    |
| CO2 compression, dehydration & pumping | 66,885    |
| Syngas Expander                        | 9,236     |
| Gas turbine, generator & auxiliaries   | 159,299   |
| HRSG, ducting & stack                  | 54,241    |
| Steam turbine, generator & auxiliaries | 84,133    |
| Surface condenser                      | 6,136     |
| Feedwater system                       | 19,332    |
| Water makeup & pretreating             | 2,400     |
| Other feedwater subsystems             | 4,009     |
| Service water systems                  | 7,221     |
| Other boiler plant systems             | 8,180     |
| Fuel oil system & nat gas              | 2,315     |
| Waste water treatment                  | 2,745     |
| Misc. power plant equipment            | 3,118     |
| Cooling water system                   | 43,036    |
| Accessory electric plant               | 106,607   |
| Instrumentation & controls             | 33,222    |
| Improvement to site                    | 23,634    |
| Buildings & structures                 | 22,356    |
| Total                                  | 1,803,840 |
| Specific plant cost, \$/kW             | 3,366     |

| CASE                                    | 4         |
|-----------------------------------------|-----------|
| ASU                                     | 285,214   |
| Fuel receiving, preparation & feeding   | 111,801   |
| Gasifier, syngas cooler & auxiliaries   | 299,804   |
| Gasification foundations                | 18,662    |
| Ash handling systems                    | 54,160    |
| Soot Recovery & SARU                    | 6,900     |
| Warm gas desulfurization                | 33,575    |
| H2SO4 unit                              | 73,966    |
| Shift reactor & heat exchange           | 9,210     |
| Syngas scrubber                         | 11,076    |
| Fuel gas piping                         | 2,161     |
| Gas cleanup foundations                 | 1,518     |
| Trace contaminant removal               | 4,247     |
| WGS/CO2 PSA                             | 153,182   |
| CO2 purification & heat recovery        | 48,373    |
| CO2 compression & drying                | 63,162    |
| Syngas Expander                         | 11,838    |
| Gas turbine, generator & auxiliaries    | 159,299   |
| HRSG, ducting & stack                   | 52,716    |
| Steam turbine , generator & auxiliaries | 86,019    |
| Surface condenser                       | 5,986     |
| Feedwater system                        | 16,233    |
| Water makeup & pretreating              | 2,336     |
| Other feedwater subsystems              | 4,101     |
| Service water systems                   | 6,996     |
| Other boiler plant systems              | 8,371     |
| Fuel oil system & nat gas               | 2,258     |
| Waste water treatment                   | 2,659     |
| Misc. power plant equipment             | 3,081     |
| Cooling water system                    | 39,714    |
| Accessory electric plant                | 104,301   |
| Instrumentation & controls              | 33,030    |
| Improvement to site                     | 23,549    |
| Buildings & structures                  | 22,257    |
| Total                                   | 1,761,758 |
| Specific plant cost, \$/kW              | 3,146     |

Table 11. Process Economics – E-Gas and GEP Type Gasifier based IGCC Cases

| Gasifier Type                                                                                         | E-Gas         | E-Gas         | GEP           | GEP           |
|-------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|
| Cold Gas Cleanup Case                                                                                 | 1             | 2             | 3             | 4             |
| Basis for Cost Estimates (Year)                                                                       | 2011          | 2011          | 2011          | 2011          |
| Net power, MW                                                                                         | 514           | 553           | 536           | 560           |
| Net efficiency, % HHV                                                                                 | 30.91         | 34.45         | 31.90         | 34.86         |
| Capacity factor (CF), %                                                                               | 80            | 80            | 80            | 80            |
| Total plant cost (TPC), \$                                                                            | 1,767,721,087 | 1,657,979,242 | 1,803,840,133 | 1,761,757,760 |
| 6 month labor cost                                                                                    | 15,845,106    | 15,211,860    | 16,285,705    | 16,177,408    |
| 1 month maintenance materials                                                                         | 2,804,055     | 2,647,252     | 2,913,156     | 2,886,340     |
| 1 month non-fuel consumables                                                                          | 846,741       | 1,153,328     | 870,082       | 1,187,439     |
| 1 month waste disposal                                                                                | 457,701       | 449,082       | 496,036       | 484,892       |
| 25% of 1 month fuel cost at 100% CF                                                                   | 3,043,751     | 2,934,968     | 3,074,328     | 2,940,167     |
| 2% of TPC                                                                                             | 35,354,422    | 33,159,585    | 36,076,803    | 35,235,155    |
| 60 day supply of fuel & consumables at 100% CF                                                        | 25,686,728    | 25,433,165    | 25,974,039    | 25,541,470    |
| 0.5% of TPC (spare parts)                                                                             | 8,838,605     | 8,289,896     | 9,019,201     | 8,808,789     |
| Initial catalyst & chemicals cost, \$                                                                 | 16,139,527    | 17,369,628    | 16,283,434    | 18,858,878    |
| Land                                                                                                  | 900,000       | 900,000       | 900,000       | 900,000       |
| Other owners's costs (15% of TPC)                                                                     | 265,158,163   | 248,696,886   | 270,576,020   | 264,263,664   |
| Financing costs                                                                                       | 47,728,469    | 44,765,440    | 48,703,684    | 47,567,460    |
| Total overnight cost, \$                                                                              | 2,190,524,356 | 2,058,990,331 | 2,235,012,620 | 2,186,609,422 |
| Fixed operating cost for initial year of operation, \$                                                | 67,044,634    | 63,583,305    | 68,648,213    | 67,589,971    |
| Annual feed cost at above CF for initial year, \$                                                     | 116,880,029   | 112,702,790   | 118,054,204   | 112,902,405   |
| Other annual variable operating cost at above CF for initial year, \$                                 | 39,441,574    | 40,796,747    | 41,081,034    | 43,763,244    |
| Annual CO2 transporting, storing, and monitoring cost at above CF for initial year, \$                | 32,314,244    | 31,074,755    | 32,268,701    | 30,750,831    |
| Annual byproduct revenues at above CF for initial year, \$                                            | 4,228,333     | 12,064,763    | 4,270,841     | 12,230,306    |
| <b>1st year cost of electricity (COE) w/o CO2 TS&amp;M, \$/MWh</b>                                    | <b>136.4</b>  | <b>119.0</b>  | <b>133.5</b>  | <b>123.3</b>  |
| <b>1st year cost of electricity (COE), \$/MWh</b>                                                     | <b>145.4</b>  | <b>127.1</b>  | <b>142.1</b>  | <b>131.1</b>  |
| 1st year CO2 capture cost without CO2 TS&M compared to corresponding IGCC (w/o CO2 capture), \$/tonne | 42.6          | 25.9          | 37.5          | 28.1          |
| 1st year CO2 capture cost without CO2 TS&M compared to SCPC (w/o CO2 capture), \$/tonne               | 61.6          | 47.3          | 61.0          | 53.8          |
| 1st year CO2 avoided cost with CO2 TS&M compared to SCPC (w/o CO2 capture), \$/tonne                  | 91.2          | 64.5          | 85.9          | 69.9          |

**Table 12. Performance Summary – E-Gas Type Gasifier based F-T Liquids Cases**

| CASE                                               | 5         | CASE                                               | 6         |
|----------------------------------------------------|-----------|----------------------------------------------------|-----------|
| GASIFIER TYPE                                      | E-Gas     | GASIFIER TYPE                                      | E-Gas     |
| GROSS POWER GENERATED (AT GENERATOR TERMINALS), kW |           | GROSS POWER GENERATED (AT GENERATOR TERMINALS), kW |           |
| GAS TURBINE POWER                                  | 130,136   | GAS TURBINE POWER                                  | 130,175   |
| STEAM TURBINE POWER                                | 494,365   | STEAM TURBINE POWER                                | 592,215   |
| TOTAL POWER, kW                                    | 624,501   | TOTAL POWER, kW                                    | 722,390   |
| AUXILIARY LOAD SUMMARY, kW                         |           | AUXILIARY LOAD SUMMARY, kW                         |           |
| COAL HANDLING                                      | 1,655     | COAL HANDLING                                      | 1,612     |
| COAL GRINDING                                      | 8,390     | COAL GRINDING                                      | 8,169     |
| COAL SLURRY PUMPS                                  | 2,536     | COAL SLURRY PUMPS                                  | 2,359     |
| SLAG/ASH HANDLING & DEWATERING                     | 4,130     | SLAG/ASH HANDLING & DEWATERING                     | 4,054     |
| AIR SEPARATION UNIT AUXILIARIES                    | 4,504     | AIR SEPARATION UNIT AUXILIARIES                    | 4,320     |
| AIR SEPARATION UNIT MAIN AIR COMPRESSOR            | 147,920   | AIR SEPARATION UNIT MAIN AIR COMPRESSOR            | 148,266   |
| OXYGEN COMPRESSOR                                  | 83,691    | OXYGEN COMPRESSOR                                  | 84,199    |
| NITROGEN COMPRESSOR                                | 6,920     | NITROGEN COMPRESSOR                                | 7,920     |
| SYNGAS RECYCLE COMPRESSOR                          | 5,286     | SYNGAS RECYCLE COMPRESSOR                          | 5,351     |
| TAIL GAS RECYCLE COMPRESSOR                        | 9,929     | CO2 PURIFICATION & COMPRESSION                     | 90,952    |
| CO2 COMPRESSOR                                     | 53,997    | BOILER FEEDWATER & DEMIN PUMPS                     | 9,394     |
| BOILER FEEDWATER & DEMIN PUMPS                     | 7,289     | VACUUM CONDENSATE PUMP                             | 574       |
| VACUUM CONDENSATE PUMP                             | 645       | PROCESS CONDENSATE & SWS SYSTEMS                   | 1,964     |
| PROCESS CONDENSATE & SWS SYSTEMS                   | 702       | BFW CIRCULATING PUMPS                              | 96        |
| HUMIDIFIER & BFW CIRCULATING PUMPS                 | 67        | COOLING WATER CIRCULATING PUMPS                    | 16,884    |
| COOLING WATER CIRCULATING PUMPS                    | 15,574    | COOLING TOWER FANS                                 | 8,524     |
| COOLING TOWER FANS                                 | 7,863     | SCRUBBER PUMPS                                     | 1,375     |
| SCRUBBER PUMPS                                     | 2,216     | DESULFURIZER UNIT                                  | 19,788    |
| RECTISOL UNIT                                      | 44,565    | GAS TURBINE AUXILIARIES                            | 281       |
| GAS TURBINE AUXILIARIES                            | 280       | STEAM TURBINE AUXILIARIES                          | 258       |
| STEAM TURBINE AUXILIARIES                          | 236       | H2SO4 UNIT                                         | (13,567)  |
| CLAUS & TAIL GAS TREATING AUXILIARIES              | 942       | F-T UNIT                                           | 60,880    |
| F-T UNIT                                           | 70,099    | MISCELLANEOUS BALANCE OF PLANT                     | 3,000     |
| MISCELLANEOUS BALANCE OF PLANT                     | 3,000     | TRANSFORMER LOSSES                                 | 2,676     |
| TRANSFORMER LOSSES                                 | 2,346     | TOTAL AUXILIARIES, KWE                             | 469,326   |
| TOTAL AUXILIARIES, kW                              | 484,784   | NET POWER, kW                                      | 253,064   |
| NET POWER, kW                                      | 139,717   | CONDENSER COOLING DUTY                             |           |
| CONDENSER COOLING DUTY                             |           | 10^6 kJ/h                                          | 3,185     |
| 10^6 kJ/h                                          | 2,860     | 10^6 BTU/h                                         | 3,018     |
| 10^6 BTU/h                                         | 2,711     | F-T LIQUIDS PRODUCTION RATE                        |           |
| F-T LIQUIDS PRODUCTION RATE                        |           | NAPHTHA                                            |           |
| NAPHTHA                                            |           | Tonne/D                                            | 1,509     |
| Tonne/D                                            | 1,475     | ST/D                                               | 1,664     |
| ST/D                                               | 1,626     | DIESEL                                             |           |
| DIESEL                                             |           | Tonne/D                                            | 3,601     |
| Tonne/D                                            | 3,632     | ST/D                                               | 3,970     |
| ST/D                                               | 4,005     | CONSUMABLES                                        |           |
| CONSUMABLES                                        |           | AS-RECEIVED COAL FEED                              |           |
| AS-RECEIVED COAL FEED                              |           | KG/h                                               | 793,864   |
| KG/h                                               | 793,864   | lb/h                                               | 1,750,470 |
| lb/h                                               | 1,750,470 | THERMAL INPUT, KWT HHV                             | 5,987,353 |
| THERMAL INPUT, KWT HHV                             | 5,987,353 | RAW WATER USAGE                                    |           |
| RAW WATER USAGE                                    |           | M^3/MIN                                            | 49.29     |
| M^3/MIN                                            | 49.29     | GPM                                                | 13,023.49 |
| GPM                                                | 13,023.49 | CARBON CAPTURED, %                                 | 91        |
| CARBON CAPTURED, %                                 | 91        |                                                    |           |

**Table 13. Plant Cost Summary – E-Gas Type Gasifier based F-T Liquids Cases**

| CASE                                                   | 5         | 6         |
|--------------------------------------------------------|-----------|-----------|
| ASU                                                    | 954,521   | 967,011   |
| Fuel receiving, preparation & feeding                  | 363,954   | 363,954   |
| Gasifier, syngas cooler & auxiliaries                  | 1,136,076 | 1,133,159 |
| Gasification foundations                               | 76,866    | 76,738    |
| Ash handling systems                                   | 148,368   | 148,368   |
| Soot Recovery & SARU                                   | 0         |           |
| Flare stack system                                     | 9,280     | 9,280     |
| Shift reactor                                          | 3,024     |           |
| Syngas scrubber (included in gasification auxiliaries) | 0         |           |
| LTGC + Syngas Humidification                           | 92,402    |           |
| Blowback gas systems                                   | 8,840     |           |
| Fuel gas piping                                        | 4,374     |           |
| Gas cleanup foundations                                | 5,693     |           |
| Hg Removal                                             | 8,727     |           |
| Rectisol                                               | 301,807   |           |
| Claus & TG Recycle                                     | 79,863    |           |
| CO2 compression, dehydration                           | 108,834   |           |
| Syngas expander                                        | 25,251    |           |
| Gas turbine, generator & auxiliaries                   | 89,537    |           |
| HRSG, ducting & stack                                  | 25,185    |           |
| Steam turbine, generator & auxiliaries                 | 104,237   |           |
| Steam Condensers                                       | 11,759    |           |
| Feedwater system                                       | 22,572    |           |
| Water makeup & pretreating                             | 3,636     |           |
| Other feedwater subsystems                             | 2,569     |           |
| Service water systems                                  | 23,743    |           |
| Other boiler plant systems                             | 15,244    |           |
| Fuel oil system & nat gas                              | 3,113     |           |
| Waste water treatment                                  | 9,024     |           |
| Misc. power plant equipment                            | 4,409     |           |
| Cooling water system                                   | 91,209    |           |
| Accessory electric plant                               | 150,163   |           |
| Instrumentation & controls                             | 35,775    |           |
| Improvement to site                                    | 55,640    |           |
| Buildings & structures                                 | 44,098    |           |
| F-T synthesis, product upgrade, PSA & CO2 separation   | 1,021,624 |           |
| Total                                                  | 5,041,418 | 4,995,197 |

**Table 14. Process Economics – E-Gas Type Gasifier based F-T Liquids Cases**

| Gasifier                                                                                      | E-Gas         |               |       |        |
|-----------------------------------------------------------------------------------------------|---------------|---------------|-------|--------|
| Case                                                                                          | 5             | 6             |       |        |
| Basis for Cost Estimates (Year)                                                               | 2011          | 2011          |       |        |
| Chemical-1 (Naphtha), ST/D                                                                    | 1,626         | 1,664         |       |        |
| Chemical-2 (Diesel), ST/D                                                                     | 4,005         | 3,970         |       |        |
| Chemical-1 + Chemical-2, ST/D                                                                 | 5,630         | 5,634         |       |        |
| Chemical-1 RSP/Chemical-2 RSP                                                                 | 0.7742        | 0.7742        |       |        |
| Net efficiency, % HHV                                                                         | 2.33          | 4.23          |       |        |
| Capacity factor (CF), %                                                                       | 90            | 90            |       |        |
| Total plant cost (TPC), \$                                                                    | 5,041,417,956 | 4,995,196,769 |       |        |
| 6 month labor cost                                                                            | 51,836,276    | 50,813,502    |       |        |
| 1 month maintenance materials                                                                 | 8,357,671     | 8,104,413     |       |        |
| 1 month non-fuel consumables                                                                  | 2,591,054     | 3,758,002     |       |        |
| 1 month waste disposal                                                                        | 1,771,731     | 1,640,938     |       |        |
| 25% of 1 month fuel cost at 100% CF                                                           | 10,957,507    | 10,957,507    |       |        |
| 2% of TPC                                                                                     | 100,828,359   | 99,903,935    |       |        |
| 60 day supply of fuel & consumables at 100% CF                                                | 91,570,355    | 93,872,280    |       |        |
| 0.5% of TPC (spare parts)                                                                     | 25,207,090    | 24,975,984    |       |        |
| Initial catalyst & chemicals cost, \$                                                         | 18,038,439    | 59,688,549    |       |        |
| Land                                                                                          | 900,000       | 900,000       |       |        |
| Other owners's costs (15% of TPC)                                                             | 756,212,693   | 749,279,515   |       |        |
| Financing costs                                                                               | 136,118,285   | 134,870,313   |       |        |
| Total overnight cost (TOC), \$                                                                | 6,245,807,417 | 6,233,961,707 |       |        |
| Fixed operating cost for initial year of operation (OCF), \$                                  | 204,500,912   | 201,530,940   |       |        |
| Annual feed cost at above CF for initial year (OCV1), \$                                      | 473,364,312   | 473,364,312   |       |        |
| Other annual variable operating cost at above CF for initial year (OCV2), \$                  | 137,380,923   | 145,836,199   |       |        |
| Annual CO2 transporting, storing, and monitoring cost at above CF for initial year (OCV3), \$ | 131,018,834   | 132,090,919   |       |        |
| Annual byproduct revenues at above CF for initial year (OCV4), \$                             | 82,750,720    | 169,325,339   |       |        |
|                                                                                               | \$/ST         | \$/bbl        | \$/ST | \$/bbl |
| NAPHTHA                                                                                       |               |               |       |        |
| 1st year Required Sale Price (RSP) w/o CO2 TS&M                                               | 938           | 113           | 901   | 108    |
| 1st year Required Sale Price (RSP)                                                            | 996           | 120           | 960   | 115    |
| DIESEL                                                                                        |               |               |       |        |
| 1st year Required Sale Price (RSP) w/o CO2 TS&M                                               | 1,211         | 162           | 1,164 | 155    |
| 1st year Required Sale Price (RSP)                                                            | 1,287         | 172           | 1,240 | 166    |