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Advances in wind plant control have often focused on more effectively balancing power 

between neighboring turbines. Wake steering is one such method that provides control-based 

improvements in a quasi-static way, but this fundamentally does not change the downstream 

wake deficit and thus, can only provide limited improvement. Another control paradigm is to 

leverage the turbine as a flow actuator to dynamically excite unstable modes in the wake, 

thereby producing accelerated wake breakdown and recovery. Taking a more applied 

approach than some studies in the wake instability area, this article investigates the use of 

dynamic wake control (DWC) from two existing turbine control vectors, blade pitch and rotor 

speed, to incite rapid breakdown of the tip vortex structures. Both control vectors can be 

dynamically manipulated to make a significant difference on the wake structure and 

breakdown. The mid-fidelity free-vortex wake method (FVWM) used below allows a thorough 

search of the parametric space while still capturing the essential physics of the mutual 

inductance instability. The parameters for investigation include the frequency, amplitude, and 

phase of the harmonic forcing for both control vectors. The output from the FVWM is the 

basis for a Fourier stability analysis, which is used to pinpoint and quantify candidate forcing 

strategies with the highest instability growth rates and shortest near-wake lengths. The 

strategies, including dynamic rotor speed, blade pitch, and a novel tandem configuration, 

work to augment the initial tip vortex instability magnitude, leading to near-wake length 

reductions of greater than 80%, though without considering inflow turbulence. Analysis is 

provided to interpret these predictions considering the presence of inflow turbulence in a real 

atmosphere. 

I. Introduction 

A. Overview of Wind Turbine Wake Recovery 

One of the largest remaining opportunities to reduce the levelized cost of wind energy will come from substantial 

gains in the understanding of complex wind plant aerodynamics and atmospheric phenomena, according to the U.S. 

Department of Energy [1]. As evidence, measurements over a range of modern wind plants across Europe [2] and in 

the U.S. [3] show that the second row of turbines in a wind plant captures around 20% less than power than the first 

when the turbines are aligned with the wind, and this falls to around 40% for turbines located deep within the array. 

In stable atmospheric conditions, even higher losses have been observed. Advances in wind plant layouts and wake 

steering techniques have improved plant performance, but the turbine spacing is still fundamentally constrained by 

the recovery of the turbine wake. In addition to this performance aspect, the turbulence of wakes significantly degrades 

the fatigue life of downstream turbines [4]. 

These problems can be traced back to the failure of the wake to fully “recover” from its depleted state after passing 

momentum to the turbine blades. During wake recovery, large-scale structures such as those produced by instabilities 

over a mixing layer entrain and inject a flux of mean-flow kinetic energy from the ambient flow into the depleted 
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wake. Most of this re-energizing occurs in the far-wake, which begins somewhere between two and four diameters 

downstream from the turbine [5, 6]. 

In the near wake, there exists a rich mix of relatively organized flow features that propagate downstream of a 

turbine. These coherent features include a region of velocity deficit on the scale of the rotor diameter, swirling motion 

opposite the blades’ rotation direction, an initially two-dimensional wake structure from the tower shadow, 

helicoidally-tracking vorticity (tip, root, and shed components), a columnar hub vortex, lateral spreading due to a 

pressure differential with the ambient flow, and entrainment of ambient flow promoting wake recovery, as well as any 

features that might be recognizable from the atmospheric boundary layer (ABL) inflow. Lignarolo et al.’s [7] 

measurements showed that, within the near wake, the flow across the shear layer is governed by the periodic tip vortex 

structures and results in a roughly zero net recovery of mean-flow kinetic energy, the helical tip vortices effectively 

shielding the wake from the ambient flow. Speeding the transition to the far wake via the breakdown of the tip vortices 

is thus critical for wake recovery. 

B. Inherent Wake Instabilities 

 The transition between near-wake and far-wake regions is triggered by instabilities in the wake and resulting 

breakdown of the tip vortices [8, 9]. Theoretical analysis of tip vortex stability offers three instability mechanisms: 

short-wave sinuous instability, long-wave sinuous instability, and mutual inductance instability [10]. The short-wave 

instability is due to the self-inductance of nearby locations on the vortex filament and results in localized “squiggles” 

along the filament. The long-wave instability is related to interactions between neighboring filaments that, when 

allowed to amplify, result in the mutual inductance (vortex pairing) instability [11] and the eventual “leapfrogging” 

of one vortex by another. It is this latter instability that has been shown to be the dominant cause of the beginning of 

wake breakdown in wind turbines [7, 9, 12], propellers [8], and hovering rotors [13]. An excellent experimental flow 

visualization of the process was 

given by Alfredsson and Dahlberg 

[14] as shown in Figure 1, along 

with a comparable lifting line free-

vortex method result from Marten et 

al. [15]. 

It is well documented that the 

location of the breakdown is a 

function of the spacing between 

consecutive tip vortex spirals that, 

in turn, is a function primarily of 

thrust coefficient and number of 

blades [8, 16, 17]. Furthermore, 

recent experiments spanning a range 

of (diameter) Reynolds numbers 

from approximately 90,000 to 

40,000,000 (or 40M), and related 

both to wind energy [18, 19] and 

propulsion [20], have validated that 

the streamwise distance before 

vortex breakdown (and therefore the 

beginning of the wake recovery) is 

inversely proportional to the level of external disturbance via turbulence. The hub vortex also plays a role in the tip 

vortex evolution as it has a stabilizing effect on the tip vortices. However, the hub vortex is more short-lived than the 

tip vortex and therefore does not likely contribute to the tip vortex breakdown [8, 17] (the results of [8], at least, imply 

that the tip vortex destabilizes the hub vortex rather than vice-versa). 

Several studies have demonstrated that the modes of the mutual inductance instability that result in maximum 

exponential growth correspond to half integer multiples of the number of blades (i.e., the disturbance of every other 

helical vortex is 180 degrees out of phase) [16, 17, 21]. The nondimensional wavenumber, 𝜔, for each of these modes 

is the number of perturbation periods per rotor revolution as given by Equation 1 [16] 

Figure 1. Progression of a mutual inductance instability, or 

leapfrogging, event for tip vortices. Top: Smoke visualization of the tip 

vortex from a two-bladed scaled model. Reproduced from [14]. 

Bottom: Snapshot of Q-criterion from a lifting line free vortex method. 

Reproduced from [15]. 

90° rotation of adjacent vortices 

around saddle point (beginning 

of helical breakdown) 
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 𝜔 = 𝑁𝑏(𝑘 − 0.5), (1) 

where 𝑁𝑏 is the number of turbine blades and 𝑘 are positive integers (note that some references such as [11] use an 

alternate convention so that the quantity in the parenthesis is simply 𝑘). The 𝑘 = 1 mode has been found to be primarily 

responsible for the transition to the non-linear instability growth regime that is characteristic of the beginning of the 

wake breakdown process [17]. This instability is evident mainly in the axial and radial directions, and the 

displacements in these directions are of the same order but 180 degrees out of phase. Because of the phase difference, 

axial movements of a vortex filament towards its upstream neighbor coincide with the neighbor’s downstream 

movements, thus resulting in imminent pairing, after which the phase shift discontinues. Given knowledge of the 

dominant instability modes, a logical next step forward for wind energy applications is to explore how these modes 

can be excited to promote wake breakdown. 

C. Intentional Wake Forcing 

While many wind plant optimization studies focus on moderating the power extraction of “greedy” upwind 

turbines to yield a net plant-wide gain or on steering the wake of upstream turbines to avoid downstream ones, a 

different and ultimately more appealing strategy is to reduce the length of the wake recovery process. Since this 

recovery process siphons energy from the canopy above into the far wake below, speeding the onset of the far wake 

effectively increases the capture area of a wind plant with high power density. One avenue to accomplish this goal 

involves altering the blade induction distribution to speed the wake mixing process [22], though modification of the 

blade design does not allow any real-time control authority, besides via different combinations of collective pitch and 

rotor speed. 

A more flexible approach has come into the spotlight in the last several years: dynamic forcing of the wake to 

excite the instability modes. Much of the work has dealt with forcing frequencies that are appropriate for exciting 

bluff-body-type instabilities [23-26]. Another dynamic forcing strategy, and one with possibly more potential, is 

forcing of the mutual inductance instability described above using the triggering frequencies determined by 

Equation_1. 

Despite strong literature contributions on the physics of the growth of the mutual inductance instability as reviewed 

above, relatively few studies have applied this knowledge and attempted to excite the instability. Several exceptions 

are described here. Following the numerical work of Ivanell et al. [17], Odemark and Fransson [27] demonstrated on 

a scaled wind turbine that the tip vortex pairing processes is affected by periodic forcing from pulsed jets emanating 

from the hub into the wake. The vortex pairing process, which was observed to occur between 1-2.5𝐷 from the rotor, 

was associated with a shift in energy from the blade passing frequency to a lower frequency depending on the initial 

vortex strengths of the tip vortices trailing from each blade. Quaranta et al. [11], with a slightly more applied approach, 

modulated the rotor speed of a single-bladed scaled model and demonstrated that the leapfrogging position (swapping 

position in their notation) decreases by 60% as the initial tip axial displacement amplitude is increased from 1% to 

15% of the distance between adjacent helices. Marten et al.’s [15] lifting-line free-vortex wake method also predicts 

a roughly 60% reduction in near-wake length by harmonic actuation of outboard flaps at an amplitude of 10°. The 

dynamic wake forcing strategies leveraged by Odemark and Fransson [27] and Quaranta et al. [11] were conducted in 

low turbulence environments with ≤ 1% ambient turbulence intensity. Wake forcing is likely to be most successful in 

lower turbulent environments, such as stable ABLs, where periodic forcing can compensate for the lack of natural 

unsteadiness to augment the initial instability magnitude. Marten et al.’s [15] results were made with 10% inflow 

turbulence intensity, though their wake modeling ignored interaction between the original freestream vortices and the 

added wake ones. 

Following in the path of the work above, the present study offers to quantify the benefit of optimal forcing 

strategies that encourage wake recovery. The innovative aspects of the work stem from the application of forcing 

using control vectors, blade pitch and rotor speed control (both individually and a novel tandem configuration), that 

are already available on all modern wind turbines. In contrast to the limited cases where such control vectors have 

been studied previously for their potential to excite the mutual inductance instability, i.e., [11], the computational 

approach below permits more thorough exploration of the parametric space than was previously possible. 

The formulation of the so-called dynamic wake control (DWC) waveforms is given in Section II. Section III 

describes the computational approach, which is enabled by multi-threaded parallel computing combined with mid-

fidelity modeling that captures the essential physics relevant to vortex instability. Section IV details results of 

parametric studies of forcing frequencies, amplitudes, and phases of the harmonic control actions. For each flow 
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simulation, a Fourier stability analysis will offer insight on the instability growth rates and resulting near-wake lengths. 

Section V compares the effects of the DWC-induced instabilities with those of natural turbulent inflow, and concluding 

remarks are made in Section VI. 

 

II. Dynamic Control Strategies 

The DWC strategy is to introduce an oscillation to the wake flow at an appropriate wavenumber to amplify the 

existing tip vortex instability and accelerate wake breakdown and recovery. Three control vectors exist on typical full-

scale turbines: yaw, collective pitch, and rotor speed. State-of-the-art wake steering is based on quasi-static yaw offsets 

attempting to steer wakes away from downstream turbines. However, typical yaw rates of large turbines (0.3°/s for 

the NREL 5MW [28]) are too slow to achieve any kind of meaningful oscillation amplitude that would be needed to 

gain active DWC authority at even the lowest 𝑘 in Equation 1. In addition, the mechanical wear on the yaw actuation 

system is unfavorable. On the other hand, both the blade pitch rates (8°/s for the NREL 5MW [28]) and the generator 

speed control (almost instantaneous response) provide ample authority for DWC strategies given a relatively steady 

inflow where the dominant timescales of the flow, and thus of the conventional control signals, are large with respect 

to the rotor period. Adjusting the rotor speed additionally gives the upside that the pitch system duty cycle, which is 

a common weakness, does not increase. However, torsional fatigue loads would go up to some extent on the drivetrain, 

which has yet to be evaluated. 

For the DWC approach presented below, the dynamic pitch setting, 𝑝, (an increase in 𝑝 corresponds to a reduction 

in blade angle of attack) relative to that of the conventional control setting, 𝑝0, is described by the equation 

where 𝑎𝑝 indicates the dynamic pitch amplitude, 𝜔𝑝 is the angular perturbation wavenumber described in Equation 1, 

𝜃 is the rotor azimuthal angle, and 𝜙𝑝 is any phase offset. The dynamic rotor rotational frequency, 𝑓, relative to that 

of the conventional control setting, 𝑓0, is described by the equation 

where the subscript 𝑓 is used to now distinguish between variables of the same names from Equation 2.  

 

III.Computational Setup 

A. Reference Turbine 

 An example case of DWC is demonstrated with the NREL 5MW reference turbine [28]. The 126 m diameter 

turbine is operated at rated conditions with a uniform freestream velocity of 11.13 m/s, rotation rate of 12.1 rpm (tip 

speed ratio of seven), and blade pitch of zero degrees. The airfoil data for the turbine come from the two-dimensional 

polars of [29], and no corrections are yet made for three-dimensional effects. The spanwise arrangement of the eight 

airfoils into 17 spanwise segments as well as the variation in chord and twist along the blade span are given in [28]. 

 Differentiating Equation 2 with respect to time and considering the maximum pitch rate of 8°/s for the NREL 

5MW, the maximum 𝑎𝑝 attainable is 4.2° for the 𝑘 = 1 case at the above rotation rate. The authors are unaware of 

limits on the rate of rotor speed modulation other than due to the bounds of the torque capabilities of the generator 

and the drive train. 

B. Mid-Fidelity Aerodynamic Model 

1. First-Order Estimation Using Free-Vortex Wake Methods (FVWMs) 

 FVWMs are mid-fidelity aerodynamic simulations that are founded on the assumption that the regions of viscous-

induced vorticity in the flow are concentrated to relatively small length scales. This allows the vorticity to be 

appropriately modeled as distributed singularities, and the viscous diffusion term can be dropped from the PDE of 

vorticity transport. By consideration of the vorticity transport PDE and Helmholtz’s second law, the simple advection 

 𝑝 = 𝑝0 + 𝑎𝑝sin (𝜔𝑝𝜃 + 𝜙𝑝), (2) 

 𝑓 = 𝑓0 + 𝑎𝑓sin (𝜔𝑓𝜃 + 𝜙𝑓), (3) 
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equation can be found that underlies the FVWM approach, which includes the time-rate of change of the position 

vector of a Lagrangian marker (vortex segment) on the left-hand side and the sum of all the Biot-Savart-induced 

velocities and freestream velocity on the right-hand side [13]. Second-order accuracy of both sides of the advection 

equation can be achieved given an appropriate finite differencing scheme and a rotor angular discretization of less 

than 2.5-5° [30]. 

 Vortex methods are well suited for the present analysis, given that atmospheric effects are not modeled at this 

stage of the work. The simplified modeling of viscous effects is of relatively small consequence for the problem at 

hand as the mutual inductance instability is an inviscid phenomenon, and the flow regime is of high Reynolds number. 

The FVWM is furthermore convenient for the present analysis because it allows explicit tracking of the vortex filament 

locations. Lastly, the computational efficiency of a FVWM allows thorough exploration of parametric spaces that is 

not typically feasible on state-of-the-art actuator line large-eddy simulations, which have computation times of 4-5 

orders of magnitude greater than FVWMs [15]. 

 The effectiveness of FVWM tools for analysis of tip vortex stability was illustrated by several studies [15, 16, 21, 

31]. The first application was in the field of rotorcraft; see Bhagwat et al. [16]. These authors used the steady-state 

solution of a FVWM as the basis for a linear eigenvalue stability analysis that identified the 𝜔 = 0.5𝑁𝑏 instability 

mode as having highest amplification. For wind energy applications, Rodriguez and Jaworski [21], Rodriguez et al. 

[31], and Marten et al. [15] also performed stability analyses on FVWM wakes but with time-marching rather than 

steady-state solutions being used to capture realistic transient wake geometries associated with floating offshore 

turbines, flexible blades, and flap actuation control, respectively. 

 Bhagwat et al. [16] also provided a cautionary note on using FVWM to study stability; numerically-induced 

instabilities can be significant and can undo a FVWM’s second-order accuracy if not contained. For the time-

marching methods that are required to model transient effects, the truncation error of higher-order terms in the explicit 

solution is an inevitable source of artificial instability. Other errors due to wake discretization, wake truncation, and 

viscous core models may be present in both time-marching and relaxation methods. These non-physical instabilities 

should be in general minimized as they may obfuscate the fluid dynamic instabilities of interest. Fortunately, given 

that a FVWM’s discretization is consistent with the governing equation of motion, convergence of the wake solution 

with increasing grid refinement is sufficient to demonstrate numerical stability. This requirement was met with an 

azimuthal step size of 5° for a time-marching algorithm in [30]. 

 It is inevitable that some numerical instability will remain. In a conventional FVWM without DWC, small 

numerical instability is in fact required to initially excite unstable modes from their state of (unstable) equilibrium 

[30], since FVWMs generally do not feature the inflow turbulence that is responsible for perturbing tip vortex 

instabilities in the natural atmosphere. However, a difference in the character of the initial perturbation is likely to 

exist between the perturbations provided by the numerical instabilities and those of a real turbulent atmosphere. Thus, 

some FVWM predictions are less reliable in terms of the absolute locations of vortex pairing (which depend on the 

magnitude of the initial perturbation) [16], but the relative rates of disturbance growth predicted between different 

solutions in a parametric study are valid. In our study, much of this concern is minimized because the magnitudes of 

the DWC-induced perturbations are generally much larger than those of the artificial perturbations. 

 Other modeling limitations of FVWMs are the limitation to uniform inflow profiles, in general, since sheared 

inflow profiles have shown non-physical results [32] and the loss of accuracy after vortex pairing since turbulent 

mixing is not properly modeled. Effects of the former are not considered here though described in [33], and errors 

from the latter are of minimal relevance to the present study that is concerned with only the initial vortex pairing 

process. 

 

2. FVWM Baseline Implementation 

 In this work we use the FVWM Code for Axial and Cross-flow TUrbine Simulation (CACTUS) developed at 

Sandia National Laboratories for the study of wind and water turbines [34]. The code uses a second-order predictor 

explicit time advancement scheme with a lifting line solution for the blades and a lattice for the free wake. For the 

lifting line, circulatory unsteady effects for attached conditions are handled using the pitching flat plate analogy. 

Furthermore, two dynamic stall models are available in CACTUS, and we use the modified Boeing-Vertol model for 

all results below unless otherwise noted. For the free wake, uniform or linearly varying velocity profiles model the 

vortex cores, the former being employed in this work. Ground and tower effects can be modeled in CACTUS though 

are ignored presently. The current work is enabled using the OpenMP interface within CACTUS, and this capability 

may also benefit future studies involving larger numbers of simulations towards further detailed parameter sweeps of 

different DWC waveforms, frequencies, amplitudes, and duty cycles. 
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 The case inputs for the CACTUS runs follow from the rated conditions, as well as the turbine and blade geometry, 

which were introduced in Section III.A. Note that the same spanwise discretization of the 17 aerodynamic stations for 

the NREL 5MW have been used successfully in previous FVWM tip vortex stability analyses [21, 31, 35]. 

 The configuration inputs for the CACTUS 

runs are held at the default settings defined in [34] 

except for the following. The number of iterations 

between wake convection velocity updates is 

enforced to remain at one. The number of 

azimuthal steps per rotor revolution was 

determined from the convergence study illustrated 

by Figure 2. For all revolution counts studied, the 

revolution-averaged power coefficient, 𝐶𝑝, 

(standard definition as described in [34]), 

converged to well within 10-3 by 2𝜋 Δ𝜃⁄ =80 

(azimuthal step size, 𝜃, of 4.5°), where 

convergence at each revolution count is assessed 

relative to the 𝐶𝑝 of a reference simulation at 

2𝜋 Δ𝜃⁄ =120 (𝜃 =3°) and the same revolution 

count. As 80 azimuthal steps per revolution not 

only achieves independence from the azimuthal 

resolution as shown in Figure 2 but also ensures 

second-order accuracy of the reconstructed 

velocity field [13], this step size was used for all 

subsequent simulations. Furthermore, the absolute 𝐶𝑝 was found to be sufficiently converged by 32 revolutions, which 

is thus taken as the precursor simulation length for all subsequent simulations. For all simulations including the 

convergence study, wake points beyond four diameters downstream from the rotor plane were ignored for efficiency, 

a simplification that will produce less than 1% error in absolute 𝐶𝑝 according to analysis based on [36]. 

 The data output from CACTUS occurred during revolutions 33-34 of the simulation, during which the velocity 

field was evaluated every two azimuthal steps on a three-dimensional grid of size 50 by 100 by 100 over the domain 

ranges of 0 ≤ 𝑥/𝐷 ≤ 5, −0.7 ≤ 𝑦/𝐷 ≤ 0.7, and −0.7 ≤ 𝑧/𝐷 ≤ 0.7, respectively. The vortex filament positions and 

velocities were also saved during these final two revolutions. 

The baseline case of the FVWM simulation without dynamic forcing is shown in Figure 3. In accordance with the 

“horseshoe” type vortex structure of 

vorticity typically observed on rotors, the 

trailing vorticity of the blades is primarily 

contained in the filaments at the extremes of 

the blade spans with opposite sense of 

rotation at each extreme. As introduced in 

Section I.B, we are primarily concerned with 

the tip vortex filaments, and it is apparent 

that both of the two outermost filaments 

emanating from each blade contain 

significant circulation. The separation of the 

trailing tip circulation into two distinct 

regions of concentrated circulation is due to 

the spanwise numerical discretization of the 

shed vorticity. Furthermore, the axial 

separation of two adjacent tip helices, ℎ, (see 

Figure 3) is around 10 times greater than the 

radial separation of the two outermost 

filaments in a helix sheet in our current 

modeling approach, so any given axial pair 

of outer filaments may be considered to be 

in the far-field of the circulation field of tip 

filament pairs on neighboring helix sheets. 

Figure 2. Convergence study of revolution-averaged 

turbine power coefficient, 𝑪𝒑, with increasing number 

of azimuthal steps per revolution, 𝟐𝝅/𝚫𝜽. Different 

numbers of total revolution counts are indicated in the 

legend. Each 𝑪𝒑 is referenced to the 𝑪𝒑 for the 𝟐𝝅 𝚫𝜽⁄ =

𝟏𝟐𝟎 (𝚫𝜽 = 𝟑°) case with the same respective number of 

total revolutions. 

2nd-order 

accuracy of 

reconstructed 
velocity field 

[13] 

Figure 3. Trailing vortex filaments from a baseline simulation 

with no dynamic forcing. The filament color indicates 

normalized circulation, 𝚪. Plotted data are restricted to one 

revolution for clarity. Trailing filaments only are shown 

without the spanwise filaments. Rotor geometry is for visual 

reference only and not representative of the NREL 5MW used 

in the simulations. 
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Consequently, the circulation from the outermost two filaments of a helix sheet will be lumped together when 

calculating the tip circulation to be used to normalize instability growth rates below. 

 

3. FVWM Modifications 

 The code used in this work is a modified version of CACTUS that allows for dynamic actuation of blade pitch and 

rotor speed. The actuation is accomplished by updating the blade pitch and/or rotor speed at each azimuthal station 

according to Equations 2 and 3. The inputs for both actuation types thus include the frequency, amplitude, and phase 

offset of the control waveform. To verify the correctness of the coding modifications, traces of the quarter-chord angle 

of attack and local velocity at the blade from the modified CACTUS output, after removal of the induced velocity 

components, were found to match those implied by Equations 2 and 3. Code modification has also been made to output 

velocity field data in the rotating frame of reference rather than the fixed frame of reference to aid the stability analysis 

to follow. 

 The unsteady forcing is applied for the full 34 revolutions of the simulation. It should be mentioned that rotor 

inertia is not considered, and that blade pitch and rotor speed have no interaction with one another as implemented. 

The effects of rotor inertia, blade aeroelasticity, drivetrain dynamics, and pitch-speed interaction will be investigated 

in future work but were deemed secondary in attempting to establish the overall control method feasibility. 

C. Fourier Stability Analysis 

 Previous work has found success using wake data from a variety of sources including FVWMs as the basis for 

both linear eigenvalue stability analyses [16, 21, 31] and Fourier analyses [15, 17, 27, 33] of tip vortex divergence 

rates. Below, we leverage both to demonstrate the effects of dynamic control actions on wake instability and near-

wake length, though the Fourier analysis is used predominantly and is therefore the only one outlined in this section. 

Previous authors have implemented Fourier stability analyses by either extracting the maximum response of the 

frequency of interest (FOI) from the Fourier spectra at each cross-section [17, 33], or by integrating over the region 

of tip vorticity at the FOI [15] or over a band of frequencies centered around the FOI [27]. Here, we follow closely 

the approach of Ivanell et al. [17]. 

 Time-resolved cross-stream flow snapshots in the rotating frame of reference are temporally mean-subtracted to 

give the field of the fluctuating velocity component, 𝒖𝑛
′ , across each snapshot, 𝑛. The 𝒖𝑛

′  are transformed into the 

frequency domain to yield the Fourier coefficient, 𝒖̂𝑗
′, via Equation 4 

where 𝑁 is the total number of snapshots and 𝑗 is the index of the integer-valued mode numbers from 0 to 𝑁 2⁄ − 1 

with corresponding frequencies given by 𝑓𝑗 = 𝑗/(𝑁Δ𝑡) where Δ𝑡 is the time step between successive snapshots. The 

most unstable location within the annulus defined by 0.375≤ 𝑟 𝐷⁄ ≤0.625 for each 𝑦𝑧 plane is |𝒖̂𝑗
′ |𝑚, which is 

calculated according to Equation 5 

where 𝑟 = √𝑦2 + 𝑧2 and the | ∙ | notation denotes the magnitude of a complex quantity. For numerical reasons, the 

location of |𝒖̂𝑗
′ |𝑚 at different axial locations may alternate between the three regions corresponding to the tip vortex 

filaments trailing from each of the three blades. Note that the practice of taking the maximum of |𝒖̂𝑗
′ | at each 𝑗 contrasts 

with the approach of Ivanell et al. [17] who took the 𝑦- and 𝑧-coordinates of |𝒖̂𝑗
′ |𝑚 

for the 𝑘 = 1 case as the coordinates 

for the |𝒖̂𝑗
′ |𝑚 

of all the remaining 𝑘 cases. Note that in some cases below, the index 𝑗 will have a subscript of its own 

to denote a specific 𝑘 frequency parameter of interest. For instance, |𝒖̂𝑗1

′ |𝑚 
 refers to the 𝑘 = 1 case. 

 The increase of |𝒖̂𝑗
′ |𝑚 along the streamwise direction serves as an indicator of the growth of instabilities for each 

frequency component. Specifically, the ratio of |𝒖̂𝑗
′ |𝑚 between two streamwise locations can be related to the temporal 

growth rate of an instability, 𝜎. The growth relationship takes the form of an exponential function in accordance with 

known character of the mutual inductance instability within its linear growth region [9, 17] (the linear region refers to 

that which shows linear growth using semi-log plotting; see Figure 4 further below). Equation 6 gives this relationship 

 𝒖̂𝑗
′ =

1

𝑁
∑ 𝒖𝑛

′𝑁−1
𝑛=0 𝑒−𝑖2𝜋𝑗𝑛/𝑁 , (4) 

 |𝒖̂𝑗
′ |𝑚 = max

𝑦𝑧
|𝒖̂𝑗

′ |  , (5) 
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where 𝑈𝑐 is the convection velocity of the tip vortices obtained by extracting the axial velocity of the vortex filaments 

within the linear region of growth from the FVWM results, and the subscripts “1” and “2” indicate two different axial 

locations in the flow field. By performing linear regression on the linear growth region, 𝜎 is thus identified. The non-

dimensionalization of 𝜎 into 𝜎∗ is accomplished according to Equation 7 [11] 

where ℎ is taken as a close approximation for the perpendicular distance between two consecutive filaments, and Γ is 

the circulation of the filaments. Strictly speaking, the oft-quoted maximum non-dimensional growth rate of 𝜎∗ = 𝜋 2⁄  

applies only to an infinite row of identical point vortices. For the more realistic case of a periodic array of inclined 

straight vortices, the value of 𝜎∗ for the NREL 5MW at rated conditions is only 0.2% greater than the point vortex 

value for 𝑘 = 1 according to the derivation of Quaranta et al. [11]. 

 Before coming to the parametric studies and physical interpretations of the effects of control vectors in the 

following section, we here present the Fourier analysis as applied to an example wake with dynamic forcing to point 

out several key features of the Fourier analysis output. The control vector in this example case is rotor frequency, 

which is prescribed from Equation 3 using 𝑎𝑓 = 0.02 rpm, 𝜔𝑓 = 1.5 rad-1 (𝑘 = 1), and 𝜙𝑓 = 0°. Figure 4(a) describes 

the streamwise growth of the scaled and normalized tip vortex instability magnitudes at five 𝑘 values including the 

forced frequency at 𝑘 = 1. In the axis label as well as all following occurrences, division of |𝒖̂𝑗
′ |𝑚 by a reference value 

of 1 m/s is assumed to make the quantity inside the natural logarithm dimensionless. The |𝒖̂𝑗
′ |𝑚 are furthermore 

normalized before plotting to compare with the maximum non-dimensional rate predicted by the classical 𝜋/2 vortex 

pairing result as described earlier. Normalization values derive from the linear region of the baseline solution without 

any DWC where ℎ = 14.1 m, 𝑈𝑐 = 8.60 m/s, and Γ = 76.2 m2/s, the former two being calculated as the mean between 

the two outermost filaments in a helix sheet and the latter as the sum over the two outermost filaments as described 

 |𝒖̂
𝑗,2

′ |𝑚 |𝒖̂
𝑗,1

′ |𝑚 ⁄ = 𝑒𝜎(𝑥2−𝑥1)/𝑈𝑐  , (6) 

 𝜎∗ = 𝜎 × 2ℎ2Γ−1 , (7) 

(a) 

Linear growth Non-linear vortex pairing 

ቀ
𝑥

𝐷
ቁ

𝑛𝑙
=  1.42 

𝜋

2
 

1 

Figure 4. (a) Maximum wake 

instability Fourier coefficients, 

|𝒖̂𝒋
′|𝒎, at each streamwise 

coordinate, 𝒙/𝑫, for 𝒂𝒇 = 𝟎. 𝟎𝟐 

rpm, 𝝎𝒇 = 𝟏. 𝟓 rad-1 (𝒌 = 𝟏), and 

𝝓𝒇 = 𝟎°. The dotted lines 

represent raw |𝒖̂𝒋
′|𝒎 while solid 

lines are the moving average of the 

raw data taken with a window size 

of five points. Normalization 

values are provided in the text. (b) 

Trajectories of the outermost tip 

vortex filaments at an instant in 

time from the simulation in (a). 

The filament diameter does not 

possess meaning and is only scaled 

for visual clarity in this figure. 

Non-linear threshold 

Instability region of forced mode: 

(b) 
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previously. Smoothing of |𝒖̂𝑗
′ |𝑚 is applied with a moving average taken with a window size of five points, and this 

smoothing helps to account for variation in |𝒖̂𝑗
′ |𝑚 due in part to finite output grid resolution. Only the smoothed and 

not the raw results are shown in the remainder of the figures. 

 After an initial period of receptivity, the growth rate for the 𝑘 = 1 forcing frequency remains close to the 

theoretically predicted 𝜎∗ = 𝜋/2 maximum until the non-linear region is reached at 𝑥 𝐷⁄ ≈ 1.42, wherein the 

flattening of the growth represents the onset of the tip vortex pairing and breakdown event [17]. Finally, at around 

𝑥 𝐷⁄ ≈1.75, the mutual inductance instability growth sees adjacent helices leapfrog one another. The leapfrogging 

event can be observed directly from view of the outermost vortex filaments themselves in Figure 4(b). Rather sudden 

disorganization of the flow occurs within 1𝐷 of the vortex breakdown. Similarly to [17], we consider in this work the 

end of the near wake to be the location of a non-linear threshold, which in our case is 𝑙𝑛(|𝒖̂𝑗
′ |𝑚) ×  2 ℎ2 𝑈𝑐  Γ−1 𝐷−1 = 

-0.25. 

The other 𝑘 values besides the forced 𝑘 = 1 case, which in the case of Figure 4(a) are all harmonics of the forcing 

case, show fast initial growth before eventually attaining nearly the same growth rate, though not the same magnitude, 

as the forced case. The non-forced 𝑘 cases will not be plotted in the remainder of the article. 

 

IV. Stability Results 

This section gives the Fourier analysis results on the sensitivity of the wake instability growth to three dynamic 

forcing parameters: frequency, amplitude, and phase. A subsection is devoted to each parameter. 

A. Frequency Selection 

This section aims to identify forcing frequencies of highest potential for wake length reductions. While it may in 

fact be possible to force the wake with multiple superimposed waveforms of different frequency and type to achieve 

optimal performance, we restrict the study in this article to single frequency harmonic cases as described previously. 

A frequency sweep was performed using a similar example case as described in Section III.C employing dynamic 

rotor frequency with 𝑎𝑓 =0.02 rpm, 𝜔𝑓 = 𝑁𝑏(𝑘 − 0.5), and 𝜙𝑓 = 0°. The instability growth for different forcing 𝑘 

are plotted in Figure 5(a). The best-fit slopes of the linear region between 1.0 ≤ 𝑥 𝐷⁄ ≤ 1.4 are the 𝜎∗ for each 𝑘, and 

these are compared in Figure 5(b) across all 𝑘. 

Figure 5(b) depicts a clear trend in 𝜎∗ with peaks near integer 𝑘 values and convergence of 𝜎∗ as 𝑘 increases, both 

characteristics that are found for helices with small pitch in Widnall’s [10] theoretical foundation on helical tip vortex 

instabilities. Furthermore, 𝜎∗ distributions of similar character, including a maximum growth rate at 𝑘 = 1, have been 

observed by previous authors studying rotor configurations using both Fourier analyses [15, 17] and eigenvalue 

analyses [16, 21, 31]. The addition of the dynamic stall model tends to displace the  𝜎∗ curve to slightly higher 𝑘 

relative to the case without dynamic stall for 𝑘 greater than roughly 1.5, though the location of maximum 𝜎∗, 𝑘 = 1, 

is unchanged with or without the model. In terms of absolute growth rates, this maximum 𝜎∗ is 1.41, or 10%, below 

the maximum theoretical value of 𝜋/2 for point vortices. 

To further demonstrate the consistency of the Fourier result with other stability analysis techniques, an eigenvalue 

stability analysis for the unforced case on one blade’s outer filament was performed following Bhagwat and 

Leishman’s [16] formulation. The same fluctuating and decaying trends are seen in the eigenvalue result as the Fourier 

one, including the maximum growth rate at 𝑘 = 1. Some differences compared to the Fourier result may exist since 

each method resolves slightly different targets; the eigenvalue analysis is applied directly to a single vortex filament 

while the Fourier analysis is calculated with velocities produced by the induction of all filaments in the flow field. 

Since the eigenvalue analysis is performed on an unforced wake, the eigenvalue result matches most closely with the 

Fourier result that does not include dynamic stall. 

Illustrations of all three outer filaments are provided in Figure 5(b) for several 𝑘 to aid in the causal analysis of the 

different growth rates. The graphics depict the effect of the various forcing frequencies on the outermost tip vortex 

filament emanating from each blade at an instant in time in the FVWM results. As in Figure 4(b) above, the absolute 

filament diameter does not possess meaning and is scaled for visual clarity. However, in Figure 5(b) and other figures 

to follow, the relative variation in filament diameter is indeed meaningful and represents changes in the magnitude of 

the local circulation produced by the filament (see the following section for discussion on local circulation changes 

for DWC cases). The filament circulation, as well as the axial and radial displacements of the filaments, relative to 

those of the unforced case are exaggerated by the factors given in the figure caption. 

For the 𝑘 = 1.5 illustration, adjacent filaments are displaced in-phase so that the DWC-induced displacements are 

only a function of azimuthal location in the domain regardless of which filament is being considered. The result is a 
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distortion of the whole helical structure, which makes each filament take on an “s”-shaped appearance as shown. The 

dynamic forcing thus has little impact on the streamwise spacing between adjacent filaments, and the 𝑘 = 1.5 forcing 

therefore has a low growth rate. The same conclusions hold for larger, half-integer 𝑘 values. 

On the other hand, integer-valued 𝑘 forcing cases displace adjacent filaments to be out-of-phase by 180° of the 

perturbation cycle. Tracking a single vortex filament for the 𝑘 = 1 case, it can be observed that a filament pairs with 

an adjacent filament every 120° of azimuth, and the filament's pairing partner also alternates between every pairing 

position. For the 𝑘 = 2 case, the pairing occurs every 80° of azimuth and again alternates between every pairing 

position. It could be said that the integer-valued forcing acts as a “matchmaker” between successive vortex filaments, 

prescribing the azimuthal location where two filaments will converge at instability hotspots. The 𝑘 = 1 case will be 

used for all further results below because of its highest magnitude growth rate. 

 

B. Amplitude Study 

Figure 6 contains individual studies of rotor speed and pitching amplitude in the first two rows, respectively, and 

a tandem amplitude study in the third row. In each case, the amplitude sweeps of 𝑎𝑓 and 𝑎𝑝 show a clear trend of 

decreasing near-wake length with increasing forcing amplitude. For the tandem case in Figure 6(c), we began by 

selecting pairs of 𝑎𝑝 and 𝑎𝑓 based on similarity of (𝑥 𝐷⁄ )𝑛𝑙 from the non-tandem results. For instance, the 𝑎𝑝 = 1.30° 

case from subfigure (b) is matched with the 𝑎𝑓 = 0.60 rpm case from subfigure (a), corresponding to (𝑥 𝐷⁄ )𝑛𝑙 of 0.65 

and 0.64, respectively. As will be justified in the following section, the relative phase shift of the two forcing 

waveforms is set so that 𝜙𝑓 = 90° ahead of 𝜙𝑝 = 0°. For the largest amplitude tandem case, the |𝒖̂𝑗1

′ |𝑚 
 intersects the 

𝜋

2
 

1 

Region for 𝜎∗ 

calculation 

(a) 

(b) 
represented by 

filament diameter are 

exaggerated by a 

factor of 400. 

Figure 5. Instability growth for different 

frequency parameters, 𝒌, as applied by varying 

rotor frequency with 𝒂𝒇 = 𝟎. 𝟎𝟐 rpm, 𝝎𝒇 =

𝑵𝒃(𝒌 − 𝟎. 𝟓), and 𝝓𝒇 = 𝟎°. (a) shows the 

scaled, non-dimensionalized, and smoothed 

maximum Fourier coefficients, |𝒖̂𝒋
′|𝒎, aligned 

at the streamwise location, 𝒙/𝑫, of 1 while (b) 

shows the scaled slopes calculated within the 

shaded region of (a). Comparison is made in (b) 

between the Fourier growth rates and the 

corresponding rates calculated with the 

eigenvalue approach on a tip vortex filament. 

For the illustrations of the three outer 

filaments in (b), axial and radial displacements 

of these filaments relative to the unforced case 

are exaggerated by a factor of 200 for clarity, 

and corresponding differences in circulation as  
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non-linear threshold at the rotor plane, so this case may have negligible (𝑥 𝐷⁄ )𝑛𝑙. As will be discussed in Section V, 

many of the cases in Figure 6 have the potential to shorten (𝑥 𝐷⁄ )𝑛𝑙 relative to the turbulent near-wake lengths 

predicted by the model of Sørensen et al. [37]. 

The illustrations to the left of the plots depict the effect of the various DWC strategies on the tip vortex filaments 

at an instant in time in the FVWM results, and the same explanation of the illustrations as in Section IV.A again 

flow 

flow 

Figure 6. Left: Trajectory of the outermost tip vortex filaments taken for the first two revolutions 

downstream of the rotor at an instant in time from the FVWM results. Shown in (a), (b), and (c) are the 

𝒂𝒇 = 0.06 rpm, 𝒂𝒑 =0.13°, and 𝒂𝒇 = 0.06 rpm/𝒂𝒑 =0.13° cases, respectively, indicated on the right-hand 

plots. Axial and radial displacements of these filaments relative to the unforced case are exaggerated by a 

factor of 20 for clarity, and corresponding differences in circulation as represented by filament diameter 

are exaggerated by a factor of 40. Right: Demonstration of control authority over the initial maximum 

wake instability Fourier coefficients, |𝒖̂𝒋𝟏

′ |𝒎, as well as the growth along the streamwise coordinate, 𝒙/𝑫. 

All cases use 𝝎 = 𝟏. 𝟓 (𝒌 = 𝟏) and the harmonic amplitudes, 𝒂, and phase angles, 𝝓, are zero unless noted 

otherwise. Lines are listed in the legend in the same order they appear vertically on the plots. 

Rotor speed 

Tandem (rotor speed and pitch)  

flow 

 

1 

𝜋/2 

0.65 1.21 

1.46 0.43 
0.13 

0.96 

𝑎𝑝 

 

1 

𝜋/2 

0.48 0.91 
1.19 0.29 

0.11 
0.64 

𝑎𝑓 

Pitch 

0.17 
0.45 

0.77 
1.05 

1 
𝜋/2 

(a) 

(b) 

(c) 

𝑎𝑝, 𝑎𝑓 

≈0 

=ቀ
𝑥

𝐷
ቁ

𝑛𝑙
 

=ቀ
𝑥

𝐷
ቁ

𝑛𝑙
 

=ቀ
𝑥

𝐷
ቁ

𝑛𝑙
 

Non-linear threshold 

Non-linear threshold 

Non-linear threshold 
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applies. The same observations about filament behavior as made for the 𝑎𝑓 =0.02 rpm case with 𝑘 =1 in Section IV.A 

hold for the 𝑎𝑓 = 0.06 rpm, 𝑎𝑝 = 0.13°, and tandem cases illustrated in Figure 6. The primary visual difference 

between the three cases is the size of the DWC-induced filament displacements, which correlates with the respective 

instability magnitudes plotted on the right-hand side of the figure. The (𝑥 𝐷⁄ )𝑛𝑙 variations between cases are thus 

related to the filament displacements at the instability hotspots, which see the paired filaments of the tandem case 

coming closer together than for the individual cases, a visual confirmation that the tandem case achieves the strongest 

filament-pairing effect for the amplitudes considered. In fact, the beginning of the mutual inductance leapfrogging 

event can already be seen in the large displacements of the blue and purple filaments at the downstream limit of the 

plotted data in subfigure (c). A difference in circulation magnitude is also apparent between pairing filaments at the 

instability hotspots, especially in subfigures (b) and (c). Since the circulation magnitude between pairing filaments is 

180° out of phase at any given azimuth, the mean circulation magnitude between any pair may be relatively constant. 

It is relevant to note that the rate of instability growth within the linear region is the same to within a small 

percentage between all the cases in Figure 6 since the growth rate for a specific frequency of forcing is an inherent 

characteristic of the rotor wake [30]. Rather, it is the differences in the initial amplitude of the instability for each case 

that cause the non-linear regime to be reached at different 𝑥/𝐷. For the cases involving dynamic pitch, the initial 

growth rate takes some stretch of distance to adopt a mutual inductance-type linear growth, though the dynamic forcing 

clearly still increases the initial instability magnitude, thereby shortening the near-wake length. 

C. Phase Study 

Figure 7 gives the results from the tandem 

configuration of a sweep of 𝜙𝑓 with constant 𝜙𝑝. 

Varying the relative phase between the rotor speed and 

pitch forcing indicates a preferential phase shift of 𝜙𝑓 

between 90-135° ahead of 𝜙𝑝 that produces the most 

constructive superposition of forcing waveforms and 

resulting reduction of (𝑥 𝐷⁄ )𝑛𝑙. This trend is constant 

across the range of 𝑎𝑝 amplitudes studied in Figure 7, 

though greater values of 𝑎𝑝 for the given 𝑎𝑓 clearly 

offer the greatest potential reduction of (𝑥 𝐷⁄ )𝑛𝑙. For 

the largest 𝑎𝑝 of 1.30°, the tandem result has a 30-31% 

lower (𝑥 𝐷⁄ )𝑛𝑙 than either of the individual cases of 

the same forcing amplitudes. 

 

V. Analysis/Discussion 

The above FVWM modeling does not consider the 

effects of atmospheric turbulence in the rotor inflow 

on instability growth. Inflow turbulence introduces 

perturbations to the tip vortex structures that may have 

an effect on wake instabilities that is comparable to the DWC actions studied above, depending on the turbulence 

intensity. The question becomes: how high can the turbulence intensity be for the DWC actions to still be effective? 

The semi-empirical model of Sarmast et al. [9] incorporates a relationship between (𝑥 𝐷⁄ )𝑛𝑙 and the inflow 

turbulence intensity, 𝑇𝑖, as in Equation 8 

where 𝐶1 and 𝐶2 are constants for which Sørensen et al. [37] found 0.33 and 0.52, respectively, 𝐶𝑇 is the thrust 

coefficient taken as 0.756 from the FVWM results without DWC, 𝑁𝑏 is the number of blades, and 𝜆 is the tip speed 

ratio. The equation is plotted in Figure 8 for reference. 

The 𝐶1 constant is furthermore useful as it is the constant of proportionality between a norm of the fluctuating 

axial velocity field, 𝑢′/𝑈∞, just behind the rotor blades and the corresponding 𝑇𝑖. In light of the derivation of Equation 

8 that stems from the rotating sinusoidal axial tip forcing results of [17], one interpretation of 𝑢′/𝑈∞ is as the maximum 

 (𝑥 𝐷⁄ )𝑛𝑙 = 8[1 + 𝐶2(√1 − 𝐶𝑇 − 1)]
3

[𝑁𝑏𝜆𝐶𝑇]−1 ln(𝐶1𝑇𝑖) , (8) 

Figure 7. Effect of rotor speed forcing phase, 𝝓𝒇, 

on near-wake length, (𝒙 𝑫⁄ )𝒏𝒍 for a constant pitch 

forcing phase angle, 𝝓𝒑. All cases use 𝝎 = 𝟏. 𝟓 

(𝒌 = 𝟏). 
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axial velocity Fourier coefficient magnitude computed in the rotating frame of reference just behind a blade. If it is 

assumed that the maximum Fourier coefficient in the calibration data used for 𝐶1 was the maximum growth rate case 

of 𝑘 = 1, then we may set 𝑢′/𝑈∞ equal to the value of |𝒖̂𝑗1

′ |𝑚 
/𝑈∞ just behind the blades, which is conveniently 

already tabulated as a result of the above Fourier analysis. The proportionality relationship given in Sarmast et al. [9] 

and Sørensen et al. [37] could then be transcribed as |𝒖̂𝑗1

′ |𝑚 
/𝑈∞ = 𝐶1𝑇𝑖. This relationship allows the addition of the 

DWC data from Section IV.B to Figure 8 where the value [|𝒖̂𝑗1

′ |𝑚 
/𝑈∞]/𝐶1 on the horizontal axis may be considered 

the effective turbulence level associated with the DWC actions. The |𝒖̂𝑗1

′ |𝑚 
 is taken at the location 0.1𝐷 downstream 

from the rotor plane. Note that uncertainty in the value of 𝐶1 due to the assumption of 𝑢′/𝑈∞ as the maximum Fourier 

coefficient manifests as uncertainty in the horizontal translation of the DWC data relative to the Sørensen et al. [37] 

line, though the slope of the data is not in doubt. The deviations of the DWC data from the semi-log linear slope of 

the Sørensen et al. model near the higher |𝒖̂𝑗1

′ |𝑚 
/𝑈∞ may indicate that there are effects present in the current DWC 

flow fields that are not well described by the simple scaling between |𝒖̂𝑗1

′ |𝑚 
 and 𝑇𝑖 proposed above. 

The agreement of the tandem sweep curve with the individual sweep curves suggests that the tandem approach is 

not inherently superior to simply using an individual control vector with higher forcing magnitude, though structural 

quantities should also be investigated between the control vector approaches since |𝒖̂𝑗1

′ |𝑚 
is at best a surrogate for 

some fluctuating thrust metric. Comparing the 𝛼𝑓 sweep to the 𝛼𝑝 sweep, the 𝛼𝑝 sweep is “less efficient” than the 𝛼𝑓 

sweep in terms of the achieved (𝑥 𝐷⁄ )𝑛𝑙 for a given input |𝒖̂𝑗1

′ |𝑚 
 over most of the range of |𝒖̂𝑗1

′ |𝑚 
/𝑈∞ considered. 

This behavior may be understood in light of the 

slow initial growth of the pitch-induced instability 

discussed for Figure 6. The larger initial axial 

fluctuation magnitude of the dynamic pitch control 

approach could make this strategy more robust 

against the aperiodic interference of inflow 

turbulence, though much is still to be learned about 

the flow physics of the different DWC approaches. 

Initial analysis on the effectiveness of DWC in the 

presence of inflow turbulence is given next. 

From Figure 8, it is clear that some DWC 

actions of smaller magnitude will not reach their 

predicted (𝑥 𝐷⁄ )𝑛𝑙 before high inflow turbulence 

environments would cause the wake to already 

begin to breakdown. For instance, (𝑥 𝐷⁄ )𝑛𝑙 = 0.8 

according to Equation 8 for 𝑇𝑖 =0.10 (10%), so the 

DWC actions of the lowest six [|𝒖̂𝑗1

′ |𝑚 
/𝑈∞]/𝐶1 

points plotted may have little effect on the (𝑥 𝐷⁄ )𝑛𝑙 

in such a case. 

Figure 9 helps to visualize the potential benefit 

that different DWC magnitudes have on (𝑥 𝐷⁄ )𝑛𝑙 

by cross-referencing the (𝑥 𝐷⁄ )𝑛𝑙 from the 

turbulent near-wake length model of Sørensen et al. 

[37]. The benefits in terms of relative (𝑥 𝐷⁄ )𝑛𝑙 reductions are plotted versus the ratio of the perturbation magnitudes 

from the DWC to those from the inflow turbulence, [|𝒖̂𝑗1

′ |𝑚 
/𝑈∞]/[𝐶1𝑇𝑖]. As this ratio increases, the likelihood 

increases that the DWC-applied waveform will be initially coherent and will remain coherent downstream, and thus 

the likelihood of the DWC actions to achieve the potential (𝑥 𝐷⁄ )𝑛𝑙 reductions suggested by the non-turbulent FVWM 

results also increases. For all inflow 𝑇𝑖 values, (𝑥 𝐷⁄ )𝑛𝑙 reductions of over 80% are suggested for the maximum 

considered amplitude cases of 𝑎𝑓 =3.20 rpm and 𝑎𝑝 =2.90°. To limit fatigue on the active turbine, it might be 

advisable to use lower magnitude amplitudes. Specifically, dynamic rotor speed forcing with 𝑎𝑓 =1.12 rpm, a value 

which is not large relative to naturally occurring rpm variation, could achieve 53% (𝑥 𝐷⁄ )𝑛𝑙 reduction in a very stable 

atmosphere of 𝑇𝑖 =0.02 (2%) and 43% (𝑥 𝐷⁄ )𝑛𝑙 reduction in a more moderately stable atmosphere of 𝑇𝑖 =0.05 (5%). 

Similar (𝑥 𝐷⁄ )𝑛𝑙 reductions of 58% and 48%, respectively, are possible with dynamic pitch forcing of 𝑎𝑝 =2.30°. As 

discussed above, the [|𝒖̂𝑗1

′ |𝑚 
𝑈∞⁄ ] stemming from dynamic pitch control generally have a higher margin relative to 

the turbulence than those from the dynamic rotor speed control for a given (𝑥 𝐷⁄ )𝑛𝑙, at least for the axial perturbations 

considered here. 

Figure 8. Near-wake length, (𝒙 𝑫⁄ )𝒏𝒍, versus 

turbulence intensity, 𝑻𝒊, from Sørensen et al.’s [37] 

model (blue data) and scaled maximum axial 

perturbation magnitude, [|𝒖̂𝒋𝟏

′ |𝒎 
/𝑼∞]/𝑪𝟏, as 

calculated 0.1𝑫 downstream of the rotor with DWC 

actions (red data). 

[37] 
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It should be noted that the minimum ratio [|𝒖̂𝑗1

′ |𝑚 
/𝑈∞]/[𝐶1𝑇𝑖] for which DWC actions can still be effective is 

not known at this point, and thus conclusions about the potential for the DWC technique with lower magnitude forcing 

or at higher 𝑇𝑖 conditions is unknown as well. Further high-fidelity modeling and/or measurements are necessary to 

establish firm estimates of the (𝑥 𝐷⁄ )𝑛𝑙 reductions that DWC can offer in various turbulent environments. It can be 

summarized, however, that larger magnitude DWC actions are better both to yield potentially shorter (𝑥 𝐷⁄ )𝑛𝑙 and 

higher likelihood of achieving the maximum benefits. On the other hand, fatigue damage and actuator wear also 

increase with the magnitude of dynamic turbine actions, and these consequences should also be the subject of future 

work. 

 

 
 

VI. Conclusions and Outlook 

The modified mid-fidelity FVWM code CACTUS is used to demonstrate the effectiveness of using dynamic rotor 

speed and blade pitch control to accelerate the breakdown of the near wake leading to a reduced overall wake length, 

and ultimately allowing turbine-to-turbine spacing to be reduced. Embedded in our approach is greater realism in the 

application of the dynamic control than in some previous work, as well as a focus on exciting the mutual inductance 

instability of the tip vortices rather than the bluff-body instabilities of the larger wake. 

Stability analyses first confirmed that the harmonic forcing frequency parameter with the highest growth rate of 

the mutual inductance instability is 𝑘 = 1, which corresponds to 𝜔 = 1.5 for a three-bladed rotor. Using this frequency 

for parametric sweeps of the dynamic forcing amplitude of rotor speed, blade pitch, and tandem actions, (𝑥 𝐷⁄ )𝑛𝑙 

lengths of ≈0 to 1.46 were predicted over the range of rotor speed and blade pitch amplitudes considered. For the 

tandem cases, the phase difference between the forcing waveforms of the rotor speed and pitch was found to affect 

(𝑥 𝐷⁄ )𝑛𝑙, and the most constructive superposition of waveforms occurred when 𝜙𝑓 =90-135° ahead of 𝜙𝑝. Analyses 

that cross-referenced the DWC results with the turbulent near-wake length model of Sørensen et al. [37] indicated that 
(𝑥 𝐷⁄ )𝑛𝑙 reductions of 48% with pitch forcing amplitude of 𝑎𝑝 = 2.30° are possible within a turbulent environment 

Figure 9. Potential reduction in near-wake length, (𝒙 𝑫⁄ )𝒏𝒍, as a percent of the (𝒙 𝑫⁄ )𝒏𝒍 from the turbulent 

near-wake length model of Sørensen et al. [37] versus likelihood of achieving the potential benefits with the 

DWC actions. The likelihood is quantified as the ratio of the maximum axial perturbation 

magnitude, |𝒖̂𝒋𝟏

′ |𝒎 
/𝑼∞, as calculated 0.1𝑫 downstream from the rotor plane in rotating frame-of-

reference, to the scaled turbulence intensity, 𝑻𝒊. For visual clarity, the magnitudes of 𝒂𝒇 and 𝒂𝒑 are not 

annotated for the 𝑻𝒊 =5% and 𝑻𝒊 =10% cases, but these values follow the same sequences as annotated 

for the 𝑻𝒊 = 𝟐% cases. 

Unlikely to 

achieve 

potential 

Likely to 

achieve 

potential 
 
increasing DWC effectiveness 
increasing turbulent interference 
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of 𝑇𝑖 = 0.05 (5%) and that similar (𝑥 𝐷⁄ )𝑛𝑙 reductions of 43% are possible with rotor speed forcing of 𝑎𝑓 = 1.12 rpm, 

a value which is not large relative to naturally occurring rpm variation. No inherent advantage of tandem control 

versus individual control vectors was immediately apparent, though both individual control vectors have unique 

upsides: rotor speed control produces no direct mechanical wear on the blade pitch system while blade pitch control 

may be more robust in the presence of inflow turbulence, though more investigation is required. 

Additional work to be explored with the mid-fidelity FVWM approach include experimenting with different 

forcing waveform types (sinusoid, sawtooth, hybrids) and duty cycles. Cases could also include combined waveforms 

which are superpositions of multiple waveforms. Higher-fidelity simulations and/or measurements are next needed to 

pinpoint the efficacy of DWC in the presence of inflow turbulence, as well as to quantity the loading cost and turbine 

dynamics associated with the DWC approaches discussed above. Furthermore, the effect of DWC actions on the power 

production of the active turbine and validation of power increases in downstream turbines warrant further study. 
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