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Advances in wind plant control have often focused on more effectively balancing power
between neighboring turbines. Wake steering is one such method that provides control-based
improvements in a quasi-static way, but this fundamentally does not change the downstream
wake deficit and thus, can only provide limited improvement. Another control paradigm is to
leverage the turbine as a flow actuator to dynamically excite unstable modes in the wake,
thereby producing accelerated wake breakdown and recovery. Taking a more applied
approach than some studies in the wake instability area, this article investigates the use of
dynamic wake control (DWC) from two existing turbine control vectors, blade pitch and rotor
speed, to incite rapid breakdown of the tip vortex structures. Both control vectors can be
dynamically manipulated to make a significant difference on the wake structure and
breakdown. The mid-fidelity free-vortex wake method (FVWM) used below allows a thorough
search of the parametric space while still capturing the essential physics of the mutual
inductance instability. The parameters for investigation include the frequency, amplitude, and
phase of the harmonic forcing for both control vectors. The output from the FVWM is the
basis for a Fourier stability analysis, which is used to pinpoint and quantify candidate forcing
strategies with the highest instability growth rates and shortest near-wake lengths. The
strategies, including dynamic rotor speed, blade pitch, and a novel tandem configuration,
work to augment the initial tip vortex instability magnitude, leading to near-wake length
reductions of greater than 80%, though without considering inflow turbulence. Analysis is
provided to interpret these predictions considering the presence of inflow turbulence in a real
atmosphere.

1. Introduction

A. Overview of Wind Turbine Wake Recovery

One of the largest remaining opportunities to reduce the levelized cost of wind energy will come from substantial
gains in the understanding of complex wind plant aerodynamics and atmospheric phenomena, according to the U.S.
Department of Energy [1]. As evidence, measurements over a range of modern wind plants across Europe [2] and in
the U.S. [3] show that the second row of turbines in a wind plant captures around 20% less than power than the first
when the turbines are aligned with the wind, and this falls to around 40% for turbines located deep within the array.
In stable atmospheric conditions, even higher losses have been observed. Advances in wind plant layouts and wake
steering techniques have improved plant performance, but the turbine spacing is still fundamentally constrained by
the recovery of the turbine wake. In addition to this performance aspect, the turbulence of wakes significantly degrades
the fatigue life of downstream turbines [4].

These problems can be traced back to the failure of the wake to fully “recover” from its depleted state after passing
momentum to the turbine blades. During wake recovery, large-scale structures such as those produced by instabilities
over a mixing layer entrain and inject a flux of mean-flow kinetic energy from the ambient flow into the depleted
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wake. Most of this re-energizing occurs in the far-wake, which begins somewhere between two and four diameters
downstream from the turbine [5, 6].

In the near wake, there exists a rich mix of relatively organized flow features that propagate downstream of a
turbine. These coherent features include a region of velocity deficit on the scale of the rotor diameter, swirling motion
opposite the blades’ rotation direction, an initially two-dimensional wake structure from the tower shadow,
helicoidally-tracking vorticity (tip, root, and shed components), a columnar hub vortex, lateral spreading due to a
pressure differential with the ambient flow, and entrainment of ambient flow promoting wake recovery, as well as any
features that might be recognizable from the atmospheric boundary layer (ABL) inflow. Lignarolo et al’s [7]
measurements showed that, within the near wake, the flow across the shear layer is governed by the periodic tip vortex
structures and results in a roughly zero net recovery of mean-flow kinetic energy, the helical tip vortices effectively
shielding the wake from the ambient flow. Speeding the transition to the far wake via the breakdown of the tip vortices
is thus critical for wake recovery.

B. Inherent Wake Instabilities

The transition between near-wake and far-wake regions is triggered by instabilities in the wake and resulting
breakdown of the tip vortices [8, 9]. Theoretical analysis of tip vortex stability offers three instability mechanisms:
short-wave sinuous instability, long-wave sinuous instability, and mutual inductance instability [10]. The short-wave
instability is due to the self-inductance of nearby locations on the vortex filament and results in localized “squiggles”
along the filament. The long-wave instability is related to interactions between neighboring filaments that, when
allowed to amplify, result in the mutual inductance (vortex pairing) instability [11] and the eventual “leapfrogging”
of one vortex by another. It is this latter instability that has been shown to be the dominant cause of the beginning of
wake breakdown in wind turbines [7, 9, 12], propellers [8], and hovering rotors [13]. An excellent experimental flow
visualization of the process was
given by Alfredsson and Dahlberg
[14] as shown in Figure 1, along
with a comparable lifting line free-
vortex method result from Marten et
al. [15].

It is well documented that the
location of the breakdown is a

e — function of the spacing between
\(L;rotation of adjacent vortices consecutive tip vortex spirals that,

% aPeund saddle point (beginning in turn, is a function primarily of

of helfeal breakdown) thrust coefficient and number of

blades [8, 16, 17]. Furthermore,
recent experiments spanning a range
of (diameter) Reynolds numbers
from approximately 90,000 to
Figure 1. Progression of a mutual inductance instability, or 40,000,000 (or 40M), and related
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leapfrogging, event for tip vortices. Top: Smoke visualization of the tip both to wind energy [18, 19] and
vortex from a two-bladed scaled model. Reproduced from [14]. propulsion [20], have validated that
Bottom: Snapshot of Q-criterion from a lifting line free vortex method. the streamwise distance before
Reproduced from [15]. vortex breakdown (and therefore the

beginning of the wake recovery) is
inversely proportional to the level of external disturbance via turbulence. The hub vortex also plays a role in the tip
vortex evolution as it has a stabilizing effect on the tip vortices. However, the hub vortex is more short-lived than the
tip vortex and therefore does not likely contribute to the tip vortex breakdown [8, 17] (the results of [8], at least, imply
that the tip vortex destabilizes the hub vortex rather than vice-versa).

Several studies have demonstrated that the modes of the mutual inductance instability that result in maximum
exponential growth correspond to half integer multiples of the number of blades (i.e., the disturbance of every other
helical vortex is 180 degrees out of phase) [16, 17, 21]. The nondimensional wavenumber, w, for each of these modes
is the number of perturbation periods per rotor revolution as given by Equation 1 [16]



w = Ny(k — 0.5), (1)

where N, is the number of turbine blades and k are positive integers (note that some references such as [11] use an
alternate convention so that the quantity in the parenthesis is simply k). The k = 1 mode has been found to be primarily
responsible for the transition to the non-linear instability growth regime that is characteristic of the beginning of the
wake breakdown process [17]. This instability is evident mainly in the axial and radial directions, and the
displacements in these directions are of the same order but 180 degrees out of phase. Because of the phase difference,
axial movements of a vortex filament towards its upstream neighbor coincide with the neighbor’s downstream
movements, thus resulting in imminent pairing, after which the phase shift discontinues. Given knowledge of the
dominant instability modes, a logical next step forward for wind energy applications is to explore how these modes
can be excited to promote wake breakdown.

C. Intentional Wake Forcing

While many wind plant optimization studies focus on moderating the power extraction of “greedy” upwind
turbines to yield a net plant-wide gain or on steering the wake of upstream turbines to avoid downstream ones, a
different and ultimately more appealing strategy is to reduce the length of the wake recovery process. Since this
recovery process siphons energy from the canopy above into the far wake below, speeding the onset of the far wake
effectively increases the capture area of a wind plant with high power density. One avenue to accomplish this goal
involves altering the blade induction distribution to speed the wake mixing process [22], though modification of the
blade design does not allow any real-time control authority, besides via different combinations of collective pitch and
rotor speed.

A more flexible approach has come into the spotlight in the last several years: dynamic forcing of the wake to
excite the instability modes. Much of the work has dealt with forcing frequencies that are appropriate for exciting
bluff-body-type instabilities [23-26]. Another dynamic forcing strategy, and one with possibly more potential, is
forcing of the mutual inductance instability described above using the triggering frequencies determined by
Equation 1.

Despite strong literature contributions on the physics of the growth of the mutual inductance instability as reviewed
above, relatively few studies have applied this knowledge and attempted to excite the instability. Several exceptions
are described here. Following the numerical work of Ivanell ef al. [17], Odemark and Fransson [27] demonstrated on
a scaled wind turbine that the tip vortex pairing processes is affected by periodic forcing from pulsed jets emanating
from the hub into the wake. The vortex pairing process, which was observed to occur between 1-2.5D from the rotor,
was associated with a shift in energy from the blade passing frequency to a lower frequency depending on the initial
vortex strengths of the tip vortices trailing from each blade. Quaranta et a/. [11], with a slightly more applied approach,
modulated the rotor speed of a single-bladed scaled model and demonstrated that the leapfrogging position (swapping
position in their notation) decreases by 60% as the initial tip axial displacement amplitude is increased from 1% to
15% of the distance between adjacent helices. Marten et al.’s [15] lifting-line free-vortex wake method also predicts
a roughly 60% reduction in near-wake length by harmonic actuation of outboard flaps at an amplitude of 10°. The
dynamic wake forcing strategies leveraged by Odemark and Fransson [27] and Quaranta et al. [11] were conducted in
low turbulence environments with < 1% ambient turbulence intensity. Wake forcing is likely to be most successful in
lower turbulent environments, such as stable ABLs, where periodic forcing can compensate for the lack of natural
unsteadiness to augment the initial instability magnitude. Marten et al.’s [15] results were made with 10% inflow
turbulence intensity, though their wake modeling ignored interaction between the original freestream vortices and the
added wake ones.

Following in the path of the work above, the present study offers to quantify the benefit of optimal forcing
strategies that encourage wake recovery. The innovative aspects of the work stem from the application of forcing
using control vectors, blade pitch and rotor speed control (both individually and a novel tandem configuration), that
are already available on all modern wind turbines. In contrast to the limited cases where such control vectors have
been studied previously for their potential to excite the mutual inductance instability, i.e., [11], the computational
approach below permits more thorough exploration of the parametric space than was previously possible.

The formulation of the so-called dynamic wake control (DWC) waveforms is given in Section II. Section III
describes the computational approach, which is enabled by multi-threaded parallel computing combined with mid-
fidelity modeling that captures the essential physics relevant to vortex instability. Section IV details results of
parametric studies of forcing frequencies, amplitudes, and phases of the harmonic control actions. For each flow



simulation, a Fourier stability analysis will offer insight on the instability growth rates and resulting near-wake lengths.
Section V compares the effects of the DWC-induced instabilities with those of natural turbulent inflow, and concluding
remarks are made in Section VI.

II. Dynamic Control Strategies

The DWC strategy is to introduce an oscillation to the wake flow at an appropriate wavenumber to amplify the
existing tip vortex instability and accelerate wake breakdown and recovery. Three control vectors exist on typical full-
scale turbines: yaw, collective pitch, and rotor speed. State-of-the-art wake steering is based on quasi-static yaw offsets
attempting to steer wakes away from downstream turbines. However, typical yaw rates of large turbines (0.3°/s for
the NREL SMW [28]) are too slow to achieve any kind of meaningful oscillation amplitude that would be needed to
gain active DWC authority at even the lowest k in Equation 1. In addition, the mechanical wear on the yaw actuation
system is unfavorable. On the other hand, both the blade pitch rates (8°/s for the NREL SMW [28]) and the generator
speed control (almost instantaneous response) provide ample authority for DWC strategies given a relatively steady
inflow where the dominant timescales of the flow, and thus of the conventional control signals, are large with respect
to the rotor period. Adjusting the rotor speed additionally gives the upside that the pitch system duty cycle, which is
a common weakness, does not increase. However, torsional fatigue loads would go up to some extent on the drivetrain,
which has yet to be evaluated.

For the DWC approach presented below, the dynamic pitch setting, p, (an increase in p corresponds to a reduction
in blade angle of attack) relative to that of the conventional control setting, p,, is described by the equation

P = po + apsin (wp6 + ¢y), )

where a,, indicates the dynamic pitch amplitude, w,, is the angular perturbation wavenumber described in Equation 1,
0 is the rotor azimuthal angle, and ¢, is any phase offset. The dynamic rotor rotational frequency, f, relative to that
of the conventional control setting, f;, is described by the equation

f = fo+ assin (wr0 + ¢p), 3)

where the subscript f is used to now distinguish between variables of the same names from Equation 2.

III.Computational Setup

A. Reference Turbine

An example case of DWC is demonstrated with the NREL SMW reference turbine [28]. The 126 m diameter
turbine is operated at rated conditions with a uniform freestream velocity of 11.13 m/s, rotation rate of 12.1 rpm (tip
speed ratio of seven), and blade pitch of zero degrees. The airfoil data for the turbine come from the two-dimensional
polars of [29], and no corrections are yet made for three-dimensional effects. The spanwise arrangement of the eight
airfoils into 17 spanwise segments as well as the variation in chord and twist along the blade span are given in [28].

Differentiating Equation 2 with respect to time and considering the maximum pitch rate of 8°/s for the NREL
SMW, the maximum a,, attainable is 4.2° for the k = 1 case at the above rotation rate. The authors are unaware of
limits on the rate of rotor speed modulation other than due to the bounds of the torque capabilities of the generator
and the drive train.

B. Mid-Fidelity Aerodynamic Model

1. First-Order Estimation Using Free-Vortex Wake Methods (FVWMs)

FVWMs are mid-fidelity aerodynamic simulations that are founded on the assumption that the regions of viscous-
induced vorticity in the flow are concentrated to relatively small length scales. This allows the vorticity to be
appropriately modeled as distributed singularities, and the viscous diffusion term can be dropped from the PDE of
vorticity transport. By consideration of the vorticity transport PDE and Helmholtz’s second law, the simple advection



equation can be found that underlies the FVWM approach, which includes the time-rate of change of the position
vector of a Lagrangian marker (vortex segment) on the left-hand side and the sum of all the Biot-Savart-induced
velocities and freestream velocity on the right-hand side [13]. Second-order accuracy of both sides of the advection
equation can be achieved given an appropriate finite differencing scheme and a rotor angular discretization of less
than 2.5-5° [30].

Vortex methods are well suited for the present analysis, given that atmospheric effects are not modeled at this
stage of the work. The simplified modeling of viscous effects is of relatively small consequence for the problem at
hand as the mutual inductance instability is an inviscid phenomenon, and the flow regime is of high Reynolds number.
The FVWM is furthermore convenient for the present analysis because it allows explicit tracking of the vortex filament
locations. Lastly, the computational efficiency of a FVWM allows thorough exploration of parametric spaces that is
not typically feasible on state-of-the-art actuator line large-eddy simulations, which have computation times of 4-5
orders of magnitude greater than FVWMs [15].

The effectiveness of FVWM tools for analysis of tip vortex stability was illustrated by several studies [15, 16, 21,
31]. The first application was in the field of rotorcraft; see Bhagwat et al. [16]. These authors used the steady-state
solution of a FVWM as the basis for a linear eigenvalue stability analysis that identified the w = 0.5N,, instability
mode as having highest amplification. For wind energy applications, Rodriguez and Jaworski [21], Rodriguez et al.
[31], and Marten et al. [15] also performed stability analyses on FVWM wakes but with time-marching rather than
steady-state solutions being used to capture realistic transient wake geometries associated with floating offshore
turbines, flexible blades, and flap actuation control, respectively.

Bhagwat et al. [16] also provided a cautionary note on using FVWM to study stability; numerically-induced
instabilities can be significant and can undo a FVWM’s second-order accuracy if not contained. For  the  time-
marching methods that are required to model transient effects, the truncation error of higher-order terms in the explicit
solution is an inevitable source of artificial instability. Other errors due to wake discretization, wake truncation, and
viscous core models may be present in both time-marching and relaxation methods. These non-physical instabilities
should be in general minimized as they may obfuscate the fluid dynamic instabilities of interest. Fortunately, given
that a FVWM’s discretization is consistent with the governing equation of motion, convergence of the wake solution
with increasing grid refinement is sufficient to demonstrate numerical stability. This requirement was met with an
azimuthal step size of 5° for a time-marching algorithm in [30].

It is inevitable that some numerical instability will remain. In a conventional FVWM without DWC, small
numerical instability is in fact required to initially excite unstable modes from their state of (unstable) equilibrium
[30], since FVWMs generally do not feature the inflow turbulence that is responsible for perturbing tip vortex
instabilities in the natural atmosphere. However, a difference in the character of the initial perturbation is likely to
exist between the perturbations provided by the numerical instabilities and those of a real turbulent atmosphere. Thus,
some FVWM predictions are less reliable in terms of the absolute locations of vortex pairing (which depend on the
magnitude of the initial perturbation) [16], but the relative rates of disturbance growth predicted between different
solutions in a parametric study are valid. In our study, much of this concern is minimized because the magnitudes of
the DWC-induced perturbations are generally much larger than those of the artificial perturbations.

Other modeling limitations of FVWMs are the limitation to uniform inflow profiles, in general, since sheared
inflow profiles have shown non-physical results [32] and the loss of accuracy after vortex pairing since turbulent
mixing is not properly modeled. Effects of the former are not considered here though described in [33], and errors
from the latter are of minimal relevance to the present study that is concerned with only the initial vortex pairing
process.

2. FVWM Baseline Implementation

In this work we use the FVWM Code for Axial and Cross-flow TUrbine Simulation (CACTUS) developed at
Sandia National Laboratories for the study of wind and water turbines [34]. The code uses a second-order predictor
explicit time advancement scheme with a lifting line solution for the blades and a lattice for the free wake. For the
lifting line, circulatory unsteady effects for attached conditions are handled using the pitching flat plate analogy.
Furthermore, two dynamic stall models are available in CACTUS, and we use the modified Boeing-Vertol model for
all results below unless otherwise noted. For the free wake, uniform or linearly varying velocity profiles model the
vortex cores, the former being employed in this work. Ground and tower effects can be modeled in CACTUS though
are ignored presently. The current work is enabled using the OpenMP interface within CACTUS, and this capability
may also benefit future studies involving larger numbers of simulations towards further detailed parameter sweeps of
different DWC waveforms, frequencies, amplitudes, and duty cycles.



The case inputs for the CACTUS runs follow from the rated conditions, as well as the turbine and blade geometry,
which were introduced in Section III.A. Note that the same spanwise discretization of the 17 aerodynamic stations for
the NREL 5SMW have been used successfully in previous FVWM tip vortex stability analyses [21, 31, 35].

The configuration inputs for the CACTUS
runs are held at the default settings defined in [34]
except for the following. The number of iterations
between wake convection velocity updates is
enforced to remain at one. The number of
azimuthal steps per rotor revolution was
determined from the convergence study illustrated
by Figure 2. For all revolution counts studied, the
revolution-averaged power coefficient, C,,
(standard definition as described in [34]),
converged to well within 107 by 2m/A6 =80
(azimuthal step size, 6, of 4.5°), where
convergence at each revolution count is assessed
relative to the C, of a reference simulation at
2 /A6 =120 (6 =3°) and the same revolution
count. As 80 azimuthal steps per revolution not
only achieves independence from the azimuthal
resolution as shown in Figure 2 but also ensures
second-order accuracy of the reconstructed
velocity field [13], this step size was used for all
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Figure 2. Convergence study of revolution-averaged
turbine power coefficient, C,,, with increasing number
of azimuthal steps per revolution, 27r/A6. Different
numbers of total revolution counts are indicated in the
legend. Each C,, is referenced to the C,, for the 2t /A8 =
120 (A8 = 3°) case with the same respective number of
total revolutions.

subsequent simulations. Furthermore, the absolute C;, was found to be sufficiently converged by 32 revolutions, which

is thus taken as the precursor simulation length for all subsequent simulations. For all simulations including the
convergence study, wake points beyond four diameters downstream from the rotor plane were ignored for efficiency,
a simplification that will produce less than 1% error in absolute C,, according to analysis based on [36].

The data output from CACTUS occurred during revolutions 33-34 of the simulation, during which the velocity
field was evaluated every two azimuthal steps on a three-dimensional grid of size 50 by 100 by 100 over the domain
ranges of 0 < x/D <5,-0.7 <y/D < 0.7,and —0.7 < z/D < 0.7, respectively. The vortex filament positions and
velocities were also saved during these final two revolutions.

The baseline case of the FVWM simulation without dynamic forcing is shown in Figure 3. In accordance with the

“horseshoe” type vortex structure of
vorticity typically observed on rotors, the
- trailing vorticity of the blades is primarily
0.5DU,, contained in the filaments at the extremes of
the blade spans with opposite sense of
rotation at each extreme. As introduced in
Section [.B, we are primarily concerned with
0.05 the tip vortex filaments, and it is apparent
’ that both of the two outermost filaments
emanating from each blade contain

0 significant circulation. The separation of the
trailing tip circulation into two distinct

regions of concentrated circulation is due to

-0.05  the spanwise numerical discretization of the
shed vorticity. Furthermore, the axial
separation of two adjacent tip helices, h, (see

Figure 3. Trailing vortex filaments from a baseline simulation ~ Figure 3) is around 10 times greater than the
with no dynamic forcing. The filament color indicates radial separation of the two outermost
normalized circulation, I'. Plotted data are restricted to one ﬁlamepts in a helix sheet lp our 'currer?t
revolution for clarity. Trailing filaments only are shown  mMmodeling approach, so any given axial pair
without the spanwise filaments. Rotor geometry is for visual ~ Of outer filaments may be considered to be
reference only and not representative of the NREL SMW used i the far-field of the circulation field of tip

in the simulations.

filament pairs on neighboring helix sheets.



Consequently, the circulation from the outermost two filaments of a helix sheet will be lumped together when
calculating the tip circulation to be used to normalize instability growth rates below.

3. FVWM Modifications

The code used in this work is a modified version of CACTUS that allows for dynamic actuation of blade pitch and
rotor speed. The actuation is accomplished by updating the blade pitch and/or rotor speed at each azimuthal station
according to Equations 2 and 3. The inputs for both actuation types thus include the frequency, amplitude, and phase
offset of the control waveform. To verify the correctness of the coding modifications, traces of the quarter-chord angle
of attack and local velocity at the blade from the modified CACTUS output, after removal of the induced velocity
components, were found to match those implied by Equations 2 and 3. Code modification has also been made to output
velocity field data in the rotating frame of reference rather than the fixed frame of reference to aid the stability analysis
to follow.

The unsteady forcing is applied for the full 34 revolutions of the simulation. It should be mentioned that rotor
inertia is not considered, and that blade pitch and rotor speed have no interaction with one another as implemented.
The effects of rotor inertia, blade aeroelasticity, drivetrain dynamics, and pitch-speed interaction will be investigated
in future work but were deemed secondary in attempting to establish the overall control method feasibility.

C. Fourier Stability Analysis

Previous work has found success using wake data from a variety of sources including FVWMs as the basis for
both linear eigenvalue stability analyses [16, 21, 31] and Fourier analyses [15, 17, 27, 33] of tip vortex divergence
rates. Below, we leverage both to demonstrate the effects of dynamic control actions on wake instability and near-
wake length, though the Fourier analysis is used predominantly and is therefore the only one outlined in this section.
Previous authors have implemented Fourier stability analyses by either extracting the maximum response of the
frequency of interest (FOI) from the Fourier spectra at each cross-section [17, 33], or by integrating over the region
of tip vorticity at the FOI [15] or over a band of frequencies centered around the FOI [27]. Here, we follow closely
the approach of Ivanell et al. [17].

Time-resolved cross-stream flow snapshots in the rotating frame of reference are temporally mean-subtracted to
give the field of the fluctuating velocity component, u;,, across each snapshot, n. The u;, are transformed into the
frequency domain to yield the Fourier coefficient, &}, via Equation 4

W) = L BNy ez, (4)

where N is the total number of snapshots and j is the index of the integer-valued mode numbers from 0 to N/2 — 1
with corresponding frequencies given by f; = j/(NAt) where At is the time step between successive snapshots. The
most unstable location within the annulus defined by 0.375< r/D <0.625 for each yz plane is |@j|,, which is
calculated according to Equation 5

PN _ U
(@)l = max @], (5)

where r = ,/y? + z2 and the | - | notation denotes the magnitude of a complex quantity. For numerical reasons, the
location of |ﬁ} m at different axial locations may alternate between the three regions corresponding to the tip vortex
filaments trailing from each of the three blades. Note that the practice of taking the maximum of |ﬁ}| at each j contrasts
with the approach of Ivanell et al. [17] who took the y- and z-coordinates of |i]|,,, for the k = 1 case as the coordinates
for the |ﬁ} |, of all the remaining k cases. Note that in some cases below, the index j will have a subscript of its own
to denote a specific k frequency parameter of interest. For instance, |, |, refers to the k = 1 case.

The increase of |ii} |, along the streamwise direction serves as an indicator of the growth of instabilities for each
frequency component. Specifically, the ratio of |ﬁ} |, between two streamwise locations can be related to the temporal

growth rate of an instability, o. The growth relationship takes the form of an exponential function in accordance with
known character of the mutual inductance instability within its linear growth region [9, 17] (the linear region refers to
that which shows linear growth using semi-log plotting; see Figure 4 further below). Equation 6 gives this relationship



|ﬁj‘2|m /|ﬁj‘1|m = eo(2=x1)/Uc (6)

where U, is the convection velocity of the tip vortices obtained by extracting the axial velocity of the vortex filaments
within the linear region of growth from the FVWM results, and the subscripts “1” and “2” indicate two different axial
locations in the flow field. By performing linear regression on the linear growth region, o is thus identified. The non-
dimensionalization of ¢ into o* is accomplished according to Equation 7 [11]

o* =0 X2hT 1, @)

where h is taken as a close approximation for the perpendicular distance between two consecutive filaments, and T' is
the circulation of the filaments. Strictly speaking, the oft-quoted maximum non-dimensional growth rate of ¢* = /2
applies only to an infinite row of identical point vortices. For the more realistic case of a periodic array of inclined
straight vortices, the value of ¢* for the NREL SMW at rated conditions is only 0.2% greater than the point vortex
value for k = 1 according to the derivation of Quaranta ef al. [11].

Before coming to the parametric studies and physical interpretations of the effects of control vectors in the
following section, we here present the Fourier analysis as applied to an example wake with dynamic forcing to point
out several key features of the Fourier analysis output. The control vector in this example case is rotor frequency,
which is prescribed from Equation 3 using a; = 0.02 rpm, w; = 1.5 rad! (k = 1), and ¢, = 0°. Figure 4(a) describes
the streamwise growth of the scaled and normalized tip vortex instability magnitudes at five k values including the
forced frequency at k = 1. In the axis label as well as all following occurrences, division of ||, by a reference value

of 1 m/s is assumed to make the quantity inside the natural logarithm dimensionless. The |&|,, are furthermore

normalized before plotting to compare with the maximum non-dimensional rate predicted by the classical /2 vortex
pairing result as described earlier. Normalization values derive from the linear region of the baseline solution without
any DWC where h = 14.1 m, U, = 8.60 m/s, and I' = 76.2 m?%/s, the former two being calculated as the mean between
the two outermost filaments in a helix sheet and the latter as the sum over the two outermost filaments as described

Instability region of forced mode:

Linear growth<—> Non-linear vortex pairing

(a) Figure 4. (a) Maximum wake
instability Fourier coefficients,
|8, at each  streamwise
coordinate, x/D, for a;=0.02
rpm, w; = 1.5 rad” (k = 1), and
¢y =0° The dotted lines
represent raw |ﬁ]’-|m while solid
lines are the moving average of the
raw data taken with a window size
of five points. Normalization
values are provided in the text. (b)
Trajectories of the outermost tip
vortex filaments at an instant in
time from the simulation in (a).
The filament diameter does not
possess meaning and is only scaled
for visual clarity in this figure.

I Non-linear threshold




previously. Smoothing of |ﬁ} m 1s applied with a moving average taken with a window size of five points, and this
smoothing helps to account for variation in ||, due in part to finite output grid resolution. Only the smoothed and
not the raw results are shown in the remainder of the figures.

After an initial period of receptivity, the growth rate for the k = 1 forcing frequency remains close to the
theoretically predicted 0* = m/2 maximum until the non-linear region is reached at x/D ~ 1.42, wherein the
flattening of the growth represents the onset of the tip vortex pairing and breakdown event [17]. Finally, at around
x/D =1.75, the mutual inductance instability growth sees adjacent helices leapfrog one another. The leapfrogging
event can be observed directly from view of the outermost vortex filaments themselves in Figure 4(b). Rather sudden
disorganization of the flow occurs within 1D of the vortex breakdown. Similarly to [17], we consider in this work the
end of the near wake to be the location of a non-linear threshold, which in our case is ln(lﬁ} ) X 2h2U. T71D71 =
-0.25.

The other k values besides the forced k = 1 case, which in the case of Figure 4(a) are all harmonics of the forcing
case, show fast initial growth before eventually attaining nearly the same growth rate, though not the same magnitude,
as the forced case. The non-forced k cases will not be plotted in the remainder of the article.

IV.  Stability Results

This section gives the Fourier analysis results on the sensitivity of the wake instability growth to three dynamic
forcing parameters: frequency, amplitude, and phase. A subsection is devoted to each parameter.

A. Frequency Selection

This section aims to identify forcing frequencies of highest potential for wake length reductions. While it may in
fact be possible to force the wake with multiple superimposed waveforms of different frequency and type to achieve
optimal performance, we restrict the study in this article to single frequency harmonic cases as described previously.

A frequency sweep was performed using a similar example case as described in Section III.C employing dynamic
rotor frequency with ay =0.02 rpm, w; = N, (k — 0.5), and ¢y = 0°. The instability growth for different forcing k
are plotted in Figure 5(a). The best-fit slopes of the linear region between 1.0 < x/D < 1.4 are the o* for each k, and
these are compared in Figure 5(b) across all k.

Figure 5(b) depicts a clear trend in o™ with peaks near integer k values and convergence of ¢ as k increases, both
characteristics that are found for helices with small pitch in Widnall’s [10] theoretical foundation on helical tip vortex
instabilities. Furthermore, o* distributions of similar character, including a maximum growth rate at k = 1, have been
observed by previous authors studying rotor configurations using both Fourier analyses [15, 17] and eigenvalue
analyses [16, 21, 31]. The addition of the dynamic stall model tends to displace the ¢* curve to slightly higher k
relative to the case without dynamic stall for k greater than roughly 1.5, though the location of maximum o*, k = 1,
is unchanged with or without the model. In terms of absolute growth rates, this maximum o~ is 1.41, or 10%, below
the maximum theoretical value of /2 for point vortices.

To further demonstrate the consistency of the Fourier result with other stability analysis techniques, an eigenvalue
stability analysis for the unforced case on one blade’s outer filament was performed following Bhagwat and
Leishman’s [16] formulation. The same fluctuating and decaying trends are seen in the eigenvalue result as the Fourier
one, including the maximum growth rate at k = 1. Some differences compared to the Fourier result may exist since
each method resolves slightly different targets; the eigenvalue analysis is applied directly to a single vortex filament
while the Fourier analysis is calculated with velocities produced by the induction of all filaments in the flow field.
Since the eigenvalue analysis is performed on an unforced wake, the eigenvalue result matches most closely with the
Fourier result that does not include dynamic stall.

Illustrations of all three outer filaments are provided in Figure 5(b) for several k to aid in the causal analysis of the
different growth rates. The graphics depict the effect of the various forcing frequencies on the outermost tip vortex
filament emanating from each blade at an instant in time in the FVWM results. As in Figure 4(b) above, the absolute
filament diameter does not possess meaning and is scaled for visual clarity. However, in Figure 5(b) and other figures
to follow, the relative variation in filament diameter is indeed meaningful and represents changes in the magnitude of
the local circulation produced by the filament (see the following section for discussion on local circulation changes
for DWC cases). The filament circulation, as well as the axial and radial displacements of the filaments, relative to
those of the unforced case are exaggerated by the factors given in the figure caption.

For the k = 1.5 illustration, adjacent filaments are displaced in-phase so that the DWC-induced displacements are
only a function of azimuthal location in the domain regardless of which filament is being considered. The result is a



distortion of the whole helical structure, which makes each filament take on an “s”-shaped appearance as shown. The
dynamic forcing thus has little impact on the streamwise spacing between adjacent filaments, and the k = 1.5 forcing
therefore has a low growth rate. The same conclusions hold for larger, half-integer k values.

On the other hand, integer-valued k forcing cases displace adjacent filaments to be out-of-phase by 180° of the
perturbation cycle. Tracking a single vortex filament for the k = 1 case, it can be observed that a filament pairs with
an adjacent filament every 120° of azimuth, and the filament's pairing partner also alternates between every pairing
position. For the k = 2 case, the pairing occurs every 80° of azimuth and again alternates between every pairing
position. It could be said that the integer-valued forcing acts as a “matchmaker” between successive vortex filaments,
prescribing the azimuthal location where two filaments will converge at instability hotspots. The k = 1 case will be
used for all further results below because of its highest magnitude growth rate.
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B. Amplitude Study

Figure 6 contains individual studies of rotor speed and pitching amplitude in the first two rows, respectively, and
a tandem amplitude study in the third row. In each case, the amplitude sweeps of af and a, show a clear trend of
decreasing near-wake length with increasing forcing amplitude. For the tandem case in Figure 6(c), we began by
selecting pairs of a,, and a; based on similarity of (x/D),; from the non-tandem results. For instance, the a,, = 1.30°
case from subfigure (b) is matched with the as = 0.60 rpm case from subfigure (a), corresponding to (x/D); of 0.65
and 0.64, respectively. As will be justified in the following section, the relative phase shift of the two forcing
waveforms is set so that ¢ = 90° ahead of ¢, = 0°. For the largest amplitude tandem case, the |@}, |, intersects the
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non-linear threshold at the rotor plane, so this case may have negligible (x/D),;. As will be discussed in Section V,
many of the cases in Figure 6 have the potential to shorten (x/D),,; relative to the turbulent near-wake lengths
predicted by the model of Serensen et al. [37].

The illustrations to the left of the plots depict the effect of the various DWC strategies on the tip vortex filaments
at an instant in time in the FVWM results, and the same explanation of the illustrations as in Section IV.A again
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Figure 6. Left: Trajectory of the outermost tip vortex filaments taken for the first two revolutions
downstream of the rotor at an instant in time from the FVYWM results. Shown in (a), (b), and (c) are the
a; = 0.06 rpm, a, =0.13° and a; = 0.06 rpm/a, =0.13° cases, respectively, indicated on the right-hand
plots. Axial and radial displacements of these filaments relative to the unforced case are exaggerated by a
factor of 20 for clarity, and corresponding differences in circulation as represented by filament diameter
are exaggerated by a factor of 40. Right: Demonstration of control authority over the initial maximum
wake instability Fourier coefficients, |ﬁ]’- ,|m> as well as the growth along the streamwise coordinate, x/D.
All cases use w = 1.5 (k = 1) and the harmonic amplitudes, a, and phase angles, ¢, are zero unless noted
otherwise. Lines are listed in the legend in the same order they appear vertically on the plots.
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applies. The same observations about filament behavior as made for the a; =0.02 rpm case with k =1 in Section IV.A
hold for the ar = 0.06 rpm, a, = 0.13°, and tandem cases illustrated in Figure 6. The primary visual difference
between the three cases is the size of the DWC-induced filament displacements, which correlates with the respective
instability magnitudes plotted on the right-hand side of the figure. The (x/D),,; variations between cases are thus
related to the filament displacements at the instability hotspots, which see the paired filaments of the tandem case
coming closer together than for the individual cases, a visual confirmation that the tandem case achieves the strongest
filament-pairing effect for the amplitudes considered. In fact, the beginning of the mutual inductance leapfrogging
event can already be seen in the large displacements of the blue and purple filaments at the downstream limit of the
plotted data in subfigure (c). A difference in circulation magnitude is also apparent between pairing filaments at the
instability hotspots, especially in subfigures (b) and (c). Since the circulation magnitude between pairing filaments is
180° out of phase at any given azimuth, the mean circulation magnitude between any pair may be relatively constant.

It is relevant to note that the rate of instability growth within the linear region is the same to within a small
percentage between all the cases in Figure 6 since the growth rate for a specific frequency of forcing is an inherent
characteristic of the rotor wake [30]. Rather, it is the differences in the initial amplitude of the instability for each case
that cause the non-linear regime to be reached at different x/D. For the cases involving dynamic pitch, the initial
growth rate takes some stretch of distance to adopt a mutual inductance-type linear growth, though the dynamic forcing
clearly still increases the initial instability magnitude, thereby shortening the near-wake length.

C. Phase Study

Figure 7 gives the results from the tandem
configuration of a sweep of ¢, with constant ¢,,.
Varying the relative phase between the rotor speed and
pitch forcing indicates a preferential phase shift of ¢
between 90-135° ahead of ¢, that produces the most
constructive superposition of forcing waveforms and
resulting reduction of (x/D),;. This trend is constant
across the range of a, amplitudes studied in Figure 7,
though greater values of a,, for the given a; clearly

(m/D)nl

offer the greatest potential reduction of (x/D),;. For 0.4 ey = 0.40°]
the largest a;, of 1.30°, the tandem result has a 30-31% ‘llf = 0.60 rpm, ¢, — 0"‘ —a, = 1.30°
lower (x/D),; than either of the individual cases of : i :

the same forcing amplitudes. 0 90 180 270 360

o5 ()
Figure 7. Effect of rotor speed forcing phase, ¢y,
on near-wake length, (x/D),; for a constant pitch
forcing phase angle, ¢,. All cases use @ = 1.5
(k=1).

V. Analysis/Discussion

The above FVWM modeling does not consider the
effects of atmospheric turbulence in the rotor inflow
on instability growth. Inflow turbulence introduces
perturbations to the tip vortex structures that may have
an effect on wake instabilities that is comparable to the DWC actions studied above, depending on the turbulence
intensity. The question becomes: how high can the turbulence intensity be for the DWC actions to still be effective?

The semi-empirical model of Sarmast et al. [9] incorporates a relationship between (x/D),; and the inflow
turbulence intensity, Ti, as in Equation 8

(x/D)py = 8[1+ C,(\/1 = Cr — 1)]3[N,,/16T]‘1 In(C,Ti), (8)

where C; and C, are constants for which Serensen et al. [37] found 0.33 and 0.52, respectively, Cr is the thrust
coefficient taken as 0.756 from the FVWM results without DWC, N,, is the number of blades, and A is the tip speed
ratio. The equation is plotted in Figure 8 for reference.

The C; constant is furthermore useful as it is the constant of proportionality between a norm of the fluctuating
axial velocity field, u’ /U, just behind the rotor blades and the corresponding T'i. In light of the derivation of Equation
8 that stems from the rotating sinusoidal axial tip forcing results of [17], one interpretation of u'/U,, is as the maximum
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axial velocity Fourier coefficient magnitude computed in the rotating frame of reference just behind a blade. If it is
assumed that the maximum Fourier coefficient in the calibration data used for C; was the maximum growth rate case
of k =1, then we may set u'/U,, equal to the value of |@} |, /U just behind the blades, which is conveniently
already tabulated as a result of the above Fourier analysis. The proportionality relationship given in Sarmast et al. [9]
and Serensen ef al. [37] could then be transcribed as |ﬁ} Im /Us = C;Ti. This relationship allows the addition of the
DWC data from Section IV.B to Figure 8 where the value [|@], |, /Us]/C; on the horizontal axis may be considered
the effective turbulence level associated with the DWC actions. The |ﬁ} ,Im 1s taken at the location 0.1D downstream
from the rotor plane. Note that uncertainty in the value of C; due to the assumption of u'/U,, as the maximum Fourier
coefficient manifests as uncertainty in the horizontal translation of the DWC data relative to the Serensen ef al. [37]
line, though the slope of the data is not in doubt. The deviations of the DWC data from the semi-log linear slope of
the Serensen et al. model near the higher |, |, /Uo, may indicate that there are effects present in the current DWC
flow fields that are not well described by the simple scaling between |@}, |,,, and Ti proposed above.

The agreement of the tandem sweep curve with the individual sweep curves suggests that the tandem approach is
not inherently superior to simply using an individual control vector with higher forcing magnitude, though structural

quantities should also be investigated between the control vector approaches since |, |, is at best a surrogate for

|
1
some fluctuating thrust metric. Comparing the af sweep to the a,, sweep, the @, sweep is “less efficient” than the ay
sweep in terms of the achieved (x/D),, for a given input |, |,, over most of the range of |&} |,,, /Us considered.

This behavior may be understood in light of the

3 : : : slow initial growth of the pitch-induced instability
—__-Serensen et al. [37] discussed for Figure 6. The larger initial axial
~S—ay sweep fluctuation magnitude of the dynamic pitch control
—5—a, sweep approach could make this strategy more robust

21 —&— Tandem sweep ] against the aperiodic interference of inflow

turbulence, though much is still to be learned about
the flow physics of the different DWC approaches.
Initial analysis on the effectiveness of DWC in the
presence of inflow turbulence is given next.

From Figure 8, it is clear that some DWC
actions of smaller magnitude will not reach their
predicted (x/D),; before high inflow turbulence
environments would cause the wake to already

1072 1071 10° begin to breakdown. For instance, (x/D),,; = 0.8
. according to Equation 8 for Ti =0.10 (10%), so the
Figure 8. Near-wake length, (x/D),;, versus DWC actions of the lowest six [[& |, /Uso]/Cy

turbulence intensity, Ti, from Serensen et al.’s [37]

ints plotted have little effect on th D
model (blue data) and scaled maximum axial points plotted may have little effect on the (/D)

in such a case.

perturbation magnitude, [|&, |, /Uc]/C1, as Figure 9 helps to visualize the potential benefit
calculated 0.1D downstream of the rotor with DWC that different DWC magnitudes have on (x/D),;
actions (red data). by cross-referencing the (x/D),, from the

turbulent near-wake length model of Serensen et al.
[37]. The benefits in terms of relative (x/D),; reductions are plotted versus the ratio of the perturbation magnitudes
from the DWC to those from the inflow turbulence, [|@] |, /Uw]/[C1Ti]. As this ratio increases, the likelihood
increases that the DWC-applied waveform will be initially coherent and will remain coherent downstream, and thus
the likelihood of the DWC actions to achieve the potential (x /D), reductions suggested by the non-turbulent FVWM
results also increases. For all inflow Ti values, (x/D),; reductions of over 80% are suggested for the maximum
considered amplitude cases of ar =3.20 rpm and a, =2.90°. To limit fatigue on the active turbine, it might be
advisable to use lower magnitude amplitudes. Specifically, dynamic rotor speed forcing with a; =1.12 rpm, a value
which is not large relative to naturally occurring rpm variation, could achieve 53% (x/D),; reduction in a very stable
atmosphere of Ti =0.02 (2%) and 43% (x /D), reduction in a more moderately stable atmosphere of Ti =0.05 (5%).
Similar (x /D), reductions of 58% and 48%, respectively, are possible with dynamic pitch forcing of a,, =2.30°. As
discussed above, the [|&], |, /Us] stemming from dynamic pitch control generally have a higher margin relative to
the turbulence than those from the dynamic rotor speed control for a given (x/D).,;, at least for the axial perturbations
considered here.
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It should be noted that the minimum ratio [|ii}1 l;m /Uxs]/[C1Ti] for which DWC actions can still be effective is
not known at this point, and thus conclusions about the potential for the DWC technique with lower magnitude forcing
or at higher Ti conditions is unknown as well. Further high-fidelity modeling and/or measurements are necessary to
establish firm estimates of the (x/D),,; reductions that DWC can offer in various turbulent environments. It can be
summarized, however, that larger magnitude DWC actions are better both to yield potentially shorter (x/D),; and
higher likelihood of achieving the maximum benefits. On the other hand, fatigue damage and actuator wear also
increase with the magnitude of dynamic turbine actions, and these consequences should also be the subject of future
work.

Unlikely to . . . Likely to
achieve —» increasing DWC effectiveness ——» achieve
potential <4— increasing turbulent interference ¢—— potential
. ay sweep, Ti =2%
X —O—ay sweep, T1 =5%
g 80 —S—ay sweep, T =10% 1
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Q
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Figure 9. Potential reduction in near-wake length, (x/D),,;, as a percent of the (x/D),,; from the turbulent
near-wake length model of Serensen ez al. [37] versus likelihood of achieving the potential benefits with the
DWC actions. The likelihood is quantified as the ratio of the maximum axial perturbation
magnitude, |ﬁ]’-1|m /U, as calculated 0.1D downstream from the rotor plane in rotating frame-of-

reference, to the scaled turbulence intensity, Ti. For visual clarity, the magnitudes of a; and a,, are not
annotated for the Ti =5% and Ti =10% cases, but these values follow the same sequences as annotated
for the Ti = 2% cases.

V1. Conclusions and Outlook

The modified mid-fidelity FVWM code CACTUS is used to demonstrate the effectiveness of using dynamic rotor
speed and blade pitch control to accelerate the breakdown of the near wake leading to a reduced overall wake length,
and ultimately allowing turbine-to-turbine spacing to be reduced. Embedded in our approach is greater realism in the
application of the dynamic control than in some previous work, as well as a focus on exciting the mutual inductance
instability of the tip vortices rather than the bluff-body instabilities of the larger wake.

Stability analyses first confirmed that the harmonic forcing frequency parameter with the highest growth rate of
the mutual inductance instability is k = 1, which corresponds to w = 1.5 for a three-bladed rotor. Using this frequency
for parametric sweeps of the dynamic forcing amplitude of rotor speed, blade pitch, and tandem actions, (x/D);
lengths of =0 to 1.46 were predicted over the range of rotor speed and blade pitch amplitudes considered. For the
tandem cases, the phase difference between the forcing waveforms of the rotor speed and pitch was found to affect
(x/D)y,, and the most constructive superposition of waveforms occurred when ¢ =90-135° ahead of ¢,,. Analyses
that cross-referenced the DWC results with the turbulent near-wake length model of Serensen et al. [37] indicated that
(x/D)y, reductions of 48% with pitch forcing amplitude of a, = 2.30° are possible within a turbulent environment
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of Ti = 0.05 (5%) and that similar (x/D),, reductions of 43% are possible with rotor speed forcing of a; = 1.12 rpm,
a value which is not large relative to naturally occurring rpm variation. No inherent advantage of tandem control
versus individual control vectors was immediately apparent, though both individual control vectors have unique
upsides: rotor speed control produces no direct mechanical wear on the blade pitch system while blade pitch control
may be more robust in the presence of inflow turbulence, though more investigation is required.

Additional work to be explored with the mid-fidelity FVWM approach include experimenting with different
forcing waveform types (sinusoid, sawtooth, hybrids) and duty cycles. Cases could also include combined waveforms
which are superpositions of multiple waveforms. Higher-fidelity simulations and/or measurements are next needed to
pinpoint the efficacy of DWC in the presence of inflow turbulence, as well as to quantity the loading cost and turbine
dynamics associated with the DWC approaches discussed above. Furthermore, the effect of DWC actions on the power
production of the active turbine and validation of power increases in downstream turbines warrant further study.
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