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EFFICIENT IMEX RUNGE-KUTTA METHODS FOR
NONHYDROSTATIC DYNAMICS*

ANDREW STEYER', CHRISTOPHER J. VOGL}, MARK TAYLORS, AND OKSANA
GUBAY

Abstract. We develop new implicit-explicit Runge-Kutta (IMEX RK) methods for integrating
horizontally explicit, vertically implicit (HEVI) partitionings of nonhydrostatic atmosphere models
(HEVI models). These new methods, termed IMKG methods, are IMEX RK methods whose explicit
part has optimal or near-optimal stability on the imaginary axis and whose implicit part is I-stable.
A specialized stability region is presented for characterizing the stability of IMKG and other IMEX
methods integrating HEVI models. Subsequently, we formulate two families of IMEX RK methods
to enable deriving IMKG methods with a high explicit stage count for integrating HEVI models with
large, stable time-steps. We then derive a HEVI partitioning of the HOMME-NH nonhydrostatic
model and use this model to compare the accuracy and efficiency of several IMKG methods with
other IMEX RK methods from the literature.

Key words. implicit-explicit method, IMEX method, semi-implicit, Runge-Kutta method,
time-integration, HEVI, nonhydrostatic, global model, atmosphere model

AMS subject classifications. 65L04, 65L05, 65L06, 65L07, 65L20, 65M20, 86A10

1. Introduction. The atmosphere is home to various physical processes evolving
on a number of time-scales. Consequently, method-of-lines discretizations of partial
differential equation (PDE) models of atmospheric flow often result in stiff and mul-
tirate initial value problems (IVPs). This occurs in nonhydrostatic modeling where
fast vertically propagating acoustic waves can restrict the step-size of explicit time-
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2 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

stepping methods under what is needed for accurate forecasting and climate pre-
diction. Because of this, nonhydrostatic models often employ horizontally explicit,
vertically implicit (HEVI) partitioning. In HEVI partitioning (see the references at
the end of this section), terms are additively grouped into fast terms corresponding
to vertical acoustic wave propagation and relatively slow terms independent of this
motion. There are many alternatives to traditional implicit methods for discretizing
such partitioned IVPs including implicit-explicit (IMEX), exponential, and multirate
methods. These alternatives can circumvent the step-size restrictions of standard ex-
plicit methods, often at a much lower computational cost than fully implicit methods.
In this paper we develop a family of IMEX Runge-Kutta (RK) methods for integrat-
ing nonhydrostatic atmosphere models with a HEVI partitioning (HEVI models). We
then develop a HEVI partitioning of the HOMME-NH nonhydrostatic model (see the
references below) and compare the performance of IMEX RK methods, both derived
herein and from the literature, for its integration.

Our main contribution is to develop a new type of IMEX RK method, referred to
as IMKG methods, for the integration of HEVI models. IMKG methods are IMEX
RK methods whose explicit part has optimal or near-optimal stability on the imagi-
nary axis and whose implicit part is I-stable [17, Section IV.3, pp. 42-43]. Their name
and development is motivated by the work of Kinnmark and Gray (see [23,24] and
also [38] and [19]) who determined stability polynomials for explicit RK methods to
have optimal or near-optimal stability on the imaginary axis. Conventional wisdom
suggests time truncation errors are dwarfed by spatial truncation and other errors in
global atmospheric modeling. We therefore focus on deriving IMKG methods capable
of taking large, stable time-steps with the potential trade-off of some accuracy. To
do so we derive IMKG methods with a high explicit stage count that also have good
coupled IMEX stability. We characterize coupled IMEX stability for HEVI models in
Section 2.3 with a specialized stability test equation (Equation 2.5). This test equa-
tion, originating in [5,26,42], was derived for studying stability properties of IMEX
methods integrating HEVI models. To do so, we derive IMKG methods with a high
explicit stage count that also have good coupled IMEX stability, which we charac-
terize in Section 2.3 with a specialized stability test equation (Equation 2.5). This
test equation, originating in [5,26,42], was derived for studying stability properties of
IMEX methods integrating HEVI models.

Two families of IMKG methods are considered: the IMKG1 and IMKG2 meth-
ods. Both families allow for an arbitrary number of internal stages, and their double
Butcher tableaux are structured to enable enable easy parameterization of IMKG
methods with a large number of explicit stages in terms of a few free method coeffi-
cients (see Example 3.1). The accuracy and explicit stability of IMKG1 and IMKG2
methods is studied in Section 3.2. The IMKG1 methods (Equation 3.1) we consider
are second or third order accurate. They are defined so that the number of implicit
solves per time-step can be fewer than the number of explicit function evaluations.
The IMKG2 methods (Equation 3.2) we consider are second order accurate and the
implicit and explicit method have the same stage-time vector. However, IMKG2
methods typically require an implicit solve at every nontrivial internal stage. Double
Butcher tableaux for the most efficient IMKG1 and IMKG2 methods we derived are
given in the appendix (Section 7, Equations (7.1)-(7.6)).

In Section 4 we develop a HEVTI partitioning for the HOMME-NH nonhydrostatic
atmosphere model [31,41]. The governing equations (Equation (4.1)) of HOMME-NH
support vertically propagating acoustic waves that require stable numerical treatment.
The stiff terms generating these waves are isolated to the equations for vertical mo-
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IMEX METHODS FOR NONHYDROSTATIC DYNAMICS 3

mentum and geopotential. This results (Section 4.2) in a HEVI IMEX partitioning
where the implicitly treated terms require the solution of relatively simple nonlinear
equations that are independent of horizontal derivatives. The nonlinear solvers can
then be implemented without horizontal parallel communication.

The performance of several IMKG1 and IMKG2 methods integrating HOMME-
NH with the HEVI partitioning we develop is investigated in Section 5 using two tests
(Tests 2.0 and 3.1) from the 2012 Dynamical Core Model Intercomparison Project
(DC12) [35]. We compare the accuracy and efficiency of several IMKG methods with
other methods from the literature (see [10,12,34,41]). Generally speaking, the IMKG1
and IMKG2 methods we derive are capable of stably running with larger step-sizes and
have a faster time-to-solution than those to which we compare from the literature (see
Sections 5.3.1-5.3.2). However, the IMKG1 and IMKG2 methods can be less accurate
than these other methods, even when running with the smaller step-sizes to which
those methods are restricted (see Figures 1-2).

Our focus on IMEX methods is motivated by their frequent use in models of
geophysical fluid flow [5,9,11,12,13,26,28,34,42]. Order conditions for various par-
titioned and IMEX methods were derived in [15]. We use the formulas given in [21]
that, under certain simplifying assumptions, express the order conditions of IMEX
RK methods concisely in terms of their double Butcher tableaux. Understanding
stability properties of IMEX methods is important for deriving efficient methods and
has been extensively studied (see e.g. [2,8,16]). We exploit the technique, dating
back at least to the early 1970s [37], of increasing the maximum stable step-size by
increasing the number of explicit stages. The analysis pioneered in [5,26,42] is then
used as a heuristic to develop methods capable of taking large stable time-steps when
integrating HEVI models.

The HOMME-NH nonhydrostatic model used to evaluate the IMKG methods
we derive is based on the spectral element hydrostatic HOMME dynamic core [4,
7,33]. Semi-implicit and IMEX time-integration strategies have been employed in
such nonhydrostatic atmosphere models for many years (see e.g. [28,30]). These
strategies avoid some of the computational costs associated with using a fully implicit
time-stepping method [6] or a modified equation set [3]. HEVI partitioning is a
popular semi-implicit strategy for nonhydrostatic models [1,5,9,26,28,42]. In HEVI
partitioning, stiff vertically propagating acoustic waves are treated implicitly with
everything else handled explicitly. This allows the use of much larger stable time-
steps than standard explicit methods, but with computationally cheaper solves than
those required by standard implicit methods.

2. Implicit-explicit Runge-Kutta methods.

2.1. Formulation. Consider an ordinary differential equation (ODE) that is
additively partitioned:
(2.1) E=fE&)=nE ) +s(1), fins:RIxR=RY

where d € N and £ is the derivative of € = &(t) with respect to t. Given r € N and
real-valued arrays b, b, c,é € R” and A, A € R"*" where A is lower triangular and A is

strictly lower triangular, we consider r-stage IMEX RK methods for approximating
IVPs of (2.1) with initial condition £(tg) = &y defined by

(22) §m+1 = fm + At Zzzl(bknm,k + Bksm,k:)
9m,j :Em’j+AtAj,jSm7j, j:].,...,T, mE{O}UN,
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4 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

where At > 0 is the step-size, T i = (G &, tm + CEAL), Sk = (g, k, tm + ELAL),
tmy1 =t + At, and

B 4,:{ L Em ) j=1
m.j Em + ALY T (Ajknm e + Aj kSmgk) J=2,...,1

We represent (2.2) with a double Butcher tableau:

C‘A ¢
o

(2.3) é‘; .

The vectors ¢, ¢ are called the stage-time vectors and the arrays A, A are called

A
the Runge-Kutta matrices. The explicit RK method %b—T is called the explicit

A
method of (2.2) and the implicit RK method — -

is called the implicit method
of (2.2). We make the following standard simplifying assumption for the remainder
of the paper: the jfh component of ¢ (resp. ¢) is equal to the sum of the j** row of
A (resp. of A). If A has v < r nonzero diagonal entries, then we say that (2.2) has v

implicit stages.

2.2. Stability of explicit RK methods on the imaginary axis. The sta-
bility theory of explicit RK methods for hyperbolic PDEs is a well-established sub-
ject [39]. Given real numbers a < b let i-[a,b] :== {z € C: 2z = i(,{ € [a,b]}
where i := +/—1. For an explicit RK method with stability region S we define
Omax = max{y > 0:i-[—y,y] € S} and for IMEX RK methods we use the same
symbol oyax to denote the value of max{y > 0:i-y € S.} where S, is the stability
region of its explicit method. The following theorem bounds the intersection of the
stability region of an explicit RK method with the imaginary axis.

THEOREM 2.1. For an r-stage (r > 2) explicit RK method, opae <1 — 1.

For a proof refer to [19, Theorem 5.1], [40, Theorem 2], or [38, Chapter 4]. Let r > 2.
The stability polynomials achieving the optimal stability limit (omax = 7—1), referred
to as the KGO (Kinnmark and Grey optimal) polynomials, are given in [23, Table
1]. We also employ the third and fourth order accurate KGNO (Kinnmark and Grey
near optimal) polynomials [24, Table 1] for which omax = /(r — 1)2 — 1 when KGO
polynomials do not attain the desired order of accuracy.

2.3. H-stability regions and IMKG methods. We use the following test
equation to characterize the stability of IMEX methods integrating atmospheric mod-
els with a HEVT splitting (see [5,26,42]):

0
(24) € = —ik N€¢ —ik.SE, N =0
1

o O O

1 000
0, S=|0 0 1], kyk.>0
0 010

Using Equation (2.4) as a stability test equation for nonlinear PDEs modeling a
nonhydrostatic atmosphere is justified via linearization [5,26,42]. Equation (2.4)
represents the evolution of an acoustic wave in two dimensions in the (k,, k) direction.
The range of values for k., k. is determined by the normal modes of the linearizations
of the explicit and implicit parts of the HEVI partitioning. We let K, and K, denote
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IMEX METHODS FOR NONHYDROSTATIC DYNAMICS 5

the range of values of k, and k, respectively. A typical target application for the
HOMME-NH nonhydrostatic model (described in Section 4.1) has a vertical resolution
of around 100m and a horizontal resolution around 10km. Thus, we expect k, =
0(0.1), k., = O(10) so that K, = [0,0(0.1)], K, = [0, O(10)].

We now describe how we use Equation (2.4) to characterize stability of IMEX
RK methods for HEVI models. Approximating an IVP of Equation (2.4) with the
method (2.2), initial value £(0) = &y, and step-size At > 0 results in:

Em+1 = Ru(Atky, Atk,)E,, me{0}UN, k, e K, k,<ckK,,
where the stability matrix Ry is defined by
(2.5) Ry(x,2) =I5 —i(b" @ 2N + b7 @ 28) I3, + AQ izN + A ©®i28) (1, ® I3),

where for w € N, I,, is the w x w identity matrix and 1,, := (1,...,1)T € R¥ and ®
represents the Kronecker product. The HEVI or H-stability region is defined as

Sg :={z,2 > 0: each eigenvalue of Ry (z,z) is at most 1 in modulus}.
We also define the set Tg and 7.y as follows:
Tao={£>0:(z,2) €Sy for all z <&, 2 >0}, Tmax := max(Tx).

Stable time-steps At are those for which (Atk,, Atk,) € Sy for all (k;, k.) € K, x K.
The set Ty is the sub-region of Sy where stability is determined by K, independent
of K,. This is useful for us because in our application we expect that max K, =~
100 max K,. For two methods we would predict the ratio of their maximum stable
step-sizes to approximately be the ratio of their respective values of Typax.

We regard the H-stability region, Ty, and Tyua.x as heuristic tools for deriving
IMEX methods capable of taking large, stable time-steps in HEVI models. Because
the applications we are targeting are nonlinear and Equation (2.4) is justified via
linearization, we cannot expect the H-stability region to give exact estimates for the
maximum stable time-step of a method. Furthermore, the stability theory provides no
measure of accuracy and some methods we derive can be relatively inaccurate when
running close to their empirically determined stability limit (see Table 2 in Section
5.3.2). However, results we obtain in Tables 1-2 validate the use of Ty« for obtaining
a rough estimate the maximum stable step-size.

We close this section with a discussion of desirable stability properties for IMEX
methods integrating HEVI models and define the family of IMKG methods. For an
r-stage IMEX RK method, Theorem 2.1 implies that 7,ax < 7 — 1 where equality is
possible only if the stability polynomial of its explicit method is a KGO polynomial.
Given o € (0,r — 1], necessary conditions so that 7. = o are:

1. The stability region of the explicit method contains i - [—0, g].
2. The implicit method is I-stable.
This motivates the following following definition.

DEFINITION 2.2. An IMEX RK method is an IMKG method if:
1. Its explicit method has a KGO or KGNO stability polynomial.
2. Its implicit method s I-stable.

3. Analysis and Formulation of the IMKG1 and IMKG2 methods. In
this section we formulate and analyze two families of IMKG methods: the IMKG1
and IMKG2 methods.

This manuscript is for review purposes only.
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3.1. Formulation. As remarked in Section 2, we assume the j* component of

¢ (resp. ¢) is the sum of the entries in the j** row of A (resp. A). IMKG1 methods
are IMKG methods with double Butcher tableaux of the following form (where g > 3

and array entries are zero unless specified):

0 0
c1 | o & | @ d
B el
(3.1) Qg—2 Qg2 dg—2
Qg—1 . (Séq71 dq71
cq | Bg—1 Qg q | Bg—1 Qg
Bg—1 Qq Bg—1 Qg

IMKG?2 methods are IMKG methods whose double Butcher tableaux has the following
form (where ¢ > 3 and array entries are zero unless specified):

0 0
c1 | a1 ¢1 0 a1
(3.2) Qg2 0 Qg—2
Ag—1 0 Ag—1
cq | B Qq éq | B M Ya-2 Qg
5 Qg 6 ’Ayl e e ’qu,1 dq

where 4; # 0 for at most one j € {1,...,¢—1}. IMKG2 methods with &, # 0 require
an implicit solve after every explicit stage (see the discussion following Equation (3.4)
in Section 3.2) while IMKGI1 methods do not. Additionally we were able to derive
efficient third order accurate IMKG1 methods, but were only able to obtain efficient
second order accurate IMKG2 methods. Despite these drawbacks, IMKG2 methods
have the desirable property that ¢ = ¢ (as long as the method is first order accurate)
so that quantities useful in atmospheric modeling that are computed through an
equation of state (e.g. temperature or pressure) are easier to approximate at internal
stage times. Additionally, the IMKG2 methods we tested were typically more accurate
than the second order accurate IMKG1 methods (see Figures 1-2 in Section 5).
There are two main reasons we structure IMKG methods with Equations (3.1)-
(3.2) above. Firstly, it enables quick and easy parameterization of second or third
order accurate families of methods where ¢ is large (¢ > 3, see Example 3.1 below) in
terms of several free method coefficients. Secondly, they are low-storage in the sense
that they only require storing two or three solution vectors per stage. This reduces
memory read/writes that can be much more expensive than flops on large paral-
lel computers. There may exist low-storage IMKG methods whose double Butcher
tableaux are not of the form of Equations (3.1)-(3.2). Such methods are not investi-
gated in this paper but could potentially have fourth or higher order accuracy with
comparable stability properties to the methods we derive herein.
We denote the methods we derive in this paper by IMKGj-pEI where:

e j € {1,2} denotes if the method is an IMKG1 or IMKG2 method.

e p is the order of accuracy of the method.

e F is the number of explicit stages.

This manuscript is for review purposes only.
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IMEX METHODS FOR NONHYDROSTATIC DYNAMICS 7

e [ is the number of nontrivial implicit stages.

3.2. Stability and accuracy of IMKG1 and IMKG2 methods. We focus
on second and third order accuracy since fourth order accuracy requires satisfaction of
an additional 52 order condition equations [21, pp. 43-44]. Tt is challenging to satisfy
this many order conditions with double Butcher tableaux of the form of Equations
(3.1)-(3.2) unless ¢ is taken to be very large. Before considering the accuracy of
IMKG1 and IMKG2 methods we briefly discuss their explicit stability. The stability
polynomial P;(z) of the explicit method of an IMKG1 method (3.1) is given by:

(3.3) Pi(2) = 14+(Byg—14q)z+ay(Bg—otag—1)2>+. . +ag. . .az(Bidaz)z?  +ag-. . .-ar2%.

If By =0 for k=1,...,qg— 1 (which restricts the order of accuracy to at most two),
then ai,...,qq, are uniquely determined by Equation (3.3) and the KGO or KGNO
polynomial of degree q. The stability polynomial Ps(z) of the explicit method of an
IMKG2 method (3.2) is given by:

(3.4) Py(2) =1+ (ag + By-1)z + agog 12> + ...+ ... a2t
The coefficients of KGO and KGNO polynomials are all strictly positive [23,24]. This
fact combined with Equations (3.3)-(3.4) implies that ag - ... a1 # 0 and therefore

a; #0for j =1,...,q for all IMKG1 and IMKG2 methods. Consequently, every
explicit stage of an IMKG2 method with ¢, # 0 is followed by an implicit solve.

We now consider the accuracy of IMKG2 methods. Consider a method of the
form (3.2) and let [ € {1,...,¢ — 1} be defined so that v; # 0 if and only if j = [.
Then the method is first order accurate order accurate if and only if

(3.5) g+ B=1=F+4+dq.
Second order accuracy requires that in addition to Equation (3.5), the method coef-
ficients satisfy [21, pp 43-44]:
ch*chfaqaq 1fl lA)Té:dq(BJF’AYZJF&q)JF’AYlOél:%,
ble= Gq(B+ ag) +H10 = 3

Equations (3.5)-(3.6) imply than an IMKG2 method (where a; # 0 for j =1,...,g,
as shown above) is second order accurate if and only if

(3.6)

1 A A A
(3.7 aqaq_1:§:(1/27aq)/al, ag+B=1=F+%+d,.

By similar calculations using the order conditions stated in [21, pp 43-44], we obtain
that an IMKG1 method is second order accurate if and only if

aq(@q—2 + ag-1) :Aaq(Bq—Q +Gg-1 + Jq—2) =1/2
(3.8) Gq(Bg—2 +ag-1+dg—2) = dq(ﬂq—%"‘ ag-1) =1/2
g+ fg—1=1=Gq+ Bg—1

where we note that if 5,_; = Bq 1 = ,Bq 9 = Bq o = 0, then this is equivalent to
ag =1= @4, ag_1 =1/2, and aq 1+ dq o = 1/2; and third order accurate if and

only if oy = %—aq,ﬂq 17* 5q 1, and

dq l(dq 2+dq 2+5q 3)"’2qu 1/3—2/9
Gg—1(ag—2 + By 3)+2dq 1/3—2/9
ag—1(og— 2+5q 3)*2/9*0%1 1(Gg— 2+dq 2+5q 3)
Grg— 1+dq 1+5q 9 =2/3=0aq_1+ By—2.

(3.9)

This manuscript is for review purposes only.
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We use the following example to demonstrate parametrizing a third order accurate
IMKG1 method in terms of several method coefficients.

EXAMPLE 3.1. We construct a third order accurate IMKG1 method with g = 4.
Equation (3.9) implies that B3 = p5 = 1/4, aqg = &4 = 3/4, and

Gy(Go + da + B1) + 2d3/3 = 2/9 = sl + Br) + 243 /3,
(310) (13(5[2:}- d2A+ ,81) = 2/9 = 043(042 + ﬁl),
@3+d3+52 :2/3:Olg+52.

The third order KGNO (third order accuracy is impossible with the use of a KGO
polynomial with ¢ = 4) polynomial with q = 4 is given by:

(3.11) P(z2) =142+ 22/2+22/6 + 2*/24.

If the method (3.1) is third order accurate, then Equation (3.3) implies its stability
polynomial is P1(z) = 1+ 2+ 22 /24 23 /6 + ayazagai 2. It follows that ayazasa; =
1/24. If B1 and ag are specified with ag # —f1, then Equatwn (3.10) and ay = %
imply that as, B2, and ay are given by

2 1 N 72/97233/3'

3.12 - B=2/3-a3, a=——, 3=
B12) 05 = Sty 2T M TRy T wth

If ds, d3, and By are also specified, then Equation (3.10) implies that
(313) 642:2/(9043)—&27,31, 32:2/370737&3.

The remaining method coefficients, d1 and &, can then be chosen independently of
the others. The choice of 81 = 51 =d = é = 0, ag = 2/3; dy = dy = (3++/3)/6
results in the IMKG1-342 method (Equation (7.3) in the Appendiz). These values

were chosen as follows. We let di = 0 so the method only requires two rather than
three implicit solves per time-step. We then set 1 = ,31 = &1 = 0 to reduce the size
of the parameter space. We then set d = dy = dAg and searched for values of ay and
d for which the implicit method was I-stable and the value of Tmax was large (=~ 2.32)
and define the remaining coefficients via Equations (3.12)-(3.13).

4. The HOMME-NH nonhydrostatic model and its HEVTI partitioning.
4.1. Formulation of HOMME-NH. A comprehensive derivation of HOMME-

NH is given in [31]. Tt is a variant of the Laprise formulation [25] and uses the shallow
atmosphere and traditional approximations (see [36]). The governing equations of
HOMME-NH are given by:
(4.1)
w + (Vy, xu+2Q) xu+ iV, (u- u)—+—778n + Vnp—ﬁ—uvngzﬁfo 7 :=dn/dt
wt+u~V,,w+ngw +g(l—p)=0, p:= 677/
¢t+u~V,7¢+n%—gw:O
©; 4V, - (Ou) + £(07) =0, ©=9r0

2(9m) + v, (& )+3n(f )=o.

This manuscript is for review purposes only.
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IMEX METHODS FOR NONHYDROSTATIC DYNAMICS 9

The horizontal spatial variables x,y lie on a spherical domain and 7 is the mass-
based hybrid terrain-following vertical coordinate introduced in [20]. The vector v =
(u,v,w)T is the fluid velocity with u := (u,v)?, @ is the potential temperature, g
is the gravitational constant, ¢ = gz is the geopotential, p is the fluid density, p is
the pressure, 200 x u is the Coriolis term with rotation rate €2, and the symbol V,
represents the two-dimensional gradient with respect to (z,)? in n-coordinates. The
variable 7w represents the hydrostatic pressure defined so that g—g = —pg with the
boundary condition 7 = o, imposed at 7 = 7op for some constant myop.

We now derive a HEVI partitioning of Equation (4.1). Use of the mass-based
vertical coordinate n means that oscillations in density will cause oscillations in ¢ [25,
Appendix A]. In particular, density oscillations from vertical acoustic waves manifest
in the physical position of the model n-layers and are decoupled from vertical motions
relative to this moving coordinate system. Therefore, the vertical advection terms (e.g.
ﬁg—;‘]’) are not associated with the fast motions of the vertical acoustic waves. This
isolates the vertical acoustic waves to the two non-transport terms in the equations
for w and ¢ in Equation (4.1). Thus, we choose our HEVI partitioning such that
g(1 — p) and gw are the only implicitly treated terms. Expressing Equation (4.1) as
a general evolution equation

(42) &t = f(g)’ §= (u,v,w,¢,®,87r/6n)T,
we define the HEVI partitioning f(£) = n(§) + s(§) of Equation (4.1) by
(4.3) s(€) = (0,0, —g(1 — p), gw,0,0)",  n(€) := f(€) — s(€).

Essentially, this partitioning additively groups terms into the nonstiff hydrostatic
terms n(§) and the stiff nonhydrostatic terms s(€).

4.2. IMEX RK integration of HOMME-NH. We now analyze the stage
equations resulting from integrating Equation (4.1) with the HEVI partitioning from
Equation (4.3) by an IMEX RK method with step-size At > 0 and initial condition
€0) = &. For j =1,...,7r and m € {0} UN, we express the internal stages as
Gm,j = (g;ﬁl’j,gfn’j,gi‘r’b’j,gfz’j,g%j,gf{j)T where On := On/0n. Using the notation of
Equation (2.2) we write

gm,j :Em,j+AtAj,js(gm,j)7 j = 1,...,7“.
From the definition of n and s, the internal stages for u, v, ©, and 97 /01 are explicit:

Im,j = En

m,j?

v _ v e _ © o __ o
Imj = E Imi = Emjs 9mj = By

m,j m

On the other hand, determining g,;, ; and gfl, ; requires solving the following system:

w o= FEY 4+ AtgA; (1 — i,
(4.4) {gm»ﬂ mg TABAG ) 0 UN, =1,

i = By + Atgdy g0 7

where i, ; = u(gi"mj,gfm) (recall from Equation (4.1) that u := 371;/277;)- The
second equation in (4.4) is rearranged to

(4.5) grué,j = (gil,j - Ef;,j)/(gAtAj,j)-
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It follows that g, ; is an explicit function of gf;’ ;and fm ;= u(gf;h ;)- Substituting
Equation (4.5) into the first equation of (4.4) implies that g;i’j is given by

9o — Ef = gAtA; jEY — (gAtA; ) (1 — pimj), meNU{0}, j=1,...,7

Hence we can find gffw- by solving Gy, ; (gfm) = 0 where
(4.6) Gm,j (gj;,j) = gil,j - Ef@,j - gAtAj,jE% + (SAtAj,j)Q(l — fm,j)-

We solve Equation (4.6) with Newton’s method (described in Section 5.1).
5. Implementation and experiments.

5.1. Spatial discretization and implementation details. HOMME-NH is
implemented in the High Order Method Modeling Environment (HOMME) [4, 7].
Horizontal derivatives (those involving V) are discretized with fourth order spectral
elements [33] on the cubed sphere grid [32, Sec. 4]. Vertical derivatives (those in-
volving 0/9n) are discretized with the second order SB81 Simmons and Burridge [29]
method with a Lorenz vertical staggering [27]. We refer readers to [31] for a detailed
description of the spatial discretization.

IMEX RK methods are implemented with an interface to the ARKode package
[9,10] of the SUNDIALS library [18]. This interface is a continuation of the one
developed for the nonhydrostatic Tempest dynamical core [14]. We compare our
best performing IMKG1 and IMKG2 methods (IMKG1-242 (7.1), IMKG1-252 (7.2),
IMKG1-342 (7.3), IMKG2-244 (7.4), IMKG2-255 (7.5), IMKG2-266 (7.6)) with several
IMEX RK methods from the literature (henceforth called the non-IMKG methods).
The non-IMKG methods we consider are the third order accurate ARS343 [2, Sec. 2.7]
and ARK324 [22, pp. 47-48] methods and the second order accurate ARK2 [12, Eq.
3.9] and Strang carryover (sometimes abbreviated Str. Car.) [34, Eq. 29-34] methods.
In addition to these the third order accurate KGU35 explicit RK method [14, Eq. 56]
is used to produce reference solutions for error calculations.

We now describe how the solver for computing the implicit stages g, ; (see the

notation in Section 4.2) via Newton’s method is implemented. From the initial guess
(0) (k+1) (k+1)

9m,j = Em,j, the ARKode package generates iterates g,, ;* of the form g,,
qu). + 51(5'*71), where 51(5371) is the solution of

[ — AtA; ;0es(g%) )] 0% = By, 8es = 95 /0¢.

gm]

(k)

Recall from Section 4.2 that the only non-zero elements of J¢s(g,, ¢

;) are those such
that both the row and column pertain to g, ; or gﬁw-. To take advantage of this
structure, the ARKode package calls a custom HOMME-NH routine to solve for
57(71:;71) from E,, ;, At, AJ J, and g(k) In this custom routine, components of 67(5;1)
not pertaining to g, ; or gm’ ; are set to the values of the corresponding components
6““71) pertaining to g%, j» denoted 5?;’7(;““)
decomposing the linear system J,, ;(g,, (k) )(5¢ (kD) E(z’ m,j into the independent tridi-
agonal blocks for each grid column. The LAPACK routines DGTTRF and DGTTRS

5:1((““), which is then used to compute 5m’j 2

o okt Dw ok ’ 7
(4.5): SWEVY = (80P — BS ) /(aAtA; ;).

of F,, j. Components of , are computed by

are called to solve for via Equation
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The ARKode package generates iterates 6( +1) until R(kH)Hé(kH) || < e, where

1
(k+1) _ IO (k+1)|| 50 5(') Sl 1°
R, max | 0.3R,", — _ Omglt ,
! ( 7 ls 55?j||> 10 = Nz<er|xmh+[eah>

Rgg?i = 1, N is the total number of components in g, and [-]; indicates selecting

the I*" element. Note that €, €, and €, are all tunable tolerances. The value of e
chosen here is the default ARKode value € = 0.1. We chose ¢, = 1076 by varying the
value until the change in solution was negligible. For the absolute tolerances, we chose
€ = € = e = 10¢,, €& = 10%,, €2 = 105, and 2™/ — ¢, Those coefficients
correspond to the general expected magnitude of each of the quantities.
Experiments were run on a local computing cluster with a number of dual socket
compute nodes. Fach socket consists of 18, 2.1 GHz, Intel Broadwell E5-2695 v4
computing cores or 36 cores per node. MPI communication in HOMME-NH happens
between horizontal elements but not within vertical columns. Therefore the implicit
solves require no parallel communication and tend to become cheaper relative to
explicit function evaluations as the number of horizontal elements per computing core
(elem/core) decreases. We choose the number of compute nodes for our experiments to
be 2 elem/core. This is close to the ratios we expect to use in production simulations
so that our experiments are relevant for our applications. Note that efficiency can vary

and depends on implementation choices, compiler options, and machine configuration.

5.2. DC12 tests and predicted maximum step-size. We run two test cases
from D12 [35]: Test 2.0 (D12.2.0, atmosphere at rest with orography) [35, Section 2.0]
and Test 3.1 (D12.3.1, nonhydrostatic gravity wave) [35, Section 3]. Both tests can use
“small planets” (planets with shrunken radii) to enable testing various horizontal-to-
vertical aspect ratios without using computationally expensive high spatial resolution.
For both test cases and each IMEX method we associate a value of mazdt (the max-
imum stable step-size an IMEX method was able to take) and relerr (the L? relative
error of some quantity when an IMEX method is run with step-size maxdt for a given
length of time). We empirically determine maxdt as the largest step-size with which
each method is able to complete a simulation without going unstable. Results for
DC12.3.1 are presented before those for DC12.2.0 since the latter proved to be a more
challenging problem than the former.

5.3. Test Results.

5.3.1. D12.3.1 Results. In this test case, the potential temperature field (6 in
Equation (4.1)) of a hydrostatically balanced initial state is perturbed to generate
nonhydrostatic gravity waves [35, Section 3]. D12.3.1 uses small planet x125 and a
cubed sphere that is divided into 4374 horizontal elements. With our fourth order
spectral element discretization and small planet x 125, this corresponds to a horizontal
resolution of about 1km. The atmospheric depth is set to 10km using 20 vertical layers
(see [35, Appendix F.3] for the arrangement of the vertical levels) corresponding to
a vertical resolution of approximately 0.5km. This corresponds roughly to a 2 : 1
horizontal-to-vertical aspect ratio.

We measure the accuracy of the IMEX methods by comparing the integrated
value of © (potential temperature pseudo-density) with that of a reference solution
after a 172.8s integration. We highlight the accuracy of © = 0? since the waves in
D12.3.1 result from an initial perturbation in §. The reference solution is computed
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by integrating DC12.3.1 forward in time 172.8s using the KGU35 method with step-
size At = 8-107° s and has a relative accuracy of about 10712 (see Figure 1, right).
We integrate the IMEX RK methods for 172.8s using various step-sizes in the interval
[0.245,3.93s] (no method completed a 172.8s run with step-size exceeding 3.94s). The
error of a method is computed by forming the L2-norm difference of the approximate
© with that of the reference solution at the end of the 172.8s run.

Results are displayed in Table 1 and Figure 1. In Table 1 we list maxdt, relerr,
and Tyax for the IMKGI1, IMKG2, and non-IMKG methods. Each method has small
relative error (< 10~7) when running with step-size maxzdt. The theoretical prediction
from Section 2.3 is that ratio of the maximum stable step-size of two methods should
be approximately the ratio of their respective values of 7y,,x. The ratio of the values
of maxdt match this theoretical ratio to about 5% of what would be predicted for
the IMKG1 and IMKG2 methods as well as Strang Carryover. However, for the
ARK324, ARS343, and ARK2 the theory is somewhat pessimistic and these methods
have maximum stable step-sizes about 20 — 40% better than would be predicted.

In Figure 1, we plot the accuracy (relative L? error of © vs step-size (At), Fig-
ure 1, right) and efficiency (relative L? error of © vs run-time, Figure 1, left) for
the IMKG1, IMKG2, and non-IMKG methods. All methods achieve their theoretical
order of convergence at the tested step-sizes until reaching the accuracy of the ref-
erence solution, with the Strang Carryover method doing somewhat better than its
predicted second order accuracy. The IMKG1 and IMKG2 methods are typically less
accurate than the non-IMKG methods, with the exceptions of the Strang Carryover
method which (which lies between the IMKG2 methods and the second order IMKG1
methods) and the IMKG1-342 method which is more accurate than the second order
IMKG and non-IMKG methods and less accurate than the third order non-IMKG
methods. The efficiency plot gives a better indication of the relative advantages of
the IMKG and non-IMKG methods. The IMKG methods are typically faster, but
less accurate than the non-IMKG methods and are positioned further up and left in
efficiency plots. However, we do call attention to the IMKG1-342 method which is
among the fastest methods, but still quite accurate.

1E-6 Relative L2 error of © vs run-time 1E-7 Relative L2 error of © vs step-size (At)
2 2 1E-8 ST
° 1E-7 ‘\J\ —~ ° IMKG1-252
) —1 & —a— IMKG1-342
= —¥— IMKG1-242 t 1E-9 —— IMKG2-244
v IMKG1-252 o —— IMKG2-255
U 1E-8] o imkc1342 ) —o— IMKG2-266

—— IMKG2-244 ARS343

g —— IMKG2-255 g 1E-10 — - ARK324

"% 1E-9 —o— IMKG2-266 'g Str. Car.

=2 - ARS343 =2 —*- ARK2

&—‘ — - ARK324 2 1E-11 —  Slopel

Str. Car. —-- Slope 2

~#- ARK2 Slope 3

1E-10 06 o8 10 12 14 E1235 36 576 96 1.44 2432

Run-time in seconds At in seconds

Fig. 1: Results for a 172.8s integration of DC12.3.1. (Left) Relative error of © in the L2-norm vs
run-time; (Right) Relative error of © in the L2-norm vs step-size. Slope 1, Slope 2, and Slope 3 in
the plot on the right denote lines with slope 1, 2, and 3 respectively and are included for evaluating
the order of accuracy of the methods. Accuracy of the reference solution is approximately 10~12.
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Table 1: Values of maxzdt and relerr (defined as in Section 5.2) and Tmax for various IMKG1, IMKG2,
and non-IMKG methods integrating DC12.3.1.

IMKG 2-266 2-255 1-252 2-244 1-242 1-342
Tmax 4.90 4.00 4.00 2.83 2.83 2.32
maxdt 3.93 3.20 3.20 2.16 2.16 1.92
relerr 1.66E-7 | 7.72E-8 | 4.54E-7 | 4.71E-8 | 1.15E-7 | 3.74E-9

Method | Strang carryover | ARK324 | ARS343 ARK2
Tmax 1.73 1.50 1.42 1.25
maxdt 1.44 1.44 1.44 1.44
relerr 5.43E-8 1.04E-9 6.47E-10 | 5.42E-8

5.3.2. D12.2.0 Results. This test measures the response to a single circular
steep mountain ridge from an initial condition of an atmosphere initially at rest [35,
Section 2.0]. D12.2.0 uses small planet x1 and a cubed sphere divided into 5400
horizontal elements. With the fourth order spectral element horizontal discretization
on small planet x1 this corresponds to a horizontal resolution of about 110km. The
atmospheric depth is set to 12km using 30 vertical layers corresponding to a vertical
resolution of about 0.4km (see [35, Appendix F.3] for the arrangement of the vertical
levels). This corresponds to a horizontal-to-vertical aspect ratio of about 275 : 1.

The accuracy of the IMEX methods is measured by comparing the integrated
value of 9m/0n with that of a reference solution after a 21600s integration. The
quantity d7/0n represents the vertical hydrostatic pressure gradient in n-coordinates
and its error is highlighted because DC12.2.0 is used for measuring the accuracy of
pressure gradient calculations [35, Section 2.0]. The reference solution is formed by
integrating DC12.2.0 for 21600s with the KGU35 method using a step-size of 1072
seconds and has an accuracy of around 10~ (see Figure 2, right). We integrate various
IMEX methods on the same time interval using step-sizes in the interval [7.5s, 583.8s]
(no method we tested were able to complete a 21600s run with a step-size larger
than 583.9s). The error for each method is approximated by forming the L?-norm
difference of dm/dn with that of the reference solution at the end of the simulation.

Results are displayed in Table 2 and Figure 2. In Table 2, we list maxzdt, relerr,
and Tyax for the IMKGI1, IMKG2, and non-IMKG methods. The IMKG2 and non-
IMKG methods as well as IMKG1-342 have small relative error (< 1.05E-6) when
running with step-size maxdt. However, the IMKG1-242 and IMKG1-252 methods
are both relatively inaccurate when running with maxzdt and have values of relerr of
almost 1073, Figure 2 shows that for step-sizes about 10—20% smaller than mazdt the
relative L? errors in Om /01 of IMKG1-242 and IMKG1-252 reduce to under 10=%. For
the IMKG2 methods the ratios of maxdt scale with 7.« as theoretically predicted in
Section 2.3 within of range of about 10% of what is theoretically predicted. Relative
to the IMKG2 methods, the value of 7,4, overestimates maxdt by about 20% for
IMKG1-242 and IMKG1-342, 40% for IMKG-252, and by about 30% for the Strang
carryover and ARK2 methods and underestimates the value of mazdt for ARK324
by about 25% and ARS343 by 42%. The overestimate of maxdt for the IMKG1-242
and IMKG1-252 methods can be explained by their relative inaccuracy when running
with larger step-sizes. However, the over- and underestimates of maxzdt for IMKG1-
342 and the non-IMKG methods is harder to explain other than concluding that for
this test problem the theoretical predictions from Section 2.3 are less exact.

Consider the plot of the accuracy (relative L? error of dn/dn vs step-size, Fig-
ure 2, right) for the IMKG1, IMKG2, and non-IMKG methods. The IMKG1 and
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non-IMKG methods achieve their theoretical order of convergence where with Strang
Carryover having slightly higher than its predicted second order accuracy. The sec-
ond order IMKG1 methods (IMKG1-242 and IMKG1-252) both become inaccurate
when running at larger step-sizes (At > 180s), although they achieve their theoretical
order of accuracy for smaller step-sizes (At < 90s). The IMKG2 methods all initially
achieve second order accuracy for large (At > 120s) step-sizes. Their convergence
stagnates at moderate step-sizes before partially recovering between first and second
order accuracy for small step-sizes (At < 45s). Despite this drawback, the IMKG2
methods still prove to be among the most efficient choices for integrating DC12.2.0.
Consider the plot of efficiency (relative L? error of d7/dn vs run-time, Figure 2,
left) of the IMKG1, IMKG, and non-IMKG methods. ARK2 is slow but relatively
accurate while the Strang carryover method is slow, but relatively inaccurate. ARS343
and ARK324 are the most accurate methods but are unable to run with the speed
of the IMKG1 or IMKG2 methods due to limits on their respective values of mazdt.
The IMKG1-252 method has the fastest run-times, although this speed comes at the
price of having a large relative error (above 107°). IMKG1-342 and IMKG2-266 are
slightly slower but much more accurate (relative error under 1.04E-6) alternatives to
IMKG1-252 that can still run much faster than the non-IMKG methods.

Relative L2 error of an/an vs run-time Relative L2 error of an/an vs step-size (At)

,_.
m
w

1E-3

—¥— IMKG1-242 —8— IMKG2-266 —¥— IMKG1-242 —8— IMKG2-266 —#*- ARK2
g \ IMKG1-252 ARS343 g 1E>4 IMKG1-252 ARS343 - Slope 1 //
= 1E-4 —&— IMKG1-342 —+- ARK324 = —&— IMKG1-342 —+- ARK324 Slope 2 |
[ \ —— IMKG2-244 Str. Car. ) —+— IMKG2-244 Str. Car. =+++ Slope 3 |
5 \ —— IMKG2-255 —#*- ARK2 b 1E-57 - MkG2-255 /
S 1E-5 S 1E-6
@ @
U 1E-6 Y 1E7
o o
2 2> 1E-8
- -
% 1E-7 %
2 2 1E9 ‘
1E-8 08 1.0 12 14 16 1.8 2.0 22 1E-10 7.5 15 30 60 120 240 480
Run-time in seconds At in seconds

Fig. 2: Results for a 21600s integration of DC12.2.0. Relative error of 97/dn in the L2-norm vs
run-time (left); &7 /On in the L2-norm vs the step-size (right). Slope 1, Slope 2, and Slope 3 in the
plot on the right denote lines with slope 1, 2, and 3 respectively and are included for evaluating the
order of accuracy of the methods. Accuracy of the reference solution is approximately 1077,

Table 2: Values of maxzdt and relerr (defined as in Section 5.2) and Tmax for various IMKG1, IMKG2,
and non-IMKG methods integrating DC12.2.0.

IMKG 2-266 2-255 1-252 2-244 1-242 1-342
Tmax 4.90 4.0 4.0 2.83 2.83 2.32
maxdt 583.8 450 300 360 270 225
relerr 5.97E-7 | 9.45E-7 | 2.39E-4 | 4.44E-7 | 9.71E-4 | 1.04E-6

Method | Strang carryover | ARK324 | ARS343 ARK?2
Tmax 1.73 1.5 1.42 1.25
maxdt 150 225 240 108
relerr 1.63E-6 3.44E-7 9.45E-7 1.43E-7
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6. Conclusion and Acknowledgements. We derived two new types of IMKG
methods for integrating nonhydrostatic atmosphere models with a HEVTI partitioning.
H-stability regions, while an inexact tool for characterizing stability, were used to
derive IMKG methods capable of taking large, stable time-steps and with a relatively
short time-to-solution compared to other IMEX methods from the literature. This
additional speed comes with the trade-off that IMKG methods are somewhat less
accurate than these other methods. For climate and weather prediction this moderate
reduction in accuracy is acceptable because it is compensated by significantly shorter
run-times. We highlight the IMKG2-244, IMKG2-255, IMKG2-266, and IMKG1-342
methods as having a good balance of speed and accuracy for integrating HEVI models.

We recognize David Gardner, Professor Dan Reynolds, and Carol Woodward for
their help in developing and implementing the ARKode-HOMME-NH interface and
Professor Paul Ullrich for his expertise and advice. We also thank the reviewers for
thoughtful comments and insight.

7. Appendix. Double Butcher tableaux for the IMKG methods we derive are
given in Equations (7.1)-(7.6). H-stability regions for these methods as well as the non-
IMKG methods consider in Section 5 are given in Figures 3-4 with their approximate
value of T,.x in the associated figure caption.

0 0|0
1/4 | 1/4 0 0
(7.1) 1/3 1/3 2/3 2/3
: 1/2 1/2 1/2 1 —1/2
1 1 1 1
| 1 | 1
IMKG1-242.
0 0
1/4 | 1/4 0
1/6 1/6 0 0
(7.2) 3/8 3/8 3/4 3/4
1/2 1/2 1/2 3/2 —1
1 1 1
1

IMKG1-252.
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0 0 0
1/4 | 1/4 0 0
- 2/3 2/3 2/3 1-v3 3443
(3) 2/311/3 1/3 2/3 1 1/3 —1tv3 3443
1 ]1/4 3/4 1 |1/4 3/4
| 1/4 3/4 1/4 3/4
IMKG1-342.
0 0] o
1/4 | 1/4 1/4 1/4
1/3 1/3 1/3 1/3
(7.4) 1/2 1/2 1/2 1/2
1 1 1| 2/7 2/7 3/7
\ 1 1| 2/7 2/7 3/7
IMKG2-244.
0 0] o0
1/4 | 1/4 1/4 1/4
1/6 1/6 1/6 1/6
(75)  3/8 3/8 3/8 3/8
1/2 1/2 1/2 1/2
1 1 1 |2/7 2/7 3/7
1 2/7 2/7 3/7
IMKG2-255.
(7.6)
0 0 0
1/6 | 1/6 1/6 1/6
2 2 2 2
15 15 15 15
1/4 1/4 1/4 1/4
1/3 1/3 1/3 1/3
1/2 1/2 1/2 1/2
1 1 1 | 3/11 3/11 5/11
1 3/11  3/11 5/11
IMKG2-266.
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H-stability region of IMKG1-242 H-stability region of IMKG1-252 H-stability region of IMKG1-342

5

5 5

4 4 4
3 3 3
N N N
2 2 2
1 1 1
% 1 % 1 2 3 % 1 2
X X
5H-stability region of IMKG2-244 5H—stability region of IMKG2-255 6H-stability region of IMKG2-266
4 4 5
4
3 3
N N N3
2 2
2
1 1 1
0
1 1 2 3 4 5 0O 1 2 3 4 5 &6
X X X

Fig. 3: H-stability regions of the IMKG1 and IMKG2 methods: IMKG1-242 (top left, Tmax = 2\/5),
IMKG1-252 (top center, Tmax = 4), IMKG1-342 (top right, Tmax &~ 2.32), IMKG2-244 (bottom left,
Tmax = 2\&), IMKG2-255 (bottom center, Tmax = 4), IMKG2-266 (bottom right, Tmax = 2\/6) The
unshaded region denotes values (z,z) contained in the H-stability region (eigenvalues of Ry (z, z)
less than 1 in modulus) while the blue shaded region denotes values (z,z) outside the H-stability
region (eigenvalues of Ry (z,z) are at least 1 in modulus).

H-stability region of ARS343 H-stability region of ARK324

H-stability region of ARK2

H-stability region of Str. Car.

5
4 80
3 60
N N
2 40
1 20
% i 5 % i
X X

Fig. 4: H-stability regions of non-IMKG methods: ARS343 (top left, Tmax ~ 1.42), ARK324 (top
right, Tmax & 1.5), Strang carryover (bottom left, Tmax ~ 1.73), and ARK2 (bottom right, Tmax =~
1.25). The unshaded region denotes values (z,z) contained in the H-stability region (eigenvalues
of Ry (z,z) less than 1 in modulus) while the blue shaded region denotes values (z, z) outside the
H-stability region (eigenvalues of Rgr(x, z) are at least 1 in modulus).
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