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Abstract. We develop new implicit-explicit Runge-Kutta (IMEX RK) methods for integrating5
horizontally explicit, vertically implicit (HEVI) partitionings of nonhydrostatic atmosphere models6
(HEVI models). These new methods, termed IMKG methods, are IMEX RK methods whose explicit7
part has optimal or near-optimal stability on the imaginary axis and whose implicit part is I-stable.8
A specialized stability region is presented for characterizing the stability of IMKG and other IMEX9
methods integrating HEVI models. Subsequently, we formulate two families of IMEX RK methods10
to enable deriving IMKG methods with a high explicit stage count for integrating HEVI models with11
large, stable time-steps. We then derive a HEVI partitioning of the HOMME-NH nonhydrostatic12
model and use this model to compare the accuracy and efficiency of several IMKG methods with13
other IMEX RK methods from the literature.14
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1. Introduction. The atmosphere is home to various physical processes evolving18

on a number of time-scales. Consequently, method-of-lines discretizations of partial19

differential equation (PDE) models of atmospheric flow often result in stiff and mul-20

tirate initial value problems (IVPs). This occurs in nonhydrostatic modeling where21

fast vertically propagating acoustic waves can restrict the step-size of explicit time-22
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2 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

stepping methods under what is needed for accurate forecasting and climate pre-23

diction. Because of this, nonhydrostatic models often employ horizontally explicit,24

vertically implicit (HEVI) partitioning. In HEVI partitioning (see the references at25

the end of this section), terms are additively grouped into fast terms corresponding26

to vertical acoustic wave propagation and relatively slow terms independent of this27

motion. There are many alternatives to traditional implicit methods for discretizing28

such partitioned IVPs including implicit-explicit (IMEX), exponential, and multirate29

methods. These alternatives can circumvent the step-size restrictions of standard ex-30

plicit methods, often at a much lower computational cost than fully implicit methods.31

In this paper we develop a family of IMEX Runge-Kutta (RK) methods for integrat-32

ing nonhydrostatic atmosphere models with a HEVI partitioning (HEVI models). We33

then develop a HEVI partitioning of the HOMME-NH nonhydrostatic model (see the34

references below) and compare the performance of IMEX RK methods, both derived35

herein and from the literature, for its integration.36

Our main contribution is to develop a new type of IMEX RK method, referred to37

as IMKG methods, for the integration of HEVI models. IMKG methods are IMEX38

RK methods whose explicit part has optimal or near-optimal stability on the imagi-39

nary axis and whose implicit part is I-stable [17, Section IV.3, pp. 42-43]. Their name40

and development is motivated by the work of Kinnmark and Gray (see [23, 24] and41

also [38] and [19]) who determined stability polynomials for explicit RK methods to42

have optimal or near-optimal stability on the imaginary axis. Conventional wisdom43

suggests time truncation errors are dwarfed by spatial truncation and other errors in44

global atmospheric modeling. We therefore focus on deriving IMKG methods capable45

of taking large, stable time-steps with the potential trade-off of some accuracy. To46

do so we derive IMKG methods with a high explicit stage count that also have good47

coupled IMEX stability. We characterize coupled IMEX stability for HEVI models in48

Section 2.3 with a specialized stability test equation (Equation 2.5). This test equa-49

tion, originating in [5, 26, 42], was derived for studying stability properties of IMEX50

methods integrating HEVI models. To do so, we derive IMKG methods with a high51

explicit stage count that also have good coupled IMEX stability, which we charac-52

terize in Section 2.3 with a specialized stability test equation (Equation 2.5). This53

test equation, originating in [5,26,42], was derived for studying stability properties of54

IMEX methods integrating HEVI models.55

Two families of IMKG methods are considered: the IMKG1 and IMKG2 meth-56

ods. Both families allow for an arbitrary number of internal stages, and their double57

Butcher tableaux are structured to enable enable easy parameterization of IMKG58

methods with a large number of explicit stages in terms of a few free method coeffi-59

cients (see Example 3.1). The accuracy and explicit stability of IMKG1 and IMKG260

methods is studied in Section 3.2. The IMKG1 methods (Equation 3.1) we consider61

are second or third order accurate. They are defined so that the number of implicit62

solves per time-step can be fewer than the number of explicit function evaluations.63

The IMKG2 methods (Equation 3.2) we consider are second order accurate and the64

implicit and explicit method have the same stage-time vector. However, IMKG265

methods typically require an implicit solve at every nontrivial internal stage. Double66

Butcher tableaux for the most efficient IMKG1 and IMKG2 methods we derived are67

given in the appendix (Section 7, Equations (7.1)-(7.6)).68

In Section 4 we develop a HEVI partitioning for the HOMME-NH nonhydrostatic69

atmosphere model [31,41]. The governing equations (Equation (4.1)) of HOMME-NH70

support vertically propagating acoustic waves that require stable numerical treatment.71

The stiff terms generating these waves are isolated to the equations for vertical mo-72
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IMEX METHODS FOR NONHYDROSTATIC DYNAMICS 3

mentum and geopotential. This results (Section 4.2) in a HEVI IMEX partitioning73

where the implicitly treated terms require the solution of relatively simple nonlinear74

equations that are independent of horizontal derivatives. The nonlinear solvers can75

then be implemented without horizontal parallel communication.76

The performance of several IMKG1 and IMKG2 methods integrating HOMME-77

NH with the HEVI partitioning we develop is investigated in Section 5 using two tests78

(Tests 2.0 and 3.1) from the 2012 Dynamical Core Model Intercomparison Project79

(DC12) [35]. We compare the accuracy and efficiency of several IMKG methods with80

other methods from the literature (see [10,12,34,41]). Generally speaking, the IMKG181

and IMKG2 methods we derive are capable of stably running with larger step-sizes and82

have a faster time-to-solution than those to which we compare from the literature (see83

Sections 5.3.1-5.3.2). However, the IMKG1 and IMKG2 methods can be less accurate84

than these other methods, even when running with the smaller step-sizes to which85

those methods are restricted (see Figures 1-2).86

Our focus on IMEX methods is motivated by their frequent use in models of87

geophysical fluid flow [5, 9, 11, 12, 13, 26, 28, 34, 42]. Order conditions for various par-88

titioned and IMEX methods were derived in [15]. We use the formulas given in [21]89

that, under certain simplifying assumptions, express the order conditions of IMEX90

RK methods concisely in terms of their double Butcher tableaux. Understanding91

stability properties of IMEX methods is important for deriving efficient methods and92

has been extensively studied (see e.g. [2, 8, 16]). We exploit the technique, dating93

back at least to the early 1970s [37], of increasing the maximum stable step-size by94

increasing the number of explicit stages. The analysis pioneered in [5, 26, 42] is then95

used as a heuristic to develop methods capable of taking large stable time-steps when96

integrating HEVI models.97

The HOMME-NH nonhydrostatic model used to evaluate the IMKG methods98

we derive is based on the spectral element hydrostatic HOMME dynamic core [4,99

7, 33]. Semi-implicit and IMEX time-integration strategies have been employed in100

such nonhydrostatic atmosphere models for many years (see e.g. [28, 30]). These101

strategies avoid some of the computational costs associated with using a fully implicit102

time-stepping method [6] or a modified equation set [3]. HEVI partitioning is a103

popular semi-implicit strategy for nonhydrostatic models [1, 5, 9, 26, 28, 42]. In HEVI104

partitioning, stiff vertically propagating acoustic waves are treated implicitly with105

everything else handled explicitly. This allows the use of much larger stable time-106

steps than standard explicit methods, but with computationally cheaper solves than107

those required by standard implicit methods.108

2. Implicit-explicit Runge-Kutta methods.109

2.1. Formulation. Consider an ordinary differential equation (ODE) that is110

additively partitioned:111

(2.1) ξ̇ = f(ξ, t) ≡ n(ξ, t) + s(ξ, t), f, n, s : Rd × R→ Rd,112

where d ∈ N and ξ̇ is the derivative of ξ = ξ(t) with respect to t. Given r ∈ N and113

real-valued arrays b, b̂, c, ĉ ∈ Rr and A, Â ∈ Rr×r where Â is lower triangular and A is114

strictly lower triangular, we consider r-stage IMEX RK methods for approximating115

IVPs of (2.1) with initial condition ξ(t0) = ξ0 defined by116

(2.2)

{
ξm+1 = ξm + ∆t

∑r
k=1(bknm,k + b̂ksm,k)

gm,j = Em,j + ∆tÂj,jsm,j , j = 1, . . . , r, m ∈ {0} ∪ N,
117
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4 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

where ∆t > 0 is the step-size, nm,k := n(gm,k, tm+ ck∆t), sm,k := s(gm,k, tm+ ĉk∆t),
tm+1 := tm + ∆t, and

Em,j :=

{
ξm j = 1

ξm + ∆t
∑j−1
k=1(Aj,knm,k + Âj,ksm,k) j = 2, . . . , r.

We represent (2.2) with a double Butcher tableau:118

(2.3)
c A

bT
ĉ Â

b̂T
.119

The vectors c, ĉ are called the stage-time vectors and the arrays A, Â are called120

the Runge-Kutta matrices. The explicit RK method
c A

bT
is called the explicit121

method of (2.2) and the implicit RK method
ĉ Â

b̂T
is called the implicit method122

of (2.2). We make the following standard simplifying assumption for the remainder123

of the paper: the jth component of c (resp. ĉ) is equal to the sum of the jth row of124

A (resp. of Â). If Â has ν < r nonzero diagonal entries, then we say that (2.2) has ν125

implicit stages.126

2.2. Stability of explicit RK methods on the imaginary axis. The sta-127

bility theory of explicit RK methods for hyperbolic PDEs is a well-established sub-128

ject [39]. Given real numbers a < b let i · [a, b] := {z ∈ C : z = iζ, ζ ∈ [a, b]}129

where i :=
√
−1. For an explicit RK method with stability region S we define130

σmax := max{y ≥ 0 : i · [−y, y] ∈ S} and for IMEX RK methods we use the same131

symbol σmax to denote the value of max{y ≥ 0 : i · y ∈ Se} where Se is the stability132

region of its explicit method. The following theorem bounds the intersection of the133

stability region of an explicit RK method with the imaginary axis.134

Theorem 2.1. For an r-stage (r ≥ 2) explicit RK method, σmax ≤ r − 1.135

For a proof refer to [19, Theorem 5.1], [40, Theorem 2], or [38, Chapter 4]. Let r ≥ 2.136

The stability polynomials achieving the optimal stability limit (σmax = r−1), referred137

to as the KGO (Kinnmark and Grey optimal) polynomials, are given in [23, Table138

1]. We also employ the third and fourth order accurate KGNO (Kinnmark and Grey139

near optimal) polynomials [24, Table 1] for which σmax =
√

(r − 1)2 − 1 when KGO140

polynomials do not attain the desired order of accuracy.141

2.3. H-stability regions and IMKG methods. We use the following test142

equation to characterize the stability of IMEX methods integrating atmospheric mod-143

els with a HEVI splitting (see [5, 26,42]):144

(2.4) ξ̇ = −ikxN ξ− ikzSξ, N =

 0 0 1
0 0 0
1 0 0

 , S =

 0 0 0
0 0 1
0 1 0

 , kx, kz ≥ 0145

Using Equation (2.4) as a stability test equation for nonlinear PDEs modeling a146

nonhydrostatic atmosphere is justified via linearization [5, 26, 42]. Equation (2.4)147

represents the evolution of an acoustic wave in two dimensions in the (kx, kz) direction.148

The range of values for kx, kz is determined by the normal modes of the linearizations149

of the explicit and implicit parts of the HEVI partitioning. We let Kx and Kz denote150
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the range of values of kx and kz respectively. A typical target application for the151

HOMME-NH nonhydrostatic model (described in Section 4.1) has a vertical resolution152

of around 100m and a horizontal resolution around 10km. Thus, we expect kx =153

O(0.1), kz = O(10) so that Kx = [0,O(0.1)], Kz = [0,O(10)].154

We now describe how we use Equation (2.4) to characterize stability of IMEX
RK methods for HEVI models. Approximating an IVP of Equation (2.4) with the
method (2.2), initial value ξ(0) = ξ0, and step-size ∆t > 0 results in:

ξm+1 = RH(∆tkx,∆tkz)ξm, m ∈ {0} ∪ N, kx ∈ Kx, kz ∈ Kz,

where the stability matrix RH is defined by155

(2.5) RH(x, z) = I3 − i(bT ⊗ xN + b̂T ⊗ zS)(I3r +A⊗ ixN + Â⊗ izS)−1(1r ⊗ I3),156

where for w ∈ N, Iw is the w × w identity matrix and 1w := (1, . . . , 1)T ∈ Rw and ⊗
represents the Kronecker product. The HEVI or H-stability region is defined as

SH := {x, z ≥ 0 : each eigenvalue of RH(x, z) is at most 1 in modulus}.

We also define the set TH and τmax as follows:

TH = {ξ ≥ 0 : (x, z) ∈ SH for all x ≤ ξ, z ≥ 0}, τmax := max(TH).

Stable time-steps ∆t are those for which (∆tkx,∆tkz) ∈ SH for all (kx, kz) ∈ Kx×Kz.157

The set TH is the sub-region of SH where stability is determined by Kx independent158

of Kz. This is useful for us because in our application we expect that maxKz ≈159

100 maxKx. For two methods we would predict the ratio of their maximum stable160

step-sizes to approximately be the ratio of their respective values of τmax.161

We regard the H-stability region, TH , and τmax as heuristic tools for deriving162

IMEX methods capable of taking large, stable time-steps in HEVI models. Because163

the applications we are targeting are nonlinear and Equation (2.4) is justified via164

linearization, we cannot expect the H-stability region to give exact estimates for the165

maximum stable time-step of a method. Furthermore, the stability theory provides no166

measure of accuracy and some methods we derive can be relatively inaccurate when167

running close to their empirically determined stability limit (see Table 2 in Section168

5.3.2). However, results we obtain in Tables 1-2 validate the use of τmax for obtaining169

a rough estimate the maximum stable step-size.170

We close this section with a discussion of desirable stability properties for IMEX171

methods integrating HEVI models and define the family of IMKG methods. For an172

r-stage IMEX RK method, Theorem 2.1 implies that τmax ≤ r − 1 where equality is173

possible only if the stability polynomial of its explicit method is a KGO polynomial.174

Given σ ∈ (0, r − 1], necessary conditions so that τmax = σ are:175

1. The stability region of the explicit method contains i · [−σ, σ].176

2. The implicit method is I-stable.177

This motivates the following following definition.178

Definition 2.2. An IMEX RK method is an IMKG method if:179

1. Its explicit method has a KGO or KGNO stability polynomial.180

2. Its implicit method is I-stable.181

3. Analysis and Formulation of the IMKG1 and IMKG2 methods. In182

this section we formulate and analyze two families of IMKG methods: the IMKG1183

and IMKG2 methods.184
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6 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

3.1. Formulation. As remarked in Section 2, we assume the jth component of185

c (resp. ĉ) is the sum of the entries in the jth row of A (resp. Â). IMKG1 methods186

are IMKG methods with double Butcher tableaux of the following form (where q ≥ 3187

and array entries are zero unless specified):188

(3.1)

0

c1 α1

... β1
. . .

... αq−2

...
... αq−1

cq βq−1 αq

βq−1 αq

0

ĉ1 α̂1 d̂1
... β̂1

. . .
. . .

... α̂q−2 d̂q−2

...
... α̂q−1 d̂q−1

ĉq β̂q−1 α̂q

β̂q−1 α̂q

189

IMKG2 methods are IMKG methods whose double Butcher tableaux has the following190

form (where q ≥ 3 and array entries are zero unless specified):191

(3.2)

0

c1 α1

...
. . .

αq−2

... αq−1

cq β αq

β αq

0

ĉ1 0 α1

...
. . .

. . .

0 αq−2

... 0 αq−1

ĉq β̂ γ̂1 . . . . . . γ̂q−2 α̂q

β̂ γ̂1 . . . . . . γ̂q−1 α̂q

192

where γ̂j 6= 0 for at most one j ∈ {1, . . . , q−1}. IMKG2 methods with α̂q 6= 0 require193

an implicit solve after every explicit stage (see the discussion following Equation (3.4)194

in Section 3.2) while IMKG1 methods do not. Additionally we were able to derive195

efficient third order accurate IMKG1 methods, but were only able to obtain efficient196

second order accurate IMKG2 methods. Despite these drawbacks, IMKG2 methods197

have the desirable property that c = ĉ (as long as the method is first order accurate)198

so that quantities useful in atmospheric modeling that are computed through an199

equation of state (e.g. temperature or pressure) are easier to approximate at internal200

stage times. Additionally, the IMKG2 methods we tested were typically more accurate201

than the second order accurate IMKG1 methods (see Figures 1-2 in Section 5).202

There are two main reasons we structure IMKG methods with Equations (3.1)-203

(3.2) above. Firstly, it enables quick and easy parameterization of second or third204

order accurate families of methods where q is large (q > 3, see Example 3.1 below) in205

terms of several free method coefficients. Secondly, they are low-storage in the sense206

that they only require storing two or three solution vectors per stage. This reduces207

memory read/writes that can be much more expensive than flops on large paral-208

lel computers. There may exist low-storage IMKG methods whose double Butcher209

tableaux are not of the form of Equations (3.1)-(3.2). Such methods are not investi-210

gated in this paper but could potentially have fourth or higher order accuracy with211

comparable stability properties to the methods we derive herein.212

We denote the methods we derive in this paper by IMKGj-pEI where:213

• j ∈ {1, 2} denotes if the method is an IMKG1 or IMKG2 method.214

• p is the order of accuracy of the method.215

• E is the number of explicit stages.216
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IMEX METHODS FOR NONHYDROSTATIC DYNAMICS 7

• I is the number of nontrivial implicit stages.217

3.2. Stability and accuracy of IMKG1 and IMKG2 methods. We focus218

on second and third order accuracy since fourth order accuracy requires satisfaction of219

an additional 52 order condition equations [21, pp. 43-44]. It is challenging to satisfy220

this many order conditions with double Butcher tableaux of the form of Equations221

(3.1)-(3.2) unless q is taken to be very large. Before considering the accuracy of222

IMKG1 and IMKG2 methods we briefly discuss their explicit stability. The stability223

polynomial P1(z) of the explicit method of an IMKG1 method (3.1) is given by:224

(3.3) P1(z) = 1+(βq−1+αq)z+αq(βq−2+αq−1)z
2+. . .+αq·. . .·α2(β1+α2)z

q−1+αq·. . .·α1z
q.225

If βk = 0 for k = 1, . . . , q − 1 (which restricts the order of accuracy to at most two),226

then α1, . . . , αq are uniquely determined by Equation (3.3) and the KGO or KGNO227

polynomial of degree q. The stability polynomial P2(z) of the explicit method of an228

IMKG2 method (3.2) is given by:229

(3.4) P2(z) = 1 + (αq + βq−1)z + αqαq−1z
2 + . . .+ α1 . . . αqz

q.230

The coefficients of KGO and KGNO polynomials are all strictly positive [23,24]. This231

fact combined with Equations (3.3)-(3.4) implies that αq · . . . · α1 6= 0 and therefore232

αj 6= 0 for j = 1, . . . , q for all IMKG1 and IMKG2 methods. Consequently, every233

explicit stage of an IMKG2 method with α̂q 6= 0 is followed by an implicit solve.234

We now consider the accuracy of IMKG2 methods. Consider a method of the235

form (3.2) and let l ∈ {1, . . . , q − 1} be defined so that γj 6= 0 if and only if j = l.236

Then the method is first order accurate order accurate if and only if237

(3.5) αq + β = 1 = β̂ + γ̂l + α̂q.238

Second order accuracy requires that in addition to Equation (3.5), the method coef-239

ficients satisfy [21, pp 43-44]:240

(3.6)
bT c = bT ĉ = αqαq−1 = 1

2 , b̂T ĉ = α̂q(β̂ + γ̂l + α̂q) + γ̂lαl = 1
2 ,

b̂T c = α̂q(β + αq) + γ̂lαl = 1
2 .

241

Equations (3.5)-(3.6) imply than an IMKG2 method (where αj 6= 0 for j = 1, . . . , q,242

as shown above) is second order accurate if and only if243

(3.7) αqαq−1 =
1

2
= (1/2− αq)/αl, αq + β = 1 = β̂ + γ̂l + α̂q.244

By similar calculations using the order conditions stated in [21, pp 43-44], we obtain245

that an IMKG1 method is second order accurate if and only if246

(3.8)


αq(βq−2 + αq−1) = αq(β̂q−2 + α̂q−1 + d̂q−2) = 1/2

α̂q(β̂q−2 + α̂q−1 + d̂q−2) = α̂q(βq−2 + αq−1) = 1/2

αq + βq−1 = 1 = α̂q + β̂q−1

247

where we note that if βq−1 = β̂q−1 = βq−2 = β̂q−2 = 0, then this is equivalent to248

αq = 1 = α̂q, αq−1 = 1/2, and α̂q−1 + d̂q−2 = 1/2; and third order accurate if and249

only if αq = 3
4 = α̂q, βq−1 = 1

4 = β̂q−1, and250

(3.9)


α̂q−1(α̂q−2 + d̂q−2 + β̂q−3) + 2d̂q−1/3 = 2/9

α̂q−1(αq−2 + βq−3) + 2d̂q−1/3 = 2/9

αq−1(αq−2 + βq−3) = 2/9 = αq−1(α̂q−2 + d̂q−2 + β̂q−3)

α̂q−1 + d̂q−1 + β̂q−2 = 2/3 = αq−1 + βq−2.

251
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8 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

We use the following example to demonstrate parametrizing a third order accurate252

IMKG1 method in terms of several method coefficients.253

Example 3.1. We construct a third order accurate IMKG1 method with q = 4.254

Equation (3.9) implies that β3 = β̂3 = 1/4, α4 = α̂4 = 3/4, and255

(3.10)


α̂3(α̂2 + d̂2 + β̂1) + 2d̂3/3 = 2/9 = α̂3(α2 + β1) + 2d̂3/3,

α3(α̂2 + d̂2 + β̂1) = 2/9 = α3(α2 + β1),

α̂3 + d̂3 + β̂2 = 2/3 = α3 + β2.

256

The third order KGNO (third order accuracy is impossible with the use of a KGO257

polynomial with q = 4) polynomial with q = 4 is given by:258

(3.11) P (z) = 1 + z + z2/2 + z3/6 + z4/24.259

If the method (3.1) is third order accurate, then Equation (3.3) implies its stability260

polynomial is P1(z) = 1 + z+ z2/2 + z3/6 +α4α3α2α1z
4. It follows that α4α3α2α1 =261

1/24. If β1 and α2 are specified with α2 6= −β1, then Equation (3.10) and α4 = 3
4262

imply that α3, β2, and α1 are given by263

(3.12) α3 =
2

9(α2 + β1)
, β2 = 2/3− α3, α1 =

1

18(α2α3)
, α̂3 =

2/9− 2d̂3/3

α2 + β1
.264

If d̂2, d̂3, and β̂1 are also specified, then Equation (3.10) implies that265

(3.13) α̂2 = 2/(9α3)− d̂2 − β̂1, β̂2 = 2/3− α̂3 − d̂3.266

The remaining method coefficients, d̂1 and α̂1, can then be chosen independently of267

the others. The choice of β1 = β̂1 = d̂1 = α̂1 = 0, α2 = 2/3; d̂2 = d̂3 = (3 +
√

3)/6268

results in the IMKG1-342 method (Equation (7.3) in the Appendix). These values269

were chosen as follows. We let d̂1 = 0 so the method only requires two rather than270

three implicit solves per time-step. We then set β1 = β̂1 = α̂1 = 0 to reduce the size271

of the parameter space. We then set d = d̂2 = d̂3 and searched for values of α2 and272

d for which the implicit method was I-stable and the value of τmax was large (≈ 2.32)273

and define the remaining coefficients via Equations (3.12)-(3.13).274

4. The HOMME-NH nonhydrostatic model and its HEVI partitioning.275

4.1. Formulation of HOMME-NH. A comprehensive derivation of HOMME-276

NH is given in [31]. It is a variant of the Laprise formulation [25] and uses the shallow277

atmosphere and traditional approximations (see [36]). The governing equations of278

HOMME-NH are given by:279

(4.1)

ut + (∇η × u + 2Ω)× u + 1
2∇η(u · u) + η̇ ∂u∂η + 1

ρ∇ηp+ µ∇ηφ = 0, η̇ := dη/dt

wt + u · ∇ηw + η̇ ∂w∂η + g(1− µ) = 0, µ := ∂p
∂η /

∂π
∂η

φt + u · ∇ηφ+ η̇ ∂φ∂η − gw = 0

Θt +∇η · (Θu) + ∂
∂η (Θη̇) = 0, Θ = ∂π

∂η θ

∂
∂t (

∂π
∂η ) +∇η · (∂π∂η u) + ∂

∂η

(
∂π
∂η η̇

)
= 0.

280
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The horizontal spatial variables x, y lie on a spherical domain and η is the mass-281

based hybrid terrain-following vertical coordinate introduced in [20]. The vector v =282

(u, v, w)T is the fluid velocity with u := (u, v)T , θ is the potential temperature, g283

is the gravitational constant, φ = gz is the geopotential, ρ is the fluid density, p is284

the pressure, 2Ω × u is the Coriolis term with rotation rate Ω, and the symbol ∇η285

represents the two-dimensional gradient with respect to (x, y)T in η-coordinates. The286

variable π represents the hydrostatic pressure defined so that ∂π
∂z = −ρg with the287

boundary condition π = πtop imposed at η = ηtop for some constant πtop.288

We now derive a HEVI partitioning of Equation (4.1). Use of the mass-based289

vertical coordinate η means that oscillations in density will cause oscillations in φ [25,290

Appendix A]. In particular, density oscillations from vertical acoustic waves manifest291

in the physical position of the model η-layers and are decoupled from vertical motions292

relative to this moving coordinate system. Therefore, the vertical advection terms (e.g.293

η̇ ∂w∂η ) are not associated with the fast motions of the vertical acoustic waves. This294

isolates the vertical acoustic waves to the two non-transport terms in the equations295

for w and φ in Equation (4.1). Thus, we choose our HEVI partitioning such that296

g(1− µ) and gw are the only implicitly treated terms. Expressing Equation (4.1) as297

a general evolution equation298

(4.2) ξt = f(ξ), ξ = (u, v, w, φ,Θ, ∂π/∂η)T ,299

we define the HEVI partitioning f(ξ) = n(ξ) + s(ξ) of Equation (4.1) by300

(4.3) s(ξ) := (0, 0,−g(1− µ), gw, 0, 0)T , n(ξ) := f(ξ)− s(ξ).301

Essentially, this partitioning additively groups terms into the nonstiff hydrostatic302

terms n(ξ) and the stiff nonhydrostatic terms s(ξ).303

4.2. IMEX RK integration of HOMME-NH. We now analyze the stage
equations resulting from integrating Equation (4.1) with the HEVI partitioning from
Equation (4.3) by an IMEX RK method with step-size ∆t > 0 and initial condition
ξ(0) = ξ0. For j = 1, . . . , r and m ∈ {0} ∪ N, we express the internal stages as

gm,j = (gum,j , g
v
m,j , g

w
m,j , g

φ
m,j , g

Θ
m,j , g

∂π
m,j)

T where ∂π := ∂π/∂η. Using the notation of
Equation (2.2) we write

gm,j = Em,j + ∆tÂj,js(gm,j), j = 1, . . . , r.

From the definition of n and s, the internal stages for u, v, Θ, and ∂π/∂η are explicit:

gum,j = Eum,j , gvm,j = Evm,j , gΘ
m,j = EΘ

m,j , g∂πm,j = E∂πm,j .

On the other hand, determining gwm,j and gφm,j requires solving the following system:304

(4.4)

{
gwm,j = Ewm,j + ∆tgÂj,j(1− µm,j)
gφm,j = Eφm,j + ∆tgÂj,jg

w
m,j

, m ∈ {0} ∪ N, j = 1, . . . , r,305

where µm,j := µ(gwm,j , g
φ
m,j) (recall from Equation (4.1) that µ := ∂p

∂η /
∂π
∂η ). The306

second equation in (4.4) is rearranged to307

(4.5) gwm,j = (gφm,j − E
φ
m,j)/(g∆tÂj,j).308
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10 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

It follows that gwm,j is an explicit function of gφm,j and µm,j = µ(gφm,j). Substituting

Equation (4.5) into the first equation of (4.4) implies that gφm,j is given by

gφm,j − E
φ
m = g∆tÂj,jE

w
m − (g∆tÂj,j)

2(1− µm,j), m ∈ N ∪ {0}, j = 1, . . . , r.

Hence we can find gφm,j by solving Gm,j(g
φ
m,j) = 0 where309

(4.6) Gm,j(g
φ
m,j) = gφm,j − E

φ
m,j − g∆tÂj,jE

w
m + (g∆tÂj,j)

2(1− µm,j).310

We solve Equation (4.6) with Newton’s method (described in Section 5.1).311

5. Implementation and experiments.312

5.1. Spatial discretization and implementation details. HOMME-NH is313

implemented in the High Order Method Modeling Environment (HOMME) [4, 7].314

Horizontal derivatives (those involving ∇η) are discretized with fourth order spectral315

elements [33] on the cubed sphere grid [32, Sec. 4]. Vertical derivatives (those in-316

volving ∂/∂η) are discretized with the second order SB81 Simmons and Burridge [29]317

method with a Lorenz vertical staggering [27]. We refer readers to [31] for a detailed318

description of the spatial discretization.319

IMEX RK methods are implemented with an interface to the ARKode package320

[9, 10] of the SUNDIALS library [18]. This interface is a continuation of the one321

developed for the nonhydrostatic Tempest dynamical core [14]. We compare our322

best performing IMKG1 and IMKG2 methods (IMKG1-242 (7.1), IMKG1-252 (7.2),323

IMKG1-342 (7.3), IMKG2-244 (7.4), IMKG2-255 (7.5), IMKG2-266 (7.6)) with several324

IMEX RK methods from the literature (henceforth called the non-IMKG methods).325

The non-IMKG methods we consider are the third order accurate ARS343 [2, Sec. 2.7]326

and ARK324 [22, pp. 47-48] methods and the second order accurate ARK2 [12, Eq.327

3.9] and Strang carryover (sometimes abbreviated Str. Car.) [34, Eq. 29-34] methods.328

In addition to these the third order accurate KGU35 explicit RK method [14, Eq. 56]329

is used to produce reference solutions for error calculations.330

We now describe how the solver for computing the implicit stages gm,j (see the331

notation in Section 4.2) via Newton’s method is implemented. From the initial guess332

g
(0)
m,j = Em,j , the ARKode package generates iterates g

(k+1)
m,j of the form g

(k+1)
m,j =333

g
(k)
m,j + δ

(k+1)
m,j , where δ

(k+1)
m,j is the solution of334 [

I −∆tÂj,j∂ξs(g
(k)
m,j)

]
δ

(k+1)
m,j = Em,j , ∂ξs := ∂s/∂ξ.335

Recall from Section 4.2 that the only non-zero elements of ∂ξs(g
(k)
m,j) are those such336

that both the row and column pertain to gwm,j or gφm,j . To take advantage of this337

structure, the ARKode package calls a custom HOMME-NH routine to solve for338

δ
(k+1)
m,j from Em,j , ∆t, Âj,j , and g

(k)
m,j . In this custom routine, components of δ

(k+1)
m,j339

not pertaining to gwm,j or gφm,j are set to the values of the corresponding components340

of Em,j . Components of δ
(k+1)
m,j pertaining to gφm,j , denoted δ

φ,(k+1)
m,j , are computed by341

decomposing the linear system Jm,j(g
(k)
m,j)δ

φ,(k+1)
m,j = Eφm,j into the independent tridi-342

agonal blocks for each grid column. The LAPACK routines DGTTRF and DGTTRS343

are called to solve for δ
φ,(k+1)
m,j , which is then used to compute δ

(k+1)
m,j via Equation344

(4.5): δ
(k+1)w
m,j = (δ

(k+1)φ
m,j − Eφm,j)/(g∆tÂj,j).345
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The ARKode package generates iterates δ
(k+1)
m,j until R

(k+1)
m,j ‖δ

(k+1)
m,j ‖ < ε, where346

R
(k+1)
m,j = max

(
0.3R

(k)
m,j ,
‖δ(k+1)
m,j ‖

‖δ(k)
m,j‖

)
, ‖δ(·)

m,j‖ =

 1

N

N∑
l=1

(
[δ

(·)
m,j ]l

εr|[xm,j ]l|+ [εa]l

)2
 1

2

,347

R
(0)
m,i = 1, N is the total number of components in qm, and [·]l indicates selecting348

the lth element. Note that ε, εr, and εa are all tunable tolerances. The value of ε349

chosen here is the default ARKode value ε = 0.1. We chose εr = 10−6 by varying the350

value until the change in solution was negligible. For the absolute tolerances, we chose351

εua = εva = εwa = 10εr, ε
φ
a = 105εr, ε

Θ
a = 106εr, and ε

∂π/∂η
a = εr. Those coefficients352

correspond to the general expected magnitude of each of the quantities.353

Experiments were run on a local computing cluster with a number of dual socket354

compute nodes. Each socket consists of 18, 2.1 GHz, Intel Broadwell E5-2695 v4355

computing cores or 36 cores per node. MPI communication in HOMME-NH happens356

between horizontal elements but not within vertical columns. Therefore the implicit357

solves require no parallel communication and tend to become cheaper relative to358

explicit function evaluations as the number of horizontal elements per computing core359

(elem/core) decreases. We choose the number of compute nodes for our experiments to360

be 2 elem/core. This is close to the ratios we expect to use in production simulations361

so that our experiments are relevant for our applications. Note that efficiency can vary362

and depends on implementation choices, compiler options, and machine configuration.363

5.2. DC12 tests and predicted maximum step-size. We run two test cases364

from D12 [35]: Test 2.0 (D12.2.0, atmosphere at rest with orography) [35, Section 2.0]365

and Test 3.1 (D12.3.1, nonhydrostatic gravity wave) [35, Section 3]. Both tests can use366

“small planets” (planets with shrunken radii) to enable testing various horizontal-to-367

vertical aspect ratios without using computationally expensive high spatial resolution.368

For both test cases and each IMEX method we associate a value of maxdt (the max-369

imum stable step-size an IMEX method was able to take) and relerr (the L2 relative370

error of some quantity when an IMEX method is run with step-size maxdt for a given371

length of time). We empirically determine maxdt as the largest step-size with which372

each method is able to complete a simulation without going unstable. Results for373

DC12.3.1 are presented before those for DC12.2.0 since the latter proved to be a more374

challenging problem than the former.375

5.3. Test Results.376

5.3.1. D12.3.1 Results. In this test case, the potential temperature field (θ in377

Equation (4.1)) of a hydrostatically balanced initial state is perturbed to generate378

nonhydrostatic gravity waves [35, Section 3]. D12.3.1 uses small planet ×125 and a379

cubed sphere that is divided into 4374 horizontal elements. With our fourth order380

spectral element discretization and small planet ×125, this corresponds to a horizontal381

resolution of about 1km. The atmospheric depth is set to 10km using 20 vertical layers382

(see [35, Appendix F.3] for the arrangement of the vertical levels) corresponding to383

a vertical resolution of approximately 0.5km. This corresponds roughly to a 2 : 1384

horizontal-to-vertical aspect ratio.385

We measure the accuracy of the IMEX methods by comparing the integrated386

value of Θ (potential temperature pseudo-density) with that of a reference solution387

after a 172.8s integration. We highlight the accuracy of Θ = θ ∂π∂η since the waves in388

D12.3.1 result from an initial perturbation in θ. The reference solution is computed389
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12 A. STEYER, C.J. VOGL, M. TAYLOR, AND O. GUBA

by integrating DC12.3.1 forward in time 172.8s using the KGU35 method with step-390

size ∆t = 8 · 10−5 s and has a relative accuracy of about 10−12 (see Figure 1, right).391

We integrate the IMEX RK methods for 172.8s using various step-sizes in the interval392

[0.24s, 3.93s] (no method completed a 172.8s run with step-size exceeding 3.94s). The393

error of a method is computed by forming the L2-norm difference of the approximate394

Θ with that of the reference solution at the end of the 172.8s run.395

Results are displayed in Table 1 and Figure 1. In Table 1 we list maxdt, relerr,396

and τmax for the IMKG1, IMKG2, and non-IMKG methods. Each method has small397

relative error (< 10−7) when running with step-size maxdt. The theoretical prediction398

from Section 2.3 is that ratio of the maximum stable step-size of two methods should399

be approximately the ratio of their respective values of τmax. The ratio of the values400

of maxdt match this theoretical ratio to about 5% of what would be predicted for401

the IMKG1 and IMKG2 methods as well as Strang Carryover. However, for the402

ARK324, ARS343, and ARK2 the theory is somewhat pessimistic and these methods403

have maximum stable step-sizes about 20− 40% better than would be predicted.404

In Figure 1, we plot the accuracy (relative L2 error of Θ vs step-size (∆t), Fig-405

ure 1, right) and efficiency (relative L2 error of Θ vs run-time, Figure 1, left) for406

the IMKG1, IMKG2, and non-IMKG methods. All methods achieve their theoretical407

order of convergence at the tested step-sizes until reaching the accuracy of the ref-408

erence solution, with the Strang Carryover method doing somewhat better than its409

predicted second order accuracy. The IMKG1 and IMKG2 methods are typically less410

accurate than the non-IMKG methods, with the exceptions of the Strang Carryover411

method which (which lies between the IMKG2 methods and the second order IMKG1412

methods) and the IMKG1-342 method which is more accurate than the second order413

IMKG and non-IMKG methods and less accurate than the third order non-IMKG414

methods. The efficiency plot gives a better indication of the relative advantages of415

the IMKG and non-IMKG methods. The IMKG methods are typically faster, but416

less accurate than the non-IMKG methods and are positioned further up and left in417

efficiency plots. However, we do call attention to the IMKG1-342 method which is418

among the fastest methods, but still quite accurate.419
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Fig. 1: Results for a 172.8s integration of DC12.3.1. (Left) Relative error of Θ in the L2-norm vs
run-time; (Right) Relative error of Θ in the L2-norm vs step-size. Slope 1, Slope 2, and Slope 3 in
the plot on the right denote lines with slope 1, 2, and 3 respectively and are included for evaluating
the order of accuracy of the methods. Accuracy of the reference solution is approximately 10−12.

420
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Table 1: Values of maxdt and relerr (defined as in Section 5.2) and τmax for various IMKG1, IMKG2,
and non-IMKG methods integrating DC12.3.1.

IMKG 2-266 2-255 1-252 2-244 1-242 1-342
τmax 4.90 4.00 4.00 2.83 2.83 2.32

maxdt 3.93 3.20 3.20 2.16 2.16 1.92
relerr 1.66E-7 7.72E-8 4.54E-7 4.71E-8 1.15E-7 3.74E-9

Method Strang carryover ARK324 ARS343 ARK2
τmax 1.73 1.50 1.42 1.25

maxdt 1.44 1.44 1.44 1.44
relerr 5.43E-8 1.04E-9 6.47E-10 5.42E-8

5.3.2. D12.2.0 Results. This test measures the response to a single circular421

steep mountain ridge from an initial condition of an atmosphere initially at rest [35,422

Section 2.0]. D12.2.0 uses small planet ×1 and a cubed sphere divided into 5400423

horizontal elements. With the fourth order spectral element horizontal discretization424

on small planet ×1 this corresponds to a horizontal resolution of about 110km. The425

atmospheric depth is set to 12km using 30 vertical layers corresponding to a vertical426

resolution of about 0.4km (see [35, Appendix F.3] for the arrangement of the vertical427

levels). This corresponds to a horizontal-to-vertical aspect ratio of about 275 : 1.428

The accuracy of the IMEX methods is measured by comparing the integrated429

value of ∂π/∂η with that of a reference solution after a 21600s integration. The430

quantity ∂π/∂η represents the vertical hydrostatic pressure gradient in η-coordinates431

and its error is highlighted because DC12.2.0 is used for measuring the accuracy of432

pressure gradient calculations [35, Section 2.0]. The reference solution is formed by433

integrating DC12.2.0 for 21600s with the KGU35 method using a step-size of 10−2434

seconds and has an accuracy of around 10−9 (see Figure 2, right). We integrate various435

IMEX methods on the same time interval using step-sizes in the interval [7.5s, 583.8s]436

(no method we tested were able to complete a 21600s run with a step-size larger437

than 583.9s). The error for each method is approximated by forming the L2-norm438

difference of ∂π/∂η with that of the reference solution at the end of the simulation.439

Results are displayed in Table 2 and Figure 2. In Table 2, we list maxdt, relerr,440

and τmax for the IMKG1, IMKG2, and non-IMKG methods. The IMKG2 and non-441

IMKG methods as well as IMKG1-342 have small relative error (< 1.05E-6) when442

running with step-size maxdt. However, the IMKG1-242 and IMKG1-252 methods443

are both relatively inaccurate when running with maxdt and have values of relerr of444

almost 10−3. Figure 2 shows that for step-sizes about 10−20% smaller than maxdt the445

relative L2 errors in ∂π/∂η of IMKG1-242 and IMKG1-252 reduce to under 10−6. For446

the IMKG2 methods the ratios of maxdt scale with τmax as theoretically predicted in447

Section 2.3 within of range of about 10% of what is theoretically predicted. Relative448

to the IMKG2 methods, the value of τmax overestimates maxdt by about 20% for449

IMKG1-242 and IMKG1-342, 40% for IMKG-252, and by about 30% for the Strang450

carryover and ARK2 methods and underestimates the value of maxdt for ARK324451

by about 25% and ARS343 by 42%. The overestimate of maxdt for the IMKG1-242452

and IMKG1-252 methods can be explained by their relative inaccuracy when running453

with larger step-sizes. However, the over- and underestimates of maxdt for IMKG1-454

342 and the non-IMKG methods is harder to explain other than concluding that for455

this test problem the theoretical predictions from Section 2.3 are less exact.456

Consider the plot of the accuracy (relative L2 error of ∂π/∂η vs step-size, Fig-457

ure 2, right) for the IMKG1, IMKG2, and non-IMKG methods. The IMKG1 and458
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non-IMKG methods achieve their theoretical order of convergence where with Strang459

Carryover having slightly higher than its predicted second order accuracy. The sec-460

ond order IMKG1 methods (IMKG1-242 and IMKG1-252) both become inaccurate461

when running at larger step-sizes (∆t ≥ 180s), although they achieve their theoretical462

order of accuracy for smaller step-sizes (∆t ≤ 90s). The IMKG2 methods all initially463

achieve second order accuracy for large (∆t ≥ 120s) step-sizes. Their convergence464

stagnates at moderate step-sizes before partially recovering between first and second465

order accuracy for small step-sizes (∆t ≤ 45s). Despite this drawback, the IMKG2466

methods still prove to be among the most efficient choices for integrating DC12.2.0.467

Consider the plot of efficiency (relative L2 error of ∂π/∂η vs run-time, Figure 2,468

left) of the IMKG1, IMKG, and non-IMKG methods. ARK2 is slow but relatively469

accurate while the Strang carryover method is slow, but relatively inaccurate. ARS343470

and ARK324 are the most accurate methods but are unable to run with the speed471

of the IMKG1 or IMKG2 methods due to limits on their respective values of maxdt.472

The IMKG1-252 method has the fastest run-times, although this speed comes at the473

price of having a large relative error (above 10−5). IMKG1-342 and IMKG2-266 are474

slightly slower but much more accurate (relative error under 1.04E-6) alternatives to475

IMKG1-252 that can still run much faster than the non-IMKG methods.476
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Fig. 2: Results for a 21600s integration of DC12.2.0. Relative error of ∂π/∂η in the L2-norm vs
run-time (left); ∂π/∂η in the L2-norm vs the step-size (right). Slope 1, Slope 2, and Slope 3 in the
plot on the right denote lines with slope 1, 2, and 3 respectively and are included for evaluating the
order of accuracy of the methods. Accuracy of the reference solution is approximately 10−9.

Table 2: Values of maxdt and relerr (defined as in Section 5.2) and τmax for various IMKG1, IMKG2,
and non-IMKG methods integrating DC12.2.0.

IMKG 2-266 2-255 1-252 2-244 1-242 1-342
τmax 4.90 4.0 4.0 2.83 2.83 2.32

maxdt 583.8 450 300 360 270 225
relerr 5.97E-7 9.45E-7 2.39E-4 4.44E-7 9.71E-4 1.04E-6

Method Strang carryover ARK324 ARS343 ARK2
τmax 1.73 1.5 1.42 1.25

maxdt 150 225 240 108
relerr 1.63E-6 3.44E-7 9.45E-7 1.43E-7
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6. Conclusion and Acknowledgements. We derived two new types of IMKG478

methods for integrating nonhydrostatic atmosphere models with a HEVI partitioning.479

H-stability regions, while an inexact tool for characterizing stability, were used to480

derive IMKG methods capable of taking large, stable time-steps and with a relatively481

short time-to-solution compared to other IMEX methods from the literature. This482

additional speed comes with the trade-off that IMKG methods are somewhat less483

accurate than these other methods. For climate and weather prediction this moderate484

reduction in accuracy is acceptable because it is compensated by significantly shorter485

run-times. We highlight the IMKG2-244, IMKG2-255, IMKG2-266, and IMKG1-342486

methods as having a good balance of speed and accuracy for integrating HEVI models.487

We recognize David Gardner, Professor Dan Reynolds, and Carol Woodward for488

their help in developing and implementing the ARKode-HOMME-NH interface and489

Professor Paul Ullrich for his expertise and advice. We also thank the reviewers for490

thoughtful comments and insight.491

7. Appendix. Double Butcher tableaux for the IMKG methods we derive are492

given in Equations (7.1)-(7.6). H-stability regions for these methods as well as the non-493

IMKG methods consider in Section 5 are given in Figures 3-4 with their approximate494

value of τmax in the associated figure caption.495
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Fig. 3: H-stability regions of the IMKG1 and IMKG2 methods: IMKG1-242 (top left, τmax = 2
√

2),
IMKG1-252 (top center, τmax = 4), IMKG1-342 (top right, τmax ≈ 2.32), IMKG2-244 (bottom left,
τmax = 2

√
2), IMKG2-255 (bottom center, τmax = 4), IMKG2-266 (bottom right, τmax = 2

√
6). The

unshaded region denotes values (x, z) contained in the H-stability region (eigenvalues of RH(x, z)
less than 1 in modulus) while the blue shaded region denotes values (x, z) outside the H-stability
region (eigenvalues of RH(x, z) are at least 1 in modulus).
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Fig. 4: H-stability regions of non-IMKG methods: ARS343 (top left, τmax ≈ 1.42), ARK324 (top
right, τmax ≈ 1.5), Strang carryover (bottom left, τmax ≈ 1.73), and ARK2 (bottom right, τmax ≈
1.25). The unshaded region denotes values (x, z) contained in the H-stability region (eigenvalues
of RH(x, z) less than 1 in modulus) while the blue shaded region denotes values (x, z) outside the
H-stability region (eigenvalues of RH(x, z) are at least 1 in modulus).
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