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1. Introduction




Critical Electric Field Scales with (i) s

Bandgap and Determines Unipolar FOM

* Critical electric field is believed to follow a power-law with bandgap*: & ~
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* Hudgins et al., IEEE Trans. Power Elec. 18(3), 907 (2003) Tsao et al., Adv. Elec. Mat. 4, 1600501 (2018)



Lateral Power Device Figure of Merit ()
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(Applicable to HEMTs)

* Not as widely known as the unipolar FOM
* Unipolar (vertical) FOM is often incorrectly used for lateral devices
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* Proportional to E.2 rather than E3,
but high n_ can result in high FOM




How Do WBGs and UWBGs Lead to Higher ()&=,

Switching Frequency and Lower Loss?

* For equivalent breakdown voltage, get

o~ 10° lower R, A for (U)WBG device
5 * ForsameR,, (U)WBG device can
% 10% ¢ have smaller area
s i * Smaller area results in less
g 10l capacitance
% ' * Gives a faster switching transient
'g 10° | and lower loss per switching cycle
z s
o Si
g.‘i 10" 15x15mm?2 GaN
o 100 kHz 6x9mm?
o
" 102 i SME R R 6 MHz
102 10° 10°* 10° Al ~ 75% smaller

Breakdown voltage (V) LJEE%”E ﬁ*ff

The scaling that results from the properties of WBG and
UWBG materials can be utilized to optimize for switching a MM -
frequency, conduction loss, and switching loss 1.2 kV 12 A SW|tch
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Power Converter Size is Determined () s

by Passive Elements

, Magnetics Thermal
 Passive elements and

thermal management

management
comprise the bulk of
the volume and mass
of a power converter

* These can be
reduced in size using
WBG semiconductors
due to faster
switching and
reduced loss

Semiconductor
Capacitors switches




Power Density Scaling with () i

Semiconductor Material Properties
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Relative Figures of Merit:
* Vertical UFOM =g E3 |
* Huang Material FOM = E /2 ﬂ UWBG

* HM-FOM seems to be a good predictor of power density

R. J. Kaplar, J. C. Neely, et al., IEEE Power Electronics Magazine (March 2017)




Efficient and Compact Power Conversion @ Lﬁédt'
Enabled by WBG Semiconductors

e

¥ 4 g F'ﬂ-ﬁ{i
iijiiiii

\ - fﬁﬂh SNL GaN HEMT “Coin Converter”
M) = 05017 90V, 90 mA -> 215 W/in?

A\

SNL SiC hybrid switched-capacitor boost converter (ARPA-E)

e  First prototype: 0.5 kV - 10.1 kV (gain = 16.8) at 2.6
kW, 95.3% efficient, 410 in3

* Second prototype: +2% efficiency, 55% volume

SNL GaN HEMT microinverter
400 W in 2.4 in3 2> 167 W/in3

Over an order of magnitude
improvement in power density is

enabled by use of GaN power <:| SOA commercial microinverter
transistors compared to Si 250 W in 59 in3 2 4.2 W/in3
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2. Work with MIT on AlGaN/GaN HEMT reliability




Collaboration
with Tomas

Palacios group

Fabricated at MIT

2DEG

Passivation

High Electron Mobility Transistor:

High-Voltage AIGaN/GaN HEMTs (M

» Designed and fabricated at MIT
* Polarization induces high-u channel
* Normally-on device

* Lgp and Al% control Vg,

Device 1 Device 2 Device 3 Device 4
Maximum Vgp 1800 V 1800 V 500V 500V
Vi -3.6V -3.6V -1.8V -1.8V
Barrier 50 nm 50 nm 20 nm 20 nm
Aly 15Gag gsN Al 15Gag gsN Aly 26Gag 74N Aly 26Gag 74N
Passivation Al,O4/SiO,/Al,O4 None Al,O4/SiO,/Al,O4 None
C-doped buffer Yes Yes No No

Lg=2um, Lgg=1.5um, Lgp = 1.51t0 40 um
All devices grown on (111) Si by MOCVD

S. DasGupta et al., IEEE TED 59(8), 2115 (2012)
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ON-State vs. OFF-State Stress

Passivated Al, ,;Ga, gsN/GaN sample
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Stress: Vps= 10V, Vgs =0V (ON) Stress: Vpg =0V, Vg =-11V (OFF)

ON-state stress (drain bias) results in much slower recovery
than OFF-state stress (gate bias)

S. DasGupta et al., IEEE TED 59(8), 2115 (2012)




Recovery Current Transient
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Analysis Following Gate Stress
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S. DasGupta et al., IEEE TED 59(8), 2115 (2012)

Passivated
Al, ,sGa, 7,N/GaN
temperature
dependence

TG1 is thermally
activated; TG2
is not. Why?

Comparison
of other
samples;
note TGU
only for
unstable
sample



Temperature- and Stress-Time- () s
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Dependence of Degradation

Newer samples: 50 nm barrier, gt |

_ 1€S. {Stress: 1/_= 6V,
thicker passivation, V. =-4.1V = 103 1, - 200v
E' ]
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E O 107 o£ V., =1V s 10s stress
3., ¥ stress: v_=gv, | U315K)] R Y T TR T S
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Vary stress time,
TG1 shows clear thermally activated behavior, temperature fixed

but TG2 is insensitive to temperature
S. DasGupta et al., IEEE TED 59(8), 2115 (2012)




Deep-Level / 2DEG Quantum () i

Well Interaction Model

1.0 — ing - .
S | e o Our model proposes that a single
208" T o deep level in the AlGaN barrier
E 0.6 - — .(EC - O.§ eV) may emit eleqtroqs
2,0 X Tmes N, in two different ways, resulting in

—% 10s .
B RE Capture atE, two different peaks:
§ 0.2_§E~:;‘ R T 1. To the AlGaN CB (Arrhenius)
Lt 10" :
E 00 Fooe¥eooad oo G0 2. To the 2DEG wavefunction
3 1M BT S (insensitive to temperature)
450 500 550
(a) - Position (Angstroms) . .
—00s [F—=100: Longer stress times raise the
| p—1 [} 5 5 O] j— () 5 . .
P 2" CB edge in the AlGaN, reducing
s | 2 the spatial depth over which
= Z404] the 2DEG wavefunction overlaps
- with the deep level

0 N
430 440 450 460 430 440 450 460
(b) position (angstrom) (€)  Position (Angstrom)




Proposal: Electrons Are Directly Captured Into
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Multiple 2DEG QW States

Theory Experiment
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Time constant for capture of
electron from deep level to
2DEG tail:

1/7,(x)=|w, ) D,,ov,

v, = nt" QW wavefunction (cm-12)

D,,= In-plane 2DEG DOS (cm™)

o = Capture cross section (cm?)
Vi, = Thermal velocity (cm/s)

Overall recovery time constant may ~Sum time constants for each 2DEG
be tuned by wavefunction

engineering (barrier height, etc.) to

be much shorter than the bulk

emission time; reliability may thus

be controlled by device design

level plus thermal term
to get overall emission rate:

1 1+Zl

7,(x)

) 1, 4




What About Negative Peaks ) =

Due to Trapping?

2
_ d
Al = Zai(l —e~t/%) =) ypie = min| |y — Aa|® + ‘aAa
T L LR | LR R 4 [ T [
2 s Test Case | — Target
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E <
S’ o+ E
-
— = 0
ﬂ 2r -1
-2
AL
T N ™ B T
ime (s) T (S)
 Artificial transient representative ¢ Corresponding time-constant
of simultaneous trapping and spectrum shows both trapping and
emission of electrons emission processes are recoverable

M. P. King et al., Proc. 53" IRPS (2015)




Off-State Stress () i
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MOS-HEMT Devices

* Stress-time and
temperature dependent off
-state parametric shiftsin /,

e Off-state stress conditions
Vi=-5V
vV, =100V
* Recovery-state
V=1V
V,,=0.1V

M. P. King et al., Proc. 53" IRPS (2015)




Temperature Dependent Off-State

Sandia
National
Laboratories

@

Parametric Shifts

i, = 100 sec

—8— Trans. - T =300 K|
& Trans.-T=315K
—&— Trans. - T=330 K
—TIIT -T=300K

Electron de-
trapping

200

Ve —FIT -T1T=315K]

< 150 — FIT -T=330K
=.

\":_'; 100 -

M~

< o Electron

trapping

10 100

(s)

el )
1000

1
Time
* Electron trapping decreases /,

* De-trapping (emission) increases /,

* Suggests electron trapping dominates
at short recovery times (< 10 s) and
emission dominates for longer times

_0_02 b

— T=300K
00— T-.315K i
— T=330K
0.08 -
0.06 - ~ _
0.04 - x | .
0.02 _
Trapping
0.00| L/

Time constant spectrum reveals
the presence of concurrent
trapping and emission processes

Temperature dependent peak
present with E, = 0.58 eV

M. P. King et al., Proc. 53" IRPS (2015)
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3. Work with HRL on AlGaN/GaN HEMT reliability




Collaboration
with Sameh
Khalil group

AlGaN/GaN HEMT Process
Splits and Stress Response

)

Different stresses on different devices

L0, 107 Device type A pre-s:tres\?
. Lt Pl LT VORI B T LT - GS
ﬂ ] PECVD Nitrids 10° Electror.'l de Vg =0V
r trappin
— . ACaNGawer —~ ‘|0'2 ppIng 20 min. stress
GaN ~"20EG E 4 =7V
£ 10 Vg =0V
- 10°
Buffar Structure 1 0_8 Electron \2/0 mln_.7s’{;ess
trappin CS _
107 pping Ve =50V
Si Substrate 2 A 0 1 2 3 20 mln.7s’{;ess
(a) Vgg (V) atV =5V v oy

Gate stack process splits Sequential stresses on the same device

Device Gate Oxide
Type (AL,O.) Gate Stack AlGaN , Device type A —

A Yes Present (t~5nm) | 180 VEov

B No Residual (t<1 nm) 102 20 min.strss

C No Present (t~5nm) | g o V275V
- 10_: 20 mln_.ﬁe(i?very

Different electrical stress may results in both 0 Vo =0V
electron trapping and de-trapping (i.e. emission) o 0 3 P IgRraten

(b) Vos V) atVpg=1V Vpg =0V

R. J. Kaplar et al., Proc. 26t ISPSD, 209 (2014)




Different Process Splits Have Different () i

Responses to Off-State Stress

4,0, S 10% Device type A \I;;es-s:tres\?
© PECVD Nitide 10° Electr0|_1 de- Vee=ov
= - f"i.: B_'T'_ _______ —~ 10'2 trapping 20 min. stress
Gal ~2pEG E e xGS - 7
~ 5 DS~
Buffer Structure - ::8‘8 Electron 20 min_. stress
10_10 trapping Vpe =50V
. 2 4 0 1 2 3L 20minsteR~
o (a) Vg (V)atVy =5V ( Vs =TV
Gate stack process splits
: : Device type B Device type C  Stress conditions
Device | Gale OX1de | Gate Stack AIGaN o' @ o -
ype (Alz0,) . V=0V
A Yes Present (t~5nm) < 10" Vps =0V
B No Residual (t < 1 nm) E
' a 10 V.. =-7V
C No Present (t~5nm) | — as
10° Voo =100V
The lack of a V; shift in device type B suggests that 05 0 05 1-1-05 0 0.5 1 20 minute stress
the defects responsible for instability are in the Vs V) atVy =5V

AlGaN portion of the gate stack

R. J. Kaplar et al., Proc. 26t ISPSD, 209 (2014)




A Reversal from Electron Trapping to
De-Trapping is Observed

Gate stack process splits

Device type B
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Device type C '\ Stress conditions

Device Gate Oxide )
Type (AL,O,) Gate Stack AlGaN R 10 (b) VY
A Yes Present (t~5nm) | < 10” Vps =0V
B No Residual (t<1 nm) = 103 v =7V
N P t(t~ = Gs _
C 0 resent (t~5nm) o VS = 100 v
. . . 0.5 0 05 1-K0.5 0 0.5_4 20 minute stress
Blocking stress at short times results in v (V)\:V\=§/
reduction in 1, — Positive V; shift es oS
electron trappin _
( PP g) Device type C 1 Device type C Bias time
380 10
L. Emission Os
This is in contrast to stress for long 360 || stressbias| 447 09 s
. . . . V..=7V ]|~ :
times, which shows an increase in I; > < 340 v -50v < . 04s
. i . 320 DS £ 10
Negative V; shift (electron de-trapping) - 200 / o 0.8s
- -5
280 Emission 10 Trapping 12s
This is explained by a transition from 50 Tm @ 57 (b) 40s
electron trapping to emission with 0 040812 05 0 05 1
Time (s) VGS (V) at VDS =03V

prolonged stress

R. J. Kaplar et al., Proc. 26t ISPSD, 209 (2014)




Field-Enhanced Emission Model to Explain (@) &=,

Trapping to De-Trapping Transition

Poisson equation

~~. Slope=qgF ?@(t.x) _qng(t,x)
I ax? ¢

N Thermal

«, emission

-~
-

Capture / emission rate equation

.. dny dng dny dny
E & — . — =" +—= +—
Phonon- "~ dt dt dt Thermal dt Phonon—assisted
. T~. capture Emission Tunneling
assisted )
A 4 1 tunneling

dny

-E
= 0V (Ny — np)n = 0,V (Ny — np)ngexp ( kTB)
capture

Expressions

d . d

fodr cap.tu.re i % Thermal —Jnvac&‘Ip((—(ET - ﬂET)}II{T}nT(t*x} with AEr = q ’q |£|!’T(F
and emission Emission

mechanisms

dn g | ETIKT 81 ’m;(kTF AEN\S/3

T T Ll

—_ = —g, Vs Neexp (—) I exp |z — z3/2 1- (—) dz| ny(t,x)
dt Phonon—assisted e kT thlﬂ@!’axl zkT ’

- Tunneling AET/kT

R. J. Kaplar et al., Proc. 26t ISPSD, 209 (2014); S. G. Khalil et al., Proc. 52" IRPS, CD.4 (2014)




1D Field-Enhanced Emission (i) s

Model Results

~ (@) Trapped electron
\\‘\ Slope = qF E;=06eV A density (x10'* cm™)
AN E, =046V 8.11

. Thermal
emission

Trapped electron
density (x1014 cm'3)

E = = > 0 0
! Phonon- "~ %@2' . 2 T d
assisted o %@’) &Q)@ : rappe
Y - tunneling St T electron
o density vs.
Cefe TR position
Simplified 1D model is able [ s 2 and time
to qualitatively explain £ s pr
trapping to de-trapping 8 4l oo i
i 8.08 (c)
transition! A

107 107 107 107 10" 107 E,=0.7 eV

10° 10° 10" 10® 10® 10" 10" 10
Time (s)

R. J. Kaplar et al., Proc. 26t ISPSD, 209 (2014); S. G. Khalil et al., Proc. 52" IKP>, LD.4 (ZU14)




Correlation with Reverse Bias and (i) s

Operating Life Testing
";:I'I-‘%B/HT;{.B. _ _

RTRB V=200V
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0 I
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==D0UT #13

~-DUT 450
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DC stress

-1.5

Negative V; shift
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1E-1 LE+D 1E+1 1E+2 1E43 1E+4
Time {Hours)

RTOL (Vout=200V, D=0.5, f=100KHz)

1E-1
1E-2
13 =id(t=0 hr]
w1dit=2 hr]
RTOL 1 +1d(t=4 hr)
EES Positive V; 1d{t=6 hr)
£ 1 ift indi Id[t=24 h
= shift indicates (t=24 hr)
= 167 . 1d[t=48 hr) S re S S
o trapping
1E-8 #1d(t=168 hr}
1E-8 ‘.“"‘N ’::[Timg :r]
: .o,.‘ ®idit=477 hr)
R e, - Id(t=625 hr)
1611 et Id(t=814 hr)
1E-12 +1dit=1032 hr)
-3 =2 1 2 3

S. G. Khalil et al., Proc. 52" IRPS, CD.4 (2014)
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Reliability Stress

Recovery from RTRB
_ stress 1 recovery

Recovery from RTRB stress:

5 06 | * Positive V; shift indicates electron capture
2% e  Temperature dependence indicates a barrier

-1 ==-DUT #06 [anneal at 150C) . .

- et to electron capture, consistent with model

14 —DUT #48 {2nneal at 70C)

16 // 1 ~+-DUTHED (anneal at 30C)

01 1 10 100 1000
Recovery Time (Hours)

Working theory
* For RTRB/HTRB, the stress time is long so a negative V;
shift resulting from electron de-trapping is observed
 For RTOL/HTOL, the effective stress time is short (during
blocking bias conditions) so a positive V. shift resulting
from electron trapping is observed

S. G. Khalil et al., Proc. 52" IRPS, CD.4 (2014)
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Summary

* Physics-based investigations of AIGaN/GaN HEMT
reliability with MIT and HRL, in both cases focused on
parametric shifts due to electron capture and emission

* Temperature-dependent and independent signatures
are observed

* A transition from electron capture to emission explains
many observations

* Coupling of device design and electric field distribution
to defects is of critical importance

The contributions of all past and present
collaborators are gratefully acknowledged



