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EXECUTIVE SUMMARY

Working with the U.S. Department of Energy’s Office of Fossil Energy and the National Energy
Technology Laboratory, Southwest Research Institute® (SWRI®) developed a system to identify
methane leaks reliably, accurately, and autonomously at critical midstream sections of the natural
gas distribution network in real-time for the purpose of mitigating methane emissions using Optical
Gas Imaging (OGI) cameras. SwRI’s Smart Leak Detection — Methane (SLED/M) adds a high
degree of automation to the process of methane leak detection to minimize sources of human error,
minimize response time to a leak event, and maximize midstream visibility. Furthermore, SwRI
has been working towards integrating Quantitative OGI (QOGI) capabilities into this existing
technology. By leveraging Deep Learning, SWRI now has the capability to estimate fugitive
emission leak rates quickly and reliably, which allows operators to detect emissions, quantify leak
rate, prioritize repairs, and validate the repairs in a single instrument. The next generation QOGI
technology leverages the same cameras used in Leak Detection and Repair (LDAR) programs,
with improvements in safety and speed for traditional quantification-based repairs, ultimately
leading to less overhead cost for the operators.

The goals for this research were to develop two types of models with the following goals:

1. Runin real-time on the edge (> 12 Hz)

2. Classification: Achieve less than 5% false positive detection

3. Classification: Achieve > 95% methane plume detection rate

4. Regression: achieve < 10 standard cubic feet per hour (scfh) prediction > 70% of the time

In order to achieve these results, multiple infrared (IR) and other sensors were investigated in
tandem with the midwave IR (MWIR) OGI to provide additional information to train the
underlying models. Information on atmospheric conditions including humidity, temperature,
pressure, and solar radiation was provided by a weather station. Several machine learning and deep
learning architectures and methods, including looking at quantized classification networks and
regressions networks, were explored. As further data was collected, curated, and labeled, it allowed
for more refined regressive networks to be adequately trained, leading to better insight into the
true flow rates being observed. An important valuable deliverable of this research effort was the
development of an advanced network which underwent multiple iterations capable of giving a
continuous output. The current network has a predicted mean average percentage error (MAPE)
of 12.3% just outside our target goal of 10.00%, but an accuracy of 97.78% at +50 scfh, well within
the overall goal for the U.S. Department of Energy’s (DOE) Office of Fossil Energy program.
Upon closer inspection, it was observed that more than 10% of datapoints contributing to the
MAPE predictions were the result of low flow rate predictions and are beyond the sensitivity of
instrument measurement as a result of normal operational variation and noise. Figure 1 shows an
example of both SLED-M detection network and subsequent concentration, with ground truth and
predicted values in the upper portion of each frame.



Southwest Research Institute Contract Number: DE-FE0029020

Ground Truthe 236.32scih ) e Ground Truth: 362.19

Ground Truth: 583 64scih bon: 561.31s8¢ Ground Truth: 881.14s8cfh, Prediction

Figure 1. Detection and Quantification at Multiple Flowrates
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1. INTRODUCTION

Compressor stations used to move natural gas in midstream applications are a significant
contributor to methane emissions.[1] One of the largest sources of methane emissions in the
midstream sector is fugitive emissions from compressors. According to this study, 50% of fugitive
emissions are from major compressor equipment. This problem is most significant from
reciprocating compressors where faulty seals are a key contributor to methane emissions.[2, 3]
Fugitive emissions from such sources could go undetected for extended periods of time, resulting
in the accumulation of significant emissions.

A key factor of site-level emissions, the “fat tail”, found in which a small number of sites have a
disproportionate amount of emissions, particularly within the midstream segment. As pointed out
in Subramanian et. al., 10% of emitting sites contributed to 50% of the overall emissions.[2] Thus,
there is a significant need for a robust technology that could provide an early indication of an
unexpected emission. Equally important, the technology needs to be able to account for biogenic
versus anthrophonic sources of methane. One means of indirectly making this determination, is to
leverage optical technologies that can autonomously pinpoint the source of such leaks.

According to a recent study by Stanford, only one methane detection technology out of ten tested
was able to estimate leak rate to within a range of half to two times the actual rate only 53% of the
time.[4] The other eight were only able to estimate to within an order of magnitude 74% of the
time. All of these technologies rely on sniffer, or laser-based technologies. Per NSPS 40 CFR 60
(O000a), these technologies fall under the Method 21 rules, which requires the sensor to be
within a few inches of the component in order to verify the fugitive emission, as well as to verify
that the fugitive emission has been repaired. Under this same regulation OGI’s are able to detect
and verify fugitive emissions visibly, which can be done from much farther away and much faster.
We believe if we could quantify emissions with an OGl, this could be a major disruption in the
way inspections are carried out in today’s oil and gas market.

In 2016, SWRI was awarded funding from a DOE — National Energy Technology Laboratory
(NETL) grant to develop an autonomous, reliable, real-time methane leak detection technology,
the Smart Methane Leak Detection System (SLED), which applies machine learning techniques to
passive optical sensing modalities to mitigate emissions through early detection. The goals of this
DOE program were as follows:

e Develop a system to identify methane leaks reliably, accurately, and autonomously at
critical midstream sections of the natural gas distribution network in real-time for the
purpose of mitigating methane emissions.

e Add a high degree of automation to the process of methane leak detection to minimize
sources of human error, minimize response time to a leak event, and maximize midstream
visibility.

e Assist in the quantification process by providing a means of collecting temporal and
spatial image data of a leak event.

e Reduce operational costs of emissions detection technologies by significantly minimizing
the need for operator involvement.

e Provide a solution that is scalable, cost-effective, and non-intrusive.
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e Reduce methane emissions through early real-time, autonomous detection of methane
leaks.

The project was conducted over four phases:

e Phase 1 developed the prototype methane detection system with integrated optical
sensors and the embedded processing unit.

e Phase 2 implemented the prototype methane detection system developed under Phase 1
into deployed hardware and refined the unit performance.

e Phase 3 adapted the stationary algorithm developed in Phases 1 and 2 for deployment and
operation on an Unmanned Aerial System (UAS)

e Phase 4 added quantification capabilities to the system

The output from this effort is SLED/M, an autonomous, real-time methane leak detection system
which facilitates the early detection of emissions before they become a larger problem.
Compressor station operators will be able to identify failing equipment in aging infrastructure and
replace faulty components expediently, resulting in methane emissions being reduced significantly
through early detection of non-compliant equipment. By adding the capability to estimate leak
flow rates in conjunction with visual inspections, operators can identify and triage which
components to replace first.

SLED/M can detect methane leaks as low as three (3) scfh, with a precision of 96.6% and false
positive rate of 2.22%. Additionally, SLED/M is capable of estimating methane flow rate and
concentration within 12% of ground truth flow rate. The technology itself only requires the MWIR
OGI camera and some basic weather information; temperature, humidity, and distance from the
source, providing SLED/M with a flexible competitive advantage, and reducing the need on the
customer to use additional instrumentation and equipment. Figure 2 shows the progression of the
algorithm through all four phases.
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Figure 2. SLED/M Roadmap

2. PHASE 1 TECHNOLOGY DEVELOPMENT

During Phase 1, the hardware and software components of the prototype system were developed.
The hardware development consisted of interfacing the electrical and mechanical components of
the optical sensor with the embedded processor. The software development involved developing
robust algorithms that will continuously monitor the optical sensor’s output and intelligently detect
the existence of methane without human intervention. The software is optimized for integration
onto the embedded processor for efficient real-time execution and field operations.

2.1 Controlled Testing

SwRI continued to perform several methane release tests under realistic conditions to continue to
increase the database containing methane leaks of various concentrations, distances, and scenarios.
A portable rig was constructed to allow for gas discharges through various leak geometries while
controlling pressure and leak rate. This was captured on the camera shown in Figure 3. The test
conditions included varying ambient temperature conditions, cloud cover, presence, and lack of
obstacles (such as piping), and varying wind (including stagnant) conditions.



Southwest Research Institute Contract Number: DE-FE0029020

\

Figure 3. Niatros™ and FLIR MWIR Cameras Acquiring Data During a Supervised
Methane Release

2.2 Algorithm Development

SwRI performed further data collection to diversify the training sets for both methane imagery and
false positives. It has been observed that the visibility of the methane plume, both to the human
eye and to the algorithm, is highly dependent on the brightness of the object behind the methane
plume since the primary detection mechanism relies on the absorption properties on the methane.

For this reason, special emphasis was placed on collecting data with backgrounds of various
emissivity characteristics in the Mid-Wave Infrared (MWIR) spectrum. These included bright and
dim backgrounds, vegetation, and camera shots with the plume against the sky. Figure 4 shows a
few interesting cases of the plume visibility on various backgrounds.
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Figure 4. A Methane Plume on Background Surfaces of Various MWIR Intensities: (A) A
Bright Background Object, (B) A Dark Background Object, (C) A Noisy Background
Object, and (D) The Sky, Which Acts as an Infinitely Absorbing (Dark) Background and
the Methane Plume

The chosen algorithmic approach uses three separate steps. First, preprocessing is used to make
the methane more apparent in the MWIR imagery. The preprocessed frames are then classified
using a segmentation neural network. Finally the output of the neural network is interpreted by a
clustering algorithm that implements a clean tunable threshold for how sensitive the alarm
reporting should be. Figure 5 shows the high-level data flow of the algorithm.
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Figure 5. A Flow Chart Depicting the Data Path from Camera Acquisition to the Reporting
Mechanism

Over the course of this phase, extensive work was done to identify the best-suited classifier for the
detection task. The classifier must be sufficiently complex to learn the nuances of a methane plume
detection while still small enough to fit within the hardware footprint of the embedded Tegra
System on Chip (SoC). A variety of classifier techniques were researched and tested. Additionally,
a variety of data processing and pre-processing architectures were researched. Based on this
extensive effort, a processing architecture and classifier was chosen, which provided optimal
results and performance. The chosen algorithm, a convolutional segmentation network, has been
implemented in such a way that it will currently consume 25% of the shared memory between the
Central Processing Unit (CPU) and Graphics Processing Unit (GPU).

2.3 Phase 1 Results

Error! Reference source not found. through Figure 10 highlight some of the test results from the
algorithm as well as some remaining issues that needed further adjustments and training to resolve.

Figure 6. Comparlson Showmg Good Tracklng on Steady Background
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Figure 7. Comparison Showing Steady Tracking on Noisy Background, Methane Plume
Not Apparent to Human Eye in Video

False Positive Present on Right Side of Image

e VR PR AR R P INPRAS | P

Figure 9. Comparison Showing Good Tracking of Plume in a Region of Sky, Where Optical
Dynamics Vary Drastically from a Plume in Front of a Solid Reflective Background
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Figure 10. Comparison Showing Good Tracking on Solid Background Again, Failures
Present on Bottom-Left of Highlighted Area: Problems Persist Where High-Reflectivity
Background Converges with the Plume

At the end of this phase, source code, executables, and software description documentation were
delivered.

3. PHASE 2 TECHNOLOGY MATURATION

During Phase 2, the hardware and software components of the prototype system were tested and
refined. The hardware testing consisted of thermal and mechanical benchmarking of the system
under various connectivity and ambient temperature variations. The software testing involved
collection of MWIR dataset to be used in validation of the SLED/M algorithm. This dataset was
constructed to test the maximum variability in background, lighting, methane flow rate, distance
to the plume, occlusions of the plume, presence of other moving and optically dynamic objects,
and more. The software was optimized for integration onto the embedded processor for efficient
real-time execution and field operations.

3.1 More Data Collection

The dataset utilized for testing the performance of the system and algorithm was curated through
the collection of data from a variety of conditions, as well as leak and non-leak event types. This
collection focused more on establishing realistic backdrops and foregrounds, as well as other
sources of motion in the frames. The typical setup for data collection is illustrated in Figure 11.

10
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Figure 11. Image of setup used for data collection at various ranges, ambient conditions,
and leak types

The data was collected by saving video sequences from the camera at 5-10-minute intervals and
saving these frames, uncompressed, in the .tif/.tiff format. The benchmarking dataset was extracted
from this collected data by choosing sets that spanned a large range of conditions. The data was
annotated by labelling which frames did and did not contain methane. The resulting benchmarking
set is summarized in Table 1Error! Reference source not found..

Table 1. Summary of Benchmarking Dataset

Number of Tests 183
Number of Frames 882,396
clear / rain (no methane)

Weather hot (105F) / cool (40F)
Ambient Lighting dawn / bright / overcast / night
wind windy, calm
Background (in line with methane) bright/dark/mixed
Potential False Positives steam, CO, moving objects & people
Distances 15-700 ft
Flow rates 2 — 500 scfh

11
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3.2 Metrics
The metrics used in this report are defined as follows:

True Positive (tp): Algorigthm correctly identified methane when present (1)
True Negative (t,) : Algorithm correctly identified no methane @)
False Positive (fp): Algorithm Identified methane when there was no methane present (3)
False Negative (f,): Algorithm did not identify methane when present 4)
Precision = - i” : Maximizing precision will minimize the false-positive errors ()
ptJp
Recall = - i”f : Maximizing recall will minimize the false-negative errors (6)
pTJ/n
F1 = 2y Brecistonsrecall, mpq harmonic mean of the precision and recall (7)
precision+recall
t,+ t
Accuracy = P - ()

ty + th + fp + fa

3.3 Methane Detection Benchmarks

The goals for phase 2 of development and testing, were to minimize false positives as much as
possible. As such, during the system validation and testing precision, false positive rates were
focused on heavily. Precision is a metric which ratios both true positives and false positives and
attempts to minimize the latter. The performance of the final model is tabulated in Table 2. Figure
12 illustrates the performance of the Phase 2 algorithm on various difficult test cases.

Table 2. Performance Metrics for the SLEDM Algorithm

Metric Score
Precision 92.9%
False Positive Rate 4.8%

12
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- 100m Moving Car and Vegetation (no false positives); Figure D - Highly Dynamic, Noisy
Background; Figure E - Night Methane Source Out of Shot

3.4 Phase 2 Results

In Phase 2, the algorithm was retrained with even more testing from a uniquely curated dataset of
methane leak imagery. Many more datasets were collected under diverse lighting, distance, and
operational environments. Using this data, the algorithm was further refined, and performance
tuned resulting in a system capable of automatically and reliably detecting the presence of methane
gas plumes from MWIR video, while rejecting false positives such as lighting differentials, moving
objects in the background, and other sources of gas clouds such as steam. We were able to get a
final algorithm with 92.9% precision and a 4.8% false positive rate as show in Table 2. These
metrics are a balancing act; there is room to tune the performance to favor precision and accuracy
while increasing false positives, or to tune to near zero false positives while sacrificing accuracy.
The resulting algorithm was able to run on an embedded Jetson TX1 SoC at 1 Hz, making it
suitable for deployment.

At the end of this phase, source code, executables, and software description documentation was
delivered.

4. PHASE 3 AERIAL DEVELOPMENT

The focus of Phase 3 was to update, adapt, and deploy the SLED/M algorithm on an Unmanned
Aerial System (UAS). SWRI changed to a FLIR G300a OGI, which is smaller and lighter than the
FLIR A6604 used in previous phases. SWRI also acquired a DJI Matrice 600 Pro UAS and DJI
Ronin gimbal for data collection and testing.

13
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Swhi  Video Streaming Demonstration (8)

Figure 13. Figure A - SLED/M Web Based User Interface; Figure B - SLED/M System on
UAS; Figure C - SLED/M Running Live Wirelessly on Drone Platform

The software was updated with a web-based user interface. This interface allows for live viewing
and control of the SLED/M software and allows the system to be operated locally from a computer,
tablet, or phone. Figure 13 Shows deployed SLED/M platform and wireless interfacing.

4.1 Aerial Data Collection

The dataset utilized for testing the performance of the system and algorithm was curated through
the collection of data from a variety of conditions as well as leak and non-leak event types. The
typical setup for data collection is illustrated in Figure 14.

14
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Figure 14. Image of Setup Used for Data Collection at Various Ranges, Ambient
Conditions, and Leak Types

The data was collected by saving video sequences from the camera at 5-10-minute intervals. Each
test was taken at different angles, altitudes, speeds, and distances from the methane source. The
benchmarking dataset was extracted from this collected data by choosing sets that spanned a large
range of conditions. The data was annotated by labelling which frames did and did not contain
methane. The resulting benchmarking set is summarized in Table 3.

Table 3. Summary of Curated Methane Dataset

Number of Tests 371
Number of Frames 1,470,039
e ot (1050 ool (40F)
Ambient Lighting dawn / bright / overcast / night
Wind windy, calm
Background (in line with methane) bright/dark/mixed
Potential False Positives steam, CO, moving objects & people
Distances 15-700 ft
Flow rates 2 — 500 scfh
Altitudes 50ft — 400ft

15
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4.2 Aerial Methane Detection Benchmarks

The goals for this development cycle were to keep false positives to a minimum, while
incorporating motion and altitude from the UAS, as such during system validation and testing,
precision and false positive rates were focused on heavily. The performance of the final model for
this phase is tabulated in Table 4. The results in Figure 15 illustrate the performance of the
algorithm on various difficult test cases.

Table 4. Performance Metrics for the SLEDM Algorithm

Metric Score
Precision 96.6%
False Positive Rate 2.22%

Figure 15. Figure A — Directly Above Source; Figure B — Foreground Motion Rejection;
Figure C — 400 Feet Altitude; Figure D — Detection at 30 Mph; Figure E Detection from
distance

4.3 Phase 3 Results

During Phase 3, the hardware and software components of the prototype system were adapted to
work on an UAS. The embedded computer system was paired with an aftermarket development
board for a smaller form factor; the OGI was replaced with a newer, smaller form factor and used
a lighter weight camera. All of these refinements were made to the system to keep the payload as
light and small as possible to optimize flight time. The SLED/M algorithm was significantly
improved through tuning of the system for speed improvements, changes to the pre-processing, as
well as run-time inferencing engine. Three new data sets were collected of methane releases from

16
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both the ground and from the air at various altitudes and speed to adapt the algorithm to both the
new camera system as well as train it to operate from a moving platform. SwRI integrated a FLIR
G300a OGI with a DJI Matrice 600 Pro UAS and DJI Ronin gimbal. SLED/M was further trained
and refined for increased reliability using a large portion of the data collected during Phase 1,
Phase 2, and moving and arial data from Phase 3. The speed of the system was increased five-fold
from 1.2 Hz to being capable of running at 5+ Hz. The final algorithm performance was evaluated
at a 96.6% precision with a 2.22% false positive rate against all the validation data from Phase’s
1, 2, and 3. The resulting algorithm can work on both stationary as well as drone-based
applications.

At the end of this phase, source code, executables, and software description documentation was
delivered.

5. PHASE 4 METHANE QUANTIFICATION

In Phase 4, the focus of the research was shifted from detection of methane to quantification of
methane. To accomplish this, the MWIR OGI needed to be supplemented with added sensors to
provide additional input for the quantification of methane. Due to the passive nature inherent in
MWIR OGI technology, it has a heavy reliance on a variety of external factors, all of which have
a direct impact on what is observed by the MWIR OGI. To overcome this, we started off by
including several different information sources, including, but not limited to Longwave Infrared
Image (LWIR), LIDAR, visible camera, and a weather station for ambient weather readings
(Figure 16).

A

Figure 16. A) Longwave Infrared Image, B) LIiDAR Distance Map, and C) Visible Image of
Methane Leak

5.1 Sensor Integration, Sensor Driver Development and Stereo Camera Calibration

A LWIR thermal imager was chosen because methane has an absorbance peak in the LWIR band
(Figure 16A) in addition to the MWIR band, although much smaller. While methane absorbance
is not as strong in the LWIR region, these imagers are capable of methane detection by themselves.
The idea behind including this image band was that LWIR could provide additional information
which would inform the analysis of MWIR imagery including ambient temperature, component
temperature, and the temperature delta (AT) of the methane plume. Specifically, integration of
MWIR and LWIR data can provide important details for understanding the physics of methane,
absorbance, and real-time background modeling using the aligned data from MWIR and LWIR
observations.
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The distance of the OGI relative to the plume and the lighting intensity are two important factors
that can influence quality and accuracy of methane detection and quantification. To try to get
accurate distance representation of all points within the images, a LIDAR sensor was added to the
unit (Figure 16B) in an effort to get automated distance information rather than relying on the
operators to input. Finally, a visible camera was added, which can give information on lighting
reflections and component identification (Figure 16C).

Software was developed to integrate the sensor drivers from multiple sources in one central
location. Included in the software is the capability to read and save data from the various sensors
under investigation including the FLIR g300a, FLIR Boson 640, Basler acA1920, Velodyne VLP-
16 Puck Lite, and ODROID WeatherBoard 2.0. Drivers were written or incorporated and
optimized to run on an Nvidia Tegra TX-2 and Nvidia Xavier AGX embedded computers.

It was necessary to develop software that would generate a data fusion of the multiple disparate
data sources and streams which required temporal and spatial alignment, as well as standardization.
The first step in this process was to register the different camera views together, using the MWIR
OGI images as the reference for alignment. Data fusion provides functionality for comparison of
streams and sources relative to each other in parallel. A thermal blackbody calibration tool was
used in both the MWIR and LWIR imagers for relative pixel intensity comparisons (Figure 17).
Each camera has a different dynamic thermal range; the MWIR camera has a relatively small
thermal window and so the pixel intensity swings from one end of the range to the other very
quickly, while the LWIR camera has a much wider thermal calibration, and so stays within a much
smaller window (Figure 18).

g300a thermal
500 500

400 4 400

300 4 300
200

200

100 100

Figure 17. Thermal Blackbody Calibration Tool Observed in MWIR (Left) and LWIR
(Right)
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Figure 18. Pixel Intensity for Both MwIR and LwIR as Thermal Blackbody Heats and
Cools

5.2 Data Collection

The initial round of data collection in September 2020 used a wind tunnel to provide additional
plume stability with the configuration for the initial setup shown in Figure 19. Table 5 shows the
test matrix performed during each collection.

Table 5. Summary of Methane Quantification Data Collection

Fall 2020
Number of Test Configurations 111
Sensor Array Distance (ft) 20-50
Background Solid cardpoard V\_/all, solid metal wall, no
immediate backdrop
Methane Flow Rates (scfh) 0, 20 — 400
Weather Drizzle, overcast, sunny
Wind Calm, gusty

During the first round, the tunnel and fan setup ensured data collected during the experiment would
consider “Downwind Distance” to be composed of solely one direction and relatively consistent
windspeed while largely ignoring external wind. The Camera array was placed at various distances
ranging from 20ft to 50ft away from the test, and the methane release flowrates varied from 0 scfh
to 400 scfh. Directly behind the opening of the wind tunnel, two different solid walls were setup.
One cardboard to be relatively low reflectance and thermal emission, and another metal, which has
a higher visible and thermal reflectance and emissivity. Data Collection setup is shown in Figure
19. Along with the optical sensors laid out above, a portable weather station was included in the
test. This station recorded UV index, Solar Radiation, Humidity, Pressure, and Temperature, all of
which affect the observability and absorption of CH4 in the MWIR band.
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5.3 Data Exploration

In order to understand what the methane should ideally look like in the OGI at different flow rates,
we generated the ideal volumetric methane concentration of each test at the prescribed distance
and release rate. We then compared the modelled concentrations with the observed methane in the
corresponding test. It was noted that there is a notable correlation in regions of higher concentration
in the dispersion model with areas of lower intensity (greater optical absorption) in the observed
plume. The effects plume stability were also investigated, and an algorithm was developed to infer
stability conditions based on observed plumes. Figure 20 shows an ideal plume model fit to the
spline of an unstable detection mask. This process allows for us to account for wind and turbulence
when comparing observations vs modelling.
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Figure 20. Gaussian Plume Model Spline Fit and Overlayed on Observed Plume

It was observed that the effect of lighting conditions on observed methane plumes plays a large
role in the data as well. During data collection over the course of several days, weather ranged
from completely overcast and partly raining to fully sunny on other days. These variations between
each test and the UV index and Solar Radiation values changes how much radiation the methane
is absorbing, and thus, how much information the OGI can obtain on the methane plume. Efforts
were made to account for the observed lighting variations by incorporating information from the
visible camera, LWIR camera, and weather station solar and UV sensor readings. Unfortunately,
the problem is nonlinear in nature and removing the effects in the recorded MWIR band was not
possible.

5.4 Go/No-Go Decision Point
The Go/No-Go Decision point for this phase of the project was defined in the U.S. Department of
Energy’s Statement of Project Objectives (SOPO) as:

e Develop a functioning prototype system with interfaced cameras and processing system
that provides the following: Quantification of Methane plumes within +- 50% actual
release for 70% of its quantification decisions.
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The validation metrics for the model at the end of the first phase are shown in Table 6.

Table 6. Model Validation Metrics

Accuracy
<=100scfh 0.84
>=150scfh 0.80
Weighted Accuracy 0.82

The first half of phase 4 was focused on identification of suitable and promising algorithms,
processing techniques, and data combinations to properly inform the quantification goals. To limit
the number of parameters to consider, certain constraints were imposed including the aggregation
of the recorded methane flow rates into a binary thresholding problem. The tests were binarized
as so:

e <=100scfh
e >=150scfh

The Go/No-Go results are based on this premise and models trained accordingly. For our validation
data, we took two tests and this time we incremented the flow rate by 50 scfh every two (2) minutes
in the data; one starting at 25 scfh and ending at 250 scfh, and another starting at 400 scfh and
ending at 50 scfh. The metrics presented are based off of these validation tests. When classifying
25-100 scfth and 150-400 scfh as >=150 scfh, we are within the +- 50% defined goal for Phase 4a
and we categorize each flowrate successfully 82% of the time, surpassing the goal of 70% accuracy
in Phase 4a.

5.5 Phase 4b: Regression Model Development

The results of the September experiments were used to inform setup and data collection procedures
for the second round of data collection in April 2021.

Fall 2020 Spring 2021 Total
Number of
Test 111 116 227
Configurations
Sensor Array .
Distance (ft) 20-50 30 20-50, (30 spring)
Solid cardboard wall, solid Solid cardboard wall,
Background metal wall, no immediate Solid metal wall solid metal wall, no
backdrop immediate backdrop
Methane Flow
Rates (scfh) 0, 20— 400 0, 50-1000 0-1000
Weather Drizzle, overcast, sunny Overcast, sunny Drizzle, overcast, sunny
Wind Calm, gusty Calm, gusty Calm, gusty
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During the second round of data collection, the camera array was placed at a fixed distance of 30
ft. The pseudo wind tunnel and fan setup were completely removed, and a solid surface backdrop
was selected to maximize the temperature differential, AT (Figure 21). To improve performance
of training regression-based network models, the second round of testing focused more on
continuous sweep tests between the range of 25 — 1000 scfh to allow for better training a validation
of the system. A methane flow meter was added into the system with 10hz data logging to measure
real-time flows and allow for converting from categorical networks to regression networks more
accurately. The same sensors and weather station were used to observe and record the methane
over a weeklong period.

A Sensor Array Setup B Data Collection Interface

Figure 21. A) Second Round Setup and B) Collection Interface

In addition, during the second round of data collection, the effects of orifice size were investigated
to see what role it may have on detection or quantification algorithm performance. In Figure 22,
the blue masks represent the contour of the methane plume detected by SLED-M system. The
plume becomes narrower and the distance between the upstream edge of the detected contour
increases with decrease in the orifice size (do), while the plume becomes thicker and more easily
detectable with an increase in orifice size (do). This lead to the observation that it is much easier
to quantify the observed plumes with larger diameter orifices to reduce exit velocity of the gasses.
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Figure 22. Effect of Orifice Size (do) on the Shape and Position of the Methane Plume
Detected by SLED-M System for Low and High Flow Rates

5.6 Methane Quantification Performance Evaluation

During Phase 4b, SwRI explored many iterations and combinations of model training and
processing. The performance of the models were evaluated against validation data and each other
to monitor and track improvements in the outputs as well as hyperparameter and input relationships
presented in the models. Figure 23 provides an example output of model validation after an epoch
in training. The plot shows the predicted scfh value vs the ground truth scfh value at each time step
and plots them as a correlation scatter plot. This allows for quickly and qualitatively evaluating
the models progress and ability to learn during training. A perfect model would have one dark line
going diagonally from bottom left to top right; the colors of each scatter point indicate the Mean
Absolute Error (MAE) from the center of the line and thus how incorrect each guess was by the
model.
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Figure 23. Example of Single Model Correlation Scatter Plot Ground Truth vs Prediction

5.6.1 Validation Data

Throughout Phase 4, the team trained and validated close to 300 models. The training and
validation sets were made by splitting the collection of all sets into two groups such that the
validation set had a representation across the whole tested scfh range. To increase model
performance, the team applied filtering to these sets to ensure the model would make quantification
attempts only if environmental conditions were sufficient to yield a good estimate. The team found
that examining model performance on poor environmental conditions (e.g., very windy, great
overcast, etc.) resulted in non-representative metrics, as the model expectedly struggled in these
conditions. A table describing the dataset and the filtered dataset can be seen (Table 7Error!
Reference source not found.).

Table 7. Validation Set

group

description mode 50 scfh 100 scfh 150 scfh 200 scfh 250 scfh 400 scfh 1000 scfh sweeps totals
# of sets train 5 3 4 5 4 4 1 9 35
validate 1 1 1 1 0 1 0 4 9
total-count (frames) train 20684 13826 17886 23575 17114 17396 5007 49641 165129
validate 4297 4694 4342 4502 0 4248 0 17168 39251
filtered-count (frames) train 9713 5673 9220 9389 9529 7937 2838 13185 67484
validate 2603 1028 2550 2398 0 2721 0 8695 19995

The validation set was designed to provide additional detail to inform future hypotheses for model
performance optimization. The set included five fixed rate and four sweep rate samples all of which
spanned the range of collected flow rates between 0 and 1000 scfh. Validation set was designed to
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provide additional detail to inform future hypotheses for model performance optimization. Scfh
by time plots of the validation data are shown in Figure 24.
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Figure 24. Validation Sets used for Model Evaluation.

It was noted that several datasets had extremely windy or overcast conditions that created non-
ideal conditions for quantification and were not used for our experiments. As an example, on one
collection there was light rain that halted collection for the day, extraneous weather conditions
were outside of scope and required to be removed from the final used data. On this note, the team
saw a significant difference in the fall collection and the spring collection in both the midwave and
thermal sensor readings. The fall collection has much less pronounced methane sensing and had
worse weather conditions overall. In addition, collection in the fall included moving in and out
different backgrounds which resulted in increasing the number of experimental parameters outside
of the scope of what was to be expected from our initial models. For these reasons, the team
primarily used the April collection and split that collection into training and validation sets.

5.6.2 Sensor Combination Evaluations

To evaluate the efficacy of the midwave, longwave, and visible sensors used in data collection, an
experiment involving camera combinations at varying flow rates was performed. The initial
hypothesis was that additional sensors provided as inputs to supplement the midwave sensor would
improve lead to improvements in regression model performance. Five combinations of sensors
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were evaluated, and feature engineering was used to add additional temperature information for
some combinations. Three pre-trained deep learning models with pre-trained weights were used,
including InceptionResNetV2, MobileNetVV2, and EfficientNetB0. These five combinations of
sensors were trained and tested against the validation data.

To validate and compare each model, prediction values per frame were generated. A rolling median
was calculated for smoothing the predicted results using a window size of 50 frames. Frames in
which a true value flow rate of less than 25 or greater than 1100 scfh were removed. Calculations
were performed to compute standard regression metrics including MAE and coefficient of
determination (R?) to measure performance of predictions against ground truth values. Specific to
the goals of this project, mean absolute percentage error (MAPE) was also included to give a better
assessment of how the model performs at lower flow rates. MAE calculations were used to rank
the 15 models, which were then compared with MAPE and R? values for additional context. The
results of this cross validation are shown in Figure 25 and Figure 26. It was noted that in general
the midwave infrared + weather information performed better than combinations with thermal or
visible camera pairs.

model_cameraCombination MAE mean MAE median R2 mean R2 median MAPE mean  MAPE median
1 EfficientNetBO mwT 131.221 99.338 -56.583 -7.590 0.490 0.413
2 EfficientNetBO mwT + vis 132.315 129.759 -24.867 -1.113 0.360 0.391
3 EfficientNetBO mwT + IwT 145.790 137.713 -130.071 -44.692 0.717 0.425
4 EfficientNetBO mw 148.956 109.835 -61.562 -7.154 0.516 0.445
5 EfficientNetBO mwT +lwT +vis 170.256 152.098 -148.300 -19.434 0.768 0.486
1 InceptionResNetV2 mwT 107.761 92.144 -42.605 -20.207 0.470 0.342
2 InceptionResNetV2 mwT + vis 113.927 126.763 -63.446 -41.853 0.545 0.397
3 InceptionResNetV2 mwT + IwT 120.811 81.202 -22.375 -5.054 0.379 0.401
4 InceptionResNetV2 mw 121.055 75.764 -37.040 -17.097 0.449 0.414
5 InceptionResNetV2 mwT + IwT + vis 126.703 87.989 -24.196 -19.571 0.375 0.387
1 MobileNetV2 mwT + vis 109.661 113.948 -22.710 -6.874 0.340 0.349
2 MobileNetV2 mwT 112.152 109.777 -31.321 -29.154 0.432 0.358
3 MobileNetV2 mw 114.712 109.373 -31.827 -17.028 0.425 0.348
4 MobileNetV2 mwT + IwT + vis 115.325 93.195 -72.017 -14.912 0.568 0.400
5 MobileNetV2 mwT + IwT 117.469 89.498 -58.211 -5.634 0.515 0.392

Figure 25. Camera Combination Evaluation Results.
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Figure 26. Mean Absolute Error (MAE) calculations for camera combination.

5.7 Quantification Model selection

The first wave of sets was trained and validated on the set described in Table 7. The results of this
set can be seen in Figure 27. The team notes that models, overall, preformed the best in the 200
scfh example and the worst in the 50 scfh example. A closer examination of the 50 scfh displayed
less than optimal environmental conditions, despite attempts to filter out all these conditions, and
the team notes that further exploration of filtering techniques can lead to better quantification
guesses. Most models perform within 10%-30% MAPE. The team utilizes MAPE as the primary
metric, as saturation in sensor data was observed for higher flowrates and less accuracy in higher
flowrates is expected. The use of MAPE also artificially inflates the lower, 50 scth flowrates by
expecting a much smaller window of tolerance than the higher flowrates.
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Figure 27. Mean Absolute Percentage Error (MAPE) for all sets.
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Final metrics selections were made using cross-validation. Each model was passed through four
(4) sets of different train/test split. Each split was set to randomly include members of static sets
and sweep sets. The results of this cross validation are shown in Figure 28 with the top three
regression models shown. EnsembleNet was chosen as it is the highest performer, on average,
across all cross-validation sets. In addition, EnsembleNet also made use of the single MW camera
which is advantageous for fielding. While the MobileNet model preformed similarly (and better
in V2), the cost of using all cameras introduces significant computation complexity with non-
significant improvements.
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Figure 28. Model Cross-Validation Summary

5.8 Quantification Results

As mentioned, an important aspect of being able to visualize and quantify the methane, is having
a valid temperature difference (AT) between the methane and its backdrop. When developing these
metrics, they are focused on segments of methane releases that meet the following criteria:

1. SLED/M Detection is able to detect and mask the methane plume in the image and
subsequent images in time
2. Anadequate AT, > 2°C, has been calculated and is present in the image

The target performance goals for this project were as follows:

1. Classification: Achieve £50scfh Quantized Accuracy > 70% of the time
2. Regression: Achieve < 10 scfh prediction > 70% of the time
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Figure 29. Detection + Quantification at Multiple Flowrates
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Figure 30. Final Validation Metrics

Figure 29 shows the ground truth vs predicted error for the final test data set. In addition to the
MAPE, each plot has an error envelope (light green); this envelope is + 50 scfh of the measured
ground truth when below 500 scfh and + 10% of the measured ground truth when above 500 scfh;
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allowing us to bin the predictions into an accuracy score in addition to the regression error.
Furthermore, we included data from various days to test the capabilities of the system in various
lighting and weather conditions. Notably, the test from the bottom right most plot from the 27 of
April has a lot of frames that did not meet the stability and AT requirements, and as such does not
start stabilizing toward the end of the test, causing outliers in the statistics. This does show that
the cameras are extremely sensitive to ambient conditions when making determinations, and
further work is needed to combat this.

Our best performing quantification model was able to achieve the following metrics on valid
frames where 1) the methane was detected and 2) a valid AT was observed. These results are
shown in Figure 29 and Error! Reference source not found..

1. Average Percentage Prediction Error: 12.3%
2. Accuracy +50scfh: 97.78%

5.9 System Benchmarking

A key component of this last phase of the project was the commercialization and business
development plan. To this end, development and benchmarking of the algorithm on embedded
architectures was performed. The FLIR G300a operates nominally at 12hz and the Sierra Olympics
Ventus OGI operates nominally at 30hz. Table 8Error! Reference source not found. shows the
performance of SLED-M and SLED-Q on different embedded architectures. The Input Size fields
represent the input image size in pixels to the algorithms being tested. The FLIR G300a has an
output resolution of 240x320 and the Sierra Olympics Ventus OGI has an output resolution of
512x640. While operating on the highest resolution images possible is ideal, in the final application
these images can be scaled for performance with minimal decrease in accuracy of the algorithms.
The networks benchmarked below was trained using FP32 precision and then the trained network
weights were quantized during inference for each step below.

These benchmarks can be used to inform vendors on what processing architectures to incorporate
either into the cameras or into third party addons for the cameras in order to deploy SLED-M.
Other Edge Al capable devices exist on the market, such as Google Coral and Intel Neural
Compute Models. The boards below are what we had on hand during development.

Table 8. System Performance Benchmarks

Model Precision Input Size Frames Per Second
Detection FP16 240x320x5 48.66 FPS
Xavier AGX
Detection + Quantification FP16 240x320x5, 240x320x1 30.82 FPS

6. CONCLUSIONS

Oil and gas operators need a way to reliably detect and quantify fugitive methane emissions in
order to promptly act on leaks, reduce cost and risk, speed up inspection times, monitor remote
and harsh environments, and satisfy recent methane regulation requirements. SLED/M helps
operators to meet these needs using an autonomous, flexible technology that prioritizes safety, ease
of use, reliability, and cost reduction.
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SLED/M has the ability to autonomously detect fugitive methane emissions deployable on a drone
for remote inspection and faster, more reliable site inspections, as well as the ability to quantify
detected plumes in one tool while keeping operators out of hazardous areas. This technology can
meet some customer needs including an increase in speed of periodic pipeline inspection by
augmenting visual inspection for the operator, allowing them to focus on safety and other cost and
risk reductions.

SLED/M can detect methane leaks as low as three (3) scfh with a precision of 96.6% and false
positive rate of 2.22%. Additionally, SLED/M is capable of estimating methane flow rate and
concentration within 12.3% of ground truth flow rate. The technology itself only requires the
MWIR OGI camera providing SLED/M with a flexible competitive advantage and reducing the
need on the customer to use additional instrumentation and equipment.

6.1 Next Steps

During development of the quantification algorithm, it was noted that environmental factors play
a large role in the reliability of the outputs. Further data collections and work is needed to develop
a robust quantification dataset, varying environmental lighting, weather, distance, and backdrops.
Additionally, reliably recording and correlating all of this information has been a problem, so
further work is needed on developing robust testing setup and methodologies for future work.

7. ACKNOWLEDGEMENT

The project team gratefully acknowledge that this work is supported by the U.S. Department of
Energy’s Office of Fossil Energy and the National Energy Technology Laboratory (NETL) , under
Award Number DE-FE0029020. The team also gratefully recognizes significant support and
collaboration from Teledyne-FLIR, Sierra Olympics, and Heath Consultants.

8. DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
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1. SCOPE

The major goal of this Department of Energy (DOE) research project was to develop an
autonomous, real-time methane leak detection technology, The Smart Leak Detection —Methane
(SLED/M), which applies machine learning techniques to passive optical sensing modalities to
mitigate emissions through early detection, as well as provide a quantification estimation.

1. Runin real-time on the edge ( >= 12 Hz)

2. Classification: Achieve less than 5% false positive detection

3. Classification: Achieve >= 95% methane plume detection rate
4. Regression: Achieve +- 10 scfh prediction > 70% of the time

This document summarizes the system products resulting from the culmination of the DOE-NETL
Smart Methane Emission Detection System Development project.

1.1 System Overview

The Smart Leak Detection — Methane + Quantification system was developed and tested on the
Nvidia Tegra Xavier AGX platform using a FLIR g300a Optical Gas Imager (OGl), with the addition
of an ODROID Weatherboard 2 for real-time ambient weather conditions. The software reads
frames from the OGI camera over a Real Time Streaming Protocol (RTSP) interface, and weather
information over an 12C interface. This information is pre-processed and the OGI frames are fed
to a pre-trained TensorRT semantic segmentation inference engine to detect and localize
methane in the frame. If methane is detected, the associated OGl image and weather information
is then fed to another set of preprocessors and fed to a second pre-trained TensorRT deep
regression network inference engine to estimate the flow rate in standard cubic feet per hour
(scfh) of the detected methane plume. Both outputs of the inference engines are then passed
through post-processing functions and then displayed to the user over a web interface or RTSP
output stream.

This software is capable of running >= 40 frames per second on the NVIDIA Tegra Xavier AGX
platform, where the associated OGI camera is only capable of capturing images at 12 frames per
second, exceeding real time capabilities of the system.

This document contains an overview of the Phase four (4) software, a description of the
development and testing platform, compilation and execution instructions, and version
information.

1.2 Referenced Documents

The following documents, of the exact issue shown, were referenced as indicated during the
development of this document. The applicability statement associated with each document
reference indicates Superseding if the referenced document supersedes this document in the
event of a conflict.
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1.3 Acronyms

ACRONYM DEFINITION
API Application Programming Interface
BG Background
CPU Central Processor Unit
CSC Computer Software Components
DOE Department of Energy
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
I/O Input/Output
IP Internet Protocol
MWIR Mid Wave Infrared
(0N Operating System
RTSP Real Time Streaming Protocol
SD Secure Digital
SLED/M Smart Leak Detection - Methane
SLED/MQ, Smart Leak Detection — Methane + Quantification
SLED/Q Smart Leak Detection - Quantification
SSH Secure Shell
SW Software
SwRI Southwest Research Institute
TBD To Be Determined
TBR To Be Reviewed
Ul User Interface
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2. SOFTWARE OVERVIEW

The software and embedded system is collectively referred to as “SLED/M”, which is a machine
learning algorithm within an embedded software package. This section describes the following
for the SLED/M software:

High-Level Software Design
Development and Testing Platform
High-Level Source Tree Description
Compilation and Execution Instructions
Version Information

ik wN e

2.1 High-Level Software Design

The Smart Leak Detection — Quantification (SLED/Q) software is comprised of the following
components:

e Neural Network: The output of training a deep learning algorithm against a variety of
methane leaks and ambient backgrounds. The neural nets produced from the training
are used as inputs to the SLED/M program.

e Camera Driver: Logic that interfaces to the primary sensor, the FLIR G300a Mid Wave
Infrared (MWIR) camera. In addition, the camera driver includes camera simulation
logic, allowing previously recorded images to be replayed for testing purposes.

e Preprocessing: Logic that modifies the input image from the camera in preparation for
the neural net and user output display. This logic is also responsible for keeping global
and batch-level statistics that are used to normalize the imagery data at various stages.

e Post Processing: Logic that processes the output of the neural network and generates
the user output indicating presence (or non-presence) of a methane leak.

Figure 1 depicts the logical flow of each component.

SLED-M
weatherboard2 preprocs
Cam_g300

SLED-Q

output
preprocs

Y

Y

DATA STREAM

SLED-Q
PREDICT

OUTPUT
(mask,quant)

Figure 1. SLED/Q Software Flow Diagram
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2.2 Development and Testing Platform

The SLED/Q software was developed on Ubuntu 18.04 LTS and tested on the Nvidia Tegra TX-2
Ubuntu 18.04 LTS, as well as the Nvidia Xavier AGX Ubuntu 18.04 LTS. System dependencies and
versions are shown in Table 1; Python package dependencies and versions are shown in Table 2.

Table 1. SLED/Q System Dependencies

Package Name Package Version
LAT 3244
Jetzpack 4.4.1
Python 3.6.9
Cuda 10.2.89
TensorRT 7.1.3.0
nvinfer 7.1.3.0
cudnn 8.0.0.180
cublas 10.2.2.89-1
cudart 10.2.2.89-1
uff-converter 7.1.3-1+cudal0.2
opencv 4.1.1
protobuf 3.0.0-9.1
gstreamer 1.14.5
libboost-all-dev 1.65.1.0ubuntul

Table 2. SLED/Q Python3 Package Dependencies

Python Package Name Python Package Version
argparse 1.1
re 221
tensorrt 7.1.3.0
ctypes 1.1.0
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Python Package Name

numpy
numpy.core
numpy.core._multiarray_umath
platform
numpy.lib
numpy.linalg._umath_linalg
zlib
decimal
logging
cv2
pycuda
Six
decorator
numba
yaml
llvmlite
optparse
json
numba.misc.appdirs
scipy
scipy._lib._uarray
fast_histogram

gi

Python Package Version

1.18.5
1.18.5
3.1
1.0.8
1.18.5
b'0.1.5'
1
1.7
0.5.1.2
4.11
(2020, 1)
1.15.0
4.1.2
0.53.1
5.3.1
0.36.0
1.5.3
2.0.9
1.41
1.54
0.5.1+49.g4c3f1d7.scipy
0.9

3.26.1



Southwest Research Institute
Smart Methane Emission Detection System Development
Phase 4 Deliverables Report

10-22468-DELIV_REPORT-01 RO CO

November 18, 2021

2.3 High-Level Source Tree Description

The components previously described in Section 2.2 are split among several subdirectories in the
SLED/M source tree, Table 3 provides a listing of the primary source files and directories. Figure

2 shows the data flow of the program.

|

cameraStreamGrabber.py ‘

inferenceConfig.ini

Read Config 3

P Setup RTSP

«Camera»
16 bit RTSP

UDP Data Packet

Read 12C Register

T Build Image
Setup 12C
«Weather Board» —
12C

sled-mq.py

2]

sled-m.rt

Read Inference Engine Detection

Read Inference Engine Quantification

Send Image:
Port 10000

T Parse Image
T Preprocess Image(s)
1 Detection Inference

Determine Plume
Direction / Crop

T ] quantification Inference

2]

sled-q.trt

web_gui.py

T ] Establish web Server

rtsp_streamer.py

Masked Image / Quantification:
Port 60000

Masked Image / Quantification:
Port 60000

) Parse Image

pOutput Masked Image:
Port 5000

T ] Establish RTSP Streams

[ ]Parse Image

Output Masked Image:
Port 8554

«interface»
WebBrowser

Figure 2. SLED/Q Software Diagram

«interface»
RTSP
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Table 3. SLED/Q Source Tree

File/Directory Name

README.md

python_infer/SLED-MQ.sh

python_infer/inferenceConfig.ini

python_infer/infer_preprocessors.pyc

python_infer/sled-m.pyc

python_infer/sled-mq.pyc

python_infer/models/

python_infer/models/sled-m.trt

python_infer/models/sled-q.trt

python_infer/Flask_Server/

python_infer/Flask_Server/web_gui.pyc

python_infer/cameraStreamGrabber.pyc

python_infer/g300aLiveFrameGrabber.pyc
python_infer/rtsp_streamer.pyc
python_infer/weatherboard/
python_infer/weatherboard/BME280.pyc

python_infer/weatherboard/SI1132.pyc

python_infer/weatherboard/weatherBoardLive

.pyc

Type

file

file

file

file

file

file

directory

file

file

directory

file

file

file

file
directory

file

file

file

Description

Readme and instruction file for the
codebase

Primary execution script for the SLED/MQ
program that wraps all argumentsin a
Bash shell script

Configuration file with options and
definitions for the SLED/MQ program

SLED/MQ preprocessor definitions
SLED/M inference engine compiled binary

SLED/MQ inference engine compiled
binary

Folder for SLED/MQ inference engines

contains a SLED/M inference engines
compiled binary

contains a SLED/Q inference engines
compiled binary

Folder for Web Viewer and Control server

Web Viewer and Control server for
SLED/MQ

Configurable input streaming utility and
camera driver

FLIR g300a driver module
RTSP Streaming output for SLED/M
Folder for Weather Module Interfacing
Interface with BME280 weather module
Interface with SI1132 weather module

Concatenate weather data from modules
for preprocessor definitions
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2.4 Compilation and Execution Instructions

This section describes how to compile and run SLED/Q.
2.4.1 Compilation

Python source code requires no compilation.

2.4.2 Execution

The two methods of running inference using the SLED/MQ software are described in sections
2.4.2.1and 2.4.2.2.

Streaming Configuration
1. Bash Script

a. Usage: SLED-MQ.sh --<streaming_mode>
b. The available streaming modes are listed below

i. --web - Outputs the stream via Web graphical user interface (GUI)
ii.  --rtsp = Outputs the stream via RTSP streamer

2.4.2.1 Option 1: Web GUI and Control
Works best on Google Chrome. Works on Firefox with slight bugs. Not working on Safari.
Connect to the Web Server

1. Run the SLED-MQ.sh file located in python_inference/SLED-MQ.sh directory with the --
web or -w flag.

a. Serveris ready when you see: * Running on http://0.0.0.0:5000/ (Press CTRL+C to
quit)

2. Inaweb browser, connect to the IP address of the Jetson port 5000.
3. The GUI should be visible as shown in Figure 3.


http://0.0.0.0:5000/
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Remove Segmentation

‘ Record Video
| Stop Recording |

[ Full Screen Video ]

[ Run Inference ]

Smart LEak Detection

Figure 3. SLED/Q Web GUI

To Run the Inference Script

1. Press the button labeled "Run Inference". It takes about 25 seconds for an output to
appear.

Settings Adjustments

2. Inthe python_infer directory there is a Configuration file called inferenceConfig.ini. This
contains all the possible settings that can be varied for inference. These settings need to
be changed BEFORE running the GUI; changing them after will result in usage of the old
settings. A detailed description of the different settings and how they function is seen in

Table 4.
Table 4. SLED/Q Runtime Options

Section Parameter Options Default Value Function
Integer distance This tells the algorithm how far
in feet the the camera is from the plume
generatorOpts distance camera is from 30 so that it can scale the frames
the methane appropriately before running

plume inference

10
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Section Parameter Options Default Value Function
Path to SLED/Q Provides the algorithm with the

./models/sled-
q.trt

location of the methane
qguantification model

modelOpts quant_model_path inference engine
compiled binary

Path to SLED/M Provides the algorithm with the
. . ./models/sled- .
detect_model_path inference engine location of the methane
. . m.trt .
compiled binary detection model

Port numberto 1234 - needsto The port number provided here

inferenceOpts g300a_serverport the g300a be provided by allows for communication with
camera user the camera when in 'live' mode

To Save Video Feed

1. Press the button labeled "Record Video." This will create a file in the directory from
where the program was run on the jetson labeled outpy#-
YEAR_MONTH_DAY_HOURMINUTESECOND.avi

2. To stop recording, press the button labeled "Stop Recording"

a. Thevideo thatis recorded is exactly what is seen in the frame. If segmentation is on,
then it will appear in the recording. If segmentation is off it will not appear.

2.4.2.2 Option 2: RSTP

1. Run the SLED-MQ.sh file located in python_inference/SLED-MQ.sh directory with the --
rtsp or -r flag.

2. Connect Via Media player; VLC works great. There will be two streams, one for just the
raw output, another with the mask overlay. Change IP to current system IP address.

Output shown in Figure 4.

a. rtsp://{IP}:8554/sled
b. rtsp://{IP}:8554/raw

11
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N

eoe rtsp://129.162.106.144:8554/sled

Figure 4. SLED/Q RTSP Output

2.5 Software Version

The SLED/Q version being delivered via this document is v4.0, created on 09/30/2021. The source
set used for this baseline is attached in Appendix A.

Prior to this version, baselines were created as development of beta testing progressed. A history
of baselines, along with the baseline being delivered (last entry), is shown in Table 5.

Table 5. Software Version History

Version SVN Tag Description

Initial baseline that compiles. Not a functional build,
but proves linking of (1) camera driver, (2) background

0.1 2017_0621_1056_SLED/M subtraction libraries, (3) data loading libraries, (4)
OpenCV, and (5) Caffe.
0.2 2017_0629_1042_SLED/M First build to successfully display an image from both

the FLIR A6604 and FLIR A65 camera.

First build to successfully show an image from the
0.3 2017_0711_1025_SLED/M camera, run it through background subtraction, and
show the resulting foreground extraction.

12
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Version SVN Tag Description

First known build to reliably load a camera
0.4 2017_0713_1646_SLED/M configuration file and display GUI debug output and a
valid foreground measure using FLIR A65.

First build to reliably work with both cameras (FLIR
A6604 and FLIR A65), loading configuration files as they

0-5 2017_0714_1145_SLED/M are modified (minimal hard coding), and exit gracefully
upon camera shutdown or loss of network.
First build to multi-thread the simulated reading of
files, the camera feeds, the web interface, and the GUI
0.6 2017_0724. 0933_SLED/M display thread. The web server thread and the

processing thread appear to be initially correctly
operating; however, Open CV displays are not yet
working in parallel with Qt.

First build to reliably not have conflicts between Qt and
Open CV imshow() calls (via the enable_debug_gui
0.7 2017_0725_1042_SLED/M flag). Shown to successfully display images in Open CV
and the web server with all three input sources:
simulated data, FLIR A65 data, and FLIR A6604 data.

This version successfully displays the user output
webpage (if it displays the raw feed and bg subtracted
image) from simulated data and FLIR A6604. Caffe
Classifier loads and runs successfully for simulated (if
commented in) but commented out due to it crashing
when connected to real camera.

0.8 2017_0802_1344_SLED/M

This version successfully ingests feeds, classifies them
against the configured Caffe model, and runs the web
server for user output. First known release with no
known major issues (although minor issues do exist).

0.9 2017_0808_1554_SLED/M

This is the first version that successfully uses the best-

known model to overlay a methane detection on data

used for validation and displays minimal false positives
in ambient conditions.

1.0 2017_0814_1618 SLED/M

Added program option to decimate simulated data.
Modified logo to have DOE/NETL/SwRI (along with
SLED). Added white text box around image
1.1 2017_0822 1620 _SLED/M filenames/timestamps for much easier reading. Added
Initializing box to classified image while BG model being
generated. Fixes issue with classifier and raw image not
keeping up on web display.
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Version SVN Tag Description

Fixes bug with Caffe net (image_queue_) not being
correctly populated (major issue), updated CLAHE for
1.2 2017_0828 1438 SLED/M 16-bit scaling with Open CV3 (better web browser
viewing), fixes HTTP streaming lag issue, ensures Caffe

cleanly shuts down.

Addresses issue with RemoveDeadPixels() incorrectly
modifying images. Adds a simple fault system for
camera disconnect and low space (and associated GUI
updates). Modifies classified image to include
probability coloring (red = high, blue = low). Cleaner
shutdown on both Tegra and deep-cruncher via Ctrl-C.

1.3 2017_0908_0854 SLED/M

Code cleanup, additional comments. Prototype of
methane detection sensitivity included. Adds security
to HTTP server code. Fixes CDT/UTC issue with BG
1.4 2017_0914_1550 SLED/M model filename. Additional checks on ensuring program
can write to output directory. Added --
exit_after_bg gen functionality. Check in Caffe model
as part of SLED/M repository.

2018_0920_0216_SLED/M Added final tag. Updated charts wit'h final software
2.0 design. Updated software dependencies table. Updated
class definitions.

3.0 2019 1113 1536 _SLED/M Added Tag for Aerial Detection Network.

31 2020_0311_1230_SLED/M Updating Tag to include weﬁ-based user interface for
usability.

4.0 2021 0930 1400 _SLED/MQ Added Quantification Capabilities
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3. MECHANICAL OVERVIEW
The hardware required to operate the Smart Leak Quantification Algorithm is listed below:
1. MWIR OGI Camera
a. The current software has only been tested on 16-bit RTSP camera interface

2. ODROID Weatherboard 2 weather module

Nvidia Tegra TX-2 or NVIDIA Xavier AGX or similar Linux based computer

4. Locally attached Display or Ethernet or Wi-Fi enabled device to view the output of the
system

w

The hardware wiring is shown in Figure 5.

120 VAC

MwIR Optical Gas[€ D'y
Imager

NVIDIA Tegra
TX2/Xavier AGX

/Ubuntu 18.04 \

SLED-M Software « Local Display
« Ethernet Connection
1. Camera Driver « WiFi
2. Preprocessing
VCC 3.3V Module

ODROID GND: 3. Detection Algorithm
WeatherBoard 2 SCL- 4. Output Modules

. ')

Figure 5. SLED/Q Hardware Diagram

1 Gbps Ethernet
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4. TEST OVERVIEW AND RESULTS

Our best performing quantification model was able to achieve the following metrics on valid
frames where 1) the methane was detected and 2) a valid AT was observed. These results are
shown in Figure 6 and Figure 7.

1. Average Percentage Prediction Error: 12.3%
2. Accuracy £50scfh: 97.78%

Ground Truth: 236.528cih, Predichion: 196./5scTh Ground Truthe J6Z2.19scih, Predichion

Ground Truth: 583.64scfh,

Figure 6. Detection and Quantification at Multiple Flowrates
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Figure 7. SLED/Q Benchmark Metrics
4.1 System Benchmarks
The provided code timings and benchmarks are shown in Table 6.
Table 6. System Performance Benchmarks
Model Precision Input Size Frames Per Second
Detection FP16 240x320x5
Xavier AGX 30.82 FPS
Quantification FP16 240x320x1
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5. CONCLUSION

SLED/Q has the ability to autonomously detect fugitive methane emissions, deployable on a
drone for remote inspection and faster more reliable site inspections as well as the ability to
quantify detected plumes in one tool while keeping operators out of hazardous areas. This
technology can meet some customer needs including an increase in speed of periodic pipeline
inspection, by augmenting visual inspection for the operator, allowing them to focus on safety
and other cost and risk reductions.

SLED/Q can detect methane leaks as low as three (3) scfh, with a precision of 96.6% and false
positive rate of 2.22%. Additionally, SLED/Q is capable of estimating methane flow rate and
concentration within 12% of ground truth flow rate. The technology itself only requires the MWIR
OGI camera providing SLED/Q with a flexible competitive advantage and reducing the need on
the customer to use additional instrumentation and equipment.
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Appendix A SLED/Q Software
Please see SLED-Q.zip
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