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EXECUTIVE SUMMARY 

 

Working with the U.S. Department of Energy’s Office of Fossil Energy and the National Energy 

Technology Laboratory, Southwest Research Institute® (SwRI®) developed a system to identify 

methane leaks reliably, accurately, and autonomously at critical midstream sections of the natural 

gas distribution network in real-time for the purpose of mitigating methane emissions using Optical 

Gas Imaging (OGI) cameras.  SwRI’s Smart Leak Detection – Methane (SLED/M) adds a high 

degree of automation to the process of methane leak detection to minimize sources of human error, 

minimize response time to a leak event, and maximize midstream visibility. Furthermore, SwRI 

has been working towards integrating Quantitative OGI (QOGI) capabilities into this existing 

technology. By leveraging Deep Learning, SwRI now has the capability to estimate fugitive 

emission leak rates quickly and reliably, which allows operators to detect emissions, quantify leak 

rate, prioritize repairs, and validate the repairs in a single instrument. The next generation QOGI 

technology leverages the same cameras used in Leak Detection and Repair (LDAR) programs, 

with improvements in safety and speed for traditional quantification-based repairs, ultimately 

leading to less overhead cost for the operators.  

 

The goals for this research were to develop two types of models with the following goals: 

1. Run in real-time on the edge ( 12 Hz) 

2. Classification: Achieve less than 5% false positive detection 

3. Classification: Achieve  95% methane plume detection rate 

4. Regression: achieve  10 standard cubic feet per hour (scfh) prediction > 70% of the time 

In order to achieve these results, multiple infrared (IR) and other sensors were investigated in 

tandem with the midwave IR (MWIR) OGI to provide additional information to train the 

underlying models. Information on atmospheric conditions including humidity, temperature, 

pressure, and solar radiation was provided by a weather station. Several machine learning and deep 

learning architectures and methods, including looking at quantized classification networks and 

regressions networks, were explored. As further data was collected, curated, and labeled, it allowed 

for more refined regressive networks to be adequately trained, leading to better insight into the 

true flow rates being observed. An important valuable deliverable of this research effort was the 

development of an advanced network which underwent multiple iterations capable of giving a 

continuous output. The current network has a predicted mean average percentage error (MAPE) 

of 12.3% just outside our target goal of 10.00%, but an accuracy of 97.78% at ±50 scfh, well within 

the overall goal for the U.S. Department of Energy’s (DOE) Office of Fossil Energy program. 

Upon closer inspection, it was observed that more than 10% of datapoints contributing to the 

MAPE predictions were the result of low flow rate predictions and are beyond the sensitivity of 

instrument measurement as a result of normal operational variation and noise. Figure 1 shows an 

example of both SLED-M detection network and subsequent concentration, with ground truth and 

predicted values in the upper portion of each frame. 
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Figure 1. Detection and Quantification at Multiple Flowrates 
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1. INTRODUCTION 

Compressor stations used to move natural gas in midstream applications are a significant 

contributor to methane emissions.[1] One of the largest sources of methane emissions in the 

midstream sector is fugitive emissions from compressors. According to this study, 50% of fugitive 

emissions are from major compressor equipment. This problem is most significant from 

reciprocating compressors where faulty seals are a key contributor to methane emissions.[2, 3]  

Fugitive emissions from such sources could go undetected for extended periods of time, resulting 

in the accumulation of significant emissions.  

  

A key factor of site-level emissions, the “fat tail”, found in which a small number of sites have a 

disproportionate amount of emissions, particularly within the midstream segment.  As pointed out 

in Subramanian et. al., 10% of emitting sites contributed to 50% of the overall emissions.[2]  Thus, 

there is a significant need for a robust technology that could provide an early indication of an 

unexpected emission. Equally important, the technology needs to be able to account for biogenic 

versus anthrophonic sources of methane. One means of indirectly making this determination, is to 

leverage optical technologies that can autonomously pinpoint the source of such leaks. 

 

According to a recent study by Stanford, only one methane detection technology out of ten tested 

was able to estimate leak rate to within a range of half to two times the actual rate only 53% of the 

time.[4] The other eight were only able to estimate to within an order of magnitude 74% of the 

time.  All of these technologies rely on sniffer, or laser-based technologies. Per NSPS 40 CFR 60 

(OOOOa), these technologies fall under the Method 21 rules, which requires the sensor to be 

within a few inches of the component in order to verify the fugitive emission, as well as to verify 

that the fugitive emission has been repaired.  Under this same regulation OGI’s are able to detect 

and verify fugitive emissions visibly, which can be done from much farther away and much faster.  

We believe if we could quantify emissions with an OGI, this could be a major disruption in the 

way inspections are carried out in today’s oil and gas market. 

 

In 2016, SwRI was awarded funding from a DOE – National Energy Technology Laboratory 

(NETL) grant to develop an autonomous, reliable, real-time methane leak detection technology, 

the Smart Methane Leak Detection System (SLED), which applies machine learning techniques to 

passive optical sensing modalities to mitigate emissions through early detection.  The goals of this 

DOE program were as follows: 

• Develop a system to identify methane leaks reliably, accurately, and autonomously at 

critical midstream sections of the natural gas distribution network in real-time for the 

purpose of mitigating methane emissions. 

• Add a high degree of automation to the process of methane leak detection to minimize 

sources of human error, minimize response time to a leak event, and maximize midstream 

visibility. 

• Assist in the quantification process by providing a means of collecting temporal and 

spatial image data of a leak event. 

• Reduce operational costs of emissions detection technologies by significantly minimizing 

the need for operator involvement. 

• Provide a solution that is scalable, cost-effective, and non-intrusive. 
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• Reduce methane emissions through early real-time, autonomous detection of methane 

leaks. 

The project was conducted over four phases: 

• Phase 1 developed the prototype methane detection system with integrated optical 

sensors and the embedded processing unit.  

• Phase 2 implemented the prototype methane detection system developed under Phase 1 

into deployed hardware and refined the unit performance. 

• Phase 3 adapted the stationary algorithm developed in Phases 1 and 2 for deployment and 

operation on an Unmanned Aerial System (UAS) 

• Phase 4 added quantification capabilities to the system 

The output from this effort is SLED/M, an autonomous, real-time methane leak detection system 

which facilitates the early detection of emissions before they become a larger problem. 

Compressor station operators will be able to identify failing equipment in aging infrastructure and 

replace faulty components expediently, resulting in methane emissions being reduced significantly 

through early detection of non-compliant equipment. By adding the capability to estimate leak 

flow rates in conjunction with visual inspections, operators can identify and triage which 

components to replace first.  

 

SLED/M can detect methane leaks as low as three (3) scfh, with a precision of 96.6% and false 

positive rate of 2.22%. Additionally, SLED/M is capable of estimating methane flow rate and 

concentration within 12% of ground truth flow rate. The technology itself only requires the MWIR 

OGI camera and some basic weather information; temperature, humidity, and distance from the 

source, providing SLED/M with a flexible competitive advantage, and reducing the need on the 

customer to use additional instrumentation and equipment. Figure 2 shows the progression of the 

algorithm through all four phases. 
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Figure 2. SLED/M Roadmap 

2. PHASE 1 TECHNOLOGY DEVELOPMENT 

During Phase 1, the hardware and software components of the prototype system were developed. 

The hardware development consisted of interfacing the electrical and mechanical components of 

the optical sensor with the embedded processor. The software development involved developing 

robust algorithms that will continuously monitor the optical sensor’s output and intelligently detect 

the existence of methane without human intervention. The software is optimized for integration 

onto the embedded processor for efficient real-time execution and field operations.  

 

2.1 Controlled Testing 

SwRI continued to perform several methane release tests under realistic conditions to continue to 

increase the database containing methane leaks of various concentrations, distances, and scenarios.  

A portable rig was constructed to allow for gas discharges through various leak geometries while 

controlling pressure and leak rate. This was captured on the camera shown in Figure 3. The test 

conditions included varying ambient temperature conditions, cloud cover, presence, and lack of 

obstacles (such as piping), and varying wind (including stagnant) conditions.  
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Figure 3. Niatros™ and FLIR MWIR Cameras Acquiring Data During a Supervised 

Methane Release 

2.2 Algorithm Development 

SwRI performed further data collection to diversify the training sets for both methane imagery and 

false positives. It has been observed that the visibility of the methane plume, both to the human 

eye and to the algorithm, is highly dependent on the brightness of the object behind the methane 

plume since the primary detection mechanism relies on the absorption properties on the methane. 

 

For this reason, special emphasis was placed on collecting data with backgrounds of various 

emissivity characteristics in the Mid-Wave Infrared (MWIR) spectrum. These included bright and 

dim backgrounds, vegetation, and camera shots with the plume against the sky. Figure 4 shows a 

few interesting cases of the plume visibility on various backgrounds.  
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Figure 4. A Methane Plume on Background Surfaces of Various MWIR Intensities: (A) A 

Bright Background Object, (B) A Dark Background Object, (C) A Noisy Background 

Object, and (D) The Sky, Which Acts as an Infinitely Absorbing (Dark) Background and 

the Methane Plume 

The chosen algorithmic approach uses three separate steps. First, preprocessing is used to make 

the methane more apparent in the MWIR imagery. The preprocessed frames are then classified 

using a segmentation neural network. Finally the output of the neural network is interpreted by a 

clustering algorithm that implements a clean tunable threshold for how sensitive the alarm 

reporting should be. Figure 5 shows the high-level data flow of the algorithm.  
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Figure 5. A Flow Chart Depicting the Data Path from Camera Acquisition to the Reporting 

Mechanism 

Over the course of this phase, extensive work was done to identify the best-suited classifier for the 

detection task. The classifier must be sufficiently complex to learn the nuances of a methane plume 

detection while still small enough to fit within the hardware footprint of the embedded Tegra 

System on Chip (SoC). A variety of classifier techniques were researched and tested. Additionally, 

a variety of data processing and pre-processing architectures were researched. Based on this 

extensive effort, a processing architecture and classifier was chosen, which provided optimal 

results and performance. The chosen algorithm, a convolutional segmentation network, has been 

implemented in such a way that it will currently consume 25% of the shared memory between the 

Central Processing Unit (CPU) and Graphics Processing Unit (GPU).  

 

2.3 Phase 1 Results 

Error! Reference source not found. through Figure 10 highlight some of the test results from the 

algorithm as well as some remaining issues that needed further adjustments and training to resolve. 

 

 
Figure 6. Comparison Showing Good Tracking on Steady Background 
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Figure 7. Comparison Showing Steady Tracking on Noisy Background, Methane Plume 

Not Apparent to Human Eye in Video 

 

Figure 8. Comparison Showing Good Tracking on Noise Mixed Background; Persistent 

False Positive Present on Right Side of Image 

 

Figure 9. Comparison Showing Good Tracking of Plume in a Region of Sky, Where Optical 

Dynamics Vary Drastically from a Plume in Front of a Solid Reflective Background 
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Figure 10. Comparison Showing Good Tracking on Solid Background Again, Failures 

Present on Bottom-Left of Highlighted Area: Problems Persist Where High-Reflectivity 

Background Converges with the Plume 

At the end of this phase, source code, executables, and software description documentation were 

delivered. 

3. PHASE 2 TECHNOLOGY MATURATION 

During Phase 2, the hardware and software components of the prototype system were tested and 

refined. The hardware testing consisted of thermal and mechanical benchmarking of the system 

under various connectivity and ambient temperature variations. The software testing involved 

collection of MWIR dataset to be used in validation of the SLED/M algorithm. This dataset was 

constructed to test the maximum variability in background, lighting, methane flow rate, distance 

to the plume, occlusions of the plume, presence of other moving and optically dynamic objects, 

and more. The software was optimized for integration onto the embedded processor for efficient 

real-time execution and field operations. 

 

3.1 More Data Collection 

The dataset utilized for testing the performance of the system and algorithm was curated through 

the collection of data from a variety of conditions, as well as leak and non-leak event types. This 

collection focused more on establishing realistic backdrops and foregrounds, as well as other 

sources of motion in the frames. The typical setup for data collection is illustrated in Figure 11.  
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Figure 11. Image of setup used for data collection at various ranges, ambient conditions, 

and leak types 

The data was collected by saving video sequences from the camera at 5–10-minute intervals and 

saving these frames, uncompressed, in the .tif/.tiff format. The benchmarking dataset was extracted 

from this collected data by choosing sets that spanned a large range of conditions. The data was 

annotated by labelling which frames did and did not contain methane. The resulting benchmarking 

set is summarized in Table 1Error! Reference source not found..  

 

Table 1. Summary of Benchmarking Dataset 

Number of Tests 183 

Number of Frames 882,396 

Weather 
clear / rain (no methane) 

hot (105F) / cool (40F) 

Ambient Lighting dawn / bright / overcast / night 

Wind  windy, calm 

Background (in line with methane) bright/dark/mixed 

Potential False Positives  steam, CO, moving objects & people 

Distances 15-700 ft 

Flow rates  2 – 500 scfh 
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3.2 Metrics 

The metrics used in this report are defined as follows: 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝒕𝒑): 𝐴𝑙𝑔𝑜𝑟𝑖𝑔𝑡ℎ𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑤ℎ𝑒𝑛  𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (1) 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝒕𝒏) : 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑛𝑜 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 (2) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝒇𝒑): 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑤𝑎𝑠 𝑛𝑜 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (3) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝒇𝒏): 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑤ℎ𝑒𝑛 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
 : Maximizing precision will minimize the false-positive errors (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
:  Maximizing recall will minimize the false-negative errors (6) 

𝐹1 = 2𝑥 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
: The harmonic mean of the precision and recall (7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 +  𝑡𝑛

𝑡𝑝 +  𝑡𝑛 +  𝑓𝑝 + 𝑓𝑛
 

(8) 

3.3 Methane Detection Benchmarks 

The goals for phase 2 of development and testing, were to minimize false positives as much as 

possible. As such, during the system validation and testing precision, false positive rates were 

focused on heavily. Precision is a metric which ratios both true positives and false positives and 

attempts to minimize the latter. The performance of the final model is tabulated in Table 2. Figure 

12 illustrates the performance of the Phase 2 algorithm on various difficult test cases.  

 

Table 2. Performance Metrics for the SLEDM Algorithm 

Metric Score 

Precision 92.9% 

False Positive Rate 4.8% 
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Figure 12. Figure A - Night Methane Diffused; Figure B - Foreground Occlusion; Figure C 

- 100m Moving Car and Vegetation (no false positives); Figure D - Highly Dynamic, Noisy 

Background; Figure E - Night Methane Source Out of Shot 

3.4 Phase 2 Results 

In Phase 2, the algorithm was retrained with even more testing from a uniquely curated dataset of 

methane leak imagery. Many more datasets were collected under diverse lighting, distance, and 

operational environments. Using this data, the algorithm was further refined, and performance 

tuned resulting in a system capable of automatically and reliably detecting the presence of methane 

gas plumes from MWIR video, while rejecting false positives such as lighting differentials, moving 

objects in the background, and other sources of gas clouds such as steam. We were able to get a 

final algorithm with 92.9% precision and a 4.8% false positive rate as show in Table 2. These 

metrics are a balancing act; there is room to tune the performance to favor precision and accuracy 

while increasing false positives, or to tune to near zero false positives while sacrificing accuracy. 

The resulting algorithm was able to run on an embedded Jetson TX1 SoC at 1 Hz, making it 

suitable for deployment. 

 

At the end of this phase, source code, executables, and software description documentation was 

delivered. 

4. PHASE 3 AERIAL DEVELOPMENT 

The focus of Phase 3 was to update, adapt, and deploy the SLED/M algorithm on an Unmanned 

Aerial System (UAS). SwRI changed to a FLIR G300a OGI, which is smaller and lighter than the 

FLIR A6604 used in previous phases. SwRI also acquired a DJI Matrice 600 Pro UAS and DJI 

Ronin gimbal for data collection and testing.   
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Figure 13. Figure A - SLED/M Web Based User Interface; Figure B - SLED/M System on 

UAS; Figure C - SLED/M Running Live Wirelessly on Drone Platform 

The software was updated with a web-based user interface. This interface allows for live viewing 

and control of the SLED/M software and allows the system to be operated locally from a computer, 

tablet, or phone. Figure 13 Shows deployed SLED/M platform and wireless interfacing. 

 

4.1 Aerial Data Collection 

The dataset utilized for testing the performance of the system and algorithm was curated through 

the collection of data from a variety of conditions as well as leak and non-leak event types. The 

typical setup for data collection is illustrated in Figure 14.  
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Figure 14. Image of Setup Used for Data Collection at Various Ranges, Ambient 

Conditions, and Leak Types 

The data was collected by saving video sequences from the camera at 5-10-minute intervals. Each 

test was taken at different angles, altitudes, speeds, and distances from the methane source. The 

benchmarking dataset was extracted from this collected data by choosing sets that spanned a large 

range of conditions. The data was annotated by labelling which frames did and did not contain 

methane. The resulting benchmarking set is summarized in Table 3.  

 

Table 3. Summary of Curated Methane Dataset 

Number of Tests 371 

Number of Frames 1,470,039 

Weather 
clear / rain (no methane) 

hot (105F) / cool (40F) 

Ambient Lighting dawn / bright / overcast / night 

Wind  windy, calm 

Background (in line with methane) bright/dark/mixed 

Potential False Positives  steam, CO, moving objects & people 

Distances 15-700 ft 

Flow rates  2 – 500 scfh 

Altitudes 50ft – 400ft 
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4.2 Aerial Methane Detection Benchmarks 

The goals for this development cycle were to keep false positives to a minimum, while 

incorporating motion and altitude from the UAS, as such during system validation and testing, 

precision and false positive rates were focused on heavily. The performance of the final model for 

this phase is tabulated in Table 4. The results in Figure 15 illustrate the performance of the 

algorithm on various difficult test cases.  

 

Table 4. Performance Metrics for the SLEDM Algorithm 

Metric Score 

Precision 96.6% 

False Positive Rate 2.22% 

 

 

Figure 15. Figure A – Directly Above Source; Figure B – Foreground Motion Rejection; 

Figure C – 400 Feet Altitude; Figure D – Detection at 30 Mph; Figure E Detection from 

distance 

4.3 Phase 3 Results 

During Phase 3, the hardware and software components of the prototype system were adapted to 

work on an UAS. The embedded computer system was paired with an aftermarket development 

board for a smaller form factor; the OGI was replaced with a newer, smaller form factor and used 

a lighter weight camera. All of these refinements were made to the system to keep the payload as 

light and small as possible to optimize flight time. The SLED/M algorithm was significantly 

improved through tuning of the system for speed improvements, changes to the pre-processing, as 

well as run-time inferencing engine. Three new data sets were collected of methane releases from 
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both the ground and from the air at various altitudes and speed to adapt the algorithm to both the 

new camera system as well as train it to operate from a moving platform. SwRI integrated a FLIR 

G300a OGI with a DJI Matrice 600 Pro UAS and DJI Ronin gimbal.  SLED/M was further trained 

and refined for increased reliability using a large portion of the data collected during Phase 1, 

Phase 2, and moving and arial data from Phase 3.  The speed of the system was increased five-fold 

from 1.2 Hz to being capable of running at 5+ Hz. The final algorithm performance was evaluated 

at a 96.6% precision with a 2.22% false positive rate against all the validation data from Phase’s 

1, 2, and 3. The resulting algorithm can work on both stationary as well as drone-based 

applications. 

 

At the end of this phase, source code, executables, and software description documentation was 

delivered. 

5. PHASE 4 METHANE QUANTIFICATION 

In Phase 4, the focus of the research was shifted from detection of methane to quantification of 

methane. To accomplish this, the MWIR OGI needed to be supplemented with added sensors to 

provide additional input for the quantification of methane. Due to the passive nature inherent in 

MWIR OGI technology, it has a heavy reliance on a variety of external factors, all of which have 

a direct impact on what is observed by the MWIR OGI. To overcome this, we started off by 

including several different information sources, including, but not limited to Longwave Infrared 

Image (LWIR), LiDAR, visible camera, and a weather station for ambient weather readings 

(Figure 16).  

 

Figure 16. A) Longwave Infrared Image, B) LiDAR Distance Map, and C) Visible Image of 

Methane Leak 

5.1 Sensor Integration, Sensor Driver Development and Stereo Camera Calibration  

A LWIR thermal imager was chosen because methane has an absorbance peak in the LWIR band 

(Figure 16A) in addition to the MWIR band, although much smaller. While methane absorbance 

is not as strong in the LWIR region, these imagers are capable of methane detection by themselves. 

The idea behind including this image band was that LWIR could provide additional information 

which would inform the analysis of MWIR imagery including ambient temperature, component 

temperature, and the temperature delta (ΔT) of the methane plume. Specifically, integration of 

MWIR and LWIR data can provide important details for understanding the physics of methane, 

absorbance, and real-time background modeling using the aligned data from MWIR and LWIR 

observations.  

 

A B C
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The distance of the OGI relative to the plume and the lighting intensity are two important factors 

that can influence quality and accuracy of methane detection and quantification. To try to get 

accurate distance representation of all points within the images, a LiDAR sensor was added to the 

unit (Figure 16B) in an effort to get automated distance information rather than relying on the 

operators to input. Finally, a visible camera was added, which can give information on lighting 

reflections and component identification (Figure 16C). 

 

Software was developed to integrate the sensor drivers from multiple sources in one central 

location. Included in the software is the capability to read and save data from the various sensors 

under investigation including the FLIR g300a, FLIR Boson 640, Basler acA1920, Velodyne VLP-

16 Puck Lite, and ODROID WeatherBoard 2.0. Drivers were written or incorporated and 

optimized to run on an Nvidia Tegra TX-2 and Nvidia Xavier AGX embedded computers.  

 

It was necessary to develop software that would generate a data fusion of the multiple disparate 

data sources and streams which required temporal and spatial alignment, as well as standardization. 

The first step in this process was to register the different camera views together, using the MWIR 

OGI images as the reference for alignment. Data fusion provides functionality for comparison of 

streams and sources relative to each other in parallel. A thermal blackbody calibration tool was 

used in both the MWIR and LWIR imagers for relative pixel intensity comparisons (Figure 17). 

Each camera has a different dynamic thermal range; the MWIR camera has a relatively small 

thermal window and so the pixel intensity swings from one end of the range to the other very 

quickly, while the LWIR camera has a much wider thermal calibration, and so stays within a much 

smaller window (Figure 18). 

 

 

Figure 17. Thermal Blackbody Calibration Tool Observed in MWIR (Left) and LWIR 

(Right) 



Southwest Research Institute    Contract Number: DE-FE0029020 

19 

 

Figure 18. Pixel Intensity for Both MwIR and LwIR as Thermal Blackbody Heats and 

Cools 

5.2 Data Collection 

The initial round of data collection in September 2020 used a wind tunnel to provide additional 

plume stability with the configuration for the initial setup shown in Figure 19. Table 5 shows the 

test matrix performed during each collection. 

 

Table 5. Summary of Methane Quantification Data Collection 

Fall 2020 

Number of Test Configurations 111 

Sensor Array Distance (ft) 20 – 50 

Background 
Solid cardboard wall, solid metal wall, no 

immediate backdrop 

Methane Flow Rates (scfh) 0, 20 – 400 

Weather Drizzle, overcast, sunny 

Wind Calm, gusty 
 

 

During the first round, the tunnel and fan setup ensured data collected during the experiment would 

consider “Downwind Distance” to be composed of solely one direction and relatively consistent 

windspeed while largely ignoring external wind. The Camera array was placed at various distances 

ranging from 20ft to 50ft away from the test, and the methane release flowrates varied from 0 scfh 

to 400 scfh. Directly behind the opening of the wind tunnel, two different solid walls were setup. 

One cardboard to be relatively low reflectance and thermal emission, and another metal, which has 

a higher visible and thermal reflectance and emissivity. Data Collection setup is shown in Figure 

19. Along with the optical sensors laid out above, a portable weather station was included in the 

test. This station recorded UV index, Solar Radiation, Humidity, Pressure, and Temperature, all of 

which affect the observability and absorption of CH4 in the MWIR band. 
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Figure 19. Fall 2020 Methane Quantification Setup A) Schematic B) and Actual Setup, and 

Sensor Setup C) Back View and D) Front View  

5.3 Data Exploration 

In order to understand what the methane should ideally look like in the OGI at different flow rates, 

we generated the ideal volumetric methane concentration of each test at the prescribed distance 

and release rate. We then compared the modelled concentrations with the observed methane in the 

corresponding test. It was noted that there is a notable correlation in regions of higher concentration 

in the dispersion model with areas of lower intensity (greater optical absorption) in the observed 

plume.  The effects plume stability were also investigated, and an algorithm was developed to infer 

stability conditions based on observed plumes. Figure 20 shows an ideal plume model fit to the 

spline of an unstable detection mask. This process allows for us to account for wind and turbulence 

when comparing observations vs modelling. 

A B

C
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Figure 20. Gaussian Plume Model Spline Fit and Overlayed on Observed Plume 

It was observed that the effect of lighting conditions on observed methane plumes plays a large 

role in the data as well. During data collection over the course of several days, weather ranged 

from completely overcast and partly raining to fully sunny on other days. These variations between 

each test and the UV index and Solar Radiation values changes how much radiation the methane 

is absorbing, and thus, how much information the OGI can obtain on the methane plume. Efforts 

were made to account for the observed lighting variations by incorporating information from the 

visible camera, LWIR camera, and weather station solar and UV sensor readings. Unfortunately, 

the problem is nonlinear in nature and removing the effects in the recorded MWIR band was not 

possible.  

 

5.4 Go/No-Go Decision Point 

The Go/No-Go Decision point for this phase of the project was defined in the U.S. Department of 

Energy’s Statement of Project Objectives (SOPO) as: 

• Develop a functioning prototype system with interfaced cameras and processing system 

that provides the following: Quantification of Methane plumes within +- 50% actual 

release for 70% of its quantification decisions. 
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The validation metrics for the model at the end of the first phase are shown in Table 6. 

 

Table 6. Model Validation Metrics 

Accuracy 

<=100scfh 0.84 

>=150scfh 0.80 

Weighted Accuracy 0.82 

 

The first half of phase 4 was focused on identification of suitable and promising algorithms, 

processing techniques, and data combinations to properly inform the quantification goals. To limit 

the number of parameters to consider, certain constraints were imposed including the aggregation 

of the recorded methane flow rates into a binary thresholding problem.  The tests were binarized 

as so:  

• <=100scfh 

• >=150scfh 

The Go/No-Go results are based on this premise and models trained accordingly. For our validation 

data, we took two tests and this time we incremented the flow rate by 50 scfh every two (2) minutes 

in the data; one starting at 25 scfh and ending at 250 scfh, and another starting at 400 scfh and 

ending at 50 scfh. The metrics presented are based off of these validation tests. When classifying 

25-100 scfh and 150–400 scfh as >=150 scfh, we are within the +- 50% defined goal for Phase 4a 

and we categorize each flowrate successfully 82% of the time, surpassing the goal of 70% accuracy 

in Phase 4a.  

 

5.5 Phase 4b: Regression Model Development 

The results of the September experiments were used to inform setup and data collection procedures 

for the second round of data collection in April 2021. 

 
 Fall 2020 Spring 2021 Total 

Number of 

Test 

Configurations 

111 116 227 

Sensor Array 

Distance (ft) 
20 – 50 30 20-50, (30 spring) 

Background 

Solid cardboard wall, solid 

metal wall, no immediate 

backdrop 

Solid metal wall 

Solid cardboard wall, 

solid metal wall, no 

immediate backdrop 

Methane Flow 

Rates (scfh) 
0, 20 – 400 0, 50-1000 0 - 1000 

Weather Drizzle, overcast, sunny Overcast, sunny Drizzle, overcast, sunny 

Wind Calm, gusty Calm, gusty Calm, gusty 
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During the second round of data collection, the camera array was placed at a fixed distance of 30 

ft. The pseudo wind tunnel and fan setup were completely removed, and a solid surface backdrop 

was selected to maximize the temperature differential, ΔT (Figure 21). To improve performance 

of training regression-based network models, the second round of testing focused more on 

continuous sweep tests between the range of 25 – 1000 scfh to allow for better training a validation 

of the system. A methane flow meter was added into the system with 10hz data logging to measure 

real-time flows and allow for converting from categorical networks to regression networks more 

accurately. The same sensors and weather station were used to observe and record the methane 

over a weeklong period. 

 

Figure 21. A) Second Round Setup and B) Collection Interface 

In addition, during the second round of data collection, the effects of orifice size were investigated 

to see what role it may have on detection or quantification algorithm performance. In Figure 22, 

the blue masks represent the contour of the methane plume detected by SLED-M system. The 

plume becomes narrower and the distance between the upstream edge of the detected contour 

increases with decrease in the orifice size (do),  while the plume becomes thicker and more easily 

detectable with an increase in orifice size (do). This lead to the observation that it is much easier 

to quantify the observed plumes with larger diameter orifices to reduce exit velocity of the gasses. 

A B Data Collection InterfaceSensor Array Setup
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Figure 22. Effect of Orifice Size (do) on the Shape and Position of the Methane Plume 

Detected by SLED-M System for Low and High Flow Rates 

5.6 Methane Quantification Performance Evaluation 

During Phase 4b, SwRI explored many iterations and combinations of model training and 

processing. The performance of the models were evaluated against validation data and each other 

to monitor and track improvements in the outputs as well as hyperparameter and input relationships 

presented in the models. Figure 23 provides an example output of model validation after an epoch 

in training. The plot shows the predicted scfh value vs the ground truth scfh value at each time step 

and plots them as a correlation scatter plot. This allows for quickly and qualitatively evaluating 

the models progress and ability to learn during training. A perfect model would have one dark line 

going diagonally from bottom left to top right; the colors of each scatter point indicate the Mean 

Absolute Error (MAE) from the center of the line and thus how incorrect each guess was by the 

model. 
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Figure 23. Example of Single Model Correlation Scatter Plot Ground Truth vs Prediction 

5.6.1 Validation Data 

Throughout Phase 4, the team trained and validated close to 300 models. The training and 

validation sets were made by splitting the collection of all sets into two groups such that the 

validation set had a representation across the whole tested scfh range. To increase model 

performance, the team applied filtering to these sets to ensure the model would make quantification 

attempts only if environmental conditions were sufficient to yield a good estimate. The team found 

that examining model performance on poor environmental conditions (e.g., very windy, great 

overcast, etc.) resulted in non-representative metrics, as the model expectedly struggled in these 

conditions. A table describing the dataset and the filtered dataset can be seen (Table 7Error! 

Reference source not found.). 

 

Table 7. Validation Set 

 

The validation set was designed to provide additional detail to inform future hypotheses for model 

performance optimization. The set included five fixed rate and four sweep rate samples all of which 

spanned the range of collected flow rates between 0 and 1000 scfh. Validation set was designed to 

description mode 50 scfh 100 scfh 150 scfh 200 scfh 250 scfh 400 scfh 1000 scfh sweeps totals

# of sets train 5 3 4 5 4 4 1 9 35

validate 1 1 1 1 0 1 0 4 9

total-count (frames) train 20684 13826 17886 23575 17114 17396 5007 49641 165129

validate 4297 4694 4342 4502 0 4248 0 17168 39251

filtered-count (frames) train 9713 5673 9220 9389 9529 7937 2838 13185 67484

validate 2603 1028 2550 2398 0 2721 0 8695 19995

group
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provide additional detail to inform future hypotheses for model performance optimization. Scfh 

by time plots of the validation data are shown in Figure 24. 

 

Figure 24. Validation Sets used for Model Evaluation. 

It was noted that several datasets had extremely windy or overcast conditions that created non-

ideal conditions for quantification and were not used for our experiments. As an example, on one 

collection there was light rain that halted collection for the day, extraneous weather conditions 

were outside of scope and required to be removed from the final used data. On this note, the team 

saw a significant difference in the fall collection and the spring collection in both the midwave and 

thermal sensor readings. The fall collection has much less pronounced methane sensing and had 

worse weather conditions overall. In addition, collection in the fall included moving in and out 

different backgrounds which resulted in increasing the number of experimental parameters outside 

of the scope of what was to be expected from our initial models. For these reasons, the team 

primarily used the April collection and split that collection into training and validation sets.  

 

5.6.2 Sensor Combination Evaluations 

To evaluate the efficacy of the midwave, longwave, and visible sensors used in data collection, an 

experiment involving camera combinations at varying flow rates was performed. The initial 

hypothesis was that additional sensors provided as inputs to supplement the midwave sensor would 

improve lead to improvements in regression model performance. Five combinations of sensors 
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were evaluated, and feature engineering was used to add additional temperature information for 

some combinations. Three pre-trained deep learning models with pre-trained weights were used, 

including InceptionResNetV2, MobileNetV2, and EfficientNetB0. These five combinations of 

sensors were trained and tested against the validation data. 

 

To validate and compare each model, prediction values per frame were generated. A rolling median 

was calculated for smoothing the predicted results using a window size of 50 frames. Frames in 

which a true value flow rate of less than 25 or greater than 1100 scfh were removed. Calculations 

were performed to compute standard regression metrics including MAE and coefficient of 

determination (R2) to measure performance of predictions against ground truth values. Specific to 

the goals of this project, mean absolute percentage error (MAPE) was also included to give a better 

assessment of how the model performs at lower flow rates. MAE calculations were used to rank 

the 15 models, which were then compared with MAPE and R2 values for additional context. The 

results of this cross validation are shown in Figure 25 and Figure 26. It was noted that in general 

the midwave infrared + weather information performed better than combinations with thermal or 

visible camera pairs. 

 

 

Figure 25. Camera Combination Evaluation Results. 

 

model_cameraCombination MAE mean MAE median R2 mean R2 median MAPE mean MAPE median

1 EfficientNetB0 mwT 131.221 99.338 -56.583 -7.590 0.490 0.413

2 EfficientNetB0 mwT + vis 132.315 129.759 -24.867 -1.113 0.360 0.391

3 EfficientNetB0 mwT + lwT 145.790 137.713 -130.071 -44.692 0.717 0.425

4 EfficientNetB0 mw 148.956 109.835 -61.562 -7.154 0.516 0.445

5 EfficientNetB0 mwT +lwT +vis 170.256 152.098 -148.300 -19.434 0.768 0.486

1 InceptionResNetV2 mwT 107.761 92.144 -42.605 -20.207 0.470 0.342

2 InceptionResNetV2 mwT + vis 113.927 126.763 -63.446 -41.853 0.545 0.397

3 InceptionResNetV2 mwT + lwT 120.811 81.202 -22.375 -5.054 0.379 0.401

4 InceptionResNetV2 mw 121.055 75.764 -37.040 -17.097 0.449 0.414

5 InceptionResNetV2 mwT + lwT + vis 126.703 87.989 -24.196 -19.571 0.375 0.387

1 MobileNetV2 mwT + vis 109.661 113.948 -22.710 -6.874 0.340 0.349

2 MobileNetV2 mwT 112.152 109.777 -31.321 -29.154 0.432 0.358

3 MobileNetV2 mw 114.712 109.373 -31.827 -17.028 0.425 0.348

4 MobileNetV2 mwT + lwT + vis 115.325 93.195 -72.017 -14.912 0.568 0.400

5 MobileNetV2 mwT + lwT 117.469 89.498 -58.211 -5.634 0.515 0.392
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Figure 26. Mean Absolute Error (MAE) calculations for camera combination. 

5.7 Quantification Model selection 

The first wave of sets was trained and validated on the set described in Table 7. The results of this 

set can be seen in Figure 27. The team notes that models, overall, preformed the best in the 200 

scfh example and the worst in the 50 scfh example. A closer examination of the 50 scfh displayed 

less than optimal environmental conditions, despite attempts to filter out all these conditions, and 

the team notes that further exploration of filtering techniques can lead to better quantification 

guesses. Most models perform within 10%-30% MAPE. The team utilizes MAPE as the primary 

metric, as saturation in sensor data was observed for higher flowrates and less accuracy in higher 

flowrates is expected. The use of MAPE also artificially inflates the lower, 50 scfh flowrates by 

expecting a much smaller window of tolerance than the higher flowrates.
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Figure 27. Mean Absolute Percentage Error (MAPE) for all sets. 
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Final metrics selections were made using cross-validation.  Each model was passed through four 

(4) sets of different train/test split. Each split was set to randomly include members of static sets 

and sweep sets. The results of this cross validation are shown in Figure 28 with the top three 

regression models shown. EnsembleNet was chosen as it is the highest performer, on average, 

across all cross-validation sets. In addition, EnsembleNet also made use of the single MW camera 

which is advantageous for fielding. While the MobileNet model preformed similarly (and better 

in V2), the cost of using all cameras introduces significant computation complexity with non-

significant improvements. 

 

Figure 28. Model Cross-Validation Summary 

5.8 Quantification Results 

As mentioned, an important aspect of being able to visualize and quantify the methane, is having 

a valid temperature difference (ΔT) between the methane and its backdrop. When developing these 

metrics, they are focused on segments of methane releases that meet the following criteria: 

1. SLED/M Detection is able to detect and mask the methane plume in the image and 

subsequent images in time 

2. An adequate ΔT,  2C, has been calculated and is present in the image  

The target performance goals for this project were as follows: 

1. Classification: Achieve ±50scfh Quantized Accuracy > 70% of the time 

2. Regression: Achieve  10 scfh prediction > 70% of the time 
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Figure 29. Detection + Quantification at Multiple Flowrates 

 

Figure 30. Final Validation Metrics 

Figure 29 shows the ground truth vs predicted error for the final test data set. In addition to the 

MAPE, each plot has an error envelope (light green); this envelope is  50 scfh of the measured 

ground truth when below 500 scfh and  10% of the measured ground truth when above 500 scfh; 
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allowing us to bin the predictions into an accuracy score in addition to the regression error.  

Furthermore, we included data from various days to test the capabilities of the system in various 

lighting and weather conditions.  Notably, the test from the bottom right most plot from the 27 of 

April has a lot of frames that did not meet the stability and ΔT requirements, and as such does not 

start stabilizing toward the end of the test, causing outliers in the statistics.  This does show that 

the cameras are extremely sensitive to ambient conditions when making determinations, and 

further work is needed to combat this.  

 

Our best performing quantification model was able to achieve the following metrics on valid 

frames where 1) the methane was detected and 2) a valid ΔT was observed.  These results are 

shown in Figure 29 and Error! Reference source not found.. 

1. Average Percentage Prediction Error: 12.3%  

2. Accuracy ±50scfh: 97.78% 

5.9 System Benchmarking 

A key component of this last phase of the project was the commercialization and business 

development plan. To this end, development and benchmarking of the algorithm on embedded 

architectures was performed. The FLIR G300a operates nominally at 12hz and the Sierra Olympics 

Ventus OGI operates nominally at 30hz. Table 8Error! Reference source not found. shows the 

performance of SLED-M and SLED-Q on different embedded architectures. The Input Size fields 

represent the input image size in pixels to the algorithms being tested. The FLIR G300a has an 

output resolution of 240x320 and the Sierra Olympics Ventus OGI has an output resolution of 

512x640. While operating on the highest resolution images possible is ideal, in the final application 

these images can be scaled for performance with minimal decrease in accuracy of the algorithms. 

The networks benchmarked below was trained using FP32 precision and then the trained network 

weights were quantized during inference for each step below. 

 

These benchmarks can be used to inform vendors on what processing architectures to incorporate 

either into the cameras or into third party addons for the cameras in order to deploy SLED-M. 

Other Edge AI capable devices exist on the market, such as Google Coral and Intel Neural 

Compute Models. The boards below are what we had on hand during development.  

 

Table 8. System Performance Benchmarks 

 Model Precision Input Size Frames Per Second 

Xavier AGX 
Detection FP16 240x320x5 48.66 FPS 

Detection + Quantification FP16 240x320x5, 240x320x1 30.82 FPS 

 

6. CONCLUSIONS 

Oil and gas operators need a way to reliably detect and quantify fugitive methane emissions in 

order to promptly act on leaks, reduce cost and risk, speed up inspection times, monitor remote 

and harsh environments, and satisfy recent methane regulation requirements. SLED/M helps 

operators to meet these needs using an autonomous, flexible technology that prioritizes safety, ease 

of use, reliability, and cost reduction. 



Southwest Research Institute    Contract Number: DE-FE0029020 

33 

 

SLED/M has the ability to autonomously detect fugitive methane emissions deployable on a drone 

for remote inspection and faster, more reliable site inspections, as well as the ability to quantify 

detected plumes in one tool while keeping operators out of hazardous areas.  This technology can 

meet some customer needs including an increase in speed of periodic pipeline inspection by 

augmenting visual inspection for the operator, allowing them to focus on safety and other cost and 

risk reductions.  

 

SLED/M can detect methane leaks as low as three (3) scfh with a precision of 96.6% and false 

positive rate of 2.22%. Additionally, SLED/M is capable of estimating methane flow rate and 

concentration within 12.3% of ground truth flow rate. The technology itself only requires the 

MWIR OGI camera providing SLED/M with a flexible competitive advantage and reducing the 

need on the customer to use additional instrumentation and equipment.  

 

6.1 Next Steps 

During development of the quantification algorithm, it was noted that environmental factors play 

a large role in the reliability of the outputs. Further data collections and work is needed to develop 

a robust quantification dataset, varying environmental lighting, weather, distance, and backdrops. 

Additionally, reliably recording and correlating all of this information has been a problem, so 

further work is needed on developing robust testing setup and methodologies for future work. 
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1. SCOPE 
The major goal of this Department of Energy (DOE) research project was to develop an 
autonomous, real-time methane leak detection technology, The Smart Leak Detection – Methane 
(SLED/M), which applies machine learning techniques to passive optical sensing modalities to 
mitigate emissions through early detection, as well as provide a quantification estimation.  

1. Run in real-time on the edge ( >= 12 Hz) 
2. Classification: Achieve less than 5% false positive detection 
3. Classification: Achieve >= 95% methane plume detection rate 
4. Regression: Achieve +- 10 scfh prediction > 70% of the time 

This document summarizes the system products resulting from the culmination of the DOE-NETL 
Smart Methane Emission Detection System Development project.  

1.1 System Overview 

The Smart Leak Detection – Methane + Quantification system was developed and tested on the 
Nvidia Tegra Xavier AGX platform using a FLIR g300a Optical Gas Imager (OGI), with the addition 
of an ODROID Weatherboard 2 for real-time ambient weather conditions. The software reads 
frames from the OGI camera over a Real Time Streaming Protocol (RTSP) interface, and weather 
information over an I2C interface. This information is pre-processed and the OGI frames are fed 
to a pre-trained TensorRT semantic segmentation inference engine to detect and localize 
methane in the frame. If methane is detected, the associated OGI image and weather information 
is then fed to another set of preprocessors and fed to a second pre-trained TensorRT deep 
regression network inference engine to estimate the flow rate in standard cubic feet per hour 
(scfh) of the detected methane plume. Both outputs of the inference engines are then passed 
through post-processing functions and then displayed to the user over a web interface or RTSP 
output stream. 

This software is capable of running >= 40 frames per second on the NVIDIA Tegra Xavier AGX 
platform, where the associated OGI camera is only capable of capturing images at 12 frames per 
second, exceeding real time capabilities of the system. 

This document contains an overview of the Phase four (4) software, a description of the 
development and testing platform, compilation and execution instructions, and version 
information. 

1.2 Referenced Documents 

The following documents, of the exact issue shown, were referenced as indicated during the 
development of this document. The applicability statement associated with each document 
reference indicates Superseding if the referenced document supersedes this document in the 
event of a conflict. 
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Document ID: SwRI Proposal in Response to DE-FOA-0001538, Area of Interest 1-C 
Originator: Southwest Research Institute, San Antonio, TX 
Issue: June 13, 2016 
Title: Project Narrative for Development of Methane Leak Detection 

Technology for Compressor Stations 
Applicability: Defines the need for this deliverable 

1.3 Acronyms 

ACRONYM DEFINITION 

API Application Programming Interface 

BG Background 

CPU Central Processor Unit 

CSC Computer Software Components 

DOE Department of Energy 

GUI Graphical User Interface 

HTTP Hypertext Transfer Protocol 

I/O Input/Output 

IP Internet Protocol 

MWIR Mid Wave Infrared 

OS Operating System 

RTSP Real Time Streaming Protocol 

SD Secure Digital 

SLED/M Smart Leak Detection - Methane 

SLED/MQ Smart Leak Detection – Methane + Quantification 

SLED/Q Smart Leak Detection - Quantification 

SSH Secure Shell 

SW Software 

SwRI Southwest Research Institute 

TBD To Be Determined 

TBR To Be Reviewed 

UI User Interface 
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ACRONYM DEFINITION 

UAS Unmanned Aerial System 
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2. SOFTWARE OVERVIEW 
The software and embedded system is collectively referred to as “SLED/M”, which is a machine 
learning algorithm within an embedded software package. This section describes the following 
for the SLED/M software: 

1. High-Level Software Design 
2. Development and Testing Platform 
3. High-Level Source Tree Description 
4. Compilation and Execution Instructions 
5. Version Information 

2.1 High-Level Software Design 

The Smart Leak Detection – Quantification (SLED/Q) software is comprised of the following 
components: 

• Neural Network: The output of training a deep learning algorithm against a variety of 
methane leaks and ambient backgrounds. The neural nets produced from the training 
are used as inputs to the SLED/M program. 

• Camera Driver: Logic that interfaces to the primary sensor, the FLIR G300a Mid Wave 
Infrared (MWIR) camera. In addition, the camera driver includes camera simulation 
logic, allowing previously recorded images to be replayed for testing purposes. 

• Preprocessing: Logic that modifies the input image from the camera in preparation for 
the neural net and user output display. This logic is also responsible for keeping global 
and batch-level statistics that are used to normalize the imagery data at various stages. 

• Post Processing: Logic that processes the output of the neural network and generates 
the user output indicating presence (or non-presence) of a methane leak. 

Figure 1 depicts the logical flow of each component. 

 
Figure 1. SLED/Q Software Flow Diagram 
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2.2 Development and Testing Platform 

The SLED/Q software was developed on Ubuntu 18.04 LTS and tested on the Nvidia Tegra TX-2 
Ubuntu 18.04 LTS, as well as the Nvidia Xavier AGX Ubuntu 18.04 LTS.   System dependencies and  
versions are shown in Table 1; Python package dependencies and versions are shown in Table 2. 

Table 1. SLED/Q System Dependencies 

Package Name Package Version 

L4T 32.4.4 

Jetzpack 4.4.1 

Python 3.6.9 

Cuda 10.2.89 

TensorRT 7.1.3.0 

nvinfer 7.1.3.0 

cudnn 8.0.0.180 

cublas 10.2.2.89-1 

cudart 10.2.2.89-1 

uff-converter 7.1.3-1+cuda10.2 

opencv 4.1.1 

protobuf 3.0.0-9.1 

gstreamer 1.14.5 

libboost-all-dev 1.65.1.0ubuntu1 
 

Table 2. SLED/Q Python3 Package Dependencies 

Python Package Name Python Package Version 

argparse  1.1 

re   2.2.1 

tensorrt   7.1.3.0 

ctypes   1.1.0 
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Python Package Name Python Package Version 

numpy   1.18.5 

numpy.core   1.18.5 

numpy.core._multiarray_umath  3.1 

platform   1.0.8 

numpy.lib   1.18.5 

numpy.linalg._umath_linalg   b'0.1.5' 

zlib  1 

decimal  1.7 

logging   0.5.1.2 

cv2   4.1.1 

pycuda   (2020, 1) 

six   1.15.0 

decorator   4.1.2 

numba   0.53.1 

yaml   5.3.1 

llvmlite   0.36.0 

optparse   1.5.3 

json   2.0.9 

numba.misc.appdirs   1.4.1 

scipy   1.5.4 

scipy._lib._uarray   0.5.1+49.g4c3f1d7.scipy 

fast_histogram  0.9 

gi 3.26.1 
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2.3 High-Level Source Tree Description 

The components previously described in Section 2.2 are split among several subdirectories in the 
SLED/M source tree, Table 3 provides a listing of the primary source files and directories. Figure 
2 shows the data flow of the program. 

 
Figure 2. SLED/Q Software Diagram 
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Table 3. SLED/Q Source Tree 

File/Directory Name Type Description 

README.md file Readme and instruction file for the 
codebase 

python_infer/SLED-MQ.sh file 
Primary execution script for the SLED/MQ 

program that wraps all arguments in a 
Bash shell script 

python_infer/inferenceConfig.ini file Configuration file with options and 
definitions for the SLED/MQ program 

python_infer/infer_preprocessors.pyc file SLED/MQ preprocessor definitions   

python_infer/sled-m.pyc file SLED/M inference engine compiled binary 

python_infer/sled-mq.pyc file SLED/MQ inference engine compiled 
binary 

python_infer/models/ directory Folder for SLED/MQ inference engines 

python_infer/models/sled-m.trt file contains a SLED/M inference engines 
compiled binary 

python_infer/models/sled-q.trt file contains a SLED/Q inference engines 
compiled binary 

python_infer/Flask_Server/ directory Folder for Web Viewer and Control server 

python_infer/Flask_Server/web_gui.pyc file Web Viewer and Control server for 
SLED/MQ 

python_infer/cameraStreamGrabber.pyc file Configurable input streaming utility and 
camera driver 

python_infer/g300aLiveFrameGrabber.pyc file FLIR g300a driver module 

python_infer/rtsp_streamer.pyc file RTSP Streaming output for SLED/M 

python_infer/weatherboard/ directory Folder for Weather Module Interfacing 

python_infer/weatherboard/BME280.pyc file Interface with BME280 weather module 

python_infer/weatherboard/SI1132.pyc file Interface with SI1132 weather module 

python_infer/weatherboard/weatherBoardLive
.pyc file Concatenate weather data from modules 

for preprocessor definitions   

https://platypus.dyn.datasys.swri.edu/HRS/22468-DOE_Methane/blob/tensorrt_python/python/Flask_Server/app_process.py
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2.4 Compilation and Execution Instructions 

This section describes how to compile and run SLED/Q. 

2.4.1 Compilation 

Python source code requires no compilation. 

2.4.2 Execution 

The two methods of running inference using the SLED/MQ software are described in sections 
2.4.2.1 and 2.4.2.2. 

Streaming Configuration 

1. Bash Script 

a. Usage: SLED-MQ.sh --<streaming_mode>  
b. The available streaming modes are listed below 

i. --web → Outputs the stream via Web graphical user interface (GUI)  
ii. --rtsp → Outputs the stream via RTSP streamer 

2.4.2.1 Option 1: Web GUI and Control 

Works best on Google Chrome. Works on Firefox with slight bugs. Not working on Safari. 

Connect to the Web Server 

1. Run the SLED-MQ.sh file located in python_inference/SLED-MQ.sh directory with the --
web or -w flag. 

a. Server is ready when you see: * Running on http://0.0.0.0:5000/ (Press CTRL+C to 
quit) 

2. In a web browser, connect to the IP address of the Jetson port 5000. 
3. The GUI should be visible as shown in Figure 3. 

http://0.0.0.0:5000/
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Figure 3. SLED/Q Web GUI 

To Run the Inference Script 

1. Press the button labeled "Run Inference". It takes about 25 seconds for an output to 
appear. 

Settings Adjustments 

2. In the python_infer directory there is a Configuration file called inferenceConfig.ini. This 
contains all the possible settings that can be varied for inference. These settings need to 
be changed BEFORE running the GUI; changing them after will result in usage of the old 
settings. A detailed description of the different settings and how they function is seen in 
Table 4. 

Table 4. SLED/Q Runtime Options 

Section Parameter Options Default Value Function 

generatorOpts distance 

Integer distance 
in feet the 

camera is from 
the methane 

plume 

30 

This tells the algorithm how far 
the camera is from the plume 
so that it can scale the frames 
appropriately before running 

inference 
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Section Parameter Options Default Value Function 

modelOpts quant_model_path 
Path to SLED/Q 

inference engine 
compiled binary 

./models/sled-
q.trt 

Provides the algorithm with the 
location of the methane 

quantification model  

 detect_model_path 
Path to SLED/M 
inference engine 
compiled binary 

./models/sled-
m.trt 

Provides the algorithm with the 
location of the methane 

detection model  

inferenceOpts g300a_serverport 
Port number to 

the g300a 
camera 

1234 - needs to 
be provided by 

user 

The port number provided here 
allows for communication with 
the camera when in 'live' mode 

 

To Save Video Feed 

1. Press the button labeled "Record Video." This will create a file in the directory from 
where the program was run on the jetson labeled outpy#-
YEAR_MONTH_DAY_HOURMINUTESECOND.avi 

2. To stop recording, press the button labeled "Stop Recording" 

a. The video that is recorded is exactly what is seen in the frame. If segmentation is on, 
then it will appear in the recording. If segmentation is off it will not appear.  

2.4.2.2 Option 2: RSTP 

1. Run the SLED-MQ.sh file located in python_inference/SLED-MQ.sh directory with the --
rtsp or -r flag. 

2. Connect Via Media player; VLC works great. There will be two streams, one for just the 
raw output, another with the mask overlay. Change IP to current system IP address. 
Output shown in Figure 4. 

a. rtsp://{IP}:8554/sled 
b. rtsp://{IP}:8554/raw 
 

rtsp://129.162.106.144:8554/sled
rtsp://129.162.106.144:8554/raw


Southwest Research Institute 10-22468-DELIV_REPORT-01 R0 C0 
Smart Methane Emission Detection System Development 
Phase 4 Deliverables Report November 18, 2021 
 

 12 

 
Figure 4. SLED/Q RTSP Output 

2.5 Software Version 

The SLED/Q version being delivered via this document is v4.0, created on 09/30/2021. The source 
set used for this baseline is attached in Appendix A. 

Prior to this version, baselines were created as development of beta testing progressed. A history 
of baselines, along with the baseline being delivered (last entry), is shown in Table 5. 

Table 5. Software Version History 

Version SVN Tag Description 

0.1 2017_0621_1056_SLED/M 

Initial baseline that compiles. Not a functional build, 
but proves linking of (1) camera driver, (2) background 

subtraction libraries, (3) data loading libraries, (4) 
OpenCV, and (5) Caffe. 

0.2 2017_0629_1042_SLED/M First build to successfully display an image from both 
the FLIR A6604 and FLIR A65 camera. 

0.3 2017_0711_1025_SLED/M 
First build to successfully show an image from the 

camera, run it through background subtraction, and 
show the resulting foreground extraction. 
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Version SVN Tag Description 

0.4 2017_0713_1646_SLED/M 
First known build to reliably load a camera 

configuration file and display GUI debug output and a 
valid foreground measure using FLIR A65. 

0.5 2017_0714_1145_SLED/M 

First build to reliably work with both cameras (FLIR 
A6604 and FLIR A65), loading configuration files as they 
are modified (minimal hard coding), and exit gracefully 

upon camera shutdown or loss of network. 

0.6 2017_0724_0933_SLED/M 

First build to multi-thread the simulated reading of 
files, the camera feeds, the web interface, and the GUI 

display thread. The web server thread and the 
processing thread appear to be initially correctly 

operating; however, Open CV displays are not yet 
working in parallel with Qt. 

0.7 2017_0725_1042_SLED/M 

First build to reliably not have conflicts between Qt and 
Open CV imshow() calls (via the enable_debug_gui 

flag). Shown to successfully display images in Open CV 
and the web server with all three input sources:  

simulated data, FLIR A65 data, and FLIR A6604 data. 

0.8 2017_0802_1344_SLED/M 

This version successfully displays the user output 
webpage (if it displays the raw feed and bg subtracted 

image) from simulated data and FLIR A6604. Caffe 
Classifier loads and runs successfully for simulated (if 
commented in) but commented out due to it crashing 

when connected to real camera. 

0.9 2017_0808_1554_SLED/M 

This version successfully ingests feeds, classifies them 
against the configured Caffe model, and runs the web 

server for user output. First known release with no 
known major issues (although minor issues do exist). 

1.0 2017_0814_1618_SLED/M 

This is the first version that successfully uses the best-
known model to overlay a methane detection on data 
used for validation and displays minimal false positives 

in ambient conditions. 

1.1 2017_0822_1620_SLED/M 

Added program option to decimate simulated data.  
Modified logo to have DOE/NETL/SwRI (along with 

SLED). Added white text box around image 
filenames/timestamps for much easier reading. Added 

Initializing box to classified image while BG model being 
generated. Fixes issue with classifier and raw image not 

keeping up on web display. 
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Version SVN Tag Description 

1.2 2017_0828_1438_SLED/M 

Fixes bug with Caffe net (image_queue_) not being 
correctly populated (major issue), updated CLAHE for 

16-bit scaling with Open CV3 (better web browser 
viewing), fixes HTTP streaming lag issue, ensures Caffe 

cleanly shuts down. 

1.3 2017_0908_0854_SLED/M 

Addresses issue with RemoveDeadPixels() incorrectly 
modifying images. Adds a simple fault system for 

camera disconnect and low space (and associated GUI 
updates). Modifies classified image to include 

probability coloring (red = high, blue = low). Cleaner 
shutdown on both Tegra and deep-cruncher via Ctrl-C. 

1.4 2017_0914_1550_SLED/M 

Code cleanup, additional comments. Prototype of 
methane detection sensitivity included. Adds security 

to HTTP server code. Fixes CDT/UTC issue with BG 
model filename. Additional checks on ensuring program 

can write to output directory. Added --
exit_after_bg_gen functionality. Check in Caffe model 

as part of SLED/M repository. 

2.0  
 2018_0920_0216_SLED/M 

 

Added final tag. Updated charts with final software 
design. Updated software dependencies table. Updated 

class definitions. 

3.0 2019_1113_1536_SLED/M Added Tag for Aerial Detection Network. 

3.1 2020_0311_1230_SLED/M Updating Tag to include web-based user interface for 
usability. 

4.0 2021_0930_1400_SLED/MQ Added Quantification Capabilities 
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3. MECHANICAL OVERVIEW 
The hardware required to operate the Smart Leak Quantification Algorithm is listed below: 

1. MWIR OGI Camera 

a. The current software has only been tested on 16-bit RTSP camera interface 

2. ODROID Weatherboard 2 weather module 
3. Nvidia Tegra TX-2 or NVIDIA Xavier AGX or similar Linux based computer 
4. Locally attached Display or Ethernet or Wi-Fi enabled device to view the output of the 

system 

The hardware wiring is shown in Figure 5. 

 
Figure 5. SLED/Q Hardware Diagram 
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4. TEST OVERVIEW AND RESULTS 
Our best performing quantification model was able to achieve the following metrics on valid 
frames where 1) the methane was detected and 2) a valid ΔT was observed. These results are 
shown in Figure 6 and Figure 7. 

1. Average Percentage Prediction Error: 12.3% 
2. Accuracy ±50scfh: 97.78% 

 
Figure 6. Detection and Quantification at Multiple Flowrates 
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Figure 7. SLED/Q Benchmark Metrics 

4.1 System Benchmarks 

The provided code timings and benchmarks are shown in Table 6. 

Table 6. System Performance Benchmarks 

 Model Precision Input Size Frames Per Second 

Xavier AGX 
Detection FP16 240x320x5 

30.82 FPS 
Quantification FP16 240x320x1 
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5. CONCLUSION 
SLED/Q has the ability to autonomously detect fugitive methane emissions, deployable on a 
drone for remote inspection and faster more reliable site inspections as well as the ability to 
quantify detected plumes in one tool while keeping operators out of hazardous areas. This 
technology can meet some customer needs including an increase in speed of periodic pipeline 
inspection, by augmenting visual inspection for the operator, allowing them to focus on safety 
and other cost and risk reductions. 

SLED/Q can detect methane leaks as low as three (3) scfh, with a precision of 96.6% and false 
positive rate of 2.22%. Additionally, SLED/Q is capable of estimating methane flow rate and 
concentration within 12% of ground truth flow rate. The technology itself only requires the MWIR 
OGI camera providing SLED/Q with a flexible competitive advantage and reducing the need on 
the customer to use additional instrumentation and equipment. 
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Appendix A SLED/Q Software 
Please see SLED-Q.zip 
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