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1. EXECUTIVE SUMMARY 

A digital twin material model (DTMM) of an additive manufacturing (AM) process was created to advance 
the state of the art in rotating detonation engine (RDE) injector design. Current RDE injectors are designed 
with large pressure drops, enabling a stable and repeatable combustion process. However, this comes at the 
cost of system efficiency. For the technology to transition to commercial fossil-based power generation, it 
is important to develop injectors with reduced flow losses. Low-loss injectors are difficult to design and 
manufacture with conventional manufacturing techniques. AM enables new design options, but the AM 
manufacturing process must be thoroughly understood to result in a robust design. A DTMM provides the 
necessary insight by defining the cause-effect relationships between process parameters, microstructure 
features, and properties. Therefore, a DTMM to support the design and manufacturing process was 
developed and applied to the design of a new additively manufactured low-loss injector. The injector 
combustion behavior was characterized through hot-fire tests, and mechanical performance was compared 
to the DTMM predictions. 

The two project goals were the successful development of the DTMM and the demonstration of an improved 
RDE injector design. The RDE injector design and DTMM developments occurred on parallel but 
dependent paths. The injector was designed to reduce pressure drop by increasing the cross-sectional flow 
area ratio between the injector air passages and the combustor annulus. This resulted in less structural 
material, raising the concern that thin members would be susceptible to high-cycle fatigue (HCF) under the 
periodic loading inherent to an RDE. It was most important for the DTMM to predict behavior in these 
features; therefore, the injector design concept guided the material thicknesses used in fatigue tests. 

The DTMM development started by manufacturing a series of coupons over the range of possible AM 
process variations. A design-of-experiment approach was used to select which process variable 
combinations gave the most efficient coverage relevant to the injector design space. The microstructure in 
each of these coupons was characterized, and then computational methods were used to create a numerical 
model of the correlation between process variables and microstructure. Next, a set of HCF samples were 
tested to calibrate existing models that map microstructure to HCF performance. Together, these two links 
formed the DTMM that calculates HCF behavior from AM process variables. 

Two injector prototypes were additively manufactured. The first injector design strategy aggressively 
pursued low-loss performance by substantially increasing the oxidizer flow area. The combination of 
manufacturing lead times and the fatigue testing schedule meant that the DTMM was not available when 
building this first prototype. Therefore, its process parameters were chosen based on a manual review of 
the available coupon data. This prototype was built successfully and evaluated in 58 combustion tests. 
Sustained detonation was achieved with remarkably reduced pressure loss, and some tests even displayed 
pressure loss characteristics similar to conventional gas turbine combustors. This achieved the project goal 
of improving RDE injector design. 

The second injector was manufactured according to the optimized parameters predicted by the DTMM. The 
flow area modifications of this injector were less aggressive than the first injector since demonstrating low 
pressure loss was not an objective of the second hot-fire test series. Rather, the test objective was to cause 
high cycle fatigue failure in the part due to periodic loading from the rotating detonation wave. The observed 
number of cycles to failure was to be compared to the number predicted by the DTMM and thereby assess 
the utility of the DTMM in component design. However, the required level of vibration was not obtained 
during combustion. Therefore, high cycle fatigue was not experienced in the hot-fire tests of the second 
injector. 

Fatigue data was obtained by further testing the second injector in a conventional HCF test apparatus. The 
injector demonstrated HCF strength above the DTMM prediction. In fact, it did not fail and testing was 
only discontinued due to reaching the end of the period of performance. This points to some success in the 
project’s primary goal of successfully developing and applying the DTMM to a component design. 
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Implementing the DTMM recommendations for optimal processing parameters led to a part with acceptable 
properties. The DTMM was also shown to be an efficient correlator of data and to provide insight into the 
relationship between process settings, microstructure, and property performance. However, the failure of 
the DTMM prediction to match the experimental result of the injector fatigue test also points to the need to 
include significantly more data in the model development. 

In this project, coupons made with identical processing parameters exhibited drastically different properties 
from each other and from the injector part, which clearly influences the accuracy of a model that predicts 
performance based on parameters. Uncertainties in the build process must be quantified to develop more 
robust models. A denser and broader matrix of coupon process and geometry variations, several repeated 
builds of every point, more in-situ build process measurements, and direct observation of tensile and HCF 
sample microstructure (as opposed to separate microstructure specimens) are recommendations to improve 
future AM modeling efforts. 
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2. INJECTOR DEVELOPMENT 

 DESIGN 

Demonstrating the operation of a low-loss RDE injector was one of two project objectives. An RDE is a 
type of pressure gain combustion device. Unlike a conventional gas turbine combustor (Brayton cycle) 
where total pressure is reduced during combustion, an RDE uses detonation waves to increase the total 
pressure during combustion. A complete RDE consists of an isolator, injector, combustor, diffuser, and 
bypass mixer, as summarized in Figure 1. Historically, the gain in total pressure that occurs in the 
combustion chamber due to the detonation process is more than cancelled by the total pressure losses in the 
ancillary components upstream and downstream of the combustor itself. These other components must be 
improved to realize the promise of pressure gain combustion. A previous Department of Energy project led 
by Aerojet Rocketdyne made progress in the diffuser design. This project focused on reducing the pressure 
losses in the upstream injector component.  

 
Figure 1. Components of a Rotating Detonation Engine (RDE) 

The conceptual layout of the RDE is shown in Figure 2. Gaseous oxidizer (oxygen-enriched air in this 
project) and gaseous fuel (hydrogen in this project) are supplied to manifolds located in the upstream flange. 
These reactants then flow through injector passages that discharge into the annular combustion chamber in 
a manner that promotes detonation. In this project, the injector implemented aggressive mixing geometry 
that was enabled by additive manufacturing. The resulting design could not have been manufactured by 
conventional methods as a single part. These aggressive mixing features allow for a lower velocity oxidizer 
flow through the injector (as opposed to the choked flow of legacy designs) which in turn lowers the 
pressure losses. The detailed injector design is not being made public at this time, therefore further 
description is omitted from this report. 
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Figure 2. The RDE Injector Concept 

The combustion process in an RDE is inherently periodic. One or more detonation waves spiral around the 
combustion annulus. When there is only one wave, this results in an unbalanced pressure impulse on the 
centerbody, as shown in Figure 3. The wobbling of the centerbody transfers a moment back to the injector 
that stresses features in the fuel and oxidizer passages. Furthermore, the detonation wave revolves at an 
approximate frequency of 5 kHz. An RDE rapidly accumulates load cycles, particularly in the context of 
long-term power generation. These factors combine to create a high cycle fatigue concern in the injector. 
Therefore, the material model discussed in section 3 focused on predicting fatigue strength.  

 

 
Figure 3. Unbalanced Pressure Oscillations in the RDE Create a High Frequency Wobbling Motion that 

Transmits Loads to the Injector 

During the design process it was discovered that it is actually difficult to generate appreciable stress in the 
RDE injector from the centerbody wobble. This is because typical test hardware uses a thick-walled copper 
alloy part for thermal management purposes. The mass of this component lowers the structural natural 
frequency to such a degree that it filters out the high frequency forcing of the detonation wave, and little 
motion is actually transferred to the injector. Nonetheless, this project aimed to compare component 
performance to the material model prediction. Therefore, a fatigue condition was designed into the system 
by shortening and thinning the centerbody as shown in Figure 4. An adjustable tuning ring was also included 
to adjust the structural frequency and better align it with the detonation frequency.  
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Figure 4. A Shortened Dynamic Centerbody with an Adjustable Tuning Ring Aligns the Structural Natural 

Frequency with the Detonation Frequency 

The maximum principal stress in the injector occurred at a single well-defined point located in a transition 
fillet. As shown in Figure 5, the injector was designed to fail in fatigue within the planned hot-fire tests so 
long as the detonation frequency was aligned with the structural frequency, structural damping was less 
than or equal to 2%, and the fillet radius was less than or equal to 0.02 inches. Modal testing confirmed a 
damping ratio of less than 1%, and the injector design used a 0.02-inch fillet. Therefore, fatigue failure was 
anticipated during the hot-fire tests. 

Two variants of the injector were designed to operate with the 10-cm diameter RDE provided by Aerojet 
Rocketdyne. Both implemented the same mixing architecture, but Injector #1 fully pursued low-loss 
performance while Injector #2 choked the oxidizer flow to possibly give more reliable detonation. The 
approach was to fire Injector #1 a few times to assess operability and pressure loss characteristics and 
thereby satisfy the objective of improving RDE injector design. Injector #2 was then to be fired repeatedly 
to develop high cycle fatigue damage for comparison to model predictions in order to satisfy the second 
objective of evaluating the material model. 

The material for both injectors is a proprietary version of Inconel 625. Inconel 625 was selected as the 
material due to its suitability for combustion applications, its prevalence in the materials literature, and its 
availability at Aerojet Rocketdyne. 
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Figure 5. Stress was Estimated to Exceed the Fatigue Strength for the Anticipated Number of Hot-Fire Cycles 

when the Wobble Mode is Excited Near Resonance (Horizontal Lines are Estimates of Fatigue Strength for 
Different Build Directions) 

 MANUFACTURING 

The two injector prototypes were manufactured on the Concept M2 machine at Aerojet Rocketdyne. 
Injector #1 was built first and used the process parameters from sample build 2 (see section 3.C of this 
report). These process parameters were selected based on a subjective review of the material property data 
available because the initial version of the DTMM was not yet complete. This was acceptable because the 
objective for the Injector #1 tests was to demonstrate performance and operability of the low-loss injector 
design.  

Injector #2 was built after the hot-fire testing of Injector #1 and it used the process parameters from sample 
build 3. These parameters were selected based on the DTMM predictions for optimum fatigue strength (see 
section 3.K). Thus, the mechanical performance of Injector #2 is an indicator of the utility of the DTMM 
in component design. 

The injectors were used in as-built condition, with clean-up machining only applied to mating surfaces. The 
as-built dimensions of key internal features were evaluated in Injector #1. The fillet radius that defined the 
expected fatigue location was within 0.002 inches of target (nominal dimension of 0.02 inches), and the 
internal fuel passage diameters were also within 0.002 inches of target. Injector #1 shrank considerably 
during the hot-isostatic-pressing (HIP) treatment, with global shrinkage around 8%. Therefore, mating 
features should be oversized in additive manufacturing builds to ensure that sufficient material remains for 
clean-up machining (the relevant features of the injector were appropriately oversized in this case). 
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While additive manufacturing enables more complex internal geometries, the removal of build supports 
was found to be a challenge. Part designs must carefully consider build support locations to avoid labor-
intensive clean-up operations.  

 HOT-FIRE TESTS 

 INJECTOR #1 

Hot-fire tests of Injector #1 were performed at the Southwest Research Institute (SwRI) RDE test facility 
during the week of March 8th. A total of 64 tests were attempted over 3 ½ days. Fifty-eight of the 64 tests 
achieved combustion, with three of the six failed ignitions known to be caused by faulty spark plugs that 
were replaced. The team demonstrated a high experimental throughput – up to 28 tests were performed in 
a single day. 

The RDE operating with sustained detonation is shown in Figure 6 and Figure 7. The fuel was hydrogen 
and the oxidizer was oxygen-enriched air. While hydrogen-air flames are theoretically invisible, there are 
sufficient impurities in the system to illuminate the exhaust plume. Rotating shockwaves are visible against 
the backdrop of the static centerbody, particularly in the night view. 

 
Figure 6. Exhaust Plume of a Hot-Fire Test of Injector #1, Day View 
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Figure 7. Exhaust Plume of a Hot-Fire Test of Injector #1, Night View 

The test matrix varied the total mass flux, oxygen concentration in the oxidizer, equivalence ratio, and area 
contraction ratio of the nozzle backpressure plate. The dynamic pressure data from each test were reviewed 
to classify the combustion as detonation or deflagration. Single-wave detonation generates sharp, evenly 
spaced pressure pulses. This is in stark contrast to deflagration or possibly irregular detonation, where the 
oscillation in the pressure signal appears random and of relatively small amplitude.  

The RDE is only considered operable at test points with sustained detonation, as this is what generates the 
gain in total pressure across the combustion chamber. Of the 58 combustion tests, 62% (i.e., 36 of 58) 
achieved sustained detonation, with the remainder burning through deflagration. The large number of 
detonation points confirms that the low-loss design is a viable RDE injector. Of the 36 tests with detonation, 
72% (i.e., 26 of 36) operated with a single wave. Single-wave operation was desirable in this program 
because the unbalanced pressure pulse was needed to excite the wobble mode in the dynamic centerbody. 

The injector pressure loss was calculated from the difference of the oxidizer manifold static pressure and 
the average of two static pressure measurements in the combustion chamber. Every test gave a different 
absolute and relative value of pressure loss across the injector due to the varying conditions between tests. 
The injector pressure recovery ratio, which is the ratio of chamber pressure to manifold pressure, is used as 
the performance metric; this value should be as close to unity as possible.  

A pressure recovery ratio of 0.7 was selected as the low-loss threshold. Any performance above this value 
is considered low-loss because the injector is not choked, meaning the oxidizer flow is always subsonic and 
influenced by downstream pressure oscillations. All detonation points exceeded this performance goal with 
the data centered around a value of 0.90. While the pressure loss varied with configuration, the lowest 
pressure loss test with detonation had a pressure ratio of 0.964 (only a 3.6% pressure loss). In summary, 
Injector #1 was demonstrated to be operable with low pressure losses, and in some cases the pressure loss 
was minimal and comparable to a conventional gas turbine injector. 
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The desired vibration of the injector was not demonstrated in the hot-fire testing of Injector #1. Some tests 
caused notable deflection in the dynamic centerbody as measured by a proximity probe, but this vibration 
occurred at four times the detonation frequency. The tendency for the RDE to subharmonically excite shell 
modes is illustrated in Figure 8. This thought experiment assumes that the detonation pressure pulse is 
located at top center at the initial time, and this corresponds to a downward deflection of the centerbody 
shell. The next frame shows the location of the pressure pulse at a time that is one half period later in the 
structural mode oscillation. It is evident that harmonic excitation of shell modes is self-cancelling. If the 
pressure pulse is at a trough at the initial time, it is at a peak at a later time, and there is negative interference. 
In contrast, subharmonic excitation, specifically at a fraction that is one over the number of lobes, 
consistently aligns the pressure pulse with the trough. The trough rotates around the circumference at the 
same rate as the detonation wave, and the proximity probe sees an oscillation at 4x the detonation frequency 
as four peaks and four troughs move past its location in one revolution of the detonation wave. 

In conclusion, hot-fire testing of Injector #1 only excited high frequency shell modes, and did not excite 
the primary wobble mode. These shell modes do not generate stress in the injector. 

 
Figure 8. Mode Excitation Potential of Harmonic Forcing of a 2-Lobe Mode Compared to ¼ Subharmonic 

Forcing of a 4-Lobe Mode 

 INJECTOR #2 

Hot-fire tests of Injector #2 were performed at the SwRI RDE test facility during the week of August 9th. 
The primary objective was to align the detonation frequency with the natural frequency of the wobble mode 
and generate fatigue damage through repeated runs at this condition. Life of the part was then to be 
compared to DTMM predictions. The assembled RDE with Injector #2 is shown in Figure 9. 
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A total of 28 tests were attempted over 1 ½ days. Twenty-five of the 28 tests achieved combustion, with 
two of the three failed ignitions known to be caused by an incorrect setting of a pressure regulator. As with 
Injector #1, the team demonstrated a high experimental throughput – up to 22 tests were performed in a 
single day. The injector could have been forced through a very large number of cycles over the planned 
two-week testing effort. However, hot-fire tests were discontinued after the second day due to inadequate 
vibration. 

The vibration measured by the proximity probe indicated that the wobble mode was harmonically excited 
at the detonation frequency, as intended. However, the measured deflection amplitude of 0.0009 inches was 
less than the 0.0036 inches required to fatigue the injector within the hot-fire test budget. This difference 
may be due to the structural damping or pressure loading diverging from assumptions. Therefore, further 
hot-fire tests were discontinued in favor of a conventional fatigue test of the injector, which is described in 
section 3.M of this report. 

 
Figure 9. RDE Assembled for Hot-Fire Testing of Injector #2, View of the Exhaust Side 
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3. MATERIAL MODEL DEVELOPMENT 

 OVERVIEW 

The Digital Twin (DT) concept was formulated by the systems engineering community with the basic 
premise that a complex physical system can be completely represented by a digital informational construct. 
This virtual digital system represents all aspects of the physical system itself, from the fabrication and 
assembly of the individual components, to the continuing exchange of data with the real system during the 
entire life cycle of the system, i.e., "cradle to grave," and all the elements needed for Product Lifecycle 
Management (PLM). Through modeling and simulation of the virtual digital system, operators can 
understand the behavior of the physical system and get insights on the future behaviors and maintenance 
needs.  

The key element of a DT of a component is the material model to provide an assessment of the damage 
state in each zone of a component. A DTMM consists of several transfer functions that link the processing 
attributes to the structure features, and the structure features to properties or damage model. The DTMM is 
evaluated locally in every assessment zone of the component, often with emphasis near the hot spots where 
degradation is of upmost concern. 

The DTMM describes the response of every material point based on the complete processing and in-service 
history and outputs relevant performance metrics for the operator to make decisions that can be used for 
fatigue assessment by linking process to structure and the structure to the HCF strength, as highlighted in 
yellow in Figure 10. It involves acquiring digital structure data and transforming this data to a form 
amendable for machine learning (ML) algorithms. In addition, if the loading within the zone being assessed 
in the component is known, a prediction of the cycles to failure or damage state can be determined. 

 
Figure 10. Holistic Application of a DT of a Component and Role of the DTMM 

 LITERATURE REVIEW OF ADDITIVELY MANUFACTURED INCONEL 625 

The number of additive manufacturing process variables precluded an exhaustive experimental 
characterization of the possible build options. The literature was used to select a subset of parameters that 
should be varied in the coupon builds that inform the DTMM, and to select good values for those parameters 
that are to be held constant. Results from the literature review are summarized below. 
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 MECHANICAL PROPERTIES 

Inconel 625 is a nickel-based super-alloy often used in aerospace applications. It has a typical elemental 
composition (%) as follows. 

Table 1. INCONEL alloy 625 Typical Composition (%) 

Ni Cr Mo Nb Fe C Si Al Ti Mn S 

61 21.5 9 3.6 2 0.05 0.20 0.20 0.20 0.20 0.001 

One potentially important variant of Inconel 625 is the LCF variant alloy (as in low-cycle fatigue). This 
alloy limits carbon to 0.03% max, silicon to 0.15% max, and nitrogen to 0.02% max, and it has a different 
melting method and annealing practice. This variant of Inconel 625 has superior low-cycle fatigue strength.  

The US Department of Defense (DoD) Military Handbook contains basic material property information for 
this alloy in wrought and cast forms. Inconel 625 is expected to have similar elastic properties for additively 
manufactured material and wrought material. In the open literature, Poulin et al. (2018) measure a ±5% 
variation of Young’s modulus for AM Inconel 625 relative to the wrought value. They indicate that hot 
isostatic pressing (HIP’ing) increases Young’s modulus and attribute this increase to lower porosity and the 
dissolution of carbide particles resulting in more Mo and Nb atoms in the matrix. Koutiri et al. (2018) 
measure a 13% reduction in Young’s modulus for AM Inconel 625 vs. wrought material. Their process 
introduced porosity that may result in the lower value for Young’s modulus. In both references, it is unclear 
if the authors followed the appropriate ASTM standard to measure Young’s modulus, and the wrought 
value may provide an appropriate level of accuracy for engineering purposes. At room temperature for 
annealed material, the US DoD handbook sets a design value for Young’s modulus of 206 GPa and a design 
value of Poisson’s ratio of 0.28. For annealed material, the modulus decreases by approximately 50% as 
the temperature increases from room temperature to 900°C. The Special Metals data sheet for Inconel 625 
also shows a reduction in modulus with temperature, but the decrease is only 29% at a temperature of 
871°C. Poisson’s ratio increases by approximately 20% as the temperature increases over the same range 
for both the DoD and Special Metals sources.  

Debroy et al. (2018), list the modulus for Inconel 625 as well as Haynes 230, another nickel alloy, and show 
a strong dependence on build orientation, with the transverse (X-Y) orientation having a modulus that is on 
average 28% lower than the longitudinal orientation. However, these measurements for Inconel 625 
employed a non-standard geometric specimen. Furthermore, these specimens were not heat-treated to 
remove residual stress from the specimens. Finally, the authors of the original study (Yadroitsev et al. 2007) 
highlight that the transverse samples featured numerous defects, and they attribute the reduced value of 
Young’s modulus to these defects. HIP’ing specimens may mitigate the effect of defects on Young’s 
modulus, and close the gap between the transverse and longitudinal build directions. 
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Table 2. Young’s Modulus for Additively Manufactured Nickel Alloys, reproduced from Debroy et al. (2018) 

Alloy Process 
Post-

Processing 
Orientation 

Young’s 
Modulus (GPa) 

Inconel 625 SLM AF X-Y 141 

Inconel 625 SLM AF Z 202 

Haynes 230 SLM AF X-Y 152 

Haynes 230 SLM AF Z 205 

Nomenclature 

SLM 
Selective Laser 

Melting 
X-Y Transverse Orientation 

AF As Fabricated Z Build Orientation 

AM parts typically feature higher yield stress values than similar wrought/cast material. The US DoD 
Military handbook recommends a design yield strength of 414 MPa based on annealed material. This value 
may underestimate yield strength in the AM material, but it should lead to a conservative prediction for 
yielding. 

Alexandre et al. (2004) show that fatigue lives for Inconel 718 (a sister alloy of Inconel 625) decrease with 
increased grain size. This trend is expected to hold for Inconel 625 as well. Material porosity is also 
expected to have a strong influence on AM material fatigue life. Grain size and porosity will be a function 
of AM processing history. Unfortunately, no fatigue data were found in the open literature that directly 
addresses the processing history of the material in this project. The next section will show information for 
as-built and annealed parts, but these parts lack the important HIP’ing step.  

 
Figure 11. Fatigue Life decreases with increased Grain Size in Inconel 718, reproduced from Alexandre et al. 

(2004) 

Anam (2018) summarizes mechanical property data from the literature for additively manufactured Inconel 
625. Table 3 shows the effect of process, post-processing, and orientation on yield strength, ultimate tensile 
strength, and elongation. The nominal performance for the two machines used in this project, the Concept 
M2 and Renishaw 250, are also included (Renishaw results are for 30 and 60 micron powder layer 
thicknesses). Note that both of these machines use the selective laser melting (SLM) process. Most 
specimens have yield strength values at or above the DoD design value of 414 MPa. However, a few SLM 
specimens have yield strength values below the design value. The minimum yield stress is 360 MPa, and it 
includes an annealing step and HIP’ing. The strong dependence of mechanical properties on processing 
history is easily seen in the graphical presentation of some of the data from Table 3. Figure 12 shows the 
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large variability in ultimate tensile strength and elongation to failure for AM Inconel 625 samples. This 
clearly motivates the DTMM development so that material properties may be determined given a set of 
processing parameters.  

Table 3. Summary of Mechanical Property Data for Additively Manufactured Inconel 625, reproduced from 
Anam (2018) 

A
ut

h
or

 

Y
ea

r 

P
ro

ce
ss

 

P
os

t 
P

ro
ce

ss
in

g 

O
ri

en
ta

ti
on

 

0.
2%

 Y
ie

ld
 

S
tr

en
gt

h,
 M

P
a 

U
lt

im
at

e 
T

en
si

le
 

S
tr

en
gt

h,
 M

P
a 

%
 E

lo
n

ga
ti

on
 

Xue 2007 LDED AF X-Y 477 744 48 

Xue 2007 LDED AF Z 518 797 31 

EOS 2010 SLM AF X-Y 725 990 35 

EOS 2010 SLM AF Z 615 900 42 

Betts 2011 SLM AF X-Y 384 898 60 

Betts 2011 SLM AF Z 376 883 57 

Yadroitsev 2009 SLM AF X-Y 720 1070 9 

Yadroitsev 2009 SLM AF Z 800 1030 9 

Optomec 2012 LDED AF X-Y 694 1052 33 

Optomec 2012 LDED AF Z 490 829 43 

Murr 2011 EBM AF X-Y 300 590 53 

Murr 2011 EBM AF Z 410 750 44 

Murr 2011 EBM A+HIP Z 330 770 69 

Murr 2011 EBM A+HIP Z 230 610 70 

Rombouts 2012 LDED AF X-Y 480 882 36 

Rombouts 2012 LDED AF Z 656 1000 24 

Amato 2012 SLM A+HIP X-Y 380 900 58 

Amato 2012 SLM A+HIP Z 360 880 58 

EOS 2011 SLM SR X-Y 720 1040 35 

EOS 2011 SLM SR Z 650 930 44 

Concept M2 2017 SLM ? X-Y 713 1061 41 

Concept M2 2017 SLM ? Z 661 932 31 

Renishaw (30) 2017 SLM AF X-Y 767 1055 34 

Renishaw (30) 2017 SLM A X-Y 633 1020 39 

Renishaw (30) 2017 SLM AF Z 676 964 42 

Renishaw (30) 2017 SLM A Z 598 955 43 

Renishaw (60) 2017 SLM AF X-Y 667 922 18 

Renishaw (60) 2017 SLM A X-Y 600 1005 31 
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Renishaw (60) 2017 SLM AF Z 536 770 11 

Renishaw (60) 2017 SLM A Z 583 985 32 

Dutta 2011 LDED - Z 598 795 14 

MMPDS  AMS A Z 414 827 30 

Nomenclature 

LDED Laser Direct Energy Deposition HIP Hot-Isostatic Press 

SLM Selective Laser Melting SR Stress Relief 

EBM Electron Beam Welding A Anneal 

AMS 
Aerospace Material 

Specification 
X-Y Transverse Orientation 

AF As Fabricated Z Build Orientation 

 
Figure 12. The Large Variation in Strength and Ductility of Additively Manufactured Inconel 625 

The literature review results were used to assume the room temperature properties that were used in the 
preliminary injector design. These assumptions are stated in Table 4. Portions of the injector will not operate 
at room temperature conditions. Mechanical properties were adjusted for temperature based on the trends 
presented in the Special Metals material data sheet. 
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Table 4. Room Temperature Mechanical Properties to Assumed in the Preliminary Injector Design 

Property Value Source 

Yield strength 414 MPa 
US DoD Military Handbook design 
value for wrought/cast products (AM 
material usually exceeds this) 

Elastic modulus, longitudinal 
build orientation 

206 GPa 

US DoD Military Handbook design 
value for wrought / cast products that 
was found to be similar to data for the 
longitudinal build direction 

Elastic modulus, transverse build 
orientation 

185 GPa 

90% of the longitudinal value based on 
the expectation that HIP’ing will remove 
some of the transverse orientation 
defects  

Poisson’s ratio 0.28 
US DoD Military Handbook design 
value 

Fatigue strength  
Design curves from the US DoD Military Handbook and Special 
Metals data sheets 

 PROCESS PARAMETERS 

Several parameters control the additive manufacturing process. The definition of each parameter considered 
in this review is given in Table 5. The objective of the literature review is to determine the combination of 
parameters that results in the highest fatigue strength. Two observable indicators of higher fatigue strength 
are small grain size (see Figure 11) and low porosity, and these are used as the primary material quality 
metrics.  

Table 5. Definition of Additive Manufacturing Process Parameters 

Parameter Definition 

Laser power Strength of the laser that is used to melt the powder material 

Laser speed How fast the laser moves across the powder bed surface 

Hatch spacing The distance between parallel rows of laser passes 

Scan strategy 
The path the laser takes to fully cover the cross-sectional area of a layer, 

and the difference in this path from one layer to the next 

Laser spot size Diameter of the laser beam when it is incident on the powder bed surface 

Layer thickness Depth of powder that is melted during a pass of the laser 

Energy density 
Applied laser energy per unit volume of powder. This is a dependent 

quantity that is a result of the other laser parameters. 

Substrate preheating Temperature of the powder bed prior to laser application 

Montgomery (2015) provides process maps for Inconel 625. These maps likely employ a powder thickness 
of 60 microns, though it is not explicitly stated in the paper. The authors state that the powder thickness has 
a limited impact on the results in the thickness range that they examined. This statement relies on 
experimental measurements and numerical simulations of the powder. Overall, the melt pool is maximized 
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and keyholing is prevented using the following combinations of source power (W) and velocity (mm/s): 
(70,200); (110,400); (145,600); and (185,800) (the red line of Figure 13). In this context, keyholing 
indicates a high-energy mechanism that forms deep but slender melt pools. These melt pools encourage the 
development of porous regions with a spherical base and a long slender extension in the build direction. 
Pores produced by keyholing are especially susceptible to fatigue initiation and are difficult to correct 
through HIP’ing. Similar process parameter combinations will also prevent keyholing, but they result in 
smaller melt pools that would prolong the build time. The red line indicates the largest melt pools that do 
not produce keyholing. 

 
Figure 13. Experimental Curves of Constant Cross-Sectional Area for IN625 and an Annotation for the 
Keyholing Region. Colors represent a Constant Cross-Sectional Area of the melt pool, reproduced from 

Montgomery (2015) 

Arisoy et al. (2016) investigated the influence of scan strategy and process parameters on additively 
manufactured Inconel 625. They varied the stripe scan pattern (rotations of 90° per consecutively built 
layers vs 67° per consecutively built layers); laser power (169W, 182W, and 195W); scan velocity (725 
mm/s, 800 mm/s, and 875 mm/s); and hatch distance (0.09 mm, 0.1 mm, and 0.11 mm). They measured 
average grain size, grain size deviation, and grain growth direction (to measure anisotropy). The 67-degree 
scan pattern rotation is of interest since this approach tended to promote smaller grain sizes. Table 6 below 
shows the measurements of average grain size and grain size deviation. For reference, the average grain 
size of annealed Inconel 625 is on the order of 50-230 microns depending on the annealing heat treatment. 
As-drawn Inconel has an average grain size of approximately 80 microns. Key processing parameter sets 
that result in minimum grain sizes have been highlighted. 
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Table 6. Grain Diameters for different Process Parameters, reproduced from Arisoy et al. (2016) 

 
Arisoy et al. (2016) also provide information on grain growth orientations as shown in the following figure. 
This table shows grain growth direction measured in the XZ plane. Since the grains grow semi-randomly, 
some of them grow along a positive angle (relative to the Z or build axis) and some grow along a negative 
angle. The authors break these angles up. They then bin the positive and negative angles into 10-degree 
bins. The column marked 𝜃 + and 𝜃 − indicate the bin where most of the angles are located. For example, 
coupon 13 has most of its grains oriented in +10-degree bin and -10-degree bin. There are still grains 
oriented in other directions, but most grains are oriented in the 10-degree bin. The columns marked mean 
and standard deviations refer to values within the bin itself and do not include orientations outside of the 
bin. Aligning the growth direction angles with the build direction (making them close to zero) may 
strengthen parts in the build (Z) direction. Since the YS and UTS tend to be low in the Z-direction, this may 
be an appropriate design target to reduce anisotropy. Specimens with minimum grain growth orientations 
have been highlighted below. 
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Table 7. Grain Direction for different Process Parameters, reproduced from Arisoy et al. (2016) 

 
These experimental results lead to the development of a multi-objective optimization. For a 67° scan 
pattern, they predicted that the minimum grain size could be achieved using a power of 195W, a scan 
velocity of 865.9 mm/s, and a hatch spacing of 0.11 mm. Furthermore, the resulting response surface 
predicts minimum grain growth direction angles for a power of 195W, a scan velocity of 835.6 mm/, and a 
hatch spacing of 0.1 mm. They summarize their findings as follows: 

 Increasing energy density tends to result in larger grain sizes based on a statistical analysis by the 
authors. This relationship is not perfect. The average grain size tends to increase with higher power 
and tends to decrease with higher scan velocities. The average grain size tends to increase with the 
hatch distance for a 67-degree rotation and tends to decrease with a 90-degree rotation. 

 Finer grain sizes can be obtained when process parameters are optimized using a scan strategy 
rotation of 67°. 

 Growth directions are less influenced by laser power and scan velocity when a scan strategy rotation 
of 67°is used. 

 A combination of medium-high scan velocity and medium hatch distance is seen as ideal for growth 
aligning in the build direction and resulting in an isotropic build. For a 67-degree rotation, the 
optimum parameters are P=195 W; v=835.6 mm/s; and h=0.0996 mm. For a 90-degree rotation, 
the optimum parameters are 169W; v=786 mm/s; and h=0.09 mm. These results are based on an 
optimized response surface.  

In a later paper by the same group, Criales et al. (2017) investigated the effect of process parameters on 
melt pool shape and size. During this work, the authors measured density relative to a fully dense part. 
Denser measurements suggest less porosity and higher fatigue lives due to fewer internal voids to drive 
fatigue crack initiation. Their results are shown in Table 8 with the highest density result highlighted. 
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Table 8. Material Density for different Process Parameters, reproduced from Criales et al. (2017) 

 
In general, the scan-stripe rotation of 90° leads to slightly more dense material than the 67° rotation strategy. 
Parts with density in excess of 99% may be achieved with a power of 195W, a scan velocity of 800 mm/s, 
and a hatch distance of 0.09 mm. The authors of this report did not provide a similar response surface 
optimize processing parameters. These scan parameters would lead to larger grains and non-optimal 
anisotropic grain growth based on the earlier work.  

Marchese et al. (2016) investigated the effect of processing parameters on Inconel 625. For selective laser 
melting, they fixed the scan rotation at 67° and varied power, velocity, and hatch distance. Their design of 
experiment is summarized in Table 9. 
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Table 9. Parameters used in the Marchese et al. (2016) Design of Experiment 

Parameter Values 

Laser power [W] 175, 185, 195 

Laser speed [mm/s] 600, 900, 1200 

Hatch spacing [mm] 0.07, 0.09, 0.11 

Layer thickness [μm] 20 

Substrate temperature [°C] 80°C 

Laser spot size [mm] 0.10 

Supplemental information shows porosity and hardness from these parameter settings. Most porosity values 
are less than 1%. Sample S7 showed the lowest porosity, and it was built using a scan speed of 900 mm/s, 
a laser power of 185 W, and a hatching distance of 0.07 mm. However, similar porosity levels develop 
using the parameter set from S5, S12, S21, and S25. 

  



DOE Award FE-0031644  Page 22 
“Digital Twin Model for Advanced Manufacture of a Rotating Detonation Engine Injector” December 17, 2021 

Table 10. Residual Porosity for different Process Parameters, reproduced from Marchese et al. (2016) 

 
Anam (2018) investigated the influence of laser power and scan speed on the melt pool depth to width 
ratios. He states that a ratio of 0.5 ± 0.1 is optimal to produce parts with a minimum number of defects. 
This study provides a map showing the combinations of laser power and laser speed and the resulting melt 
pool depth to width ratios. 
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Figure 14. Melt Pool Depth to Width Ratios for Combinations of Laser Power and Laser Speed, reproduced 

from Anam (2018). 

Anam also provides micrographs of polished cross-sections showing porosity of cubes produced using 
various scan parameters. The micrographs are shown in Figure 15 and the corresponding quantitative 
measurements are given in Figure 16. Low porosity is obtained with higher laser power. For a given power, 
porosity at first decreases with increasing scan speed, reaches a minimum and then begins to increase. The 
maximum scan speed tested, 1200 mm/s, is not fast enough to show the range of increasing porosity for the 
highest laser power. 
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Figure 15. Micrographs of Additively Manufactured Inconel 625 show Porosity for Combinations of Laser 

Power and Speed, reproduced from Anam (2018). 
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Figure 16. Quantitative Measurements of Porosity as a Function of Laser Power and Speed that Correspond 

to the Micrographs of Figure 15, reproduced from Anam (2018). 

Additional studies by Anam investigate the effect of build orientation and scan strategy rotation on the 
tensile mechanical properties for a laser power of 195W, scan speed of 800 mm/s, layer thickness of 20 
microns, and hatch spacing of 0.1 mm. In general, Inconel 625 shows some anisotropy with these build 
parameters that cannot be reduced by heat treatment. However, heat treatment is recommended to increase 
elongation. 

 
Figure 17. The Effect of Build Orientation and Heat Treatment on the Tensile Strength Properties of 

Additively Manufactured Inconel 625, reproduced from Anam (2018) 
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Figure 18. The Effect of Build Orientation and Heat Treatment on the Elongation to Failure of Tensile 

Specimens of Additively Manufactured Inconel 625, reproduced from Anam (2018) 

Anam also investigated cyclic fatigue life for Inconel 625. They varied the build orientation and heat 
treatment. It is assumed that the heat treatment is an annealing heat treatment, not HIP’ing. However, Anam 
is not clear on this point. In any case, the heat treatment had limited impact on the fatigue life. The build 
direction was more important to fatigue lives. Building along the Z-axis (in the axial direction of tensile 
specimens) lead to lower fatigue lives than building normal to the Z-axis. Anam attributed this to defects 
in the material normal to the build direction. That is, the AM process introduces preferentially aligned pores 
into the material. 
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Figure 19. Fatigue Strength vs. Cycles to Failure for Additively Manufactured Inconel 625 Tensile Specimens 

Built in the Z and X-Y Orientations and with and without Heat Treatment, reproduced from Anam (2018) 

Koutiri et al. (2018) investigated surface finish, porosity rate, and fatigue behavior of as-built Inconel 625 
parts. They investigated contour parameters that control melting on the part surface and hatching parameters 
that control melting on the part interior. Table 11 shows the surface roughness results, where the general 
trend is that it was minimized as power increased (i.e., increased volume energy density).  

Table 12 shows the observations for porosity. Generally speaking, they are consistent with earlier 
measurements that show limited porosity for energy densities in the range of 45-90 J/mm3 for the lower 
power settings (P<200W), though there is one outlier (specimen 25). Higher power and velocity settings 
than are supported by the Concept M2 and Renishaw machines at Aerojet Rocketdyne and SwRI may 
produce low porosity builds. 

As shown in Figure 20, polishing the specimen removes surface initiation sites and forces initiation to 
develop at interior anomalies. These interior anomalies may be minimized by HIP’ing the specimen. 
However, polishing was not an option for the injector component built in this project based on the geometry 
of the design. 
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Table 11. Surface Roughness of As-Built Components for different Process Parameters, reproduced from 
Koutiri et al. (2018) 

 
 

 

Table 12. Porosity of As-Built Components for different Process Parameters, reproduced from Koutiri et al. 
(2018).  
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Figure 20. Fatigue Strength is increased by Polishing the Component Surface, reproduced from Koutiri 

(2018) 

Grabill et al. (2018) summarize the effect of heat treatment on various nickel-based alloys. For Inconel 625, 
HIP’ing has a modest impact on yield strength. The annealing heat treatment has a more pronounced effect 
on yield strength and elongation. 
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Figure 21. The Effect of Heat Treatment on Additively Manufactured Inconel 625 Tensile Properties, 

reproduced from Grabill et al. (2018) 

Lass et al. (2017) of NIST indicate the formation of a delta-phase in Inconel 625 using the standard industry 
stress-relief anneal of 1 hour at 1143 K. This phase adversely impacts fracture toughness, ductility, and 
other mechanical properties. They suggest an alternate stress relief of 4 hours at 1073 K to mitigate delta-
phase formation. 

Zhang et al. (2018) also noticed the formation of delta-phase in Inconel 625 during the standard anneal 
cycle. Figure 22 below shows SEM micrographs after 0.5 hours, 1 hour, 4 hours, and 8 hours of heat 
treatment. White lines indicate the delta phase. They attribute the rapid formation of the delta-phase to 
elemental segregation during additive manufacturing. They suggest a homogenization heat treatment to 
remove the delta phase. 
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Figure 22. The Formation of Undesirable Delta-Phase in Additively Manufactured Inconel 625 after various 

Exposures to Industry Standard Annealing Conditions, reproduced from Zhang (2018) 

 FINDINGS 

Based on the preceding information from the literature, the following range of processing parameters are 
recommended for the design of experiment used to generate data for the DTMM: 

 Laser power between 175 W and 200 W, preferably near 200 W 

 Laser speed between 800 mm/s and 900 mm/s, preferably near 900 mm/s 

 Hatch spacing between 70 µm and 100 µm  

 Scan strategy rotation of 67° was originally selected because it is expected to produce smaller grain 
sizes, which would correlate with improved fatigue performance. However, the Concept Laser M2 
machine at Aerojet Rocketdyne only supports 90° rotation. 

 Alternating laser paths 

 Layer thickness of 40 microns 

 Laser spot size between 70 microns and 100 microns 

 Preheating the substrate to 80°C 

These processing parameters are intended to produce a nearly fully dense part in the as-built configuration 
with an isotropic material response. The trade-off is that these parameters will promote larger grain sizes. 
Larger grain sizes often are associated with reduced yield strength and lower fatigue lives from persistent 
slip band formation. However, the grain size expected from these processing parameters should still be less 
than the as-drawn grain size of wrought Inconel. Furthermore, the major concern with an additively 
manufactured component for fatigue applications is fatigue initiation from pre-existing voids. Denser 
material will have fewer voids, and those voids should be more spherical if keyholing and lack-of-fusion 
defects are prevented. 
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It is also recommended to perform additional heat-treatment post build. These heat-treatments should 
include HIP’ing to further reduce voids in the part and/or annealing. It may be useful to heat treat the part 
at anneal cycle recommended by Lass et al. at NIST to mitigate delta-phase formation.  

  DATABASE DEVELOPMENT 

Since data on the process-structure-HCF property of Inconel 625 available in the literature was not 
sufficient to establish the model, an extensive experimental program was undertaken to generate this data. 
Flat dog-bone HCF specimens were fabricated using a laser powder bed fusion (L-PBF) process with post-
processing, including stress-relief and hot isostatic pressing (HIP). Several builds were fabricated, each 
containing multiple additively manufactured HCF specimens and microstructure samples, shown in Figure 
23. Two sizes of specimens and two orientations (Z-direction, XY-direction) were fabricated. In addition, 
two HCF specimens of each type were further processed with a surface finishing step involving grinding 
and polishing the surfaces within the gage section to quantify the influence of surface finish on fatigue 
strength.  

 
Figure 23. Specimen Configuration on the Build Plate Setup, Including “Dog-Bone” HCF Samples at Two 

Scales and Small Cylindrical Microstructure Samples 

The number of builds was constrained by the project budget. To make the most of the available builds, a 
design of experiment approach was used with a 24-1 factorial design. The design variables were laser 
velocity, hatch spacing, machine, and heat treatment. The design confounded the machine with the other 
three variables. This design also randomized the order of tests conducted on the same machine. Energy 
density is listed for reference in the test matrix, shown in Table 13, but is not an independent parameter. 
Some of the process parameters were held constant across all builds in order to satisfy the build number 
constraint. Based on the literature review, these settings were selected as most likely to result in high quality 
builds and were originally selected for use in all builds: 

 Layer thickness of 40 microns 

 Laser power of 195 W (original plan) 
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 Substrate preheating of 80 °C 

 Alternating laser path with scan rotation per layer of 90° (angle is set by the Concept M2 machine 
that only supports 90° rotation) 

However, an early build attempt on the Concept M2 machine at Aerojet Rocketdyne revealed that the 
energy density delivered by a laser power of 195 W was unworkable. The energy density of this test build, 
67 J/mm3, was sufficient to drive curling of the material as the machine built the support layer underneath 
the specimen geometry. This distorted material poked upwards, extending well above its nominal layer. 
Therefore, some solid material remained above the powder surface even after recoating with fresh powder 
for the next layer, as shown in Figure 24. This excessive material ultimately interfered with the recoater 
operation, prompting the machine operator to terminate the build in order to prevent damaging the machine. 
It was also evident that no usable test specimens would have been generated from these build settings. The 
laser power was subsequently reduced across all builds: 

 Laser power of 110 W (revised) 

 

 
Figure 24. Solid Material from the Previous Build Layer Protrudes through the Fresh Powder Layer, 

Indicating the Formation of Severe Flaws that Interfere with Recoater Operation 

The following parameters were varied in the design of experiment: 

 Laser speed between 800 mm/s and 900 mm/s with a center point of 850 mm/s 

 Hatch spacing between 70 microns and 100 microns with a center point of 85 microns 
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 Two machines with different laser processes: the Concept M2 at Aerojet Rocketdyne (continuous 
laser) and the Renishaw AM250 at SwRI (discrete laser) 

 Two different heat treatment cycles 

In the build matrix, the heat treatment cycle is described as either SR + HIP or NSR + HIP. This shorthand 
notation refers to: 

 SR+HIP – Standard stress-relief and anneal (1,600 F for one hour) followed by hot isostatic 
pressing 

 NSR+HIP – Alternative NIST stress-relief and anneal (1,475 F for four hours) followed by hot 
isostatic pressing  

In all cases, the hot isostatic pressing (HIP) was performed at 2,050 F and 14,750 psi for a period of four 
hours. 

Table 13. Design of Experiment 

Build No. Pattern 
Scan Speed 

(mm/s) 

Hatch 
Spacing 

(µm) 

Heat Treat 
Cycle 

Machine 
Energy 
Density 
(J/mm3) 

1 --- 800 70 SR+HIP Concept M2 49.1 
2 ++- 900 100 SR+HIP Concept M2 30.6 
3 +-+ 900 70 NSR+HIP Concept M2 43.7 
4 -++ 800 100 NSR+HIP Concept M2 34.4 
5 Center Point 850 85 SR+HIP Concept M2 38.1 
6 ++- 900 100 SR+HIP Concept M2 30.6 

7 +++ 900 100 NSR+HIP 
Renishaw 
AM250 

30.6 

8 -+- 800 100 SR+HIP 
Renishaw 
AM250 

34.4 

9 Center Point 850 85 SR+HIP 
Renishaw 
AM250 

38.1 

10 +-- 900 70 SR+HIP 
Renishaw 
AM250 

43.7 

11 --+ 800 70 NSR+HIP 
Renishaw 
AM250 

49.1 

SR = Standard stress-relief; NSR = Alternative NIST stress-relief; HIP = hot isostatic pressing 
 

The DTMM structure database targets two key attributes that influenced HCF strength based on fracture 
surface observations: 

1. Internal porosity 

2. Surface roughness measured in the gage section of the HCF specimens 

The characteristics of the internal porosity include number, size, morphology, and spatial distribution of 
the pores. This data was acquired from the microstructure samples using standard metallurgical methods 
(i.e., destructively section, mount, grind, polish, and observe in microscopes). This data served as a 
surrogate to represent the porosity of the HCF specimens in each build which could not be sectioned before 
testing.  

The surface roughness was measured using an areal scan of surfaces within the gage section of the HCF 
specimens before they were tested. 

Quantitative microstructure characterization maps microstructural quantities to a digital form amendable to 
machine learning. In a conventional approach, one would selectively describe the state of a structure with 
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measures such as phase size distribution, volume fraction, morphology, etc. intuitively, relying on the 
previous knowledge of the materials system. In addition to the enhanced likelihood of considerable loss of 
microstructural information in the adoption of such ad-hoc approaches, employment of traditional 
characterization methods, such as linear intercept, leads to a tedious and inefficient microstructure 
quantification. Therefore, the adoption of a universal systematic and statistically robust methodology is of 
paramount importance to provide a distinctly reliable estimate of the microstructure for digital-based 
methods. 

In this program, we use n-point correlation functions, also known as n-point statistics, as a statistical tool, 
which has shown to address the above hurdles [Fullwood, 2010; Cecen, 2016]. The n-point correlation 
functions are hierarchical statistical microstructure descriptors, which systematically provide more 
information as the order of the statistics increases. For instance, the fundamental 1-point statistics, 𝑓(ℎ), 
captures the probability associated with finding a phase of interest, known as the local state (ℎ), in a random 
discrete point of microstructure and it clearly corresponds to the volume fraction of the selected phase. At 
the next hierarchical level, 2-point statistics, 𝑓(ℎ, ℎˊ|𝒓), captures the correlation between every two points 
that are separated by vector 𝒓. Mathematically, 2-point correlation function computes the probability 
density of locating specific phases (ℎ and ℎˊ) at the discretized head and tail of a vector 𝒓 randomly thrown 
into the microstructure. The complete set of n-point correlation functions provides a thorough 
microstructure representation. 

In the development of the DTMM, 2-point statistics, the first-order spatial correlation, has proven to 
encompass all the required information to uniquely reconstruct microstructure with high precision. Some 
interpretable information can be readily gained from the 2-point correlation results. For instance, if the 
microstructure possesses a prevailing shape, the average morphology and orientation can be captured. 
Before delineating the details of the 2-point correlation function, terminologies that will be referred to in 
later sections must be introduced. “Local state” corresponds to the entire attributes that describe the material 
locally. The attributes can be a combination of composition, crystal lattice structure, and phase identifier. 
Therefore, the definition of the local state is tied to the length scale and in literature is denoted by ℎ. For 
instance, the microstructure of a Ni-base superalloy demonstrated in Figure 25(a) in the given length scale 
comprises two local states, the cuboidal dark shaded γʹ precipitates and the bright γ channels. The 
interpretation of the microstructure can be given by “microstructure function”, 𝑚(𝑥, ℎ), which defines the 
probability density of identifying the unique local state ℎ in position 𝑥. Knowing that the acquired structure 
images are often in digital and discretized format, local states are labeled as n = 1,2, … in a discrete grid 
on spatial bins. 

The 2-point correlation function in a discretized domain is expressed by 

𝑓௧
௛௛ᇲ

=
1

𝑠
෍ 𝑚௦

௛

௦ୀଵ

௦ୀ଴

𝑚௦ା௧
௛ᇲ

(1) 

where 𝑆 represents the total number of discretized bins or voxels, 𝑚௦
௛ denotes the discretized microstructure 

function that reflects the volume fraction of phase ℎ in voxel 𝑠 (the probability density of locating phase ℎ 
at bin 𝑠), and 𝑡 bins the vector space, enumerates the spatial bins and specifies the size of the prescribed 
vector. The schematic of a simplified discretized structure with two phases is depicted in Figure 23(b). By 
assigning 0 and 1 to the white and gray phases, the example values of microstructure functions become 
𝑚(ଵ,ଶ)

଴ = 1 and 𝑚(ଵ,ଶ)
ଵ = 0. Fullwood et al. [Fullwood, 2010] established an efficient procedure for fast 

computation of 2-point correlations by employing a fast Fourier transform (FFT) approach that is important 
for dealing with large datasets. It is important to recognize that the correlation function is denoted as auto-
correlation if ℎ = ℎᇱ (e.g., 𝑓௧

ଵଵ) in the equation above and cross-correlation (e.g., 𝑓௧
ଵଶ)  otherwise. 

For an illustration, an artificial periodic honeycomb structure with two local states and its corresponding 
auto-correlation function is displayed in Figure 25. Niezgoda et al. [Niezgoda, 2008] demonstrated that for 
a given microstructure with 𝐻 number of total local state, 𝐻 − 1 spatial correlation functions suffice to fully 
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represent microstructure, which is essentially the number of independent correlation functions. Therefore, 
only the demonstrated autocorrelation carries adequate structural information. In such a structure with a 
dominant feature shape and periodicity, the morphology and feature spacing is promptly recognized in the 
correlation function map. 

 

 
 (c) (d) 

 
Figure 25. (a) SEM image of the two-phase CMSX-8 single-crystal Ni-base superalloy,  (b) schematic of a 
binned structure displaying indexing and vector notations,  (c) artificial periodic honeycomb structure to 
demonstrate a discretized two-local state periodic structure, and (d) the corresponding autocorrelation of 

white phase [Cecen, 2016].  

These 2-point statistics are still high-dimensional. Therefore, methods to reduce the order so that features 
can be extracted from the structure is one approach. The most common method, often the basis of many 
ML methods, and the one employed here, is principal component analysis (PCA). PCA is a linear 
transformation technique that projects an ensemble of multivariate, correlated variables to a space with an 
orthogonal uncorrelated basis. The important information is extracted and represented by a new small set 
of variables called principal component (PC) scores. 

In theory, the PCs are directions along which the variation of the data is maximized and are identified 
sequentially so that they are provided in descending order by the extent of the variation each explains. In 
practice, the mathematical algorithm of PCA involves implementing Singular Value Decomposition (SVD) 
on the matrix 𝐹௥

௡ = [𝑓௥
௡]௡×௣ in which each row is comprised of the vectorized 2-point statistics of each 

microstructure. Hence, for microstructure 𝑛, the PCA decomposes the descriptor vector with the entries of 
2-point correlation function to the following linear combination, 
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𝑓௥
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௡

௣ିଵ

௜ୀଵ

𝜙௜௥ + 𝑓ሚ௥ (2) 

where 𝛼௜
௡ is the coordinate of microstructure 𝑛 in the new space denoted as weights or PC scores, ∅௜௥ is the 

corresponding orthogonal basis vectors, 𝑓௥
෩  is the ensemble average of the 2-point correlations of all 

microstructures with the vector size 𝑟 and p is the selected number of bases of the new space. Essentially, 
in this equation, PC scores signify the weight of the spatial pattern demonstrated by their associated basis 
vectors. 

 INTERNAL POROSITY – DATA ACQUISITION AND ANALYSIS  

It is essential to recognize that the overall pore structure status, comprising of porosity type, shape, and 
spatial distribution, is the foremost contributing factor to fatigue crack formation. Characterizing porosity 
state only by volume fraction is inadequate in incorporating critical information for robust model linkages 
between structure and fatigue strength. Ideally, one would conduct an X-ray computed tomography (CT) 
of the critical section of the component, or in this case the gage section of the HCF specimens. However, 
while feasible, this is time-consuming and expensive, at least at this time, and outside the scope of this 
project. Instead, microstructure samples were metallurgically characterized to serve as representations of 
the porosity in the gage section of the fatigue specimens. The microstructure samples were sectioned in the 
longitudinal (build) direction so that the variation in the degree of porosity along the building direction 
could be examined on the exposed cross-section. In total, ten images were captured along the build direction 
from bottom to top, each with 1.8 × 1.3 mm field of view. Figure 26 depicts the schematic of the imaging 
strategy. The images were later stitched together, representing an area of 23.4 mm2. A sample image of the 
pre-HIP’ed porosity structure is shown in Figure 26.  

In order to quantify the revealed features, the 2-point correlation statistics framework described above is 
used. Figure 27 elaborates on the transformation of a sample raw image to the corresponding stitched image 
statistical representation. It consists of four steps: 

1. Conversion of RGB images to grey-scale 

2. Improvement in the contrast of the images using adaptive histogram equalization (AHE). The 
feature edges and contrast are enhanced locally in the adaptive approach. 

3. Binarization of the grey-scale images by adaptive image binarization framework. It involves 
choosing a local threshold based on the first-order statistics (local mean intensity) at the 
neighborhood of each pixel. The pixels associated with porosities are assigned as zero, and the 
dense matrix pixels are set as one. 

4. Removal of the detected surface features and porosities smaller than the specified threshold. The 
pores with a diameter lower than 20 µm are eliminated since their influence on the HCF properties 
is insignificant relative to the larger pores. Furthermore, the artifacts that might be introduced to 
the surface due to polishing and sample preparation are treated as well. 
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Figure 26. Optical imaging strategy of the Inconel 625 microstructure specimens at 50 × magnification and 

ten equally-spaced locations. 

 

 
Figure 27. Image processing and quantification workflow of the optical porosity images illustrating the (a) 
raw image, (b) step 1, (c) step 2, (d) step 3, (e) step 4, (f) stitched image of the ten samples from one surface, 

and (g) 2-point correlation statistical representation. 

Even though metallographic methods are a satisfactory approach for demonstrating the methodology, it 
should be recognized that they suffer from shortcomings. In general, no standard procedure exists for 
metallographic imaging of porosity that specifies the details such as a suitable choice of magnification, the 
total number of captured images, location, and focus adjustment. Moreover, it is a destructive approach and 
labor intensive at the sample preparation stage. In future application of the DTMM, this same general 
workflow can be applied from data acquired by X-ray CT (XCT), which is a commonly used non-
destructive technology for inspection of the overall integrity of critical parts by detecting and revealing 
internal defects such as cracks, discontinuities, and porosities in three-dimensional (3D) space. 
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From the nine total microstructure samples manufactured under identical processing parameters with each 
build, an average of five underwent the metallographic procedure for porosity characterization (55 total 
over the 11 builds). The samples were selected from different locations on the build plate, shown in Figure 
23, to detect any conceivable pattern that can be later attributed to the position of samples on the build plate. 
One of the microstructure specimens from each build was in pre-HIP’ed condition while the rest were 
subjected to the HIP process. The binarized 2D pore structure of the pre-HIP’ed samples manufactured by 
Concept M2 and Renishaw systems are shown in Figure 28 and Figure 29, respectively. 

 
Figure 28. 2D porosity survey of microstructure samples from builds 1-5 (B1-B5) manufactured by Concept 

M2 system. The energy density (ED) is specified for each build. 

 
Figure 29. 2D porosity survey of microstructure samples from builds 7-11 (B7-B11) manufactured by 

Renishaw system. The energy density (ED) is specified for each build. 

The as-built images from the Concept M2, Figure 28, do not reveal any discernible pattern of pore evolution 
with variation in scan speed and hatch spacing. However, it is readily recognized that the B2 specimen 
exhibits the highest density and the smallest pore sizes. The as-built images from the Renishaw,  Figure 29, 
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show a more intuitive trend. Increasing both hatch spacing and scan speed resulted in a more pronounced 
porous structure in build 7 which is associated with the least energy density; on the other hand, the 
combination of process parameters for build 11 with the highest energy density level led to the best 
densification quality. 

In order to justify the discrepancy observed between the porous structures of Figure 28 and Figure 29 with 
nominally identical processing parameters, the difference between the continuous and discrete laser modes 
of Concept M2 and Renishaw machines has to be investigated. In general, the porosity of the Concept M2 
samples is considerably lower than the Renishaw system for this set of parameters. One admissible 
explanation is that despite the fact that point distance, exposure time, and move time variables in discrete 
laser mode have been adjusted to match the target scan speed to the ones in continuous mode, the obtained 
energy densities are not necessarily identical. In the Renishaw machine with discrete laser operation, the 
laser is switched off during the move time, which causes the actual energy density of the pulsed mode to 
be lower than the continuous mode with the same parameters. Therefore, the overall lower energy input to 
the powder bed gives rise to diminished densification of builds 7-11. Furthermore, the situation is 
exacerbated with the smaller laser spot size in the Renishaw system. The laser spot size affects the melt 
pool geometry. Even though high precision is achievable with smaller laser diameters, lack of fusion pores 
are created when hatch spacing is increasingly exacerbated by the smaller laser diameter. 

A similar observation was made for the post-HIP’ed samples, where substantially higher porosity levels 
were observed for those manufactured by the Renishaw system (except for build 11). The porosity images 
of the samples built at the front and back of the build chamber are illustrated in Figure 30 for the Concept 
M2 and Figure 31 for the Renishaw. The structure of the Concept M2 specimens (Figure 30) located at the 
front of the build plate, marked by the black dot on the visible build plate edge, proves the effectiveness of 
the HIP process in eliminating the large irregular pores. At the same time, it is observed that the small gas 
entrapped spherical pores have remained intact. However, the structure of the specimens located at the back 
of the platform, in builds 4-6 with the lower energy density, stands out with considerably large pores. This 
situation is intensified for the Renishaw specimens (Figure 31) where the porosity state is comparable to 
the pre-HIP’ed ones, particularly in builds 7-9 associated with the low energy density levels. Such 
observations raise questions about the efficacy of the HIP process in the densification of the parts with an 
extremely high porosity fraction. It can be inferred that post-build procedures such as HIP can not 
necessarily mitigate the severe defects promoted as a result of an unsuitable combination of processing 
parameters. 
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Figure 30. Post-HIP’ed structure of builds 1-6 manufactured by Concept M2 system obtained from 

microstructure samples located at the front and back of the build plate. 
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Figure 31. Post-HIP’ed structure of builds 7-11 manufactured by Renishaw system obtained from 

microstructure samples located at the front and back of the build plate. 

The porosity volume fraction of the 50 microstructure samples from the 11 builds are summarized in the 
bar plot of Figure 32. The pre-HIP’ed samples (denoted BN-35) are signified by the black-bordered and 
glowing bars. The samples with the best structural integrity in pre- and post-HIP’ed conditions are from 
builds 1, 2, 3, and 11. Note that builds 2 and 6 were manufactured under the exact same parameters with 
the Concept M2 machine. Even though the pre-HIP’ed samples reveal similar results, the post-HIP’ed 
samples of build 6 exhibited high porosity volume fraction. This observation suggests that the discrepancy 
observed between the pore structure of builds 2 and 6 is an indication of the uncertainty of the currently 
uncontrolled parameters involved in the adopted manufacturing process. 

Evidently, the porosity volume fraction alone is not adequate in characterizing the state of the porosities 
since it excludes critical information such as pore size, morphology, and distribution. Such information is 
fully entailed in the 2-point statistics maps. Figure 33 depicts the 2-point auto-correlation of the white-white 
phase of three different microstructure samples of build 5. The statistical representation has successfully 
differentiated between their distinct porous structure. The size and morphology of the pores are reflected 
through the central features in the maps. 



DOE Award FE-0031644  Page 43 
“Digital Twin Model for Advanced Manufacture of a Rotating Detonation Engine Injector” December 17, 2021 

 
Figure 32. Porosity volume fraction of 50 microstructure samples in pre- and post-HIP’ed conditions from 

eleven manufactured builds. 

 
Figure 33. The binarized optical images and their statistical representation of three microstructure samples 

processed under the same manufacturing parameters in pre-HIP’ed (d) and post-HIP’ed (b and f) conditions. 
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Samples 5-34 and 5-38 shown in Figure 33 were both subjected to the HIP process. Although 5-38 was 
successfully densified, an uneven distribution of large pores is still present in the structure of 5-34. The 
differentiation is clearly reflected in the corresponding 2-point correlation maps. Compared to the pre-
HIP’ed sample (5-35), the larger average pore size in sample 5-34 as well as its lower volume fraction is 
captured by the size of the central feature and the higher 2-point correlation value of the [0 0] index, 
respectively. 

After implementing PCA on the 2-point correlation results of the microstructure samples, the first PC was 
found to capture 99.97 % of the total variance. Therefore, the data can be represented in a 1-dimensional 
PC space, as shown in Figure 34. The low-dimensional representation of the data in PC space clearly 
distinguishes the subtle variation in the pore structure of microstructure samples. The results strongly agree 
with the prior observations. Along the PC1 axis, the most positive coordinates correspond to the highly 
densified HIP’ed structures with the lowest porosity volume fraction. As the PC1 value reduces towards 
negative coordinates, the higher content of large pores becomes prevalent in such a way that the sample 8-
41 with the highest porosity volume fraction of about 18%, is located at the extreme negative coordinate. 
It should be noted that the representation in Figure 28 also supports the observation that samples of builds 
7, 8, and 9 have the greatest deviation from the ideal pore-free structure. 

 
Figure 34. Low-dimensional representation of the porosity database in the PC space. 

 SURFACE ROUGHNESS – DATA ACQUISITION AND ANALYSIS 

The data acquisition and quantification workflow for surface roughness of the fatigue specimens follows 
the steps shown in Figure 35. The surface roughness was acquired using the Zygo Zegage 3D optical profiler 
system. The Zygo 3D profiler setup and a sample 3D surface generated by the Mx data analysis software 
(version 7.5.0.1) are shown in Figure 36. The measurement scans were carried out on the gage section of 
the fatigue specimens prior to fatigue testing. Data were collected from two parallel wide and narrow sides, 
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constituting four scans for each specimen, illustrated in Figure 37. The details of the scan area orientation 
and location on both XY and Z fatigue specimens are provided in the schematic of Figure 38. The 
corresponding scan sizes on the wide and narrow sides are 4.2 × 2.3 mm and 3.9 × 2.3 mm, respectively. 
The scan area dimensions were selected as the minimum area that encompasses statistically similar surface 
features compared to the entire gage section for time-effective data acquisition. Once the raw height data 
were collected by the instrument, it underwent a series of post-processing by Zygo Mx software, including 
(i) surface form removal, to eliminate the influence of possible deviation of the surface form from a flat 
surface and (ii) data filling, to fill the voids or opening on the interior of the discrete regions. The final 
measurement data were exported in the format of a .xyz file for further analysis and characterization. 

 

 
Figure 35. Schematic of the surface roughness characterization and quantification workflow in this study. 

 

 
Figure 36. (a) Zygo 3D profiler measurement and analysis setup and (b) 3D surface reconstruction using Mx 

software. 

 
Figure 37. (a) Nominal dimensions of the small fatigue specimen and (b) position of the four roughness 

measurement scans in the gage section. 
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Figure 38. Illustration of the roughness scan area with respect to the build direction for (a) Z and (b) XY 

fatigue specimens. 

After the roughness measurement dataset was created, data cleaning and trimming were applied to treat any 
missing values and to adjust the scan area sizes to ensure consistency in the dataset. Figure 39 provides 
examples of the scan area topography captured from a wide and a narrow side of a fatigue specimen. 

During the image segmentation step, the height value at each pixel was binned to represent four local states, 
labelled S1 for a value closest to the deepest valley, and then in order of increasing heights, S2, S3, and S4 
for a pixel value near a peak. The 2-point statistics framework is adopted to quantify the generated 
segmented surface roughness images. Noting that for a given image with 𝑛 local states, 𝑛 − 1 independent 
correlation functions are needed to represent the structure statistically. Hence, in the example of Figure 39 
with four local states, the black (S1), yellow (S3), and red (S4) auto-correlation functions provide the full 
statistical quantification of the segmented roughness images, as shown in Figure 40. Hence, the surface 
roughness component of the structure database is comprised of a collection of three 2-point correlation 
maps for each scan and a total of twelve maps for every specimen. 

Examples of the 3D surface profiles of the wide surfaces of the Z and XY oriented specimens as a function 
of scan speed and hatch spacing are shown in Figure 41 through Figure 44. In addition, recognize that builds 
2 and 6 were processed under identical processing parameters and are located at the same coordinate in 
Figure 36. In general, it can be inferred that the Renishaw system (builds 7-11) with the discrete laser 
approach and slightly smaller laser spot size has led to smoother surfaces compared to the Concept M2 
system (builds 1-6). The superiority of the Renishaw surfaces is more notable for Z specimens with overall 
smoother surfaces than the XY specimens. 

Similarly, Figure 45 through Figure 48 reveal that the narrow surfaces of the Z specimens exhibit lower 
surface roughness than XY-oriented specimens. The narrow side relative orientation with respect to the 
build direction shifts by 90° from a vertical to a horizontal-type of surface in the Z and XY specimens, 
respectively, suggesting that the layer-by-layer fusion of powders originates rougher surfaces on 0° 
(horizontal) sides than 90° (vertical) ones. Furthermore, builds 7 and 8 with the low energy density level 
manufactured with a discrete laser scan produced the lowest range of height variation and, consequently, 
the smoothest narrow surfaces in the Z direction. 
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Figure 39. (a,b) 3D topography, (c,d) contour plots, and (e,f) segmented discretized representation of surface 

roughness. 

 

 

 
Figure 40. Statistical description of the segmented roughness maps with three local states by (a,d) black, (b,e) 

yellow, and (c,f) red auto-correlation functions. 
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Figure 41. Examples of the areal wide surface profiles of Z specimens manufactured by Concept M2 system 

under variant scan speed and hatch spacing levels. 

 

 

 
Figure 42. Examples of the areal wide surface profiles of XY specimens manufactured by Concept M2 system 
under variant scan speed and hatch spacing levels. B2 and B6 were both processed at 900 mm/s speed and 100 

µm hatch spacing. 
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Figure 43. Examples of the areal wide surface profiles of Z specimens manufactured by Renishaw system 

under variant scan speed and hatch spacing levels. 

 

 

 
Figure 44. Examples of the areal wide surface profiles of XY specimens manufactured by Renishaw system 

under variant scan speed and hatch spacing levels. 
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Figure 45. Examples of the areal narrow surface profiles of the Z specimens manufactured by Concept M2 

system under variant scan speed and hatch spacing levels. 

 

  

 
Figure 46. Examples of the areal narrow surface profiles of XY specimens manufactured by Concept M2 

system under variant scan speed and hatch spacing levels. B2 and B6 were both processed at 900 mm/s speed 
and 100 µm hatch spacing. 
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Figure 47. Examples of the areal narrow surface profiles of Z specimens manufactured by Renishaw system 

under variant scan speed and hatch spacing levels. 

 

 

 
Figure 48. Examples of the areal narrow surface profiles of XY specimens manufactured by Renishaw system 

under variant scan speed and hatch spacing levels. 

For quantitative analysis and comparison of the surface quality, the data processing, feature extraction, 
segmentation, and quantification is applied to the acquired surface roughness database. The transformation 
of the example roughness profiles shown in Figure 41 through Figure 48 to segmented images is presented 



DOE Award FE-0031644  Page 52 
“Digital Twin Model for Advanced Manufacture of a Rotating Detonation Engine Injector” December 17, 2021 

in Figure 49 through Figure 56. It is readily recognized that the surfaces are differentiated by the 
distribution, size, and morphology of the extracted features. For instance, all wide surfaces in Figure 49 
have a quite uniform distribution of 𝑠ଷ local state whereas by changing the laser mode to discrete in Figure 
51, the development of smoother surfaces stands out. Furthermore, Figure 50 and Figure 52 show the 
increased surface roughness of the XY specimens. In particular, by increasing the hatch spacing to 100 µm 
at the lowest scan speed of 800 mm/s (build 8), surface quality has deteriorated under both Concept M2 and 
Renishaw systems. 

In general, the narrow sides have developed surfaces with higher roughness. Fine surface features are 
produced on Z specimens of build 5 and build 6 (Figure 53), while the development of coarse features is 
evident in segmented images of Figure 54-Figure 56. From the illustrated segmented images, the significant 
role of areal characterization of surface roughness and adoption of a quantification method that can 
successfully differentiate between such various surface characteristics becomes clear. Before the 
implementation of the 2-point correlation for quantification of the surface roughness, the segmented images 
are converted to binarized images. Since four local states have been defined, three auto-correlation 
functions (e.g., black-black, yellow-yellow, and red-red) statistically represent each discretized roughness 
image. 

 

 
Figure 49. Examples of the roughness segmented images of the Z specimens wide surfaces manufactured by 

Concept M2 system under variant processing parameters. 
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Figure 50. Examples of the roughness segmented images of the XY specimens’ wide surfaces manufactured 

by Concept M2 system under variant processing parameters. 

 

 

 
Figure 51. Examples of the roughness segmented images of the Z specimens wide surfaces manufactured by 

Renishaw system under variant processing parameters. 
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Figure 52. Examples of the roughness segmented images of the XY specimens’ wide surfaces manufactured 

by Renishaw system under variant processing parameters. 

 

 

 
Figure 53. Examples of the roughness segmented images of the Z specimens narrow surfaces manufactured 

by Concept M2 system under variant processing parameters. 
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Figure 54. Examples of the roughness segmented images of the XY specimens’ narrow surfaces manufactured 

by Concept M2 system under variant processing parameters. 

 

 

 

 
Figure 55. Examples of the roughness segmented images of the Z specimens narrow surfaces manufactured 

by Renishaw system under variant processing parameters. 
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Figure 56. Examples of the roughness segmented images of the XY specimens’ narrow surfaces manufactured 

by Renishaw system under variant processing parameters. 

Three binarized images are produced for each of the surface roughness discretized images. For wide 
surfaces, the local state 𝑠ଶ (blue) was deemed as the background and thus the binarized 𝑠ଵ −  𝑠ଶ (black-
blue), 𝑠ଷ −  𝑠ଶ  (yellow-blue), and 𝑠ସ − 𝑠ଶ  (red-blue) images were generated. Two examples of the 
segmented wide surfaces from build 8 (sample ID 8-13) and their binarized version associated with the 
implementation results of the 2-point correlation for each black and white image are presented in Figure 
57. Note that all the computed 2-point statistics are auto-correlation of the white-white local state. The 
information that can be readily transferred from the 2-point correlation map is the size and morphology of 
the 𝑠ଵ, 𝑠ଷ, and 𝑠ସ local states from the central feature of the maps. The maximum value of the scale bars 
indicates the volume fraction of each extracted feature. 

In the as-built condition, build 10 turned out to achieve the smoothest wide surface in both Z and XY 
direction. The Z specimens of builds 7, 8, and 11 also yield a narrow range of height variation while their 
corresponding XY specimens exhibit an increased level of roughness, particularly in build 8. Therefore, 
considering the combined densification and surface roughness characterization results, builds 10 and 11 
processing parameters have led to the most satisfactory part quality. Considering that hatch spacing was set 
at its lowest level while scan speed varied from 800 mm/s to 900 mm/s, it can be inferred that within the 
selected range of scan speed and hatch spacing, the latter parameter is likely to exert a more pronounced 
influence on the structure of the additively manufactured Inconel 625. 

The primary difference between the quantified porosity and roughness data is the number of derived 2-
point correlation maps to represent each data point. This number was increased to three for roughness data. 
Given that the roughness data of two parallel wide and two parallel narrow surfaces were acquired for each 
specimen, a total of twelve (4×3) 2-point correlation maps represent the surface roughness condition of 
each fatigue specimen. In this section, the results of the wide and narrow sides are processed independently. 
The data merging steps for the six 2-point correlation maps of the wide side prior to the implementation of 
PCA is detailed in Figure 58. Similar steps were applied to merge the data from narrow surfaces. Eventually, 
an n-by-m matrix is obtained for each type of surface, where n is the total number of scanned samples, and 
m is the size of the vectorized 2-point correlation maps (6×601×601). 
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Figure 57. Binarized images and their corresponding 2-point correlation functions of the four-local state 

discretized surface roughness images of two parallel wide side of a fatigue specimen (sample ID 8-13). 
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Figure 58. Schematic illustration of the rearrangement of the 2-point correlation data to generate a 2D matrix 

as an input for PCA. 

The results of the transformation of the high-dimensional 2-point correlation data to the lower-dimensional 
PC-space are presented in Figure 59 and Figure 60. The orthogonal axes of the PC-space are ordered based 
on the extent of data variance each represents. For instance, the wide surface roughness data can be 
delineated by just the first PC score since it captures more than 98% of the total data variability (Figure 
53(c)). The evolution of the surface features along the PC1 axis implies that as the PC1 coordinate of the 
sample departs from negative values, the surface roughness exhibits higher values. At the negative extreme 
of the PC1 axis, the data points represent the polished surfaces (the solid blue segmented images). The 
highest PC1 coordinate belongs to the sample from build 8 (8-13) with the coarsest surface features and a 
wide range of height variation. The pairs of discretized images correspond to the two parallel wide sides of 
the fatigue specimen. 

The narrow surfaces, on the other hand, required the first two PC scores to acquire more than 98% of the 
data variability (Figure 54(b)). From negative PC1 to positive values, the surface quality deviates from the 
polished surface quality. The surfaces with PC1 close to zero have developed fine scattered surface features, 
and by further increase in PC1, the coarse localized features dominate the surface and 𝑠ଵ and 𝑠ସ local states 
with the lowest and the highest valley and peaks become apparent. 

This workflow demonstrates a novel approach for the characterization and quantification of the surface 
roughness database in a robust and systematic manner that is adaptable to ML algorithms. The resolution 
of the extracted features can be adjusted by the number of defined local states, and there exists the 
possibility to continuously add more data to the database and update the analysis. Addressing the areal 
features rather than profile linear features offers the unique capability to detect the minor differentiation 
between surfaces that can be later decisive in governing the properties sensitive to the surface features. 
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Figure 59. Low-dimensional representation of the wide surface roughness ensemble of the fatigue specimens 

at the (a) 3D and (b) 2D PC space. (c) Accumulative contribution of principal components to the total 
acquired variance. 
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Figure 60. Low-dimensional representation of the narrow surface roughness ensemble of the fatigue 

specimens at the (a) 2D PC-space. (b) Accumulative contribution of principal components to the total 
acquired variance. 

  PROPERTY – HCF STRENGTH – DATA ACQUISITION AND ANALYSIS 

The property of interest is high cycle fatigue (HCF) strength, which is generally more sensitive to the 
microstructure attributes than other mechanical properties such as elastic modulus, yield strength and tensile 
strength. Populating a stress-life (S-N) curve for assessment of the fatigue endurance limit is time-
consuming and restricted by the number of specimens available to test. This limitation is addressed by 
adopting the step test approach [Bellows, 1999]. The fatigue strength is determined by applying a constant 
stress range and stress ratio, R, on a specimen for a predefined number of cycles. If failure does not occur, 
the applied stress range is increased (typically 5%) and cycling is continued. This process is continued until 
the specimen fractures. The HCF strength is computed by 

𝜎ா =  𝜎௉ௌ + (𝜎ி −  𝜎௉ௌ) ൬
𝑁௙

𝑁௥
൰ (3) 

where 𝜎ா is the fatigue strength in terms of stress amplitude (one-half the stress range), 𝜎௉ௌ and 𝜎ி denote 
the stress amplitude of the previous block and stress amplitude from the final block, respectively. 𝑁௙ and 
𝑁௥ refer to the number of cycles to failure of the final step and run-out cycles, respectively. The number of 
run-out cycles is defined as 2 × 106 cycles in this program. 

Prior to fatigue testing, HCF specimens of similar geometry were fabricated from a cold-rolled Inconel 625 
sheet to generate an S-N curve to serve as a reference baseline and to verify that the step-test method 
provides suitable results when testing one-of-a-kind Inconel 625 specimens. This was important because 
several of the L-PBF specimens had unique defect features (or sometimes referred to as anomalies), and 
the step test enabled the relative fatigue strength to be determined for each defect feature, which was critical 
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for developing correlations between specific attributes of the structure and HCF strength. The fatigue tests 
were conducted at stress amplitudes within the range of 225 to 382.5 MPa with a fixed stress ratio of R = 
0.1, and frequency of 20 Hz except for the 382.5 MPa and 337.5 MPa tests that were performed at 
frequencies of 10 Hz and 15 Hz, respectively. The test results were then fit to a double power-law equation: 

𝜎௔ = 𝐴 ൫𝑁௙൯
௔

+ 𝐵 ൫𝑁௙൯
௕

(4) 

where 𝜎௔ and 𝑁௙ denote stress amplitude and the number of cycles to failure, shown in Figure 61. The 
parameters determined by linear regression are 𝐴 = 31,420 MPa/cycles, 𝐵 = 217 MPa, 𝑎 = -0.485, 𝑏 = 0. 
Note that b was near zero in the regression analysis and therefore was set to zero. By doing this, B then 
represents the threshold stress amplitude, below which no failure is predicted. 

 
Figure 61. Double power law curve fit to SN data of Alloy 625 sheet tested at R = 0.1. 

The HCF tests were designed such that both intrinsic fatigue response of the material as well as the effect 
of the surface roughness were explored. To this end, two specimens were tested with polished sides in the 
gage section to determine the intrinsic fatigue response, and the remaining specimens were tested in the as-
built and post-processed condition which includes influence of the surface condition. Note that the support 
that was used on the bottom edge of the XY specimens introduced additional roughness to the surface. 
Therefore, the narrow side attached to the support of the XY specimen was polished for all samples since 
this would not be representative of a surface in a component at a location where HCF is a concern. 

All fatigue experiments on the AM HCF specimens were carried out on uniaxial servohydraulic test systems 
with a sinusoidal force waveform and cyclic frequency of 20 Hz. The stress ratio (R) was fixed at 0.1. The 
test was terminated upon load drop below 100 N, which implies the failure (fracture) of the specimen. If no 
failure had occurred by 2 × 106 cycles for a step test segment or 107 cycles for the standard fatigue test, the 
test was stopped. 

To set the initial stress amplitude for the first step of the first specimen of a build, it was assumed that the 
fatigue strength of the AM specimen and rolled sheet specimen possess a ratio similar to their corresponding 
hardness ratio. Thereafter, the testing was conducted at 80% of the average fatigue strength measured on 
other HCF specimens from the same build. The workflow of the adopted step test strategy is shown in 
Figure 62. If the failure occurs in the first step, it is assumed that the additively manufactured material 
follows the same S-N curve shape as that of the baseline rolled sheet (Figure 61). Therefore, the fatigue 
strength is determined using the double power-law expressed as 
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𝜎ா =  𝜎ிௌ + 𝐴 ൫𝑁௥
௔ − 𝑁௙

௔൯ + 𝐵 ൫𝑁௥
௕ −  𝑁௙

௕൯ (5) 

where 𝜎ிௌ is the stress amplitude applied in the first step, 𝑁௙ is the number of cycles to failure in the first 
step, and 𝑁௥  is the reference life which in this program is defined as 𝑁௥  = 2 × 106 cycles. The fatigue 
parameters are the same as the baseline rolled sheet, i.e., 𝐴 = 31,420 MPa/cycles, 𝐵 = 217 MPa, 𝑎 = -0.485, 
𝑏 = 0. 

 
Figure 62. The step test workflow to determine the fatigue strength. 

The fatigue strengths at 2×106 cycles for Z and XY specimens are summarized in Figure 63 and Figure 64 
with specific values for each HCF test reported in Table 14. Figure 63 shows the results for the small Z 
specimens, comparing the fatigue strengths for the 11 builds tested in both as-is (as-built plus post process 
HIP) and polished conditions. The variation bars represent the range in fatigue strengths measured from 
multiple specimens. In nearly all builds, the polished specimens had higher fatigue strength, especially 
prevalent in the higher fatigue strength cases. There is a high variability in the strengths of the specimens 
across builds. It can be observed from the plots that builds 1-3 and 9-11 performed much better than the 
rest. In fact, builds 3 and 11 in the polished conditions had very similar fatigue strengths to the rolled IN625 
sheet which is 244.6 MPa for R = 0.1. It is worth highlighting that the expected strength of the as-is small 
Z specimens for build 11 was higher than the obtained data. This is due to a large porosity defect found on 
the surface of one of the specimens. Therefore, the average strength is considerably penalized and increases 
the uncertainty of the builds from the Renishaw AM250. Overall, the step test method was successful at 
measuring fatigue lives, with the exception of specimens from build 7 which had very low performance due 
to extreme lack-of-fusion porosity. 

Figure 64 compares the fatigue strengths of the small Z and XY specimens tested in the as-is condition. For 
the Concept M2 builds (1-6), a significant difference of fatigue strengths was found between the two 
orientations, especially for the cases with good fatigue strength properties in the Z-direction. This is 
consistent with the notion that cases where there is a larger amount of porosity, the difference becomes 
lower or almost negligible because the fatigue crack formation is completely governed by porosity defects 
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and not surface roughness features. An interesting insight from this plot is that there is a larger anisotropy 
in fatigue strengths between Z and XY specimens for the Renishaw AM250 than the Concept M2 machine, 
with the exception of build 11. 

 
Figure 63. Fatigue strengths for 2 x 106 cycles measured on the small Z specimens in the as-is and polished 

condition (R=0.1). 

 

 
Figure 64. Fatigue strengths for 2 x 106 cycles measured on the small Z and XY specimens tested in the as-is 

condition (R=0.1). 
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Table 14. Fatigue strengths of each HCF specimen, reported as stress range in MPa 

 

 

  

blank as-processed Completed - good value Test conditions (unless otherwise s
] as-processed + polish filed edge No action yet Frequency 20 Hz
[] as-processed + polish narrow edge Damaged/flawed specimen R 0.1
P as-processed + polish all sides Reported values are stress ranges w
FFS1 failed first step

Spec ID
7 367.0 392.3 P 338.2 228.7 FFS 217.0 FFS 278.5 P
8 424.3 P 362.0 476.1 P 249.1 184.8 P FFS 301.4
9 392.8 P 378.9 479.1 P 231.5 337.6 P FFS 292.2 FFS

10 330.7 FFS 384.4 249.7 246.7 FFS 300.3
11 350.8 375.1 P 350.1 249.1 P 266.7 FFS
12 347.7 352.5 365.8 265.9 P 262.2 314.0
13 286.4 ] FFS 233.2 ] 241.7 221.3 FFS
14 276.8 [] 263.4 P FFS 213.4 FFS 228.9 296.3
15 225.2 FFS 276.1
16 256.3 P FFS 274.5 FFS 266.1 FFS 248.0 FFS 257.8 FFS
17 287.9 FFS 268.0 FFS 240.1 FFS 221.6 FFS 231.9
18 279.8 [] 289.7 ] 272.1 ] FFS 190.9 FFS 280.3 P

1 279.0 FFS 262.4 FFS
2 239.9 FFS
3 260.1 FFS 226.5 FFS
4 213.7 FFS
5 197.6 FFS
6 225.3 FFS 265.6 163.2 FFS

19
20
21
22
23
24

DOE Build DOE Build DOE Build DOE Build DOE Build
3 4 5 6

DOE Build
2

Small Fatigue Z

Small Fatigue X-Y

Large Fatigue Z

Large Fatigue X-Y

1

Too Low* FFS 292.2 P 325.5 359.3 458.4 P
Too Low* P FFS 185.0 FFS 308.5 284.6

129.8 FFS 358.6 P 384.9 P
100.6 311.0 277.4 FFS 281.7
151.0 409.2 P 304.7

274.7 FFS Too Low* 327.8
Too Low* FFS 91.6 ] FFS 187.2 FFS 172.9 FFS 210.5 FFS

158.6 FFS 200.2 P FFS 250.2 FFS
97.2 FFS

231.1 FFS 199.6 FFS
191.7 222.4 219.7 FFS
175.3 FFS 245.9 FFS 254.5 P

174.8 FFS

255.6 FFS

201.4 FFS

9 10 11
DOE Build

7 8
DOE Build DOE Build DOE Build DOE Build



DOE Award FE-0031644  Page 65 
“Digital Twin Model for Advanced Manufacture of a Rotating Detonation Engine Injector” December 17, 2021 

 ANALYSIS OF HCF DATA WITH A DAMAGE TOLERANT DESIGN POINT OF 
VIEW 

Considering the level of porosity remaining in the HCF specimens even after HIP, a damage tolerant design 
point of view appears to be a sensible course of action to establish design allowables and a material model 
for each zone of the digital twin of the component. This was performed using NASGRO ver. 9.2. The 
material file available in NASGRO 9.2 for IN625 Sheet & Plate, room temperature, which had similar 
mechanical properties as our baseline IN625 sheet, was used in the analysis. The fatigue crack growth rate 
model selected was the NASGRO equation with default settings for the various options. The parameters of 
this material file are reported in Figure 65. Using these settings and material file, the Kth was about 
5.2 MPa m1/2 for long cracks. 

Stress-life curves were generated by repeatedly running NASGRO with different starting crack sizes, 
different starting crack locations, and stress amplitudes, shown in Figure 66. Three initial crack start 
locations were selected. These included two semi-circular edge cracks, one starting on the wide edge and 
one starting on the narrow edge, and a quarter-circular corner crack. On the wide edge, the SC30 geometry 
model was used in NASGRO, with the crack placed a quarter of the wide length from a narrow edge, 
illustrated in Figure 66. The flaw size was defined as the radius of the starting crack. Initial flaw sizes 
considered in the analyses ranged from 10 m to 500 m. Cracks were allowed to grow until either 
specimen fracture occurred due to the maximum stress intensity of the crack reaching the fracture toughness 
or net section yielding was reached in the remaining ligament. The fatigue limit was defined as the condition 
where the starting crack does not grow. 

The predicted stress-life curves were similar for all three crack starting locations with the crack starting on 
the wide edge resulting in the lowest life. In the remaining figures, the stress-life curves with the crack 
starting from the wide side, being the most conservative, are compared to the life data obtained on the 
additive manufactured HCF specimens. 
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Figure 65. Material parameters used in the NASGRO fatigue crack growth rate equation representative of 
the rolled IN625 sheet. 
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Figure 66. NASGRO predictions of S-N curves for three different initial flaw starting locations (R = 0.1). 

The small specimen HCF lives for cycling in the Z direction are shown in Figure 67 and in the XY direction 
in Figure 68. Clearly, the lives of builds 7 and 8 are lower than the other builds, which can be directly 
attributed to the extreme porosity in those two builds even after HIP. Disregarding those two builds, the 
equivalent initial flaw size (EIFS) that captures the complete range of lives ranges from 50 to 500 m. 
Polishing, or similarly machining, the surfaces of the Z direction specimens within the gage section 
indicates that the worse crack-like flaw is reduced, with the minimum EIFS being 20 m for the best builds, 
indicating that surface roughness in the as-is condition has some influence on reducing the fatigue strength. 
One specimen from build 5 contained several lack of fusion type defects close to one another, shown in 
Figure 69, resulting in an EIFS close to 500 m, consistent with the combined size of the lack-of-fusion 
defects observed. 

In the XY orientation, the fatigue lives are lower than the Z orientation. In this condition, the EIFS is 
considerably larger ranging from about 120 m to 500 m, after removing the data of builds 7 and 8 which 
had extreme porosity. The majority of the fatigue cracks in the XY-oriented specimens formed on the 
narrow edge closest to the build plate. Even though the build supports on that edge were filed and polished, 
pockets along that edge were found to still contain lack of fusion type defects where the fatigue cracks 
formed (Figure 70). This appears to be the main reason why the XY-oriented specimens had lower average 
fatigue strength over all of the builds. 

Since the porosity appears to be a primary source for fatigue crack formation, the fatigue lives were 
replotted on the NASGRO predictions with symbols indicating the average level of porosity observed in 
the microstructural samples for each build (see Figure 32 for reference). These are shown in Figure 71 using 
the mean porosity measured in the post-HIP microstructural samples. For good processing, the porosity is 
expected to be much less than 1%, which are represented by the black symbols on these plots. Clearly, the 
fatigue strengths are considerably higher for these builds with minimal porosity compared to the others. For 
the Z-oriented specimens in the polished condition, the EIFS is around 50 m, which is comparable to the 
worse case porosity measured in the specimens. These plots also suggest that when the surface is left in the 
as-is condition (i.e., without any machining of the surfaces) and it is known that the surface is at a location 
where the cyclic stresses are high and cracks may form there, the EIFS needs to be set higher. The current 
data suggests setting the EIFS to 200 m even when porosity is less than 1%. The EIFS for the XY-oriented 
specimens is higher, between 200 and 500 m for the builds with porosity less than 1%. Most of these 
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cracks formed on the narrow edge closest to the build plate where lack of fusion defects of this general size 
were frequently observed (Figure 70). 

Alternatively, and potentially having utility in the process qualification, these NASGRO predictions can be 
used along with witness specimens that are characterized immediately after the build is complete to verify 
that the build is good before performing the subsequent processing steps. This would help save the time 
and cost of processing parts that would be rejected later in the process. In each build, one of the 
microstructural samples was not further processed except for the stress relief which was performed before 
removing the samples from the build plate. These samples were labeled BN-35, where BN is the build 
number. The porosity in these non-HIP samples was higher and easily measurable by various standard 
methods (e.g, micro Xray CT, Archimedes' method for measuring density, optical microscopy of polished 
sections, etc.). Setting the threshold to 3% porosity, which is still somewhat high for as-built specimens 
using L-PBF process, but the best among the builds in this program, the fatigue strengths of all of the 
completely processed specimens (i.e., received HIP) in this grouping are near the higher end. It suggests 
from a damage tolerant point of view, that a witness specimen where just porosity is measured and found 
to be acceptable, here <3%, an EIFS of 50 m for Z-oriented specimens in the HIP condition results in a 
stress-life curve that describes the mean stress-life curve. In the cases where the fatigue crack is expected 
to form at a build support location, the EIFS needs to be higher to capture the stress-life curve. In this study, 
an EIFS of 200 m captures the mean stress-life behavior. Certainly, good build plate design needs to avoid 
locating build supports, or in general, the downward side of overhanging surfaces, in locations where the 
cyclic stresses are highest. 

The Kitagawa-Takahashi (K-T) diagrams produced using the fatigue strengths at 1 x 107 cycles predicted 
by the NASGRO analyses are shown Figure 73. The K-T diagram is plotted in two ways, one using the 
EIFS defined by the radius of the flaw using the geometries shown in the schematic of Figure 66 and the 
other using the Murakami sqrt(area) parameter where the area is either the effective area of the largest 
defect or the area encompassing several defects close together. The fatigue limit obtained from the IN625 
sheet, which is also consistent with the fatigue limit reported for IN625, R = 0.1, sheet and plate, in 
MMPDS-15 (Metallic Materials Properties Development and Standardization handbook), is used on these 
K-T diagrams. Based on these K-T diagrams, the critical flaw size, above which fatigue strength is reduced, 
is about 20 m. This value is consistent with the EIFS for the polished Z specimens that exhibited the 
highest fatigue strength (Figure 67). 

  
Figure 67. NASGRO predictions of S-N curves for different initial flaw sizes for small Z specimens tested in 

the as-is (left) and polished (right) conditions (R = 0.1). 
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Figure 68. NASGRO predictions of S-N curves for different initial flaw sizes for small XY specimens tested in 

the as-is (left) and polished (right) conditions (R = 0.1). 

 
 

 
Figure 69. SEM image of HCF Z-oriented specimen from Build 5, Specimen 8, showing region where fatigue 

crack formed. 
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Figure 70. SEM image of HCF XY-oriented specimen (Build 1, Spec 18) showing typical defect observed on 

the narrow edge closest to the build plate. 

 

 
Figure 71. NASGRO predictions of S-N curves for different initial flaw sizes compared to HCF data 

comparing the influence of mean porosity of the HIP’ed microstructural samples (R = 0.1). 

 

 
Figure 72. NASGRO predictions of S-N curves for different initial flaw sizes compared to HCF data 

comparing the influence of mean porosity of the witness microstructural sample (R = 0.1). 
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Figure 73. Kitagawa-Takahashi diagrams for fatigue strengths at 1 x 107 cycles determined by NASGRO 

analysis and fatigue limit of rolled sheet (R = 0.1). 

  ML MODEL DEVELOPMENT TECHNIQUES 

In general, the end goal is to form a function through a learning process by an ML algorithm that maps 
outputs to the inputs. These regression methodologies used in ML determine and characterize the cause-
and-effect relationships between several dependent (target) and independent (predictor) variables. Once 
such a relationship is estimated, it becomes a key tool in efforts aimed at predictive modeling, significance 
and impact analysis, and design. 

The regression algorithms can be broadly categorized into two classes: (i) parametric and (ii) nonparametric 
regression techniques. Examples of parametric regression models are linear, nonlinear, and generalized 
linear models. The primary characteristic that these parametric regression models have in common is that 
the form of the function that describes the relationship between independent and dependent variables is 
predefined, and the model parameters are determined through the learning process of the algorithm. 

Contrary to the parametric models, in nonparametric techniques, no assumption is made on the functional 
form of the relationship, and it does not require prior knowledge of the trend of the data. The function is 
data-dependent, and it allows information to be passed from the data set while establishing the form of a 
functional model. Data smoothing techniques, kernel-based models (e.g., support vector machines and 
Gaussian processes), k-nearest neighbor, and regression trees are examples of nonparametric algorithms. 
Given the definitions for each approach, it is readily perceived that parametric methods are associated with 
restrictions due to the prescribed form that is imposed prior to the learning process. In contrast, the 
flexibility that accompanies nonparametric techniques enables them to adjust the learning function to bring 
about superior precision. Nonparametric methods are best suited if the empirical relationship is nonlinear 
and unknown, but they require a larger sample size to derive the model structure compared to the parametric 
techniques. 

Both parametric and non-parametric regression techniques were used to construct DTMMs to illustrate the 
suitability of the different ML methods using the same database. The methods exercised in developing the 
DTMM included 

 Parametric Linear Multiple Regression (MR) 

 Support Vector Regression (SVR) 

 Gaussian Process Regression (GPR) 

 Multiple Tensor-on-Tensor Regression (MTOTR) 
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Parametric Linear Multiple Regression (MR) models are the most widely used and accepted parametric 
techniques owing to their simplicity of implementation and interpretation. A linear equation is fitted to a 
pattern of data, and for n number of variables and p number of observations. 

Support Vector Regression (SVR) is a nonparametric ML approach that is an extension of support vector 
machines (SVM) to the regression problems where the model returns a continuous output as opposed to a 
discrete set-in classification cases. The hyperplane that separates the distinct classes in SVM becomes the 
function to approximate the dependent variable in SVR. In other words, SVR, analogous to all other 
regression problems, attempts to find the best function that maps data from input to output domain. It entails 
solving a convex optimization problem to determine a hyperplane accompanied by an 𝜀-insensitive region, 
called 𝜀 -tube that estimated the output data. Essentially, the 𝜀 -tube designates a tolerance zone (i.e., 
acceptable error) and the best hyperplane is the one that encompasses the largest number of support vectors 
(the data points closest to the hyperplane) inside its corresponding tube. The support vector (SV) framework 
has shown popularity in additive manufacturing applications for both classification and regression models 
to provide design decision support, AM process and performance optimization, in-situ process monitoring 
and control, and post-process inspection and validation. In some applications, SV-based regression 
techniques are promising alternatives to artificial neural networks. 

Gaussian Process Regression (GPR) is a flexible, nonparametric, and probabilistic ML approach relying 
on the Bayesian inference framework. It is associated with attractive characteristics that has turned it into 
a prevalent surrogate modeling technique. In recent scientific efforts, researchers have devoted their 
attention to utilizing GPR for the development of the regression PSP models. It circumvents the need for 
large size database and offers the capability for quantifying the uncertainties associated with the predictions. 
The broad definition for the uncertainty quantification (UQ) is the science of diagnosis, characterizing, 
quantifying, and controlling uncertainties that are inevitably introduced in stochastic physical systems and 
models. It has received considerable attention for modeling of complex systems in critical applications. 
Before delving into the details of GPR, the Bayesian approach is introduced briefly, which is a counterpart 
to the traditional frequentist philosophy. In the traditional statistical viewpoint, the estimates of the 
unknown variables are considered as deterministic quantities, while the Bayesian scheme is based on 
probability, and all variables are random that follow a joint probability distribution with confidence 
intervals that reflect the high probability density regions. The other significant distinction is that Bayesian 
approach enables the inclusion of prior domain knowledge in the available observation which is an 
imperative capability in engineering settings. Therefore, Bayesian inference entails estimating the posterior 
distribution by combining the prior distribution and the observations based on the Bayes’ theorem. 

Multiple Tensor-on-Tensor Regression (MTOTR) is the most novel technique investigated. This is the first 
time that it has been used to learn AM data. It features consolidation of the independent dimensionality 
reduction and modeling task of the other methods into one single step. This distinct advantage potentially 
mitigates the loss of information encountered in the conventional PCA-regression approach. 

The details including equations and references for these ML methods are documented in the PhD 
Dissertation of Sanam Gorgannejad [Gorgannejad, 2020]. 

  INITIAL PROCESS-STRUCTURE MODEL 

The primary objective of the process-structure (PS) model is to predict the resultant porosity and surface 
roughness from the AM processing variables. The data presented in Table 15 have been used as an input to 
build the PS model. The model input include two continuous variables, scan speed and hatch spacing, and 
two categorical variables, AM system and the direction of the printed specimens. Since the "SR" and "NSR" 
post-processing heat-treatments do not influence the structural attributes under study (porosity and surface 
roughness), they are not used as the model input variables. The output data is comprised of the PC scores 
characterizing the combined state of the surface roughness and the porosity of the built state. 



DOE Award FE-0031644  Page 73 
“Digital Twin Model for Advanced Manufacture of a Rotating Detonation Engine Injector” December 17, 2021 

Table 15. The input data for the construction of the process-structure model. The 0 and 1 values for direction 
and machine variables denote XY and Z, respectively, and Concept M2 and Renishaw AM250 systems, 

respectively. 

Obs Sample ID Obs ID Scan Speed 
(mm/s) 

Hatch Spacing 
(μm) Direction Machine 

1 1-13,14 b1dxy 800 70 0 0 
2 10-7 b10dz 900 70 1 1 
3 10-13,16,18 b10dxy 900 70 0 1 
4 11-8,10,12 b11dz 800 70 1 1 
5 11-13,14,16 b11dxy 800 70 0 1 
6 2-16,17,18 b2dxy 900 100 0 0 
7 3-16 b3dxy 900 70 0 0 
8 4-13,15,16 b4dxy 800 100 0 0 
9 5-10,11,12 b5dz 850 85 1 0 

10 5-17 b5dxy 850 85 0 0 
11 6-8,9 b6dz 900 100 1 0 
12 6-13,15,16 b6dxy 900 100 0 0 
13 7-7 b7dz 900 100 1 1 
14 8-8 b8dz 800 100 1 1 
15 8-13 b8dxy 800 100 0 1 
16 9-7,10 b9dz 850 85 1 1 
17 9-13,14,15 b9dxy 850 85 0 1 

 

Various machine learning approaches were implemented and their power in learning from small datasets 
was evaluated. Two general approaches were adopted for the development of the PS model: (1) PCA-
regression and (2) MTOTR. 

For the first approach, two regression algorithms were implemented, MR and SVR, to investigate whether 
the flexibility offered by not imposing a predetermined form of the equation to the data would enhance 
model performance. However, the cross-validation results reflecting the generalization power of the models 
were comparable. Indeed, the ease of implementation that does not involve form and term selection is a 
benefit of SVR that should not be neglected. 

In the second approach, the novel MTOTR method combines the dimension reduction and regression in a 
single algorithm. Therefore, the 4th-order tensor built from the stack of the 2-point spatial correlation images 
was used to train the model instead of the reduced structure representation by PC scores. The MTOTR 
algorithm learns basis vectors of the output images such that they hold high correlation with a response 
while in the PCA-regression approach, performing the dimensionality reduction and regression in sequence 
suggests that no correlation is necessarily guaranteed between the first few determined PC scores and the 
processing parameters. As a consequence, the outperformance of the MTOTR method was evident by the 
cross-validation process as shown in Figure 74. The reconstructed images from PCA-regression prediction 
of PC scores and the predicted images from the MTOTR model were compared to validate the results as 
shown in Figure 75. Therefore, the MTOTR model established a tool for direct prediction of the quantified 
2-point correlation images with high accuracy, the capability that is often offered by deep learning methods 
such as convolutional neural network models which have the disadvantage of demanding extremely large 
datasets for training, and hence not feasible to use for the dataset in this work. Obviously, the hurdle of 
generating such a large amount of experimental data is the major impediment in developing models for 
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fatigue and hence we are limited to ML techniques that have success when data is sparse. It is noteworthy 
to point out that in addition to the outlined benefits of providing improved predictions, MTOTR is a 
computationally more expensive method than the first two techniques. 

 
Figure 74. Mean absolute error boxplot of the fifteen leave-one-out predictions made by the MR, SVR, and 

MTOTR models. 

 

 
Figure 75. Illustration of an (a) original 2-point correlation representation of a sample surface roughness and 

the estimation of the same image using the models developed by the (b) MR, (c) SVR, and (d) MTOTR 
algorithms. Color scale bar is the same for all images. 

  INITIAL STRUCTURE-PROPERTY MODEL 

To establish the structure-property (SP) model, the surface roughness and porosity were identified as the 
potent drivers that govern the HCF strength. The structure was characterized by the first three PC scores 
which were used as the input of the model and output is the scalar value of HCF strength. The data from Z 
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and XY specimens were combined together with the assumption that the existence of any structural 
direction-dependency that is critical to the property is captured through structure attributes. 

Only PCA-regression methods were investigated since the output is a single scalar quantify (i.e., HCF 
strength). Note that the MTOTR algorithm was not used since it is more useful when the model's output is 
high-dimensional such as in the form of an image or video. In the property database, a few specimens 
exhibited considerably low strength which was attributed to the exceedingly rough surface or large lack-of-
fusion pores. The MR model failed to make a good prediction of these points. Regularizing the regression 
model using ridge regression formulation was found to make significant improvements in these prediction 
errors. In addition to exercising SVR, GPR was adopted due to its unique capability to provide prediction 
uncertainty, which is crucial in predicting properties. 

A comparison between the performance and generalization capability of the four data-driven structure-
property models are summarized in Figure 76. The predictions of the SVR and GPR models were 
comparable and showed that they successfully captured the nonlinearities in the relations between structure 
and HCF strength. From the MR to regularized MR, SVR, and GPR, the model accuracy increased, and the 
nonparametric SVR and GPR models considerably outperformed the other two. The evident 
outperformance of the nonparametric kernel-based algorithms (i.e., SVR and GPR) demonstrates their 
power in learning the relationship between the potent structural attributes (surface roughness and porosity) 
of the additively manufactured Inconel 625 and the desired mechanical property (HCF strength). The key 
merit of SVR and GPR models is that they do not bound the data to a predetermined form of the equation, 
therefore unlike parametric regression method, there is no need to determine the best form prior to model 
training. Offering such advantage is particularly beneficial under the circumstance that the model requires 
regular re-training with collection of new data. It is concluded that various ML techniques possess unique 
benefits and drawbacks, and often, there is a trade-off between efficiency and accuracy. 

 

 
Figure 76. Cross-validation prediction errors of the structure-property models developed by four different 

machine learning algorithms: (a) Mean absolute error (MAE), (b) root mean squared error (RMSE), and (c) 
mean squared error (MSE). 
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  IMPLEMENTATION IN CODE 

Various research codes have been used to implement these different ML models. The more advanced 
models (SVR, GPR, MTOTR) require a combination of Matlab and Python scripts to run. Python is the 
preferred tool in the ML industry and all the ML codes except the MR are in Python. Matlab was used for 
image processing due to its ease of use and availability when the model was being developed. The 2-point 
spatial correlation is currently an open-source code only available in Matlab. Ultimately, these can be 
combined in a single code in future developments. These are discussed in detail in the PhD Dissertation of 
Sanam Gorgannejad [Gorgannejad, 2020]. 

The predictions using the different ML models tended to give similar trends. Since the Parametric MR 
model runs on a Matlab based code without the need for Python, it is provided as the DTMM since it could 
easily be run by any user at this time. It contains a Process-Structure model (PS.m) and a Structure-Property 
model (SP.m). The full PSP model with prediction of life (PSP_Nf.m) uses these two models to link the 
process parameters to HCF strength. If the loading parameters are also input, the number of cycles to failure 
is output. The output of the code is 

1. Fatigue strength (in terms of stress amplitude) at 2 × 106 cycles for R = 0.1 for the process 
parameters that are input. 

2. The cycles to failure (i.e., crack of an engineering size has initiated) if the stress amplitude and 
stress ratio are input. The Walker equation with  = 0.42, taken from MMPDS-14 for Inconel 625, 
is used to account for the mean stress difference between the acquired HCF strength data and the 
loading on the component in each zone. 

A screenshot of the Matlab code is shown in Figure 77. It highlights what the user inputs in the Editor 
window and the corresponding output in the Command Window. The two outputs are shown:  High Cycle 
Fatigue Strength (HCFS) for 2 x 106 cycles in terms of stress amplitude and units MPa, and the number of 
cycles to failure (Nf) for the loading input. 

 
Figure 77. Screenshot of the Matlab code for running the Parametric Multiple Regression (MR) DTMM 

showing an example of the user input and resulting output. 
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Some examples of the SN curves generated from the output of the code are shown in Figure 78-Figure 80. 
The effect of hatch spacing on the cycles to failure is shown in Figure 78. Smaller hatch spacing results in 
better fatigue strengths and the Concept M2 had greater fatigue strengths than the Renishaw by 30 to 40 
MPa in terms of greater stress amplitude. This is consistent with the observation that the majority of fatigue 
cracks formed at lack-of-fusion defects, which are generally more frequent as the hatch spacing is increased 
when that is the dominant defect type. The effect of scan speed is shown in Figure 79. Generally, the 
influence of the scan speed over the rather narrow range of scan speeds considered (800 mm/s to 900 mm/s) 
did not have as significant effect as the hatch spacing. The higher scan speed within this range is associated 
with higher fatigue strength. 

The predicted stress-life curves for the specific process conditions of the 11 builds is shown in Figure 74. 
The model predicts that build 3 parameters (Concept M2, hatch spacing of 70 m, scan speed of 900 mm/s) 
should result in the best fatigue strength. This figure also shows that the fatigue strengths of the Renishaw 
manufactured specimens are generally lower than the Concept M2 for the range of process parameters 
investigated. A contour plot comparing the influence of hatch spacing and scan speed is shown in Figure 
81. The build 3 parameters (lower hatch spacing and higher scan speed) are highlighted as the optimum 
based on the data generated. The model predicts a primary dependence on hatch spacing and a secondary 
dependence on scanning speed. The model predicts no dependence on post-build annealing. The universally 
applied HIP wipes out any differences from the annealing step. 

In a commercial implementation of this research code, it is envisioned that the algorithm demonstrated in 
this code could be implemented within each zone of a component to assess the current damage state from 
the process and loading pedigrees. It is primarily targeting the assessment of crack formation and its early 
crack growth in the presence of structure heterogeneity. It targets crack initiation to a sufficient engineering 
crack size after which damage tolerance approaches can then be applied to account for the subsequent 
fatigue crack growth to assess the full life of a component. 

 
Figure 78. Stress-life plot for R = 0.1 showing the effect of hatch spacing with fixed scan speed of 850 mm/s 

generated from the Parametric Multiple Regression (MR) model, Z specimens in as-is condition (DTMM ver. 
2.0.0). 
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Figure 79. Stress-life plot for R = 0.1 showing the effect of scan speed with fixed hatch spacing of 85 m 

generated from the Parametric Multiple Regression (MR) model, Z specimens in as-is condition (DTMM ver. 
2.0.0). 

 

 
Figure 80. Stress-life plot for R = 0.1 comparing all build conditions generated from the Parametric Multiple 

Regression (MR) model, Z specimens in as-is condition (DTMM ver. 2.0.0). 
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Figure 81. Contour Map Showing How Two Processing Parameters, Hatch Spacing and Scanning Speed, 

Influence Fatigue Strength in the XY Orientation (in Terms of Stress Amplitude for R = 0.1 Loading). 

 UPDATE OF THE DTMM WITH ADDITIONAL HCF DATA 

The accuracy of data-driven models based on ML algorithms improves with additional data. This concept 
was explored by recalibrating the DTMM with additional data generated in the last year of the project (the 
original DTMM shown in the previous section was calibrated at the end of calendar year 2020 on a smaller 
dataset). At the time of the final training of the DTMM, the training data contained 58 surface roughness 
specimens, each with scans of the two wide surfaces, and HCF data from 95 completed tests. In this round, 
the narrow edge surface scans were left out from the training data to increase the computational efficiency. 

The final training of the DTMM followed the same procedure as described above. All surface scan data, 
this time only including the two wide sides from each sample, were trimmed, segmented, and binarized into 
the black-blue (valleys), yellow-blue (median), and red-blue (peaks). The binarized images were then fed 
into the 2-point correlation algorithm to create correlation maps for each specimen. The data generated 
from the 2-point correlation maps of the surface roughness were merged with the maps created from 
porosity data. The multiple 2-point correlational maps of porosity for each build were averaged, excluding 
non-HIP samples. These build average values were concatenated to each of the 58 samples with roughness 
data. The combined roughness-porosity data was used as the input for PCA to reduce the dimensionality of 
the data and prepare it for model training. The PCA space plots and associated cumulative variance plot are 
shown in Figure 82. By using three principal components (PC’s) it is possible to capture more than 99.9% 
of the variance of the input data. 
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Figure 82. Low-Dimensional Representation of the Roughness-Porosity Data in (a) 3D and (b) 2D PC Space. 
(c) Plot Showing how Principal Components Cumulatively Contribute to Representing the Variance of the 

Original Data Set 

The PC scores obtained from the PCA were used in the training data for the process-structure (PS) model 
and the structure-property (SP) model. In the updated DTMM, the training data has 58 samples, a few from 
each of the 11 builds. Each sample has associated surface roughness scan data and build-average porosity 
data which was transformed into PC scores. Each sample had three associated PC scores because, as the 
cumulative variance plot displays, three PC’s are sufficient to capture most of the variance. By capturing 
most of the variance of the original data set, the PC scores accurately describe the surface condition and 
porosity state of each sample in low-dimensional terminology. The PC scores for each sample are associated 
with two continuous variables: hatch spacing (HS) and scanning speed (SS), and three categorical variables: 
machine (Concept M2 vs. Renishaw), build orientation (Z vs XY), and polish (as-built vs. polished). The 
PS training data was used in three of the regression methods previously described: parametric linear 
multiple regression (MR), support vector regression (SVR), and gaussian process regression (GPR). Using 
the training data, each method was capable of interpolating the PC scores for any combination of input 
variables. For example, given the input: hatch spacing = 70 micron, scanning speed = 800 mm/s, machine 
= Concept M2, build orientation = Z, surface condition = as-built, the outputs would be PC1, PC2, and PC3. 
These outputs are then used as the input to the SP model. 

The SP model used training data from the same PC space as the PS data. This is an advancement compared 
to the previous version of the DTMM where the PS and SP PC scores were the result of independent 
analyses. In this round, the PC scores generated by the PS method were used as the scores for the SP training 
data. There were 95 samples with HCF testing data, but only 58 samples with surface roughness scan data. 
Because of this, the PC scores for some samples were repeatedly used for all SP specimens that shared a 
similar condition. For example, an unpolished Z specimen from build 1 without any surface scan data used 
the PC scores from a different unpolished build 1 Z specimen. This method worked well for all but a few 
specimens. A few “imaginary” specimens were included in the PS PCA in order to get PC scores for 
polished specimens from builds 2, 5, 9, 10, and 11 because there was no surface roughness scanning data 
for polished specimens from those builds. Since most polished specimens had a similar and much lower 
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surface roughness, these “imaginary” specimens were associated with the flat surface roughness data from 
a polished specimen from build 1 data and the corresponding porosity data for their respective builds. In 
the end, complete PC scores were obtained for each of the 95 tested HCF specimens. 

In tandem, the PS and SP training data sets can be employed with the three described regression techniques 
to create full process-structure-property (PSP) models. These models can take any combination of input 
variables and provide the expected HCF strength for that parameter set. Comparing the MR, SVR, and 
GPR, there is observable difference in the accuracy of the SP model. As shown in Figure 83, the error is 
highest in the MR model and lowest in the GPR model. This matches the trends observed in previous 
DTMM versions. In the cross-validation plots, there is a soft limit observed for the predicted values of max 
HCF stress range around 350 MPa. This limit is not well understood and may be due to the nature of 
regression techniques to be swayed toward the average of large sets of data and away from any outliers. 
This results in conservative strength predictions for the PSP models. 

 
Figure 83. Leave-One-Out Cross-Validation Results (Units are Stress Range in MPa) for MR (Left), SVR 

(Middle), GPR (Right) with Table Detailing the Errors of these SP Regression Models (MAE = Mean 
Absolute Error, MSE = Mean Squared Error, RMSE = Root Mean Squared Error, and MAPE = Mean 

Absolute Percentage Error) 

Using the models to create prediction maps for the hatch spacing vs. scanning speed space visualizes the 
effect of the input parameters on the strength of the resultant additively manufactured component. Shown 
in Figure 84, the process map for the Concept M2 Z specimens differs slightly from the one for XY 
specimens, but they both show a similar trend with highest strength predicted in the region with the highest 
energy density (here, smaller hatch spacing and lower scanning speed). Similar peaks are observed in the 
process maps for both the Concept and Renishaw machines for Z specimens in the as-is condition. Even 
though the two plots are based on entirely different subsets of the training data set, they show a similar 
trend that matches that observed in testing. This shows that these ML techniques, namely the SVR used to 
generate these plots, are quite robust in their ability to interpolate relationships between a diverse set of 
training data points. 

These updated predictions deviate from what was predicted with the initial DTMM that was trained on a 
smaller data set (shown in Figure 81). While the new predictions still indicate that the lower hatch spacing 
is desirable, the conclusion regarding scanning speed is opposite of what was predicted with less data. With 
the additional data used in training, the model now has more confidence that the smaller hatch spacing and 



DOE Award FE-0031644  Page 82 
“Digital Twin Model for Advanced Manufacture of a Rotating Detonation Engine Injector” December 17, 2021 

lower scan speed, of the conditions considered in the coupon testing, will most likely generate a more 
fatigue resistant microstructure. 

This updated prediction turns out to be consistent with selecting the process parameters having the highest 
volumetric energy density. Considering most defects were the lack-of-fusion type, this means volumetric 
energy density was too low in most, if not all, of the builds in the coupon testing program. It is worth noting 
that all builds were originally centered on a higher energy density. The builds were adjusted to a lower 
energy density after Aerojet Rocketdyne reported that the higher energy process settings were unworkable 
on their Concept M2 machine. The model also suggests that smaller hatch spacing is more significant than 
lower scanning speed, which explains why the model with less data also predicted that smaller hatch spacing 
should be better but struggled to hone in on the optimum scanning speed in the initial DTMM. 

It should also be noted that microstructural specimens were used to determine the characteristic porosity of 
each build. By doing this, it is assumed that the porosity measured in the microstructural specimens is 
statistically similar to that in the gauge section of the HCF specimens. However, this project showed that 
there were considerable differences in the porosity, in terms of volume fraction, sizes, and distribution, 
among the microstructural specimens and likely among the fatigue and tensile specimens. This is thought 
to be the primary cause of the model’s accuracy limitations that were shown in Figure 83. A better 
correlation would be obtained by measuring the porosity in the gauge section of the HCF specimens 
themselves instead of using the microstructural specimens as a surrogate. However, this requires a non-
destructive method such as high-resolution micro X-ray computed tomography, which was outside the 
scope of the original work statement. 

 
Figure 84. Process Parameter Contour Maps Generated by the Final DTMM with the SVR Method Showing 
the Prediction Surfaces for Concept M2 Z vs. XY as well as Concept M2 Z vs Renishaw Z. All Plots are for 

the As-Is Condition and Fatigue Strength is Given in Terms of Stress Amplitude for R = 0.1 Loading. 
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 FATIGUE TEST OF THE SECOND INJECTOR 

As discussed in section 2.C.2, the hot-fire testing of the second injector did not generate the stress necessary 
for fatigue damage. Therefore, the second injector was fatigued in a uniaxial servo-hydraulic test system to 
simulate the HCF loading that the injector would experience in an RDE with greater vibration. The second 
RDE injector was built using the build 3 parameters that were found to be optimum based on the DTMM 
version at the time the second injector was built. As a reminder, the build 3 parameters are a scanning speed 
of 900 mm/s, a hatch spacing of 70 microns, and the alternative stress relief and annealing cycle with 
HIP’ing. 

The HCF test was conducted on the injector after it had been evaluated in hot-fire tests. The HCF test 
consisted of placing the RDE injector on a support apparatus that transferred force through the injector 
vanes and subjecting it to compression-compression cycling at a cyclic frequency of 10 Hz. This resulted 
in a cyclic bending stress in the vanes between the fuel nozzle and outer cylinder of the RDE injector. This 
is the same location where HCF cracks are expected to form in an operating RDE injector due to the cyclic 
wobbling of the centerbody. The orientation of the maximum principal cyclic stress along the surface of 
the vane at the expected fatigue crack location corresponds to an XY-oriented specimen (the stress plane is 
parallel to the build direction). Note that while a compression test apparatus was used, the maximum 
principal stress in the resulting bending of the vane was a tensile stress. It should also be noted that the 
stress concentration location in the RDE injector was not on an edge having a build support, which was 
found in the coupon testing to greatly influence the XY-oriented specimen HCF strengths. 

The fatigue step test method that was used for the coupon HCF specimens was also used for the HCF test 
of the RDE injector. A constant amplitude sine wave was applied, cycling between a minimum compressive 
pre-load and maximum compression. The displacement evolution was monitored to determine if and when 
fatigue cracks formed in the vanes. The test was conducted at room temperature in lab air. 

The initially applied cyclic loading was selected to generate a theoretical cyclic stress at the fatigue limit 
based on coupon data for build 3 parameters in the XY orientation. This conservative initial step did not 
make any considerations for notch sensitivity, which will be discussed shortly. The theoretical stress at the 
critical location in the vane as a function of the compressive force applied was determined by finite element 
analysis and is shown in Figure 85 as the blue line (each loading step is annotated in the figure). Since the 
fatigue strength for build 3 in the XY-orientation is 269.1 MPa stress range based on an average of the 
results from two HCF tests on build 3 in the XY direction, the stress range for the first step of the HCF test 
program was set to this value. To achieve this stress range at the hot spot location with a minimum to 
maximum stress ratio of 0.1 as was used in the coupon tests, the maximum compression force was set to 
2742 lbs., and the minimum compressive force was 274 lbs. The mean force was 1508 lbs. The RDE injector 
was loaded to the mean force and then cycled between the maximum and minimum force limits. 

The RDE injector survived the first step ending at 2 x 106 cycles. While some reduction in compliance was 
observed in the first step, which may indicate some fatigue damage, the force-displacement response 
stabilized during the step. Subsequent steps conducted are summarized in Table 16. The load was increased 
in step 2 by 8%, in step 3 by 12%, in steps 4-7 by 15% and in step 8 by 20%. 
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Table 16. Incremental 2 x 106 Cycle Steps for Fatigue of the RDE Injector 

Step Max Force 
(lbs.) 

Min Force 
(lbs.) 

Force Range 
(lbs.) 

Theoretical 
Stress Range 

(MPa) 

Theoretical 
Stress Amp. 

(MPa) 
1 2742 274 2468 269.1 134.6 
2 2961 296 2665 290.6 145.3 
3 3316 332 2984 325.3 162.7 
4 3821 382 3439 375.0 187.5 
5 4394 439 3955 431.2 215.6 
6 5053 505 4548 495.9 248.0 
7 5801 580 5221 569.2 284.6 
8 6961 696 6265 683.1 341.5 

 
Figure 85. Relationship Between Applied Compressive Force and Stress at the Critical Location in the Vane 

where the Fatigue Crack is Expected to Form (Numbers Indicate the Loading Step) 

Setting the Step 1 parameters to the fatigue limit of Build 3 in XY orientation was expected to be 
conservative for a few reasons. As noted in the coupon test data discussed in previous quarterly reports, 
larger lack-of-fusion defects that remained even after filing and polishing were observed near edges with 
build supports, resulting in reduced fatigue strength. The site of maximum stress in the ligament in the 
injector is on the top side of the build and hence the injector will likely have a fatigue strength closer to a 
condition without these larger lack-of-fusion defects associated with build supports. In addition, since the 
vane is experiencing a bending stress, the amplitude of the stress reduces with depth into the vane, unlike 
the HCF specimens that experienced uniform cyclic stress across the gauge section. The volume of material 
experiencing the maximum cyclic stress is also smaller in the RDE injector than in the coupon specimens. 
In the coupon specimens, it is statistically more likely that a larger flaw will be present somewhere in the 
highly stressed volume. The gradient in stress and volume effects were not considered to further maintain 
some conservatism in the initial load level selected. 
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These effects are addressed to some degree by considering the notch sensitivity of the material. Materials 
subjected to fatigue conditions are not always fully susceptible to stress concentrations. This is particularly 
important in this application because the peak stress is only generated by a stress concentration in a sharp 
fillet; the baseline stress field is benign. A material with low notch sensitivity would actually experience an 
effective cyclic stress that is much less than the theoretical prediction, and fatigue should occur at a higher 
load than expected. True knowledge of the notch sensitivity in this application would require the inclusion 
of notched coupon geometries in the design of experiment that was used to train the DTMM. This was not 
possible within the scope of this project. However, we can obtain an approximate estimate by consulting 
handbook data for conventional Inconel 625 that has similar tensile properties to the additive material 
created in this project. 

Notch sensitivity q is defined based on the actual stress concentration factor in fatigue, 𝐾௙ , and the 
theoretical stress concentration factor, 𝐾௧: 

𝑞 =
𝐾௙ − 1

𝐾௧ − 1
(6) 

We see that 𝑞 ranges between 0, meaning the material ignores the stress concentration, to 1, where the full 
theoretical stress concentration is obtained. The notch sensitivity for a feature of length scale 𝑟 can be 
estimated from the Neuber equation, where 𝑎 has the same units as 𝑟 and is a material constant: 

𝑞 =
1

1 + ට
𝑎
𝑟

(7)
 

The fatigue data for notched and unnotched annealed Inconel 625 from MIL-HDBK-5J were compared to 
estimate a value for a for Inconel 625: 0.085 inches. The theoretical prediction for maximum principal 
stress in the injector was studied parametrically as a function of fillet radius. A power law fit was 
constructed to extrapolate to the asymptotic stress value in the absence of a stress concentration. The notch 
sensitivity was then evaluated from equation 7 and used to find the actual stress concentration factor in 
fatigue, 𝐾௙. The asymptotic stress value was multiplied by the fatigue stress concentration factor to give the 
actual maximum principal stress for the purpose of evaluating fatigue strength. This adjusted curve is 
compared to the theoretical FEA prediction in Figure 86. Injector #2 has a 0.02-inch radius fillet, where it 
can be seen that the relatively low notch sensitivity of the material significantly reduces the fatigue load 
compared to the raw FEA prediction. 
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Figure 86. Maximum Principal Stress in the Injector as a Function of Vane Fillet Radius, FEA Theoretical 

Result Compared to the Result Adjusted for Notch Sensitivity 

A total of eight steps of 2 x 106 cycles each were applied with the last step having a theoretical stress range 
of 683 MPa at the critical point in the injector. An adjusted maximum principal stress vs. load relationship 
is also included in Figure 85, which shows that the actual stress range relevant to fatigue was more likely 
267 MPa. This is slightly above the final DTMM model predictions for the part’s fatigue strength. Testing 
concluded after step 8 due to the project reaching the end of the period of performance. No failure occurred, 
demonstrating that the parameters recommended by the DTMM resulted in a part with adequate fatigue 
strength. The DTMM made a conservative prediction, which is a consequence of accuracy issues that were 
discussed in the previous section. 

 TENSILE TEST RESULTS 

Recall that each sample build plate included round tensile specimens in addition to the HCF and 
microstructure specimens. Each of these specimens was tested to determine the variation of elastic modulus, 
yield strength, and ultimate strength with the process parameters. While this information was not 
incorporated into the DTMM that focused on fatigue strength predictions, it is provided as an addendum 
that provides another view of the relative quality and uncertainty of each build. 

The vertical specimens from builds 1-6 and build 9 were tested in the as-is condition (aside from machining 
to thread the grips and a machining pass to improve surface finish). The other specimens could not be tested 
directly because of macroscopic flaws such as visible cracks and warping. All specimens from builds 7 and 
8 as well as all horizontal specimens from builds 6 and 9 were unusable because of the widespread nature 
of these defects. However, other specimens, namely some of the horizontal specimens from builds 1-5 and 
some of the vertical and horizontal specimens from builds 10 and 11, had sufficient material intact to 
salvage a tensile specimen of smaller dimensions. The number of specimens that could be salvaged varied 
from build to build, and in no cases were all four specimens of a given type reclaimed. The outcome of each 
build is documented in Table 17. Therefore, less data is available for the horizontal orientation than the 
vertical. 
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Table 17. Tensile Specimen Outcomes 

Build Vertical Horizontal 

1 AS-BUILT  4/4 SALVAGED 1/4 

2 AS-BUILT 4/4 SALVAGED 2/4 

3 AS-BUILT 4/4 SALVAGED 2/4 

4 AS-BUILT 4/4 SALVAGED 1/4 

5 AS-BUILT 4/4 SALVAGED 2/4 

6 AS-BUILT 4/4 UNUSABLE 

7 UNUSABLE UNUSABLE 

8 UNUSABLE UNUSABLE 

9 AS-BUILT 4/4 UNUSABLE 

10 SALVAGED 3/4 SALVAGED 1/4 

11 SALVAGED 3/4 SALVAGED 2/4 

All tensile test data are summarized in the following figures. Results from builds 2 and 6 are grouped 
together in the data because of their identical build parameters. They are equally probable outcomes of 
applying those build settings, similar to the specimen-to-specimen variation within a single build. Figure 
87 and Figure 88 document the elastic properties of each build with yield strength and elastic modulus, 
respectively. Yield strengths are consistent across the Aerojet Rocketdyne (AR) builds with only minimal 
variation. Yield behavior is mildly anisotropic, with the vertical specimens achieving a slightly higher yield 
strength. The SwRI builds resulted in lower yield strengths than the AR builds, further demonstrating the 
influence of SLM machine type on material properties. 

Significant variation in elastic modulus is apparent across the builds. Results are centered on the handbook 
value for wrought material with scatter both above and below this value. A precision uncertainty was 
estimated by repeating the modulus test on the same sample ten times including the complete removal and 
reapplication of grips and extensometers. The maximum and minimum values measured in the repeatability 
experiment were used to construct a relative precision uncertainty which is displayed about the handbook 
value in the figure. These lines bracket the magnitude of variation that is plausibly explained as 
experimental error. Notably, several builds exhibit variation outside of this range, and there are true physical 
differences between the specimens. Builds 2 and 6 stand out as having superior elastic properties. Their 
results are in line with expected values and show the smallest variation. The material also appears isotropic 
within the uncertainty of the experiment, which validates the assumptions used in the mechanical analysis 
of the injector. 

Figure 89 shows the ultimate tensile strength and Figure 90 gives the elongation to failure. Together, these 
figures describe how the builds differ in the plastic regime. Builds 2 and 6 once again take the lead in 
ultimate tensile strength with values that are higher and more consistent than the other builds. In contrast, 
build 5 is clearly deficient with strengths that are lower and more variable than all the others. SwRI 
specimens generally have lower ultimate strength than the AR specimens, as was observed with yield 
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strength. There is no clear winner in the elongation to failure – there is extensive variation across the board. 
However, builds 2 and 6, 9, 10, and 11 have the highest minimum elongation. 

 
Figure 87. Yield Strength of all Viable Tensile Specimens, Builds 2 and 6 Grouped Together (Builds 7 and 8 

Were Not Viable) 

 
Figure 88. Elastic Modulus of All Viable Tensile Specimens, Builds 2 and 6 Grouped Together (Builds 7 and 8 

were Not Viable) 
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Figure 89. Ultimate Tensile Strength of All Viable Tensile Specimens, Builds 2 and 6 Grouped Together 

(Builds 7 and 8 were Not Viable) 

 
Figure 90. Elongation at Failure for All Viable Tensile Specimens, Builds 2 and 6 Grouped Together (Builds 7 

and 8 were Not Viable) 
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 INVESTIGATION OF TENSILE TEST DISCREPANCIES BETWEEN 
REPEATED BUILDS 

The material specimen design of experiment included two pairs of repeat builds. The first pair, consisting 
of builds 2 and 6, were built with the same settings on the exact same machine at AR. The builds were 
separated in time by several months. The second pair, consisting of builds 5 and 9, were built with the same 
settings but on different machines. Build 5 was performed at AR on a Concept M2 machine, while build 9 
was performed at SwRI on a Renishaw 250. However, the tensile test performance was not consistent within 
these seemingly identical builds. 

Figure 91 shows that build 6 specimens have less ultimate strength and ductility than those from build 2, 
and Figure 92 shows that builds 5 and 9 follow entirely different stress-strain curves. While some disparity 
is expected for builds 5 and 9 considering the machines have contrasting laser architectures (continuous vs. 
pulsed) and AR used a proprietary powder chemistry, the differences are nonetheless striking. The 
discrepancy between builds 2 and 6 is more troubling, considering these were built on the same exact 
machine at AR according to identical specifications. These disconnects challenged the concept of the 
DTMM, which is prefaced on a consistent linkage between process parameters and material properties. 

Table 18. Material Sample Build Matrix (Builds Highlighted in Orange Used the Same Settings on the Exact 
Same Machine; Builds Highlighted in Blue used the Same Settings on Machines from Different 

Manufacturers) 

# Pattern 
Velocity 
(mm/s) 

Hatch 
Spacing 

(microns) 

Heat Treat 
Cycle 

Machine 
Energy 
Density 
(J/mm3) 

1 --- 800 70 SR+HIP AR 49.1 

2 ++- 900 100 SR+HIP AR 30.6 

3 +-+ 900 70 NSR+HIP AR 43.7 

4 -++ 800 100 NSR+HIP AR 34.4 

5 
Center 
Point 

850 85 SR+HIP AR 38.1 

       

6 ++- 900 100 SR+HIP AR 30.6 

7 +++ 900 100 NSR+HIP SwRI 30.6 

8 -+- 800 100 SR+HIP SwRI 34.4 

9 
Center 
Point 

850 85 SR+HIP SwRI 38.1 

10 +-- 900 70 SR+HIP SwRI 43.7 

11 --+ 800 70 NSR+HIP SwRI 49.1 
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Figure 91. Tensile Test Results for Build 6 Compared to Build 2 

 
Figure 92. Tensile Test Results for Build 5 Compared to Build 9 

The manufacturing logs were reviewed to determine if builds 2 and 6 were processed with the same 
materials, settings, and procedures. Build logs consist of operator notes as well as history files stored in the 
Concept M2 machine itself. These logs all indicate that builds 2 and 6 were built with the same powder 
composition and process settings. The recorded heat treatment data show that each build experienced the 
same stress relief and hot isostatic pressing cycles, as shown in Figure 93 through Figure 96. Vacuum 
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conditions were maintained throughout the stress relief cycle for both builds. A side observation is that the 
stress relief treatment extended beyond the specification of 60 +15 / -0 minutes, introducing a possible 
disconnect between the SwRI and AR stress relief treatments. The team reviewed this departure and 
determined that the unequal durations would only result in few, if any, differences in the macroscopic 
warping of SwRI vs. AR specimens. There should be no impact on microstructure. 

The stress relief cycle was performed with all specimens still attached to the build plate, therefore it was 
impossible to accidentally omit specimens from the treatment. This error was a possibility for the HIP cycle, 
because parts were separated in order to fit inside the oven envelope. However, pictures captured during 
the manufacturing process confirm that all material specimens were placed in the HIP oven, as shown in 
Figure 97. In conclusion, builds 2 and 6 were in fact built according to the exact same process, and any 
variability in outcomes is due to uncontrollable factors inherent to the selective laser melting process. 

 
Figure 93. Stress Relief Temperature Profiles for Builds 2 and 6 
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Figure 94. Stress Relief Pressure Profiles for Builds 2 and 6 

 
Figure 95. Hot Isostatic Pressing (HIP) Temperature Profiles for Builds 2 and 6 
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Figure 96. Hot Isostatic Pressing (HIP) Pressure Profiles for Builds 2 and 6 

 

  

Figure 97. All samples from Builds 2 (left, paired with Build 1) and 6 (right, paired with Build 5) were Placed 
in the HIP Oven 

Metallurgical analysis was performed on the tensile specimens to determine the physical basis for the 
difference in tensile properties between builds 2 and 6. Scanning electron microscopy (SEM) was used to 
classify the microstructure in the gage section of a tensile specimen from builds 2 and 6. Results are given 
in Figure 98 and Figure 99 for builds 2 and 6, respectively. Both image sets indicate a semi-cellular, re-
solidified morphology with elongation parallel to the axis of the tensile bar. There is preferential distribution 
of precipitates along grain boundaries, and the precipitate size and density distribution is similar between 
the two builds. In other words, there are no discernable differences in the microstructures, which is 
consistent with them having been built according to identical parameters. 
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Figure 98. Scanning Electron Microscope Images of the Gage Section Microstructure of Build 2 Tensile 

Specimen #3 

 
Figure 99. Scanning Electron Microscope Images of the Gage Section Microstructure of Build 6 Tensile 

Specimen #2 

Stereoscopic imagery was then used to quantify porosity in the vicinity of the fracture surface. A review of 
the images shown in Figure 100 shows that both the build 2 and build 6 samples appear to have minimal 
porosity (0.185% and 0.024%, respectively), which is once again consistent with identical build parameters. 
Note that the sample with less elongation, build 6, is actually the one with less porosity. 

 
Figure 100. Stereoscopic images of polished samples to determine porosity of a tensile specimen from build 2 

(left) and build 6 (right) 

SEM analysis was performed on the fracture surfaces as shown in Figure 101 and Figure 102 for builds 2 
and 6, respectively. These figures show SEM images at the locations marked in the overall view of the 
fracture surface. In both cases, the imaging indicates the fracture surface consists of equiaxed dimples that 
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are indicative of tensile overload. A limited amount of secondary cracks were also observed. However, the 
SEM does reveal a key difference between the two builds. The build 6 specimen failure contains faint 
directional features that indicate the fracture originated at a surface morphology anomaly on the outer 
diameter (location 1 in the figure). This anomaly is a pore that was created by incomplete fusion, meaning 
it was not melted together during the SLM process. 

The HIP process reduces porosity internal to the part but is unable to correct surface defects. Figure 103 
highlights a few of these surface defects that are visible in a build 6 tensile specimen after HIP but before 
final machining. All tensile specimens were lightly machined in the gage section for a consistent surface 
finish, but this operation was apparently too shallow to remove all surface defects. Therefore, the build 6 
specimens failed at a lower elongation and correspondingly lower ultimate tensile strength because of 
slightly higher porosity that resulted in a greater concentration of surface defects. 

 
Figure 101. Scanning Electron Microscope Analysis of the Fracture Surface in Build 2 Specimen #3 
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Figure 102. Scanning Electron Microscope Analysis of the Fracture Surface in Build 6 Tensile Specimen #3 
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Figure 103. Surface Porosity Sites in a Build 6 Tensile Specimen before Final Machining 

All data confirm that builds 2 and 6 were built on the same machine according to the same specifications, 
and the cause of the porosity variation remains unknown. There appear to be uncontrolled factors in the 
SLM process, such as minor drifts in delivered laser power for a given set point. One hypothesis is that 
SLM builds with low energy density are particularly sensitive to these fluctuations, as shown qualitatively 
in Figure 104. Builds 2 and 6 have the lowest energy density in the design of experiment, suggesting that 
they may be situated in the hypothesized zone of rapidly changing properties. 

However, this explanation is unconvincing when the entire dataset is considered. As was shown in the 
previous section, Builds 2 and 6 have the most favorable tensile properties in the design of experiment – 
several higher energy density builds demonstrate degraded properties. Furthermore, an early trial build that 
was performed at energy densities above the levels included in the final design of experiment were 
terminated early because of severe defects that interfered with recoater operation. The only firm conclusion 
that can be made is that there is variability in the SLM process that is not yet controlled, and any robust 
characterization program must perform several repeats of all build samples to assess repeatability. 
Unfortunately, the budget for this program did not permit doing so, and this is left for future work. 
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Figure 104. Hypothetical Relationship between Material Properties and Selective Laser Melting (SLM) 

Fusion Energy 

The tensile specimens of build 5 (from AR) and build 9 (from SwRI) were similarly investigated to 
understand their different stress-strain curves. Both of these specimens failed in the grip section, unlike the 
build 2 and 6 specimens that failed in the expected gage section. Stereoscopic images, shown in Figure 105, 
display pronounced porosity near the fracture location in both samples. The tensile strengths of such 
defective builds are expected to be highly variable, and this partly explains the deviations between and 
within the two builds. 

Of more interest are the microstructures of the two builds as shown in Figure 106 and Figure 107: they are 
completely different. Build 5 has a semi-cellular, resolidified morphology, similar to builds 2 and 6. Build 
9, on the other hand, has an equiaxed, twinned structure whose precipitates are chemically distinct from the 
precipitates observed in build 5. These chemical variations are most likely a consequence of the different 
powder compositions used at AR vs. SwRI. These compositional differences are not publically available. 
For cost-share reasons, AR was required to use its proprietary version of Inconel 625 powder while SwRI 
used a standard Inconel 625 powder from a commercial vendor. These two compositions are known to be 
different in the minor alloying elements, but those differences remain undisclosed outside of AR. Aside 
from the chemical variations, the wholly distinct microstructures point to the specimens having unique 
thermal histories. This confirms the viewpoint that a SLM machine behaves as its own foundry, and 
nominally identical build parameters applied to two different machines can result in drastically different 
outcomes. Any material model must carry the particular SLM machine as an independent input variable. 
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Figure 105. Stereoscopic Images of Polished Samples to Determine Porosity of a Tensile Specimen from Build 

5 (left) and Build 9 (right) 

 

 
Figure 106. Scanning electron microscope images of the gage section microstructure of build 5 tensile 

specimen #4. Yellow circle shows an area of intragranular precipitates. 

 

 
Figure 107. Scanning Electron Microscope Images of the Gage Section Microstructure of Build 9 Tensile 

Specimen #4 
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4. CONCLUSIONS 

Pressure gain combustion has not seen practical application in either power generation or propulsion 
systems because of extra pressure losses upstream and downstream of the combustor element. There are 
pressure losses in the injector element that adds fuel and oxidizer to the combustion chamber, and there are 
pressure losses in the diffuser that transitions the combustor output to the turbine. Historically, these losses 
have more than cancelled the pressure gains generated in the combustion process itself. 

The successful demonstration of sustained detonation with low injector pressure loss is, therefore, a 
significant advancement of RDE technology. The injector design developed in this project is the launching 
point for additional research into low-loss technology. Follow-on work could expand the operability and 
strengthen the detonation while retaining low losses. Such a second-generation design would then enable 
an operational RDE system, pending similar advancements in diffuser and turbine integration technology. 
This operational system could deliver on the promise of pressure gain combustion, namely higher efficiency 
gas turbines. This work brings that goal one step closer. 

The injector fatigue test points to some success in the project’s primary goal of successfully developing and 
applying the DTMM to a component design. Implementing the DTMM recommendations for optimal 
processing parameters led to a part with acceptable properties. The DTMM was also shown to be an efficient 
correlator of data and to provide insight on the relationship between process settings, microstructure, and 
property performance. However, the failure of the DTMM prediction to match the experimental result of 
the injector fatigue test and its limited accuracy in cross-validation also points to the need to include 
significantly more data in the model development. 

As shown in the DTMM update, model predictions change and improve as more data is considered. In this 
project, coupons made with identical processing parameters exhibited drastically different properties from 
each other and from the injector part, which clearly influences the accuracy of a model that predicts 
performance based on parameters. Uncertainties in the build process must be quantified to develop more 
robust models. A denser and broader matrix of coupon process and geometry variations, several repeated 
builds of every point, more in-situ build process measurements, and direct observation of tensile and HCF 
sample microstructure (as opposed to separate microstructure specimens) are recommendations to improve 
future AM modeling efforts. 
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