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ABSTRACT

In this paper, we present a comparative analysis of model-free
reinforcement learning (RL) and model predictive control (MPC)
approaches for intelligent control of heating, ventilation, and air-
conditioning (HVAC). Deep-Q-network (DQN) is used as a candi-
date for model-free RL algorithm. The two control strategies were
developed for residential demand-response (DR) HVAC system.
We considered MPC as our golden standard to compare DQN’s
performance. The question we tried to answer through this work
was, What % of MPC’s performance can be achieved by model-
free RL approach for intelligent HVAC control?. Based on our
test result, RL achieved an average of ~ 62% daily cost saving of
MPC. Considering the pure optimization and model-based nature
of MPC methods, the RL showed very promising performance. We
believe that the interpretations derived from this comparative anal-
ysis provide useful insights to choose from various DR approaches
and further enhance the performance of the RL-based methods for
building energy managements.
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1 INTRODUCTION

Buildings are one of the major consumers of energy in the world,
consuming over 36% of the total global energy [9]. In the U.S.,
more than 50% of buildings’ energy use is attributed to HVAC [7].
HVAC energy use is highly dependent on the weather, causing non-
uniform power demand throughout the day. Efficiently generating
power to match the load during peak demand periods is challenging.
To help curtail power use during peak demand periods, many utili-
ties offer time-of-use (TOU) price structures that incentivize power
use during off-peak hours with a low electricity rate and penalize
power use during on-peak hours with a high electricity rate. This
type of rate structure can illicit a reduction in demand during peak
power periods, decreasing the generation capacity required to meet
the load.

Along with demand reduction, cost reduction and home owner’s
comfort are important objectives of intelligent HVAC control, mak-
ing it a multi-objective problem. Various methods for intelligent
control of the HVAC system can be broadly divided into the follow-
ing three categories:

e Rule-based HVAC control: Rule-based approach uses rules
encoded by experts to control HVAC [17]. A recent work
used a rule-based approach to reduce the operating cost of
a thermal storage tank [8]. Despite of the simplicity of the
approach, it is difficult to attain the optimal performance.
Moreover, the expert rules devised for a particular building
cannot be directly used for the control in other buildings.
Furthermore, the rule-based methods cannot solve the multi-
objective problems.

¢ Model-based HVAC control: Model-based approaches for
HVAC control requires a model of building’s thermal dynam-
ics and HVAC performance. MPC is one of the well studied
model-based approaches for HVAC control [19]. MPC needs
accurate building and HVAC model for predicting build-
ing’s thermal behavior and energy performance over a finite
horizon and performs optimization of the control variables.
Additionally, running building models along with the op-
timization algorithms is a computationally expensive task
which limits its practical applicability. Using simplified build-
ing models can help improving the computational efficiency
of the model-based approaches. However, such models may
suffer from lack of accuracy.

e Data-driven approaches for HVAC control: Recently, the
data-driven model-free approaches such as RL have been
explored for optimal control [1-3, 5, 6, 12]. In this approach,
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an agent interacts with the environment and learns from
its experience, which sometimes makes learning slow. Fur-
ther, RL can not be deployed from scratch due to the risk
of compromising the home owner’s comfort. To overcome
this issue, most of the work utilized simulated environment
to pre-train the RL agent. Once trained, RL agent can be
deployed in the real environment.

Paucity of comparative analysis: Most of the previous works
discuss model-based and model-free approaches separately. Re-
cently, Kou et al., 2021 [10] compared MPC and RL based HVAC
control. There is still a need for such comparative analysis to eval-
uate the feasibility of model-based and model-free approaches in
different scenarios.

Contributions: Our contributions in this paper are as follows: 1)
We developed DON (model-free) and MPC based intelligent HVAC
control to minimize its energy cost and the occupant discomfort.
2) We compared and interpret their performance with the fixed set
point baseline as well as with each other. The comparative analysis
of these two methods will contribute to the current literature of the
intelligent HVAC control and provide useful insights to evaluate
their feasibility in different scenarios.

Workshop relevance: We used DQN as our model-free RL al-
gorithm and compared it with the model-based MPC approach. The
insights drawn from this comparative analysis will be beneficial
to improve the RL’s performance in building energy management
and will provide guidelines to the decision makers on choosing
appropriate approach for building energy management.

The rest of the paper is organized as follows: Section 2 and
Section 3 describe the RL-based and MPC-based HVAC control
development followed by their comparative analysis in Section 4.
Finally, Section 5 concludes the paper by highlighting the insights
gained from this comparative study.

2 RL-BASED HVAC CONTROL

We developed an end-to-end framework to train intelligent HVAC
control using DON [12] using the procedure described by Mnih
et al., 2015 [13] and Wei et al., 2017 [18]. We trained DQN-agent
in an offline mode using the building simulation developed from
the data collected from a real research house located in Knoxville,
TN. We employed a grey-box model that used an electrical network
equivalent model to represent the thermal resistance (R) and ca-
pacitance (C) associated with the air, walls, and internal mass for
each zone. The model includes the effect of outdoor air temperature,
sol-air temperature, direct solar radiation, air conditioner cooling,
and internal heat load. More details can be found in [4].

During offline training, DQN-agent interacts with the simulated
environment at every 15 mins., collects the observations (i.e., state
(St), performs some action (At), and receives reward (ri.1). After
executing the action At, the environment will transition to the next
state (St+1). The current state S; of the environment is defined by

S = {t, Tin, T?Bltookahea & Pt+lookahead: Py}. Where, ¢ is the time of
out

the day, Tin is the indoor temperature, T} represents cur-
) +lookahead

rent outdoor temperature and six hours of a lookahead, Py, ]ookahead

is the current price and price look ahead, and Py represents few

features derived from the price lookahead [11]. A set of discrete

setpoints {70°F, 71°F, 72°F, 73°F, 74°F} were used. Effectively, there
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are a total of 25 actions in the action space as the building has
two zones. This action space avoided DQN-agent setting setpoints
outside the comfort range of occupants and allowed DQN-agent to
focus on monetary savings. The reward function used for training
DQN-agent include only the cumulative cost of running HVAC
for 15 minutes, i.e. reward=-cost. Various parameters of the DQN
training are given in the Table 1. Figure 2 shows the DQN training
performance in terms of the total episodic reward and cost over the
training session. We observed satisfactory training performance.

Evaluation Target

network network

<s,a,r.,S

L sl t‘1>

Experience replay

Figure 1: DON training setup

Table 1: DQN training parameters

Parameter Value
Episodes 100
Simulation step (Afs) 1 min
Control step (Az.) 15 min
Learning rate 0.0001
Optimizer Adam
Reward decay (y) 0.9
e-greedy value 0.9
Target replacement iterations 200
Initial steps 1440
Batch size 64
Experience replay memory size 20,000
[LT, UT] [70 °F, 74 °F]

DQN training performance
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Figure 2: DQN training performance

3 MPC-BASED HVAC OPERATION

We compared the performance of the RL agent against an MPC-
based controller’s performance for a month. For MPC-based con-
troller, we used the same building simulation as the RL. Figure 3
illustrates the concept of a model-based predictive controller which
consists of three main steps.
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First, the MPC-based controller gets the measurements from the
system and collects the electricity price and weather data for the
corresponding prediction horizon. In our case, these measurements
include indoor temperatures for both zones of the building. The
prediction horizon is set to 6 hours, and therefore electricity price
and weather data for the next 6 hours are gathered.

Second, the control variables are optimized for the prediction
horizon using the initial indoor temperatures taken from the system,
the electricity price, and the weather data for 6 hours. Here, the
objective of the optimization is to minimize electricity cost and the
control variables included the thermostat setpoints for both zones
in 15 minute intervals. In order to ensure the thermal comfort of the
occupant, the control variables were constrained between 70°F and
74°F. Because the building model that we utilize to simulate indoor
temperature and power consumption is nonlinear and non-convex,
the optimization problem was solved using genetic algorithms.

Third, the optimal control variables resulting from the optimiza-
tion are implemented as much as the control horizon. We set the
control horizon to 1 hour and therefore the first hour of the optimal
variables are implemented and the control proceeds for an hour. Af-
ter that the procedure is repeated by taking the new measurements
from the system until the end of the control period.

System
(Thermostat)

Optimization
l Building simulation '

Model

sjuswaInses|y

Electricity price
Weather data

Figure 3: Overview of the MPC implementation

4 COMPARATIVE ANALYSIS OF RL AND MPC
FOR HVAC CONTROL

The main objective of this work is to compare the MPC-based and
RL-based HVAC control and derive the insights that are helpful to
the control optimization community in evaluating the feasibility of
these approaches in different scenarios.

4.1 Dataset used

We used weather data from a Typical Meteorological Year (TMY)
data for the cities of Knoxville, TN, USA and Memphis, TN, USA
[14, 15]. We used TMY weather data of Memphis, TN for the months
of May-August for training RL. We compared the performance of
RL and MPC using Knoxville, TN TMY data. We used a TOU price
signal with a peak price of $0.25/kWh during 2pm-7pm and an
off-peak price of $0.05/kWh.

4.2 Indoor temperature variations

Figure 4 shows the indoor temperature variations in both the zones
for MPC and RL on July 10, 11, and 12 with Knoxville, TN weather
data. We can visually see the commonalities and differences in the
indoor temperature of both the zones due to the actions performed
by MPC and RL. We observed that the indoor temperature varia-
tions due to both MPC and RL matched closely when the outdoor
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temperature is not too high, e.g. on July 11 and 12. We also observed
some mismatch in the indoor temperature variations, specifically,
during hot days, e.g. on July 10. In fact, RL tried to pull the indoor
temperature down when the outdoor temperature was high but
could not match the MPC’s performance. The potential reason for
this behaviour could be the scarcity of such hot days in the train-
ing data. We found that the average outdoor temperature in the
training data (Memphis, TN) was ~ 81°F. One potential way to
overcome this scarcity of the less frequent samples is to prioritize
such tuples in the replay memory to increase their chance to get
selected during the training process [16].
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4.3 Agreement of MPC’s and RL’s actions

We investigated the agreement of MPC’s and RL’s actions in terms
of setpoints (Figure 5a) and AC’s cooling status (Figure 5b). For
brevity, we present here in Figure 5 the combined agreement on
actions taken by these algorithms in both zones. We found that
MPC and RL showed =~ 53.4% agreement on setpoints and most of
the agreement was on setting higher setpoints. The high agreement
at the highest set point is expected, since it will yield the lowest
AC energy use. Optimally, the system should only be set to lower
set points when pre-cooling prior to peak price periods to limit
energy use during that period. The relatively low level of agreement
between setpoints used by RL and MPC can be attributed to the
fact that there are potentially several different setpoint combina-
tions that can illicit the same response from the HVAC system, (e.g.,
setting the thermostat to 70°F or 71°F when the indoor temper-
ature is 74°F will illicit the same “on” response from the HVAC
system). Accordingly, we compared AC’s cooling status for the RL
and MPC controls, which showed better agreement than the set-
point comparison. We found that MPC and RL showed a combined
agreement of = 79.5% on AC’s cooling status out of which ~ 74.4%
agreement was on keeping AC off. This behavior can be attributed
to the cost savings by shutting off the AC. These results show that a
better agreement on the actions could be achieved if fewer discrete
setpoints, e.g. [70°F, 74°F] were used.

We further interpreted the % agreement of MPC and RL’s ac-
tions with respect to varying outdoor temperature and electricity
price. Referring to Table 2, we found the highest agreement in the
setpoints set by MPC and RL when the outdoor temperature was
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Figure 5: % agreement on actions by MPC and RL.

in the range of 71°F-80°F. The high % agreement in AC’s cooling
status was found when the outdoor temperature was less than 80°F.
Similarly, % agreement of setpoint and AC status were found to
be = 53% and = 79% respectively, which are consistent with the
overall agreement shown in Figure 5.

Table 2: % agreement on actions by MPC and RL for varying outdoor
temperature (Toy) and electricity price

Setpoint | AC status

51-60 6.9% 93.1%

61-70 46.7% 92.9%

Tou:(F) [ 71-80 69.9% 37.8%
81-90 45.5% 65.3%

91-100 26.5% 57.2%

Price Low ($0.05/kWh) 53.6% 79.7%
High ($0.25/kWh) | 53.2% 79.1%

As mentioned earlier, the main cost saving is achieved by pre-
cooling before the peak price period and shutting off the AC during
the peak period. We further compared the energy consumption by
MPC and RL, specifically during the peak period, as an indicator of
the agreement of the actions during peak period. We can see that
in Table 3, MPC consumed ~ 20kWh less energy than RL which
contributes to the lower cost consumption by MPC. This shows
that there is still a scope for RL agent to reduce the cost savings
by saving more during the peak period. This observation can be
used to tweak the parameters in the training setting. However, the
energy consumption of both MPC and RL are still comparable.

Table 3: Comparison of energy consumption

Energy | Low price | Peak price Total
(kWh) | 0.05/kWh | 0.25/kWh

RL 238.9 101.9 | 340.4
MPC 2374 81.6 | 319.0

4.4 MPC and RL’s cost saving over baseline

We collected the daily cost of operating MPC and calculated its cost
reduction over a fixed setpoint baseline (74°F), and plotted along
with the cost reduction of RL models over the baseline (refer to the
bottom plots of the Figures 6). We can see that the daily cost sav-
ings of RL model is comparable with MPC. Further, we computed
a quantity representing the % of MPC’s cost saving over baseline
achieved by RL. The tops bar-charts in the Figure 6 represent this
quantity for each day in the month of July. The results are encour-
aging except three days where RL showed high cost than baseline
and MPC. We observed this behavior of RL on July 2, 3, and 21. To
analyze this behavior we compared the daily average outdoor tem-
perature (shown in the bottom graph). We found that, the outdoor
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temperature on July 2-3, and July 21 was slightly lower than the
average summer temperature (shown by the dips in the TOUT line
graph in Figures 6). Additionally, the building simulation model
used for training RL has only cooling capability so RL learnt only
the cooling behavior. This could be a possible reason for the RL’s
poor performance on these four days. The behaviour is reflected as
negative % of cost saving as shown by downwards bars in Figure 6.

Top: RL's saving % of MPC cost saving
ottom: Baseline-MPC-RL daily cost comparison
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Figure 6: Daily cost saving by MPC and RL over baseline and MPC’s
% cost saving over baseline achieved by RL

We further calculated the mean % cost saving of MPC that was
achieved by RL. We eliminated these four days from the calculation.
We found that, RL achieved an average of = 62% daily cost saving
of MPC. Further, the total monthly cost of operation by MPC was
$32.27 and showed 30.40% of cost savings over baseline. Whereas
RL’s monthly cost was $37.33 (19.48% cost saving over baseline).
Considering the pure optimization and model-based nature of the
MPC method, the RL showed very promising performance.

4.5 Run-time analysis

We optimized MPC model for 31 days of July in a simulation on
a desktop with Intel i7-8700 CPU @3.20GHz and 16GB of main
memory. MPC took ~ 7 days to complete the optimization of 31
days. The RL offline training was done on desktop with Intel i7-
7820HQ CPU @2.90GHz and 16 GB of main memory which took
~3 hours. Once trained, the pre-trained RL model was used to make
decisions which took less than ~1 minute to simulate the 31 days.

5 CONCLUSION

We presented a comparative analysis of MPC (i.e. model-based)
and RL based (i.e. data-driven) HVAC control. Model-based method
needs an accurate model of the environment whereas data-driven
approach interacts with the environment and learns from the ex-
periences. Although in our experiment MPC showed more cost
reduction than RL, considering a pure optimization and model-
based nature of the MPC approach, RL showed very promising
performance. From our comparative analysis we derived following
conclusions:
e RL’s performance can be improved by prioritizing the tuples
that are less frequent. For instance, extreme hot or cold days.
e The fewer setpoints that are sufficient to change the AC’s
status must be used to formulate the action space.
e The runtime comparison of MPC and RL clearly shows the
advantages of the data-driven approaches over model-based
methods for optimal control. (refer Section 4.5)
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