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ABSTRACT

Sobol sensitivity indices (SI) provide robust and accurate measures of how much uncer-
tainty in output quantities is caused by different uncertain input parameters. These allow
analysts to prioritize future work to either reduce or better quantify the effects of the most
important uncertain parameters. One of the most common approaches to computing SI
requires Monte Carlo (MC) sampling of uncertain parameters and full physics code runs
to compute the response for each of these samples. In the case that the physics code
is a MC radiation transport code, this traditional approach to computing SI presents a
workflow in which the MC transport calculation must be sufficiently resolved for each
MC uncertain parameter sample. This process can be prohibitively expensive, especially
since thousands or more particle histories are often required on each of thousands or so
uncertain parameter samples. We propose a process for computing SI in which only a
few MC radiation transport histories are simulated before sampling new uncertain param-
eter values. We use Embedded Variance Deconvolution (EVADE) to parse the desired
parametric variance from the MC transport variance on each uncertain parameter sample.
To provide a relevant benchmark, we propose a new radiation transport benchmark prob-
lem and derive analytic solutions for its outputs including SI. The new EVADE-based
approach is found to converge with MC convergence behavior and be at least an order of
magnitude more precise for the same computational cost than the traditional approach for
several SI on our test problem.

KEYWORDS: Uncertainty quantification; Sobol sensitivity indices; Monte Carlo; Embedded Variance
Deconvolution

1. INTRODUCTION

Global sensitivity analysis (GSA) is the study of how much of the uncertainty in output quantities
is caused by different sources of uncertainty in input parameters. GSA is often, but not exclusively,
used for systems modelled using physics codes. In applications such as nuclear reactor design and
medical physics, GSA can enable decision-makers to prioritize future work to either reduce or bet-
ter quantify the effects of the most important uncertain input parameters. Sobol sensitivity indices
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(SI) are variance-based sensitivity measures that provide robust and accurate sensitivity estimates
for complex nonlinear systems. Introduced in 1993 alongside a proposed Monte Carlo algorithm
for estimating the indices [1], SI have become one of the most popular measures of global sensi-
tivity. Numerous improvements on Sobol’s original algorithm have been made, primarily seeking
to improve the efficiency of the estimator and thus reduce the number of physics code runs re-
quired to estimate SI to a given level of precision [2][3]. However, these approaches still require
many code runs, often thousands, to produce reliable results. Consequently, if the physics code is a
Monte Carlo (MC) radiation transport simulator, performing enough code runs to compute precise
SI estimates can be infeasible, since many thousands, or more, particle histories are often required
per MC transport code run. There are also methods for computing SI based on surrogate models,
for example using the coefficients from a polynomial chaos expansion [4] or leveraging a Gaussian
process emulator [5]. In this paper, we develop a method analogous to the Sobol method and thus
do not consider methods based on surrogate models any further.

We sidestep the problem of requiring many MC transport code runs by computing SI leveraging
variance deconvolution and frequent, embedded resampling of uncertain parameters every few
particle histories. To accomplish this, we used Embedded Variance Deconvolution (EVADE) [6]
to parse out parametric variance from the variance due to the MC radiation transport code. We
applied the EVADE algorithm, which was originally developed for estimating the variance caused
by all the uncertain input parameters, to the estimation of conditional variances, the variance caused
by a subset of the uncertain input parameters. We apply our method to MC radiation transport, but
it is applicable any time we employ a MC solver to calculate the response for different values of
uncertain input parameters.

In order to properly quantify and propogate the uncertainty associated with our SI estimate, and
thus understand its accuracy and precision, we needed expressions for the bias and variance of
our SI estimator. However, as the SI estimator is a ratio of two quantities estimated separately
using MC, no analytic term for its bias and variance exist, and so we expound on a method in
the literature [7] in order to estimate for them. In order to benchmark our method, we required a
benchmark problem with analytic expressions for SI, and we required those SI to be sufficiently
interesting to provide a robust test for our new method. However, we were unable to find such
a benchmark problem in the literature, and so we adapted an existing problem [6] to meet these
requirements. We then used this problem to benchmark both the traditional numerical method and
our EVADE-based method, choosing intuitive parameters for both. Finally, we produced numerical
results based on the new benchmark problem to allow us to compare the precision of both the
traditional and EVADE-based method as a function of computational cost.

2. ESTIMATION OF CONDITIONAL VARIANCES USING EVADE

SI are useful measures of how uncertainty in the output of a MC transport code can be attributed
to each of the code’s uncertain parameters and interactions between these parameters. Given a
transport code with output of the form Y = f(x1, x2, ..., xd), the first order effect for uncertain
parameter xi ∀ i ∈ {1, . . . , d} is Vxi(Ex∼i

(Y |xi)), where Vxi(·) denotes the variance of an argument
taken by integrating over the uncertain parameter xi and Ex∼i

(·) denotes the mean of an argument
taken by integrating over all of the uncertain parameters except xi. Hence, the main effect SI for
uncertain parameter xi is [2]
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Si =
Vxi(Ex∼i

(Y |xi))
V (Y )

= 1− Exi(Vx∼i
(Y |xi))

V (Y )
. (1)

Si can be interpreted as the expected fractional reduction in parametric variance that would be
obtained if xi could be fixed [2].

If Ex∼i
(·) denotes the mean of an argument taken by integrating over all the uncertain parameters

except xi and Vxi(·) denotes the variance of an argument taken by integrating over the uncertain
parameter xi, then the total effect SI for xi is [2]

STi =
Ex∼i

(Vxi(Y |x∼i))
V (Y )

= 1− Vx∼i
(Exi(Y |x∼i))
V (Y )

, (2)

where Eqs. (1) and (2) follow from the the law of total variance: V (Y ) = E (V (Y |x))+V (E(Y |x)).

As in [2] and [3], the indices are traditionally estimated from many hundreds or thousands of
physics code runs. For MC radiation transport, this means many hundreds or thousands of MC
transport code runs, where each run needs to be well resolved, requiring many thousands or more
MC particle histories per code run. The computational expense can be prohibitive in practical
cases. Consequently, to improve computational efficiency, we needed to employ a better method
for estimating SI for MC radiation transport codes with uncertain input parameters.

Recent work [6] at Sandia National Laboratories (SNL) has demonstrated a new approach for es-
timating parametric variance for MC radiation transport codes with uncertain parameters, yielding
significant computational savings. This approach, EVADE, works by simultaneously computing
estimates for the average distributional variance due to the MC transport code VMC , and the total
distributional variance due to both the transport code and the uncertain parameters Vtot, across MC
particle histories. However, in order to estimate SI, we not only wish to solve for the parametric
variance due to the uncertain parameters VP (Y ) but for the conditional variance for fixed values
of xi VP (Y |xi). Hence an adapted approach was required. Rather than using EVADE to solve for
VP (Y ), we keep xi constant, and solve for VP (Y |xi) by sampling from the joint PDF of x∼i. We
then use EVADE to estimate conditional total variance and Monte Carlo variance separately and,
hence, solve for conditional parametric variance VP (Y |xi). Finally, we compute many estimates
of VP (Y |xi) to estimate E(VP (Y |xi)). Given this simple adaptation, for a given number of MC
particle histories, we were able to achieve increases in precision of an order of magnitude or more
for four of the six tested SI, when compared to traditional SI approaches.

We describe a scheme to estimate S1 (see Equation (1)), the main effect SI for uncertain input
parameter x1 for a Monte Carlo radiation transport code which has three uncertain parameters
X = {x1, x2, x3} distributed uniformly on the unit cube. The scheme generalizes to any number
of dimensions. We use the notation Y (·) to represent one MC particle history.

With Figure 1 as a visual aid, we describe a sequence of steps to estimate E(V (Y |x1)):

1. Generate a random sample ξ1 = (x1ξ1
, x2ξ1

, x3ξ1
) of uncertain input parameters.
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Figure 1: Illustration of sampling scheme on unit cube for estimation of Sobol’indices

2. Evaluate Y (ξ1)N times, Y (ξ1)1, Y (ξ1)2..., Y (ξ1)N . Due to the stochasticity of Y (·), Y (ξ1)i 6=
Y (ξ1)j in general.

3. Tally Y (ξ1)1 and (Y (ξ1)1)2, and use the standard formula for sample variance to compute and
tally the distributional Monte Carlo variance

VMC1 =
N

N − 1

  1

N

N∑
i=1

(Y (ξ1)i)
2 −

(
1

N

N∑
i=1

Y (ξ1)i

)2
  . (3)

4. Generate a random sample ξ2 = (x1ξ1 , x2ξ2 , x3ξ2) of uncertain input parameters on the hyper-
plane x1 = x1ξ1 .

5. Repeat step (2) for ξ2, computing and tallying a second estimate of the distributional Monte
Carlo variance VMC2 and tallying the first and second moments of Y (ξ2)1 and (Y (ξ2)1)2. Gen-
erateM samples on the hyperplane x1 = x1ξ1 and keep tallies

∑M
i=1 Y (ξi)1,

∑M
i=1 (Y (ξi)1)2,

and
∑M

i=1 VMCi .

6. Use the standard formula for sample variance to compute the conditional total variance

Vtot(Y |x1) =
M

M − 1

 1

M

M∑
j=1

(Y (ξj)1)2 −

(
1

M

M∑
j=1

(Y (ξj)1)

)2
 . (4)

7. Use EVADE to compute a first estimate of the conditional parametric variance

VP1(Y |x1) = Vtot(Y |x1)− 1

M

M∑
j=1

VMCj . (5)

8. Generate a random sample ξ3 = (x1ξ3
, x2ξ3

, x3ξ3
) of input parameters.

9. Repeat steps 2-6 on the hyperplane x1 = x1ξ3 to compute a second estimate of the conditional
parametric variance VP2(Y |x1). Repeat this process p times. For each hyperplane, tally an
estimate of the conditional parametric variance,

∑p
k=1 VPk(Y |x1k).
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10. Compute an estimate of the average conditional parametric variance by averaging over all the
conditional parametric variance estimates

E(V (Y |x1)) =
1

p

p∑
k=1

VPk(Y |x1k). (6)

In the traditional SI approach, it is possible to estimate VP (Y ), the denominators in Eqs. (1) and
(2), for “free”, as it is easy to accurately estimate the variance over all the well-resolved MC
transport code runs. However, using our EVADE-based method, we can also get a “free” estimate
of VP (Y ). Since the first random sample of input parameters on each hyperplane (realizations ξ1
and ξ3 from steps 1 and 8) are independently and identically distributed (i.i.d.) samples from the
joint probability density function of the uncertain input parametersX , we can compute an estimate
for VP (Y ) by tallying over these samples. However, since we are estimating the numerator and
denominator for the SI expression using EVADE with uncertainty estimates, we must propogate
these uncertainties through to the estimate of the SI. We do this in order to show that our proposed
estimator converges with the expected MC behavior in the asymptotic limit and, thus, provides an
accurate and efficient way of estimating SI.

We compute SI by generating a sequence of i.i.d. estimates for the average conditional parametric
variances, the numerators in Eqs. (1) and (2). We then compute a sequence of i.i.d. estimates for
the total parametric variance, the denominators in Eqs. (1) and (2). For brevity, we denote these
two sequences as X1, X2, ..., XN and Y1, Y2, ..., YN . If the population from which the sequence
X1, ..., XN is generated has finite mean µX and variance σ2

X , then, by the weak law of large num-
bers [8], the arithmetic mean of the sequence X̄ =

∑N
i=1 Xi converges in probability to µX , that

is limN→∞ P (|X̄ − µx| ≥ ε) → 0 ∀ε > 0. We write X̄ P−→ µX . Similarly, Ȳ P−→ µY . Since
X̄ and Ȳ converge in probability, then, by Theorem 2.7 in Owen [7], if we have a sequence of
i.i.d. joint random variables (i.e. joint uncertain parameters) Z1, ..., ZN = (X1, Y1), ..., (XN , YN)

then, Z̄ = (X̄, Ȳ )
p−→ Z = (µX , µY ). Note that we require that (Xi, Yi) and (Xj, Yj) be indepen-

dent, but Xi and Yi need not be independent. Finally, by the Continuous Mapping Theorem [8],
X̄
Ȳ

p−→ µX
µY

. This argument serves to convince us that our proposed estimator converges with the ex-
pected MC behavior in the asymptotic limit. We can also approximate the bias and variance of our
estimator from the sequences X1, ..., XN and Y1, Y2, ..., YN . From Owen [7], we use the following
approximation for the variance component of the statistical uncertainty for the MC estimator X̄

Ȳ
:

V̂ ar

(
X̄

Ȳ

)
=

1

N(N − 1)Ȳ 2

N∑
i=1

(
Xi −

X̄

Ȳ
Yi

)2

. (7)

For the bias component, we have Bias
(
X̄
Ȳ

)
= 1

Nµ2Y
(µX
µY
σ2
Y − ρXY σXσY ), where ρXY is the corre-

lation coefficient between X and Y . As the variance component in Eq. (7) is O( 1√
N

) and the bias
component is O( 1

N
), the bias is negligible compared to the variance for even moderately-sized N .

In order to rigorously study convergence behavior, we seek to demonstrate the performance of the
new method on a MC radiation transport problem for which we have analytic expressions for SI.
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We adapt the benchmark problem used in [6]. The adaption we propose causes the main effect SI
and the total effect SI to be different, which makes the problem interesting as a test for our new
method. We illustrate the benchmark problem in Figure 2 and derive analytic expressions for its
main and total effect SIs.

r1 r2 r3

Σ1 Σ2 Σ3
A 1-A

Vacuum

Figure 2: Depiction of analytic test problem

We are interested in the transmission T through a system of three slabs of thicknesses r1, r2, r3

with total absorption cross-sections Σ1,Σ2,Σ3, due to two radiation sources: a source of intensity
A ∈ [0, 1] incident on slab 1, and a source of intensity B = 1−A, incident on slab 3. The material
cross-sections are the uncertain input parameters, such that Σi = 〈Σi〉 + Σ̂i(2ξi − 1) with ξi ∼
U [0, 1] ∀i ∈ {1, 2, 3}. If we define k = A exp(−r1(〈Σ1〉− Σ̂1)− r2(〈Σ2〉− Σ̂2)− r3(〈Σ3〉− Σ̂3)),
j = B exp(−r3(〈Σ3〉−Σ̂3)) andmi = 2riΣ̂i ∀i ∈ {1, 2, 3}, then we have the following expression
for T :

T (ξ1, ξ2, ξ3) = k exp(−m1ξ1 −m2ξ2 −m3ξ3) + j exp(−m3ξ3). (8)

By integrating T and T 2 over the domains of ξ1,2,3 (which we denote Ω1,2,3), we can evaluate V (T ).
To compute the main effect SI for ξ1, we need an expression for the variance of the conditional
mean, the numerator in Eq. (1), which we evaluate as

∫
Ω1

(∫
Ω3

∫
Ω2

(T |ξ1)dξ2dξ3)

)2

dξ1 −
(∫

Ω1

(∫
Ω3

∫
Ω2

(T |ξ1)dξ2dξ3

)
dξ1

)2

. (9)

To compute the total effect SI for ξ1, we need an expression for the mean of the conditional vari-
ance, the numerator in Eq. (2), which we evaluate as

∫
Ω2

∫
Ω3

(∫
Ω1

(T |ξ2ξ3)2dξ1 −
(∫

Ω1

(T |ξ2ξ3)dξ1)

)2
)
dξ3dξ2. (10)

Here we give derived analytic expressions for the first and second moments of T (〈T 〉 and 〈T 2〉),
the numerators for the main effect indices (V (E(T |ξi))), and the numerators for the total effect
indices (E(V (T |ξi))), using the constants as defined above:
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〈T 〉 =
1

m1m2m3

exp(−m1 −m2 −m3)(exp(m3)− 1)((exp(m1)− 1)(exp(m2)− 1)k+

exp(m1 +m2)jm1m2),
(11)

〈T 2〉 =
1

8m1m2m3

exp(−2(m1 +m2 +m3))(exp(2m3)− 1)(−8 exp(m1 +m2)(exp(m1)− 1)jk−

(exp(2m1)− 1)k2 + exp(2m2)(−8 exp(m1)jk − k2 + exp(2m1)(8jk+

k2 + 4j2m1m2))),
(12)

V (E(T |ξ1,2)) =
1

2m2
1m

2
2m

2
3

exp(−2(m1 +m2 +m3))(exp(m1,2)− 1)(exp(m2,1)− 1)2×

(exp(m3)− 1)2k2(2 + exp(m1,2)(−2 +m1,2) +m1,2),

(13)

V (E(T |ξ3)) =
1

2m2
1m

2
2m

2
3

exp(−2(m1 +m2 +m3))(exp(m3)− 1)((exp(m1)− 1)×

(exp(m2)− 1)k + exp(m1 +m2)jm1m2)2(2 + exp(m3)×
(−2 +m3) +m3),

(14)

E(V (T |ξ1,2)) =
1

m2
1,2m2m3

2k2
(
−2 +m1,2 coth

(m1,2

2

))
sinh

(m1,2

2

)2

sinh (m2,1) sinh(m3)×

(cosh(m1 +m2 +m3)− sinh(m1 +m2 +m3)),
(15)

E(V (T |ξ3)) =
1

8m1m2m2
3

exp(−2(m1 +m2 +m3))(exp(m3)− 1)(−8 exp(m1 +m2)×

(exp(m1)− 1)jk − (exp(2m1)− 1)k2 + exp(2m2)(−8 exp(m1)jk−
k2 + exp(2m1)(8jk + k2 + 4j2m1m2)))(2 + exp(m3)(−2 +m3)+

m3).
(16)

We adapt this function to emulate a MC radiation transport history, by evaluating Eq. (8) for an
uncertain input parameter sample Ξ of (ξ1, ξ2, ξ3). We then sample a psuedo-random number Θ
from U [min(T ),max(T )], where min(T ) = T (0, 0, 0) and max(T ) = T (1, 1, 1). The particle
is either absorbed or transmitted, so, if Θ > T (Ξ), max(T ) is returned (analogous to a particle
transmission), otherwise min(T ) is returned (analogous to a particle absorption). As A → 0, the
indices for ξ3 grow larger and the indices for ξ1, ξ2 shrink exponentially. If we choose A 6= 1,
then this problem has different main and total effect SI for ξ3 than for ξ1,2. We use this adapted
benchmark problem in order to demonstrate the performance of our new method.
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3. NUMERICAL RESULTS

We compute the precision of our new method for the benchmark problem described in this paper.
We set the free parameters in the problem as A = B = 0.5, r1 = r2 = r3 = 1.0, 〈Σ1〉 = 〈Σ2〉 =

〈Σ3〉 = 0.5 and Σ̂1 = Σ̂2 = Σ̂3 = 0.1. For each set of results, we repeat the calculation of
the SI fifty times and compute the Mean Absolute Error (MAE) and statistical uncertainty over
these repetitions. We compute estimates of the SI using the traditional method with three different
numbers of MC particle histories (1e+04, 1e+05 and 1e+06) per MC transport code run (one code
run per uncertain parameter sample), but using the same total number of particle histories per SI
estimate. So for example, when we use 1e+04 particle histories per code run, we use 3e+03 code
runs per SI estimate, resulting in 3e+07 histories per estimate; when we use 1e+05 MC histories per
code run, we use 3e+02 code runs per SI estimate, also resulting in 3e+07 histories per estimate.
In previous work, EVADE has been empirically shown to be more efficient when the number of
MC particle histories used per variance estimate is small. We therefore choose small numbers of
histories when carrying out our numerical analysis for the EVADE-based method: four particle
histories per variance estimate (equivalent to two particle pairs per hyperplane) and thirty particle
histories per variance estimate (equivalent to fifteen particle pairs per hyperplane). The traditional
method benefits from the sharing of MC transport code run results across SI estimates. Thus, in
the interest of parity, we plot the MAE against the cost in MC particle histories used to compute
all six SI for the test problem for both methods. We present the results in Table 1 and in Figure 3.
As evidenced by the numerical results in Table 1 and, as expected from the analytic derivations for
the SI, the precision of the estimates for S1 and S2 are virtually identical, as are the estimates for
ST1 and ST2 . Consequently, for brevity, we omit the results from S2 and ST2 in Figure 3.

Table 1: Benchmark function numerical results after 3e+07 particle histories
Method S1 S2 S3 ST1

ST2
ST3

Analytic 0.0635 0.0635 0.8725 0.0638 0.0638 0.8730
1e4 hist. solve 0.0462± 0.0250 0.0870± 0.0268 0.749± 0.0844 0.0644± 0.0004 0.0644± 0.0003 0.876± 0.0045
1e5 hist. solve 0.0920± 0.0810 0.0366± 0.0812 0.761± 0.339 0.0641± 0.0009 0.0646± 0.0008 0.892± 0.0156
1e6 hist. solve −0.1024± 0.2578 0.5619± 0.2742 0.9059± 1.0310 0.0653± 0.0037 0.0623± 0.0035 0.9215± 0.0371

EVADE 4 hist. plane 0.0627± 0.0006 0.0623± 0.0009 0.8730± 0.0007 0.0638± 0.0007 0.0627± 0.0009 0.8737± 0.0006
EVADE 30 hist. plane 0.0634± 0.0007 0.0645± 0.0007 0.8729± 0.0004 0.0642± 0.0005 0.0638± 0.0005 0.8722± 0.0007

We observe that our method demonstrates MC convergence behavior, which supports the mathe-
matical argument we have given, that the rate of convergence of the ratio estimator is very closely
proportional to 1/

√
N . We observe an interesting result: the traditional SI estimator consistently

produces more precise SI estimates when used with fewer particle histories per transport code
run for a given computational cost. This unanticipated and interesting result suggests that using
the traditional SI estimator with very few particle histories per transport code run may be more
efficient than using the traditional SI estimator with well-resolved transport code runs. For the
main effect SI for this problem, the EVADE-based estimators show roughly 2 orders of magnitude
greater precision for the same computational cost than the traditional estimators. For estimation
of the total effect SI for uncertain parameters 1 and 2, the EVADE-based estimators do not show
greater precision than the traditional estimators. For estimation of the total effect SI for uncertain
parameter 3, the EVADE-based methods show roughly one order of magnitude greater precision
than the traditional method for the same computational cost.
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Figure 3: MAE of Sobol’index estimates as a function of total number of particle histories

4. CONCLUSIONS AND FURTHER WORK

We used SNL’s EVADE algorithm for estimating parametric variance to also estimate conditional
parametric variance. We successfully demonstrated that we are able to leverage EVADE to estimate
conditional variances and “free” estimates of the full variance, and that we were able to propogate
the uncertainties from both of these through to the SI estimate. To validate our results, we expanded
an existing benchmark problem with analytic solutions for variance and SI terms, which can be
used as a benchmark function for future uncertainty quantification research. Our results show the
expected MC convergence behavior on the new test problem. For four of the six SI estimates, we
showed evidence of one to two orders of magnitude greater precision over the traditional estimator
for a fixed computational cost for a MC particle transport code with uncertain input parameters.
We seek to realize computational gains of such magnitudes when performing GSA by embedding
this estimation scheme within a MC radiation transport code.

In our future work, we would like to pursue further computational gains using three mechanisms:
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optimizing the distribution of MC particle histories across estimates for the EVADE-based method,
exploring the performance of the traditional estimator when used with many poorly resolved MC
transport code runs, and, finally, exploring alternative ways to hybridize the traditional method
with EVADE. Future work may also include application of the new algorithm when using MC
solvers other than MC radiation transport codes.
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