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Executive Summary 
The objective of this research is to develop a hybrid physics-based/data-driven forecast 
model to improve direct normal and global horizontal irradiance (DNI and GHI) 
prediction for horizons ranging from 1 to 72 hours. Project objectives also address key 
gaps in state-of-the-art solar forecasting: accurate probabilistic solar forecasts and the 
forecasting of large irradiance ramps (ramp onset and magnitude). The proposed model 
ensembles Numerical Weather Prediction (NWP) forecasts, determinist physics-based 
algorithms, and new-generation cloud cover products (high-resolution rapid refresh 
satellite images and Large Eddy Simulations). The result is the Hybrid Adaptive Input 
Model Objective Selection (HAIMOS) ensemble model. HAIMOS blends state of the art 
machine learning methodologies with physics-based models for cloud cover and cloud 
optical depth forecasts. The technical activities followed a two-pronged strategy. First, 
the preprocessing of data, the selection of inputs to the nonlinear approximators, the 
type of approximator and objective functions, and post-processing ensembling 
techniques included in HAIMOS were all optimized adaptively to find the best model for 
a specific goal (reduce DNI/GHI forecast error, improve the prediction of ramp onset, 
etc.). Second, a large effort was put in improving cloud identification and the forecast of 
cloud cover and cloud optical depth. To this end, new-generation cloud parametrization 
products were developed in this work. These include improved algorithms to assist in 
cloud identification, cloud classification and cloud parametrization from satellite images 
– three key factors in the accuracy of 1 to 6-hours irradiance forecasts and prediction of 
ramp onset. Furthermore, we also included cloud information extracted from high-
resolution rapid refresh satellite images (GOES-16) and Large Eddy Simulations (LES). 
LES was used to model the atmosphere in detail over locations of interest and produce 
cloud optical depth forecasts. Once these data streams were validated, they were used 
as input data to the HAIMOS forecast. The model was developed using data from 
several climatologically distinct locations with potential for high solar penetration. In the 
last year of the project, we conducted a validation campaign according to the guidelines 
stipulated by the Topic Area 1 project as described in the FOA.  
This effort brings, for the first time, proven machine-learning methodologies for 
generating state-of-the-art solar forecasts interweaved with detailed physics-based 
models for cloud detection, and cloud optical depth forecasts. HAIMOS will generate 
accurate irradiance probabilistic forecast to assist in reducing solar generation 
prediction error. Globally optimized solar forecast models are more likely to impact solar 
energy stakeholders.  
The goal of this project was to increase the state-of-the-art forecast skill from their 
present values of 10 to 35%. At the end of the project, we achieved between 30% and 
50% forecast skill across a wide range of horizons for both GHI and DNI. 
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Background   
Variability in solar output at high levels of penetration creates significant operational 
challenges for system managers. The objective of this project is to improve the 
accuracy of solar forecasting in support of more efficient energy markets. This objective 
enables high solar penetration without significant integration costs or power system 
performance degradation.  
In this project, we developed innovative methods and tools to significantly improve both 
the certainty and accuracy of solar generation forecasts for utility and transmission 
system operators across intra-day and day(s)-ahead time horizons. Our team has deep 
knowledge of both solar forecasting as well as power system operation and economics 
and is experienced in leading high-profile, public stakeholder processes to build 
consensus. As a result, the approach developed is well-grounded and directly 
applicable for implementation by system operators.  
The objective of this research is to develop a hybrid physics-based/data-driven forecast 
model to improve direct normal and global horizontal irradiance (DNI and GHI) 
prediction for horizons ranging from 1 to 72 hours. Project objectives also address key 
gaps in state-of-the-art solar forecasting: accurate probabilistic solar forecasts and the 
forecasting of large irradiance ramps (ramp onset and magnitude). The developed 
model ensembles Numerical Weather Prediction (NWP) forecasts, determinist physics-
based algorithms, and new-generation cloud cover products (high-resolution rapid 
refresh satellite images and Large Eddy Simulations). The result is the Hybrid Adaptive 
Input Model Objective Selection (HAIMOS) ensemble model.  
HAIMOS blends state of the art machine learning methodologies with physics-based 
models for cloud cover and cloud optical depth forecasts. The technical activities 
followed a two-pronged strategy. First, HAIMOS implies that the preprocessing of data, 
the selection of inputs to the nonlinear approximators, the type of approximator and 
objective functions, and post-processing ensembling techniques are all optimized 
adaptively to find the best model for a specific goal (reduce DNI/GHI forecast error, 
improve the prediction of ramp onset, etc.). Second, a large effort was put in improving 
cloud identification and the forecast of cloud cover and cloud optical depth. To this end, 
new-generation cloud parametrization products were developed in this work. These 
include improved algorithms to assist in cloud identification, cloud classification and 
cloud parametrization, cloud information extracted from high-resolution rapid refresh 
satellite images (GOES-16) and Large Eddy Simulations (LES). 

Project Objectives 
The goal of this project is to increase the state-of-the-art forecast skill from their present 
values of 10 to 35%. At the end of the project, we aim to achieve the forecast skills 
between 40 and 50% across a wide range of horizons for both GHI and DNI for periods 
of variable solar irradiance (i.e., excluding cloudless days). 
The technical scope for HAIMOS is divided into six task groups summarized next.   The 
seventh task consists in the validation set up by Topic Area 1 team. 
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Technical work plan summary 
Selection of training sites and data collection (BP1: Task 1): The purpose of this 
task is to collect endogenous (GHI and DNI) and exogenous data (NPW forecasts, 
satellite images, etc.) data used in the development of HAIMOS. We selected data from 
5 to 10 locations in the USA with potential for high solar penetration with the 
requirement that they are climatologically distinct. We used data collected at the UCSD 
solar laboratory, and high-quality, publicly available data such as the one provided by 
NOAA’s SURFRAD network. 
Commercial Irradiance Forecasts (BP1: Task 2, BP2: Task 5, BP3: Task 8): In 
these tasks we collaborated with a Commercial Irradiance Forecast Provider (Clean 
Power Research), CIFP for short, to obtain historical irradiance forecasts for the 
locations and time span selected in Task 1. CIFP forecasts cover 1 to 24 hours horizons 
with a temporal resolution of 30 minutes and a spatial resolution of 1 km. The CIFP also 
provided UCSD access to an application programming interface (API) for the purpose of 
obtaining on-demand DNI and GHI forecasts for the locations determined by the Area 1 
test framework. 
Improvement of cloud cover forecast (BP1: Task 3): The purpose of this task is 
twofold. First, we improved the accuracy of cloud detection models from satellite 
imagery. Current models that rely on image segmentation show low accuracy in 
discriminating between thin and thick clouds, for instance. We explored image 
processing algorithms to identify and classify clouds from satellite imagery. We used 
exogenous data such as detailed atmosphere data from NWP models to improve cloud 
classification. Second, we used physics-based models (i.e., Lagrangian cloud motion, 
convection-diffusion, WRF-Solar simulations) to improve the cloud cover forecast for 
time horizons ranging from 1 to 6 hours. 
Set up HAIMOS framework (BP1: Task 4): This task consists in setting up the 
HAIMOS framework for the different forecasting tasks: accurate 1 to 72 hours DNI and 
GHI point forecasts, accurate probabilistic forecasts, and prediction of large irradiance 
ramps. The goal for this task consists in developing and testing adaptive training 
techniques that were tested using data from the previous three tasks. The successful 
completion of this task consisted in obtaining HAIMOS point forecasts for DNI and GHI 
1 to 72 hours in the future, with skill over the smart persistence model, equal to or 
above 30%. 
Optimization of HAIMOS framework (BP2: Task 6): This task consists in a detailed 
framework to optimize every component of the HAIMOS framework: input preprocessing 
and selection, machine-learning technique (regressive models, deep learning, nearest-
neighbors, etc.), objective function, and post-processing ensembling. The optimality of 
the resulting model was assessed using data collected in Task 1.  
New-generation cloud forecasting tools (BP2: Task 7): In this task we applied the 
HAIMOS model to new data sets in order to identify and correct problems such as 
training data overfitting. In this task we also included new-generation exogenous data 
as inputs to HAIMOS. The goal is to increase HAIMOS accuracy in the 1-to-6-hour 
horizon by using high-resolution imagery from the new GOES-16 satellite and improve 
cloud cover forecasts obtained from LES run at UCSD. LES simulations were nested 
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over the areas of interest to simulate the local meteorology and solar forecasts up to a 
few hours ahead, at resolutions of seconds and 100 m. The WRF-Solar runs from Task 
3 provided boundary conditions for LES. 
Area 1 test framework validation (BP3: Task 9): The purpose of this task is to apply 
the HAIMOS forecast model developed in this project to the test framework developed 
in Area 1. This task entailed collecting the necessary exogenous data for the locations 
and time period determined by the test framework. HAIMOS was retrained using the 
endogenous data provided by the test framework and exogenous data produced by this 
project. In the last stage of this task, HAIMOS provided the forecasts according to the 
guidelines for model validation (variables, resolution, conditions, measurements, etc.) 
stipulated by Area 1 test framework. 

Project Results and Discussion 
Selection of training sites and data collection 
Forecasting models rely on quality-controlled data for proper training. HAIMOS was 
developed for GHI and DNI data from diverse locations with potential for high solar 
penetration. Thus, it was necessary to create a data set of historical irradiance data 
(DNI and GHI). This section describes the selection data from six locations in the USA 
with potential for high solar penetration with the requirement that they are climatological 
distinct.  This task generated a quality-controlled database of irradiance and exogenous 
data that was used in the development of the forecast models.  
This task started with the collection of data from several candidate locations in the 
CONUS. These data were collected from publicly available repositories (SURFRAD1 
and SOLRAD2) and from instruments owned and maintained by UCSD. Data from the 
candidate locations as pre-processed according to the following: 

• Removed values flagged (SOLRAD and SURFRAD flag questionable data) 
• Removed unrealistic values (negative values) 
• Normalized GHI and DNI values using a clear sky model explained below. 

 
Figure 1: Location of candidate sites. Irradiance data (GHI and DNI) was collected for 
each site. 

 
1 https://www.esrl.noaa.gov/gmd/grad/surfrad/ 
2 https://www.esrl.noaa.gov/gmd/grad/solrad/ 
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Table 1: List of candidate sites with information about location and data availability. 
Location ID Organization Lat Lon Alt Period Data Available 
Desert Rock, NV DRA SURFRAD 36.6237 -116.0195 1007 2016 to 2018 GHI, DNI, other 
Bondville, Il BON SURFRAD 40.0519 -88.3731 230 2016 to 2018 GHI, DNI, other 
Table Mountain, 
CO 

TBL SURFRAD 40.1250 -105.2368 1689 2016 to 2018 GHI, DNI, other 

Fort Peck, MT FPK SURFRAD 48.3078 -105.1017 634 2016 to 2018 GHI, DNI, other 
Sioux Falls, SD SXF SURFRAD 43.7340 -96.6233 473 2016 to 2018 GHI, DNI, other 
Penn. State, PA  PSU SURFRAD 40.7201 -77.9309 376 2016 to 2018 GHI, DNI, other 
Goodwin Creek, 
MS 

GWN SURFRAD 34.2547 -89.8729 98 2016 to 2018 GHI, DNI, other 

Folsom, CA FOL UCSD 38.6434 -121.1477 97 2016 to 2018 GHI, DNI, other 
Bellingham, WA BEL UCSD 48.7540 -122.4890 7 2016 to 2018 GHI, DNI, other 
Albuquerque, NM ALQ SOLRAD 35.0380 -106.6221 1617 2016 to 2018 GHI, DNI, other 
Bismarck, ND BIS SOLRAD 46.7718 -100.7596 503 2016 to 2018 GHI, DNI, other 
Hanford, CA HNX SOLRAD 36.3136 -119.6316 73 2016 to 2018 GHI, DNI, other 
Salt Lake City, UT SLC SOLRAD 40.7722 -111.9550 1288 2016 to 2018 GHI, DNI, other 
Seattle, WA SEA SOLRAD 47.6869 -122.2567 20 2016 to 2018 GHI, DNI, other 
Sterling, VA STE SOLRAD 38.9767  -77.4869 85 2016 to 2018 GHI, DNI, other 

 
Figure 1 shows the locations of 15 candidate sites, whose data was explored in this 
task. Table 1 lists the sites and provides additional site information. 
Clear-sky model 
The clear-sky model returns irradiance for a given geographical location and time when 
clouds are absent. However, even in this condition the broadband irradiance at ground 
level is influenced by other environmental conditions such as the aerosol content and 
precipitable water, primarily, and atmosphere ozone, nitrogen dioxide and site pressure 
secondarily. 
The presence of aerosols and water in the atmosphere can be quantified through the 
atmospheric turbidity. Several turbidity parameters have been introduced with the most 
popular being the Linke turbidity factor. Many models have been developed to estimate 
the clear-sky irradiance and comprehensive comparisons of some of the most popular 
models can be found in Ineichen (2006); Gueymard (2012). In this work we used the 
clear-sky model proposed by Ineichen and Perez (Ineichen and Perez, 2002), as it is 
one of the best performing models, and one of the simplest. It requires as inputs the 
solar elevation and the Linke turbidity.  The solar elevation for a given latitude and 
longitude is computed from the sun's orbital elements.  The Linke turbidity is obtained 
from the worldwide monthly averaged maps available at Solar Energy Services for 
Professionals (2004)3. Figure 2 compares the GHI and the clear-sky GHI obtained with 
the Ineichen model for three days in diverse locations where the UCSD team has 
instruments:  Ewa Beach (left) and San Diego (right). This figure demonstrates that the 
clear-sky model fits the GHI for cloudless periods very well. 

 
3 Solar Energy Services for Professionals, 2004. Climate: Averages, Normals, and Typical Years. 
http://www.soda-is.com/eng/services/climat_free_eng.php. 
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Figure 2: GHI and clear-sky GHI irradiance for a period of three days for Ewa Beach 
(left) and San Diego (right). 
Data variability 
Using the clear-sky index, 𝑘! and 𝑘", for GHI and DNI, respectively, we computed the 
daily metrics to characterize the irradiance. In this step we computed the daily average 

AVG(𝑘#)$ =	
1
𝑁(𝑘#,&

'

&()

	for	𝑘#,& 	 ∈ Day	𝑑 

and the daily standard deviation 

STD(𝑘#)$ =	+
1

𝑁 − 1(-𝑘#,&-AVG(𝑘#)$-
*

'

&()

	for	𝑘#,& 	 ∈ Day	𝑑 

Where 𝑘# is 𝑘! or 𝑘". This procedure results in a list of pairs of (AVG(𝑘#)$ ,STD(𝑘#)$) 
with as many elements as the number of days in the dataset. Figure 3 shows the 
respective scatter density plots for three of the candidate sites: Folsom, CA (FOL), 
Table Mountain, CO (TBL), and Seattle, WA (SEA).  
 
These sites were selected since they represent cases of low, intermediate and large 
irradiance variability.  In the figure, lighter and larger dots indicate large concentrations 
of (AVG(𝑘#)$ ,STD(𝑘#)$) pairs. This data representation allows to identify the most 
common daily behavior for GHI and DNI in these locations. For instance, the large 
concentration of points near (AVG, STD) = (1,0) for Folsom, indicates that the irradiance 
at this location is dominated by clear-sky days with low variability. This observation 
applies to both GHI and DNI.  The density plots for the other two locations show large 
densities at lower levels of AVG and higher levels of STD, indicating much more 
variability in the irradiance. In the case of DNI for Seattle (bottom-right panel in Fig. 2), it 
is notable that the highest density occurs near (AVG, STD) = (0,0) which reveals that 
DNI at this location is often and consistently close to 0. Given that it is not 
straightforward to compare density plots from all the 15 sites, Figure 4 plots the average 
AVG(𝑘#)$ and average STD(𝑘#)$ for all locations. These figures condense the 
information from the density plots into a single point. This figure allows to readily 
distinguish between low and high variability sites. 
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Figure 3: Plots of (AVG(𝑘#)$ ,STD(𝑘#)$) for three locations in the initial dataset. From 
top to bottom: Folsom, CA (FOL), Table Mountain, CO (TBL), and Seattle, WA (SEA). 
The left column shows results for GHI and the right column the results for DNI. Lighter 
and larger dots indicate large concentrations of (AVG(𝑘#)$ ,STD(𝑘#)$) pairs. 
 
One of the aspects emphasized by the FOA is the need to quantify the uncertainty in 
irradiance and the onset, magnitude, and rate of ramps. Ramp characteristics depend 
on the location’s weather patterns and are related to the variability analysis presented 
above. To compare quantitatively the different sites, hourly ramps were computed as: 

𝑟#(𝑡) = 	𝑘1#(𝑡 + 1hr) − 𝑘1#(𝑡) 
where 𝑘1#(𝑡) is the one-hour average of the clear-sky index in the interval [𝑡 − 1hr, 𝑡].  
Using the clear-sky index in this equation limits ramps to deviations with respect to the 
clear-sky irradiance and removes ramps due to deterministic variations in the solar 
resource. This equation was applied to the 15 locations and two irradiance components. 
Figure 5 shows the cumulative density function (CDF) for the ramp magnitude (the 
absolute value of the equation above). The ramp CDFs for GHI and DNI are shown in 
the left and right panels, respectively. These plots illustrate clearly that the presence of 
large ramps varies from location to location. For instance, as the figure indicates, a 
ramp higher than 0.375 (indicated by the vertical dashed line) has a probability of 0.02 
(=1-0.98) for Folsom, CA (FOL) and 0.07 (=1-0.93) for Table Mountain, CO (TBL). As 
expected, DNI shows large ramps more frequently, with the previous probabilities 
increased to 0.04 and 0.12, respectively. 
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Figure 4: Average for the pairs of (AVG(𝑘#)$ ,STD(𝑘#)$) for all the 15 locations. GHI 
and DNI data are shown in the left and right panels, respectively. 

 
Figure 5: Cumulative density function for ramp distribution for GHI (left) and DNI (right). 
Each location is identified by a different combination of line color and style. 
 
Again, to facilitate comparisons, the information in Figure 5 is condensed into a single 
number. In this case, a simple way to quantify the probability of the occurrence of large 
ramps is by computing 

𝜀# = 	1 − 6 CDF#
)

+
d𝑟# 

This value quantifies the area above the ramp magnitude CDF for each location. The 
larger the value the higher the probability of large ramps. For this reason, this value is 
denoted as ramp density. Applying this equation to GHI and DNI for all locations results 
in Figure 6, in which the ramp density for DNI is plotted against the ramp density for GHI 
for all locations. In this figure, points located towards the top-right corner indicated that 
large ramps in DNI and GHI are frequent. 
An additional, and simple way to assess the irradiance variability consists in studying 
the persistence forecast. Here, GHI and DHI forecasts are produced according to 

𝐼9(𝑡 + ∆) = 𝑘1#(𝑡) × 𝐼,-(𝑡 + ∆)		 
where ∆	= 	 {1, 2, 3, 4, 5, 6} hours, and 𝐼9 denotes the irradiance forecast (either GHI or 
DNI). The forecast error is then analyzed in terms of bias: 
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MBE∆ =	
1
𝑁(𝐼9(𝑡 + ∆) − 	𝐼(𝑡 + ∆)

&

 

and magnitude:  

RMSE∆ =	C
1
𝑁(D𝐼9(𝑡 + ∆) − 	𝐼(𝑡 + ∆)E*

&

 

 
Figure 6: DNI ramp density versus GHI ramp density for all locations.  
 

 
Figure 7: RMSE vs MBE for hourly GHI forecasts 1 to 6 hours ahead of time for the 15 
candidate sites. The annotations in the leftmost curve indicate the forecasting horizon.  
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Figure 8: Same as Figure 7 but for DNI forecasts. 
 
Pairs of (MBE∆,RMSE∆) are plotted in Figures 7 and 8 for GHI and DNI forecasts, 
respectively. In these figures, deviations from the dashed gray vertical line indicate 
forecast error bias. As expected, in all cases the error magnitude increases with 
forecast horizon (∆). On the other hand, the bias variation is not consistent across all 15 
sites: some sites show a positive bias and others a negative bias with increasing ∆, 
most likely due to existing biases in the clear-sky models for these locations. 
Nevertheless, the variability characteristics seen above are imparted in the forecast 
errors: locations with low variability such as FOL and HNX are clearly “easier” to 
forecast (i.e., lower persistence forecast error) than locations with large irradiance 
variability such as TBL and GWN. These results also demonstrate that there is a group 
of four to six locations with very similar forecasting performances. 
 
In this analysis, GHI and DNI for the 15 candidate sites were analyzed and several 
quantitative metrics were computed for each location: 

1. Cluster centers for (AVG(𝑘#)$ ,STD(𝑘#)$) pairs. 
2. Ramp density 
3. MBE∆ and RMSE∆. 

Based on these values, 6 sites are selected out of the 15 locations available. The goal 
in selecting a limited number of sites is to create a dataset of climatologically distinct 
locations based on the three values listed above. The six sites are listed in Table 2. 
They are also marked in Fig. 1 by a green marker. The development of HAIMOS was 
done with data from these locations, primarily. The ground data described above is 
augmented with publicly available Numerical Weather Prediction (NWP) forecasts 
produced and published by the National Centers for Environmental Prediction (NCEP)4. 

 
4 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-
system-nam 
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For this purpose, it was selected the North American Mesoscale Forecast System 
(NAM) model due to our previous knowledge of this forecasting product.  We extracted 
GHI and cloud cover forecasts for the six selected locations identified above. Figure 9 
compares the NAM forecasts against the ground data for three of the six locations. The 
NAM forecasts for all the six locations are available in the project website. Other 
forecast outputs, such as wind speeds and barometric pressure, for instance, are also 
of interest and available to the project team. 
 
Table 2: List of selected sites and the respective selection metrics. All values are 
unitless except for MBE∆ and RMSE∆ which are given in Wm-2. 

Variability Site 
ID 

AVG(𝒌𝑰)𝒅 STD(𝒌𝑰)𝒅 𝜺𝑰 MBE∆ RMSE∆ 

GHI DNI GHI DNI GHI DNI GHI DNI GHI DNI 

Large TBL 0.78 0.60 0.23 0.29 0.14 0.17 [3, 29] [18, 131] [123, 227] [213, 418] 

Large PSU 0.61 0.37 0.21 0.23 0.13 0.14 [-47, -7] [-28, -9] [104, 205] [165, 315] 

Medium BON 0.66 0.46 0.20 0.22 0.12 0.13 [-37, -6] [-0, 7] [93, 189] [160, 313] 

Medium SXF 0.71 0.49 0.18 0.22 0.12 0.13 [-39, -5] [-15, -2] [88, 193] [163, 318] 

Low FOL 0.78 0.65 0.13 0.16 0.09 0.10 [-20, -2] [2, 12] [64, 132] [130, 247] 

Low HNX 0.80 0.66 0.15 0.18 0.10 0.11 [-53, -8] [-40, -12] [66, 158] [131, 251] 

 

 
Figure 9: NAM GHI forecasts plotted against ground data for six days in February 2017. 
The figure shows the comparison for three of the six selected locations (TBL, BON, and 
HNX). 
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Improvement of cloud cover identification 
For cloud identification, we make use of GOES-16 irradiance products. Initially we 
explored the longwave channels 7-16 (wavelength > 4 μm). The longwave channels are 
favored over shortwave channels for the following reasons: 

● the longwave irradiance in the atmosphere can be approximated as diffuse, so 
there is no need to consider the satellite view angles, solar angles and relative 
angles between the satellite, the sun and the ground stations.  

● because of the diffuse nature of longwave irradiance, a two-flux radiative model 
(Li et. al. 2018) can be used to estimate spectral longwave irradiance in the 
entire atmosphere at minimal computation cost (takes less than 1 minute to run 
with a spectral resolution of 0.1 cm-1).   

● most surfaces (grassland, desert, ocean) can be approximated as black surface 
in the longwave spectrum, while their shortwave albedo varies. 

● the outgoing shortwave irradiance measures the albedo of the atmosphere-Earth 
system; therefore, cloud identification becomes hard to distinguish from highly 
reflective snow/ice. 

● the outgoing longwave irradiance also provides information about cloud top 
temperature (i.e. cloud location) while outgoing shortwave irradiance is 
independent of cloud temperature.  

 

 
Figure 10: The effects of changing the model parameters on the spectral OLR [W m-2 
cm] for (a)--(b) clear-sky conditions (COD = 0) and (c)--(d) cloudy conditions (COD > 0). 
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Figure 10 plots modeled Outgoing Longwave Radiation (OLR) responses with surface 
temperature, relative humidity, cloud optical depth at 497.5 nm (COD) and cloud base 
height (CBH).  For all plots, the location and bandwidth of the 10 longwave Advanced 
Baseline Imager (ABI) channels are highlighted, with inset plots added to better show 
the effects on the spectral range that contains channel 7 (2300--2700 cm-1). Also, the 
spectral OLR is shown with a resolution of 10 cm-1 for improved readability, whereas the 
results in the rest of the study are based on 0.1 cm-1. 
The black dashed line in each subplot shows the blackbody radiation predicted by 
Planck's distribution at T = 294 K, the surface temperature of the Air Force Geophysics 
Laboratory (AFGL) midlatitude summer profile.  
 
The figure also shows  

a) The effect of changing the surface temperature by ΔT while keeping Φ fixed at 
50%. 

b) The effect of varying Φ, while keeping T fixed at 294 K (ΔT = 0 K). 
c) The effect of varying the COD of a cloud layer (base height: 2.72 km, thickness: 

0.5 km, cloud average temperature: 279 K), while keeping T and Φ fixed at 294 K 
(ΔT = 0 K) and 50%, respectively.  

d) The effect of the varying the cloud base height (CBH) of a single cloud layer with 
COD = 1.0, T = 294 K, and Φ = 50%. Increasing the CBH is equivalent to 
decreasing the cloud temperature from ~289 K (CBH = 1 km) to ~231 K (CBH = 
10 km) for the AFGL midlatitude summer profile. 

 

 
Figure 11: Accuracy of cloud detection of our method and CIMSS cloud mask over 7 
SURFRAD stations.  
 
Using GOES-R longwave ABI irradiance per channel, together with the measurement of 
local air temperature and relative humidity and the radiative model, the cloud optical 
depth and base height per pixel can be estimated. The pixel is deemed ‘clear’ if the 
normalized ABI irradiance in channels {11, 13, 14, 15} are within 5% of modeled clear 
sky OLR.  If local irradiance measurements are available, clear sky periods are 
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identified by analyzing GHI and DNI time series, as detailed in (Inman et al. (2015)). 
Figure 11 shows the accuracy of our satellite-model clear sky detection for seven 
SURFRAD stations over the entire year of 2018. The ‘ground truth’ clear sky is derived 
by GHI and DNI time series analysis. For comparison, the accuracy of clear sky 
detection from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) 
cloud mask5 are plotted in Figure 11. The accuracy is defined as: 
 

Accuracy	 =
(#	of	correctly	identified	as	clear	 + 	#	of	correctly	identified	as	cloudy

	#	of	data	points  

 
For CIMSS, data from March 12th to April 02th, 2019 are used. For 6 out of 7 stations, 
our method outperforms CIMSS cloud mask. Note that CIMSS has no data for station 
FPK. 
 
Improvement of cloud optical depth estimation 
Initially we used all 10 longwave ABI channels to select optimal pairs of (COD, CBH).  
With further analysis, we found that channels 8, 9, 10 do not respond to COD variation, 
therefore are used to select CBH (see Figure 10).  Thus, the COD and CBH are now 
selected in a two-step manner: (i) selects CBH based on channels {8, 9, 10}; (ii) selects 
COD using channels {7, 11, 13-15} based on the CBH from (i). 

 
Figure 12: Comparison of DLW prediction error during daytime cloudy periods using 
two variations of the cloudy property estimation method. Method A: estimate COD and 
CBH at the same time using all ten LW channels. Method B: first estimate CBH based 

 
5 http://cimss.ssec.wisc.edu/clavrx/ 
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on channels 8--10, then use the estimated CBH value with channels 7, 11, and 13--15 
to estimate COD. Positive MBE values correspond to the model over-predicting DLW. 

 
Figure 13: Comparison of DLW prediction error during nighttime without a temperature 
inversion (Method A) and with a temperature inversion at 1 km (Method B). 
 
Table 3: Summary statistics for the DLW validation during (1) daytime clear, (2) daytime 
cloudy, and (3) nighttime all-sky conditions. The error metrics are computed against 
ground measurements of DLW from Eppley PIR instruments, which have measurement 
uncertainty of ±5 W m-2. For the daytime cloudy and nighttime all-sky cases, the DLW is 
predicted using COD and CBH values estimated solely from the OLR, with no model 
output statistics or other corrections applied. Negative MBE values correspond to the 
model under-predicting DLW, either due to a lower value for COD, a higher value for 
CBH or a combination of the two. 
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Figure 12 shows that by applying the two-step selection methods, the (COD, CBH) pairs 
generate smaller error when estimating surface downwelling irradiance (DLW) for all 
seven SURFRAD stations, indicating more accurate COD and CBH estimations. 
To improve solar irradiance forecasts in the early morning, cloud properties before dawn 
are necessary. Therefore, we expand our method of COD and CBH selection to the 
nighttime. A temperature profile with inversion at 1 km is used to during the nighttime. 
Figure 13 shows that by applying the nighttime inversion, the method is more accurately 
estimating downwelling longwave (DLW) radiation during the night, indicating more 
accurate COD and CBH estimations. 
The DLW estimation errors (as an indicator of the accuracy of COD and CBH 
estimations) for daytime clear sky periods, daytime cloudy sky periods, daytime all sky 
periods (without prior knowledge of knowing whether the sky is clear) and nighttime all 
sky periods are shown in Table 3. The relative error is smaller than 10% for all cases. 
Set up HAIMOS framework 
A key aspect in improving the forecast skill and especially the prediction during large 
variability periods resides in the selection of the proper inputs available in the search 
space. In proposal we tested input selection based on techniques such as clustering 
analysis and time series correlation analysis.  
The input data available to HAIMOS was collected from UCSD resources, CIFP, 
irradiance networks (SURFRAD and SOLRAD), and other publicly available sources.  
Table 4: Data used in for HAIMOS input selection 
Data Description 
Measured data Irradiance data measured  
Modeled 
irradiance 

Satellite-derived irradiance data for the target locations and 
neighboring nodes (49 in total) 

CIFi Forecasted irradiance from the CIFP. Several forecasts are 
available, denoted by the subscript i, depending on data used (e.g., 
HRRR).  

NAM GHI from the NAM model NAM 
NAMcc Total Cloud cover from NWP model NAM 

 
The data-driven nature on HAIMOS explores all these inputs to obtain a more accurate 
irradiance forecast with focus on periods of large ramps and variability.  
Clustering: 
HAIMOS seeks to optimize the input selection depending on the current and future 
irradiance variability. Thus, clusters are formed based on the average and standard 
deviation of the clear-sky index 𝑘/ at the forecast issuing time 𝑡, and the average and 
standard deviation of the clear-sky index at the future time 𝑡 + ∆𝑡. Values at time 𝑡 are 
defined using the measured data. At time 𝑡 + ∆𝑡, there are several options from the data 
listed in Table 4. In this work, we opted to used NAM forecast given that these are 
publicly available.  
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Using this strategy, three clusters are defined. In general, the resulting three clusters 
are characterized by the following weather conditions: (i) cloudy periods (low 
irradiance), (2) partially cloudy periods (medium irradiance), and (iii) clear-sky (high 
irradiance).  
HAIMOS input selection 
The HAIMOS optimization algorithm selects the best set of inputs for each cluster and 
forecast horizon with the goal to minimize both the forecasting error bias and variance.  
The algorithm first tests adding all available inputs, then ranks the input addition in 
terms of bias-variance metrics (MAE, MBE, BMSE). The best input is the one that ranks 
highest in all the metrics. The algorithm proceeds then to test the addition of the 
remaining, unselected inputs until no improvements are observed in the error metrics.  
Results 
In this section we present a representative subset of the results obtained in this task for 
GHI forecasting. The results shown below correspond to the locations of Bondville 
(BON) and Penn. State University (PSU). These locations are characterized by medium 
and large irradiance variability, respectively, as documented previously. Furthermore, 
this task concerns the anticipation of periods of large variability, thus it is focused on 
forecast horizons ranging from 1 to 5 hours ahead of time. 
Figures 14 and 15 compare HAIMOS normalized MBE and RMSE against the 
competing models. The MAE comparison and improvement is very similar to RMSE, 
thus omitted from this report. Besides CIF and NAM forecasts we also include in the 
comparison the persistence model (Pers.). The bottom panel in the figures indicates 
HAIMOS performance relative to the best of the other models for a given horizon 
(indicated in the x-axis). In general, HAIMOS reduces bias and variance errors, the only 
exception happens for MBE, where at times HAIMOS is worse than one or more 
competing models (see middle figure in the bottom panels). This issue impacts little the 
forecast accuracy since the bias error is low, as evidenced by the figures in the top 
panels. 
Also, as expected, forecasts error metrics for all models are higher for PSU than BON. 
A clear indication of the higher level of irradiance variability at this location.   
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Figure 14: Normalized MBE (left), and RMSE (right) for the validation testing set for 
BON as a function of the forecasting horizon. HAIMOS forecast is in black and 
competing forecasts are in color. The top panel shown the error metric and the bottom 
panel shows HAIMOS improvement relative for the best competing model the horizon in 
the x-axis. Error metrics are normalized by the average irradiance in the validation set. 

 
Figure 15: Same as Fig. 14 but for PSU. 
 
Figures 16 and 17 indicate the inputs selected for the HAIMOS used to obtain the 
results shown above, for BON and PSU, respectively. For each forecast horizon 
identified by the label on the left-hand side the figure indicate which inputs are selected 
per cluster. The background colors indicate the origin of the inputs, and the color of 
selected inputs varies from black (most important) to white (least important). 

 
Figure 16: Input selection as a function of cluster and forecasting horizon for BON. The 
horizon is indicated in the left. The colored background indicates the provenance of the 
input, and the gray scaled rectangles indicate that the input was selected by HAIMOS. 
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Darker gray color indicates higher importance, form black (most important) to white 
(least important).  

 
Figure 17: Same as Fig. 16 but for PSU. 
A few insights can be discerned from these results: 

1. As time horizons increase the importance of measured data decreases. 
2. From the CIFP forecasts CIF1 is clearly the most important and reliable input (it’s 

also the one with the lowest error as shown in figures 14 and 15). 
3. Spatially resolved data (Satellite-derived GHI) becomes more important for 

longer horizons. 
4. For locations with higher irradiance variability (PSU in this case – Fig. 17) the 

satellite-derived GHI is selected more often than for BON. 
5. There is no obvious pattern in the input selection with respect to the clusters. 

These insights and the input selection algorithm were applied in the subsequent 
development of HAIMOS. One area that requires further study is the effect of clustering 
in the input selection.  The fact that no patterns emerge in the input selection as a 
function the data variability associated to the clusters, suggest that new clustering 
approaches could lead to better forecasts.   
As mentioned above, in the following iterations we augmented the input search space 
with new data. These will include data from subtasks 3.1 and 3.2 as reported above, as 
well as other data such as WRF-Solar (subtask 3.3).  
Training and optimization of machine-learning models for HAIMOS 
In this task we identified the best type of machine-learning (ML) approximator to map 
the input data into the target irradiance data. We explored mainly stochastic models as 
they offer many advantages over purely deterministic models. Algorithms such as deep 
machine learning, of which artificial neural networks (ANN) are a subset, k-nearest-
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neighbors (kNN), support vector regression (SVR) and non-linear least squares were 
included in the pool of model candidates.  
Initially, these two subtasks were addressed separately. In that strategy, input selection 
and ML algorithm selection are done independently and sequentially. If input selection is 
done in the first place, that requires the use of a reference ML algorithm (kNN in this 
case), which may result in an input selection optimized for that reference algorithm. 
Thus, we opted to tackle the two subtasks simultaneously via the use of a genetic 
algorithm (GA). The GA is also used to optimize the clustering (number of clusters and 
clustering variables).  
The GA minimizes the problem: 

 argmin
x

+1
N(DIi-I9(x)iE

2
N

i=1

 

where Ii and I9(x)i denote measured and forecasted irradiance for a training data set, 
respectively. The argument x is a vector that describes a specific HAIMOS instance. 
The GA operates over x to return the lowest forecasting error as indicated in the 
previous equation. The elements of x control: 

1. The variables used in the clustering. The pool of variables used to define clusters 
include all the data collected in subtask 4.1. GA chooses which of those to 
include in the clustering along with the number of clusters. 

2. The ML algorithm to be used to produce I9(x)i. 

Once clusters and ML algorithm are defined, the input selection is performed with a 
greedy search algorithm. The algorithm is initialized by producing a forecast for all the 
available inputs, separately. Then ranks the inputs in terms of bias-variance metrics 
(RMSE, MBE). The best input is the one that ranks highest in all the metrics. The 
algorithm proceeds then to test the addition of the remaining, unselected inputs until no 
improvements are observed in the error metrics.  
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Figure 18: Schematic o the optimization framework used in this work. The blank 
ellipses in the figure indicate that additional clusters may be defined. 
Figure 18 illustrate the GA optimization. The blue arrows indicate the input selection for 
clustering from the variables shown in the left (grouped by data origin). Then several 
clusters are produced and for each cluster the GA selects a specific ML algorithm 
(indicated in green in Fig. 18). The greedy input selection then selects which variables 
to include, indicated by the green and read arrows in this illustration. 
The algorithm outlined above is deployed to every location for all the horizons and for 
GHI and DNI separately. Figure 19 shows a typical convergence plot for a GA run, in 
this case the run for GHI from TBL for the 1-hour horizon.  
 

 
Figure 19: Convergence of the GA optimization for the HAIMOS GHI model for TBL for 
the 1-hour horizon and for the first 11 generations. The scatter dots represent all 
HAIMOS configurations analyzed, the dashed line the average fitness (RMSE) across a 
generation and the solid line the best fitness for the respective generation. 
Results for HAIMOS optimization using GA 

The framework described above was applied to data from the six selected 
locations with hourly data from Jan 2016 to June 2017 (1.5 years). The forecasting 
accuracy is computed with an independent testing data set that ranges from July 2017 
to Dec 2018. HAIMOS’ performance is compared against a baseline smart persistence 
model 

𝐼9-0(𝑡 + ∆𝑡) = 𝑘/(𝑡)	𝐼,-(𝑡 + ∆𝑡) 

where 𝑘/ is the clear-sky index at forecasting issuing time 𝑡, 𝐼,-(𝑡 + ∆𝑡) is the clear sky 
irradiance (DNI or GHI) at time (𝑡 + ∆𝑡) and 𝐼9-0 the resulting forecasted value. The 
forecasting performance is evaluated in terms of bulk error metrics 
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nMBE =
1
𝑁(D𝐼& − 𝐼9&E/𝐼 ̅

'

&()

  

and forecasting skill 

s = 1 −
𝑅𝑀𝑆𝐸DI9HAIMOSE
𝑅𝑀𝑆𝐸DI9spE

 

where 𝐼 ̅denotes the average irradiance. The error metrics are computed for daytime 
only, defined in terms of solar zenith angle 𝜃1(𝑡 + ∆𝑡) < 85°. 

 
Figure 20: 𝑛𝑀𝐵𝐸 and forecast skill for GHI (top) and DNI (bottom) for the six locations 
and forecast horizons ranging from 1 to 5 hours. The minimum and maximum skill 
values for all locations and horizons are indicated by the vertical dashed lines. The 
average skill across location and horizon is indicated by the vertical solid line. 

GHI 

DNI 
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Figure 20 summarizes the forecast 𝑛𝑀𝐵𝐸 and 𝑠 for GHI (top) and DNI (bottom). Results 
are shown for the six locations and five forecast horizons ∆𝑡 = {1,2,3,4,5} hours. The 
pairs of (𝑛𝑀𝐵𝐸, 𝑠) for each location and different ∆𝑡 values are grouped by the shaded 
patches. The horizons ∆𝑡 are identified explicitly for TBL and BON by the numeral 1 to 
5. For clarity these annotations are omitted for other locations, but their placement 
would follow the same trend as shown for BON and TBL. The vertical dashed lines 
indicate the minimum and maximum skills attained. The vertical solid line indicates the 
average skill across all locations and horizons. 
Given that this project focuses on improving forecasting for periods of larger irradiance 
variability, the same error metrics are computed for a data subset representative of 
cloudy weather. For this analysis, we consider the simple filter 

h
cloudy if	𝑘/(𝑡) < 0.9	𝑎𝑛𝑑	𝑘/(𝑡 + ∆𝑡) < 0.9

clear otherwise																																																		
 

Figure 21 shows the resulting error metric after removing all clear periods from the 
testing dataset. 
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Figure 21: Same as Fig. 20 but for cloudy periods.  
The locations listed in the figures’ legend are sorted from top to bottom according to the 
irradiance variability, with FOL as the lowest and TBL the highest. The variability 
analysis is based on the ground data, and it was presented previously. 
From figures we can conclude the following general aspects about the HAIMOS 
forecasts: 

• On average HAIMOS can achieve a forecasting skill ~30% for both GHI and DNI 
across different climate zones and forecasting horizons. For GHI, the skill values 
range from just under 20% for 1-hour forecasts to over 40% for the 4- and 5-hour 
ahead forecasts. In the case of DNI the larger skills are near 40%. 

• As expected, the forecasting skill increases when considering only cloudy 
periods. 

GHI 

DNI 
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• The small forecasting bias increases two-fold or more when considering only 
cloudy periods. 

• The lowest skills are obtained for the shortest horizons. This is expected since 
those are the horizons for which smart persistence works best, and for which 
other types of telemetry not used in this work are best suited 

• HAIMOS prediction skill is not strongly dependent on the level of variability 
specific to each location. This is indicated by the overlapping of the projections of 
the colored patches upon the x-axis. 

• For cloudy periods (Fig. 21), HAIMOS forecasts tend to overpredict the irradiance 
(denoted by a negative 𝑛𝑀𝐵𝐸). This fact is more pronounced in the case of DNI. 

• The impact of variability is more noticeable on the forecast bias. Figure 21 shows 
that, in general, forecasting for locations with higher variability (PSU and TBL) is 
more biased than the forecasting for other locations. 

 
The figures also allow for some additional location-dependent findings: 

• HAIMOS’ GHI forecasting skill for HNX (a location with low irradiance variability) 
covers a wider range, almost twice as wide as the range of other locations. The 
same does not occur in the case of the DNI forecasts. 

• Bias for TBL is much larger than the bias for any other location: twice as much 
for GHI and up to three times for DNI. 

Developing adaptive protocols for HAIMOS 
In this task we developed adaptive protocols for HAIMOS as a function of the forecast 
goal (GHI or DNI) and the forecast horizon. We tested two approaches in this task: 

1. Continuous training in which the ML models identified by the GA optimization are 
trained daily using data from the training set plus all new data from the testing 
dataset (up to the updating time). 

2. Analog training in which the ML models are retrained as in 1, however, the 
training is preceded by a data selection process that keeps only data in the 
historical record that is analogous to current data. 

From the two approaches it was concluded that the first one yielded more robust results 
given that the conditions for the preceding day(s) are typically very well correlated with 
the present day. The results are shown in Fig. 22 for cloudy periods only. 
 



DE-EE0008216 
University of California, San Diego 

 

 
 

28 

 
Figure 22: 𝑛𝑀𝐵𝐸 and forecast skill for GHI (top) and DNI (bottom) for the six locations 
and forecast horizons ranging from 1 to 5 hours. These results are for the adaptive 
HAIMOS forecasts for cloudy periods. For both DNI and GHI, the mean value of the 
forecast skills is on or above 30%, a result never reported before for these time horizons 
and for a wide range of solar microclimates. 
 
The figure shows the non-adaptive HAIMOS results (the ones from Fig. 21) as light-
colored dots. The new skill and 𝑛𝑀𝐵𝐸 are shown as darker dots. The (non-adaptive, 
adaptive) pairs are connected by a light line. Pairs that show a trajectory towards the 
ideal point (0,100), that is 0 𝑛𝑀𝐵𝐸 and 100% skill, indicate that the adaptive algorithm 
improved the HAIMOS predictions. The annotations in the top-left corner of the figures 
indicate the change (in percentage) over the non-adaptive results for each location 
averaged across all forecast horizons. A positive value indicates an improvement 
(higher skill or lower 𝑛𝑀𝐵𝐸). Negative values indicate worse predictions with respect to 
those metrics. 
From the two plots it is possible to draw the following conclusions: 

• The adaptive framework implemented was more successful in improving the DNI 
forecasts than GHI forecasts. For DNI, skills improved between 0.1% for BON to 
8.5% for HNX; 𝑛𝑀𝐵𝐸 shows changes between -50% and 26%. Note that relative 
changes for 𝑛𝑀𝐵𝐸 can show large numbers since the denominator is close to 0. 

• For GHI the adaptive HAIMOS shows improvements in both metrics for TBL 
(4.3% increase in skill and 11.6% reduction in bias). For SXF it results in worse 
skill and 𝑛𝑀𝐵𝐸, although by small margins. For the other locations it improves 
one of the metrics at the expense of the other. For example, for BON, bias 
improved by 20% but skill is also reduced by 0.8%.  

• The largest improvement is observed for TBL in terms of bias as denoted by 
large positive displacement in the y-axis.  

GHI DNI 
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Optimization of HAIMOS framework 
Virtually all solar forecasting models are optimized to minimize some bulk error metric 
for the irradiance over a large training set. That is a poor approach when optimizing 
models to predict ramps since in a large training set large ramps comprise a very small 
subset and have little weight in the fitness of the forecast model. For this reason, we will 
test in this project model optimizations subject to new objective functions that penalize 
the model’s fitness as function of ramps. Thus, we advanced this task by: 

1. Setting up the framework for ramp forecasting evaluation. 
2. Evaluating the ramp error for HAIMOS and benchmarking models. 

In this task we follow the recommendation for ramp forecasting evaluation set up by the 
team in Topic Area 16 where irradiance ramps are defined as  

𝑟(𝑡, 𝑛, ∆𝑡) = 	 m
𝐼(𝑡 + 𝑛∆𝑡)	 − 𝐼(𝑡 − 	(𝑛 − 1)∆𝑡)

∆𝑡 m 

where 𝐼 is the measured irradiance, 𝑡 the forecast issuing time and 𝑛∆𝑡 the forecasting 
horizon, given in multiples of the forecasting resolution (∆𝑡). The predicted ramps are 
computed the same way but replacing 𝐼 by 𝐼9 (the forecasted irradiance). Figure 23 
shows measured and forecasted ramps in a graphical form.  

 
Figure 23: Irradiance ramp definitions. 

 
We assessed the HAIMOS forecasting ability in predicting ramps and compared it 
against the smart persistence model. That was done by computing the predicted 
HAIMOS ramps: 

𝑟23#456 = 	 m
𝐼923#456(𝑡 + 𝑛∆𝑡)	 − 𝐼923#456(𝑡 − 	(𝑛 − 1)∆𝑡)

∆𝑡 m 

and smart persistence (SP) ramps 

𝑟67 = 	 m
𝐼967(𝑡 + 𝑛∆𝑡)	 − 𝐼967(𝑡 − 	(𝑛 − 1)∆𝑡)

∆𝑡 m 

The models are then evaluated in terms of bias and variance by computing the MBE 
and RMSE, respectively. Finally, HAIMOS forecasts are compared to the SP model via 
forecasting skill for ramps 	

𝑠 = 	1 −
RMSE(𝑟, 𝑟23#456)

RMSE(𝑟, 𝑟67)
 

 
6 https://solarforecastarbiter.org/metrics/ 
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The results for this analysis are shown in Fig. 24 for GHI (left) and DNI (right) ramps. 

 
Figure 24: MBE and forecast skill for GHI (left) and DNI (right) ramps for five locations 
and forecast horizons ranging from 1 to 5 hours. The minimum and maximum skill 
values for all locations and horizons are indicated by the vertical dashed lines. The 
average skill across location and horizon is indicated by the vertical solid line. 
From these results it’s possible to observe that: 

• Forecast skills vary between 10 and 20% for all locations studied. 
• Higher skills are observed for shorter horizons. This behavior is the opposite of 

what was observed for the irradiance forecast, as expected given that the 
reference forecast for irradiance (persistence) decays faster for longer horizons.  

• Bias across locations varies as expected with larger errors for locations with 
more variable weather patterns (e.g. PSU and TBL). 

The accuracy in detecting ramps can also be measured using event detection metrics 
such as probability of detection (POD), false alarm ration (FAR), etc.  
In this task we ensembled HAIMOS point forecasts to create prediction intervals for GHI 
and DNI forecasts. The quality of the prediction intervals is measured via the Prediction 
Interval Normalized Averaged Width (PINAW) and the Probability Interval Coverage 
Probability (PICP). In this task we aim to achieve PICP > 90% and PINAW<20% for all 
the forecast horizons and target locations. These two metrics can be computed from the 
predicted and measured data (GHI or DNI) as 

PINAW =
1
𝐼max

1
𝑁(𝑈o& − 𝐿q&

'

&()

 

and  

PICP =	
1
𝑁(𝜀&

'

&()

 

where  
𝜀& = r1						if	𝐼& 	 ∈ [𝐿q& , 𝑈o&]

0						otherwise						
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and [𝐿q& , 𝑈o&] is the predicted Prediction Interval, 𝐼& is the measured irradiance (GHI or 
DNI), 𝐼max the maximum measured irradiance, and 𝑁 is the number of forecast 
instances in the validation dataset.  
The results for the probabilistic HAIMOS forecasts are shown in Fig. 25 for horizons 1 to 
5 hours and all locations. These results show that PICP and PINAW are clearly related 
with the variability of the target location and variable. Also, given that DNI is much more 
variable than GHI, it’s harder to obtain low PINAW and large PICP for this variable. 
 

 
Figure 25: Irradiance (GHI and DNI) probabilistic forecast PINAW vs PICP for all 
locations and horizons from 1 to 5 h. Values computed using the validation dataset 
(2018). Models trained with data from 2017. Forecasts lower and upper bounds 
computed using a KNN model that uses as features the best set of inputs for each 
location and horizon. Set of inputs are identified by HAIMOS as shown previously. Note 
that values for PINAW and PICP are comparable to the best values found for short-term 
forecasts based on sky imaging (Chu et al., 2015, and Chu and Coimbra, 2017. The 
target values for ramps should be adjusted to reflect the fact that 80-90% PICP for GHI 
and 65-90% PICP for DNI are likely to be best targeting. 
 
New-generation cloud forecasting tools 
GOES-16 high-resolution cloud cover identification  
In this task we explored the potential of the CNN-derived cloud mask model to 
generalize to new locations and test the advantages of combining locations for training. 
Data was processed and partitioned. The processing allowed classification of clear and 
cloudy based on the model from Reno and Hansen (2016) with a 20-min sliding window 
on 5-min resampled data. This was shown to produce similar classification metrics 
among the 12 locations and, when evaluated against the ABI cloud mask, produced 
accuracy metrics matching those reported in the data product technical document 
(Heidinger, A. and Straka (2012)). The repartitioning provided three distinct sets from 
the data: training, validation, and test. The partition was made randomly on dates, first 
at 80% training and 20% test from the full set of post-processed data. Then the training 
set was further partitioned at 85% training and 15% validation. The validation set was 
used for model tuning, while all model evaluation was performed using the test set. 
Results from the CNN cloud mask (CCM) are compared to the ABI cloud mask (ACM) in 
Table 5.  
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𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑁 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁)	−	(𝐹𝑃 × 𝐹𝑁)

y(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
 

Table 5: Numerical values of the ACM and CCM TPR and MCC scores. For each CCM 
score, a standard deviation from 10 iterations is given. 

 
Table 5 also shows true positivity rate (TPR) and Matthews correlation coefficient 
(MCC) scores per location for the ACM and CCM. Both terms are defined below in 
terms of confusion matrix components: true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN). The CCM outperforms the ACM in every location 
when evaluated by the MCC score, which is the less biased of the two for binary 
classification of unbalanced data classes. The average percent improvement in MCC is 
30.0%. 
TPR describes the fraction of correctly identified positive cases, clear sky states in this 
case, from total positive samples in the test set. In TPR, the CCM shows 2.47% 
improvement across locations, or roughly comparable performance. Confusion matrix 
metrics provide a more complete picture of model performance by capturing each 
combination of true and false positives or negatives. 
While some model tuning was completed to optimize convolutional layer width, learning 
rate, fully connected (linear) layers, and dropout rate, a full hyperparameter optimization 
was outside the scope of this project, which aims to study the potential of a CCM and its 
ability to generalize to new locations. While it may certainly be possible to further 
optimize model hyperparameters, we determined the performance achieved here 
represents sufficient skill, without needing to specify different hyperparameter sets for 
different locations. For reference, desert locations like Albuquerque and Desert Rock 
tend to achieve higher performance with deeper and more complex networks, while 
locations with more varied cloud conditions like Bondville and Penn State saw 



DE-EE0008216 
University of California, San Diego 

 

 
 

33 

diminishing or even negative returns on increasing complexity. The basic structure of 
the CNN is described in Table 6 and is built on two convolutional-pooling layers plus two 
fully connected layers with use of batch normalization and drop out to improve 
regularization.  

Table 6: CNN architecture used in this project. 

 

 
 

Figure 26: Comparison of confusion matrix values of the ACM and CCM per location. 
The CCM shows slight improvement in TPR and FNR and significant improvement in 
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FPR and TNR. The CCM maximizes performance in all four categories of the confusion 
matrix, rather than only maximizing accuracy in clear sky detection. 

Figure 26 shows the confusion matrix metrics per location. For perfect performance, 
TPR and TNR should be unity while FPR and FNR are zero. Error bars on the CCM 
values represent standard deviation in evaluation of 10 identically trained CCMs.  
In Figure 26 we see that CCM shows comparable to slight improvement in TPR and 
FNR with significant improvement in FPR and TNR across locations. This demonstrates 
that the CCM improves correct detection of cloudy states, which contributes to overall 
performance improvement without detrimental impact to correct detection of clear 
states.  
Transfer learning and the improvement potential of training on multiple locations are 
explored through two scenarios. The CCM is trained on either (1) one source location or 
(2) a combination of two source locations, then applied to a new target location. 
Performance scores and other metrics are indexed to identify the transfer learning 
scenario. Case (1) is identified by the subscript i:k where the model is trained on data 
from the source location (i) and applied to data from a target location (k), where i ≠ k. 
Case (2) is denoted by ij:k where i ≠ j ≠ k. 
Results show that transfer learning performance is asymmetric. In general, mcci:k or the 
MCC score of a CCM trained on i and applied to k will show better performance if the 
mean value of ABI channel 1 is greater in the source location than in the target location 
and if the standard deviation of ABI channel 1 is smaller in the source location than in 
the target location. To put this more succinctly: mcci:k > mcck:i when 𝜇i > 𝜇k and 𝜎i < 𝜎k.  
For each location, a set of 10,000 samples was selected, uniformly spaced throughout 
the training set. Per channel, each 11x11 pixel image was reduced to an average value. 
A second average and a standard deviation was then calculated from the sample set. 
From these per channel mean and standard deviation values, Pearson correlation 
coefficients were calculated with respect to the baseline MCC score, mcci:i, resulting in 
an evaluation of the predictive potential of each channel. Channel 1 had the highest 
positive correlation coefficient at 0.740. Subsequent analysis thus used channel 1 mean 
and standard deviation to characterize closeness of input data characteristics between 
source and target locations. Channels 2 and 3 also showed high positive correlation 
with coefficients of 0.734 and 0.714, respectively. This suggests, similar results could be 
shown with respect to channels 2 and 3.  
As noted before, transfer learning shows significant asymmetry, exemplified in Figure 
27 for i:k models and in Figure 28 for ij:k models. The c values on the x-axis capture a 
percent difference in channel 1 means between the source and target location, as: 
 

 

 
Similarly, the metric 𝜑 is introduced on the color bar to show percent differences in 
standard deviation in channel 1. The non-uniform color mapping is meant to highlight 
regions of interest, namely standard deviations less than and greater than 10% apart in 
both the positive and negative directions. 
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The (a) subplots show MCC scores, with standard deviations from sets of 10 models 
shown by vertical error bars. The (b) subplots show a percent penalty score that can be 
interpreted as the performance percentage lost by using a transfer learning model, i:k or 
ij:k, relative to a local model like k:k.  

 
Figure 27: Showing asymmetry of model transferability. (a) MCC scores from i:k 

models and (b) Penalty of i:k models in comparison to k:k models. 

 
Figure 28: Same as figure 27 but for ij:k models. 

 
HAIMOS refinement, ingestion of new-generation cloud data 
In this project, we also explored merging GOES images and HAIMOS data. The model 
implemented is described in Fig. 29. The HAIMOS data produced previously is 
formatted into a 11x11 matrix and concatenated with the 11x11 GOES images. 
  
The model was trained 10 times for each location and forecast horizons in order to 
account for the random initialization of the CNNs. Figure 30 compares the forecasting 
accuracy for the validation set, in terms of RMSE, for all locations and horizons, for the 
models without GOES data (dashed lines) against models with GOES data (solid lines 
and shaded band). The solid lines indicate the average RMSE for the 10 CNNs. The 
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shaded band indicates the minimum and maximum RMSE obtained out of those 10 
models. By merging HAIMOS data obtained from ground stations and CIF forecasts 
with GOES data RMSE is consistently reduced.  
 

 
Figure 29: CNN model that ingest HAIMOS data and GOES imagery.  
 
The model improvement, in terms of RMSE reduction, is shown in Fig. 31. As in figure 
30 the solid line shows the average improvement and the band the minimum and 
maximum values. The figure indicates that models for HNX show the largest (horizon = 
4 hours) and lowest improvement (horizon = 5 hours), as well as a more unstable 
evolution across horizons.  
In all cases the models are improved with RMSE reductions ranging from 2% to 18%. 
On average this task reduced RMSE by ~7%. 

 
Figure 30: RMSE for GHI forecasting as a function of the horizon. The solid lines 
represent results that merge GOES data and HAIMOS. The dashed lines represent 
HAIMOS results without GOES data. 
 
The results in Figs. 30 and 31 were obtained with data for 2018. The training and 
validation sets are depicted in the figure below. Both sets contain data from every 
season. The whole month of September is included in the validation set. This results 
from the comparison against data for GHI modeling from Laszlo et al (2020). 
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Figure 31: RMSE Improvement of the HAIMOS+GOES forecasts relative to the 
previous HAIMOS forecasts (without GOES data). 
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Figure 32: Training and validation sets for the 5 locations. The annotations indicate the 
average, standard deviation, and the number of data points for each dataset. The gap in 
SXF data for July 2018 is due to the lack of ground data. 
 

Significant Accomplishments and Conclusions 
Significant accomplishments obtained by HAIMOS are measured according to the test 
framework devise by the Topic Area 1 team. In this framework the forecasts by the 
different teams must follow the requirements: 

• Variables 
o GHI 
o DNI 

• Evaluation time range  
o Start: 2018-01-01 00:00 local time at each site. 
o End: 2018-12-31 23:59 local time at each site. 

• Forecast parameters 
o Forecast issue time: 10 am local standard time   
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o Forecast lead time: 14 hours 
o Forecast run length: 24 hours 
o Value type: interval mean  
o Interval length: 1 hour 
o Interval label: beginning 

These requirements do not match the set up used to develop HAIMOS, which was 
focused on intra-day horizons and multiple aggregations (15, 30 minutes, etc.). For this 
reason, we retrained HAIMOS under these guidelines.  
Quality controlled GHI and DNI data were collected from the Solar Forecast Arbiter 
(SFA) for the years 2017 to 2020 for the 10 locations selected by Area 1 team. Data for 
the year of 2018 were used as validation set. The remaining data were used as training. 
Figures 33 and 34 show the data for Humboldt State and Langley, respectively 
The 1-minute data was augmented with clear-sky irradiances and solar geometry using 
the pvlib7 library and then averaged into 1-hour bins according to the Area 1 testing 
guidelines (Figs. 35 and 36). 
 

 
Figure 33: Quality-controlled GHI and DNI data for Humboldt State, California (NREL 
MIDC). 

 

 
7 https://pvlib-python.readthedocs.io/en/stable/index.html 
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Figure 34: Quality-controlled GHI and DNI data for Langley (NASA, BSRN). 
 

 

 
Figure 35: Hourly averaged GHI and DNI data for Humboldt State, California (NREL 
MIDC) for a 10-day window in the validation set. 
 

 
Figure 36: Hourly averaged GHI and DNI data for Langley (NASA, BSRN) for a 10-day 
window in the validation set. 
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Exogenous data for this task includes several products from NWP models. We 
downloaded and processed data from the NAM and HRRR models for the period 2017 
to 2020. For each location, several variables were extracted and synchronized with 
ground data. The variables used include:  

• DSWRF: Downward Short-Wave Radiation Flux [W/m^2] 
• TCDC: Total Cloud Cover [%] 
• LCDC: Low Cloud Cover [%] 
• MCDC: Medium Cloud Cover [%] 
• HCDC: High Cloud Cover [%] 

Cloud cover variables (CC) were converted to GHI or DNI using a simple model: 

𝐼,,(𝑡) = }1 −
𝐶𝐶(𝑡)
100 ~ 𝐼,-(𝑡) 

were 𝐼,- denotes the clear-sky irradiance and 𝐼,, the resulting irradiance. 
To avoid data leakage, that is, the use of data that would not be known if HAIMOS was 
run in real time, all the NWP-derived data must the available at the forecasting issue 
time of 10 am local standard time. That is ensured by using only NWP data whose 
reference time (time when the data is produced) precedes the forecasting issue time.  
Figure 37 shows some the NWP-derived data used as input to HAIMOS for Humboldt 
and Langley. This process was run for all locations and for DNI. 
 

 

 
Figure 37: Some of the NWP-derived GHI for Humboldt (top) and Langley (bottom).  
 
HAIMOS forecasting for Area 1 test framework 
We prepared and uploaded HAIMOS forecasts the SFA according to the guidelines 
from Area 1 test framework. The HAIMOS forecasts were submitted to the SFA platform 
under the “TA2 evaluations” forecast metadata/endpoints.  
Figure 38 shows the HAIMOS forecast for GHI for Humboldt and Fig. 39 shows the DNI 
forecast for Langley. 
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Figure 38: GHI forecasts for Humboldt.  

 

 
Figure 39: DNI forecast for Langley.  
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Once the forecasts were uploaded, we used the report functionality in SFA to validate 
HAIMOS under the Area 1 framework. Figures 40 and 41 show snapshots of the table 
that lists the forecast error metrics computed by SFA and the forecasting skill of 
HAIMOS against the reference NAM forecasts prepared for the Area 1 team. NREL’s 
forecasts are also included in this report. Such reports are produced for GHI and DNI for 
all locations.  
 

 
Figure 40: Error metrics computed by SFA for Humboldt’s GHI. Skill is computed 
against the reference NAM forecasts.  

 

 
Figure 41: Error metrics computed by SFA for Langley’s DNI. Skill is computed against 
the reference NAM forecasts.  
 

 
Figure 42: GHI forecasting skill relative to NAM’s reference forecasts for all the teams 
in topic area 2. Dots show the skills for each location. Horizontal lines show the average 
skill across locations. 
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Figure 43: Same as figure 42 but for DNI. 
 
A direct comparison between the HAIMOS methodology and the other day-ahead 
forecasts produced by Area 2 participants is depicted in figures 42 and 43. Both the 
robustness and the effectiveness of the HAIMOS methodology are clear, as the 
forecasting skill of the HAIMOS method is consistently higher across the multiple 
locations, even though most of the HAIMOS methodology has been primarily optimized 
for intra-day forecasts. 
 

Budget and Schedule 
The budget and schedule originally approved by the DOE has been followed closely 
throughout the duration of this project. There were no significant delays in any phase or 
budget period despite the disruptions caused by the ongoing pandemic. Starting in early 
2020, minor changes in budget categories have been adjusted to reflect changes in 
personnel and workload due to the pandemic. Overall, both the project budget and the 
project schedule have been proposed and managed properly since the beginning of the 
project. There were minor delays in invoicing by a subcontractor, but none that 
compromised the progress of the project. UC San Diego also went through a massive 
financial system overhaul in 2020, which unfortunately affected some of the financial 
reporting from central campus to DOE. All technical and financial reports generated 
from our research group have been submitted on time and in agreement with 
procedures outlined by the DOE and by campus policies.  

Path Forward 
The HAIMOS project was unique among the Area 2 projects in the sense that it did not 
rely on WRF-Solar improvement but offered a comprehensive methodology for 
producing improved forecasts based on best practices in physical modeling and 
machine learning. The project demonstrates the effectiveness and robustness of the 
methodology used (see Figs. 42 and 43). Although not included in the SOPO, this 
project also allowed us to study the effectiveness of CNNs for cloud masking and their 
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potential for producing forecasts that utilize an entirely different set of inputs from WRF-
Solar. As such, we submitted two (2) proposals to DOE in order to continue this effort. 
One proposal was for the development of CNN-based forecasts as a new reference 
forecast for the entire CONUS, and the other was a collaboration with EPRI on long-
term solar forecasts for improved grid operations at high penetration of renewables. 
These proposals were submitted in 2020 in response to DE-FOA-0002243. Both 
proposals were declined by the DOE, and as a consequence of the COVID-19 
pandemic impact on personnel combined with the loss of continued DOE funding, the 
UC San Diego solar forecasting effort will likely end with this project. There is a remote 
possibility of continuing this research effort with funding from the California Energy 
Commission or the National Science Foundation, but no direct applicable funding 
opportunities by either agency have been announced at this point.  
 
As for technology transfer and commercialization, we will continue to openly publish our 
methods, data and results in technical journals and conferences. We will also engage 
with interested parties that show interest in high-fidelity solar forecasts. That said, the 
ability to commercialize best practice methods for solar forecasting has always been 
difficult due to the conservative nature of the energy industry. With few exceptions, 
power generators show little interest in better understanding solar resourcing, much less 
forecasting. Utility companies and system operators also see little reward in high-fidelity 
forecasts given that they can continue to dispatch carbon-intensive reserve units in 
response to solar and wind variability. As a result, operational forecasts show 
substantially lower skills than the ones reported here. By publishing and presenting our 
research findings and data in journals and conferences, we hope that eventually the 
methodologies presented in this project will make their way into the operational 
forecasting systems used by the energy industry. 
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