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Executive Summary

The objective of this research is to develop a hybrid physics-based/data-driven forecast
model to improve direct normal and global horizontal irradiance (DNI and GHI)
prediction for horizons ranging from 1 to 72 hours. Project objectives also address key
gaps in state-of-the-art solar forecasting: accurate probabilistic solar forecasts and the
forecasting of large irradiance ramps (ramp onset and magnitude). The proposed model
ensembles Numerical Weather Prediction (NWP) forecasts, determinist physics-based
algorithms, and new-generation cloud cover products (high-resolution rapid refresh
satellite images and Large Eddy Simulations). The result is the Hybrid Adaptive Input
Model Objective Selection (HAIMOS) ensemble model. HAIMOS blends state of the art
machine learning methodologies with physics-based models for cloud cover and cloud
optical depth forecasts. The technical activities followed a two-pronged strategy. First,
the preprocessing of data, the selection of inputs to the nonlinear approximators, the
type of approximator and objective functions, and post-processing ensembling
techniques included in HAIMOS were all optimized adaptively to find the best model for
a specific goal (reduce DNI/GHI forecast error, improve the prediction of ramp onset,
etc.). Second, a large effort was put in improving cloud identification and the forecast of
cloud cover and cloud optical depth. To this end, new-generation cloud parametrization
products were developed in this work. These include improved algorithms to assist in
cloud identification, cloud classification and cloud parametrization from satellite images
— three key factors in the accuracy of 1 to 6-hours irradiance forecasts and prediction of
ramp onset. Furthermore, we also included cloud information extracted from high-
resolution rapid refresh satellite images (GOES-16) and Large Eddy Simulations (LES).
LES was used to model the atmosphere in detail over locations of interest and produce
cloud optical depth forecasts. Once these data streams were validated, they were used
as input data to the HAIMOS forecast. The model was developed using data from
several climatologically distinct locations with potential for high solar penetration. In the
last year of the project, we conducted a validation campaign according to the guidelines
stipulated by the Topic Area 1 project as described in the FOA.

This effort brings, for the first time, proven machine-learning methodologies for
generating state-of-the-art solar forecasts interweaved with detailed physics-based
models for cloud detection, and cloud optical depth forecasts. HAIMOS will generate
accurate irradiance probabilistic forecast to assist in reducing solar generation
prediction error. Globally optimized solar forecast models are more likely to impact solar
energy stakeholders.

The goal of this project was to increase the state-of-the-art forecast skill from their
present values of 10 to 35%. At the end of the project, we achieved between 30% and
50% forecast skill across a wide range of horizons for both GHI and DNI.
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Background

Variability in solar output at high levels of penetration creates significant operational
challenges for system managers. The objective of this project is to improve the
accuracy of solar forecasting in support of more efficient energy markets. This objective
enables high solar penetration without significant integration costs or power system
performance degradation.

In this project, we developed innovative methods and tools to significantly improve both
the certainty and accuracy of solar generation forecasts for utility and transmission
system operators across intra-day and day(s)-ahead time horizons. Our team has deep
knowledge of both solar forecasting as well as power system operation and economics
and is experienced in leading high-profile, public stakeholder processes to build
consensus. As a result, the approach developed is well-grounded and directly
applicable for implementation by system operators.

The objective of this research is to develop a hybrid physics-based/data-driven forecast
model to improve direct normal and global horizontal irradiance (DNI and GHI)
prediction for horizons ranging from 1 to 72 hours. Project objectives also address key
gaps in state-of-the-art solar forecasting: accurate probabilistic solar forecasts and the
forecasting of large irradiance ramps (ramp onset and magnitude). The developed
model ensembles Numerical Weather Prediction (NWP) forecasts, determinist physics-
based algorithms, and new-generation cloud cover products (high-resolution rapid
refresh satellite images and Large Eddy Simulations). The result is the Hybrid Adaptive
Input Model Objective Selection (HAIMOS) ensemble model.

HAIMOS blends state of the art machine learning methodologies with physics-based
models for cloud cover and cloud optical depth forecasts. The technical activities
followed a two-pronged strategy. First, HAIMOS implies that the preprocessing of data,
the selection of inputs to the nonlinear approximators, the type of approximator and
objective functions, and post-processing ensembling techniques are all optimized
adaptively to find the best model for a specific goal (reduce DNI/GHI forecast error,
improve the prediction of ramp onset, etc.). Second, a large effort was put in improving
cloud identification and the forecast of cloud cover and cloud optical depth. To this end,
new-generation cloud parametrization products were developed in this work. These
include improved algorithms to assist in cloud identification, cloud classification and
cloud parametrization, cloud information extracted from high-resolution rapid refresh
satellite images (GOES-16) and Large Eddy Simulations (LES).

Project Objectives

The goal of this project is to increase the state-of-the-art forecast skill from their present
values of 10 to 35%. At the end of the project, we aim to achieve the forecast skills
between 40 and 50% across a wide range of horizons for both GHI and DNI for periods
of variable solar irradiance (i.e., excluding cloudless days).

The technical scope for HAIMOS is divided into six task groups summarized next. The
seventh task consists in the validation set up by Topic Area 1 team.
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Technical work plan summary

Selection of training sites and data collection (BP1: Task 1): The purpose of this
task is to collect endogenous (GHI and DNI) and exogenous data (NPW forecasts,
satellite images, etc.) data used in the development of HAIMOS. We selected data from
5 to 10 locations in the USA with potential for high solar penetration with the
requirement that they are climatologically distinct. We used data collected at the UCSD
solar laboratory, and high-quality, publicly available data such as the one provided by
NOAA’s SURFRAD network.

Commercial Irradiance Forecasts (BP1: Task 2, BP2: Task 5, BP3: Task 8): In
these tasks we collaborated with a Commercial Irradiance Forecast Provider (Clean
Power Research), CIFP for short, to obtain historical irradiance forecasts for the
locations and time span selected in Task 1. CIFP forecasts cover 1 to 24 hours horizons
with a temporal resolution of 30 minutes and a spatial resolution of 1 km. The CIFP also
provided UCSD access to an application programming interface (API) for the purpose of
obtaining on-demand DNI and GHI forecasts for the locations determined by the Area 1
test framework.

Improvement of cloud cover forecast (BP1: Task 3): The purpose of this task is
twofold. First, we improved the accuracy of cloud detection models from satellite
imagery. Current models that rely on image segmentation show low accuracy in
discriminating between thin and thick clouds, for instance. We explored image
processing algorithms to identify and classify clouds from satellite imagery. We used
exogenous data such as detailed atmosphere data from NWP models to improve cloud
classification. Second, we used physics-based models (i.e., Lagrangian cloud motion,
convection-diffusion, WRF-Solar simulations) to improve the cloud cover forecast for
time horizons ranging from 1 to 6 hours.

Set up HAIMOS framework (BP1: Task 4): This task consists in setting up the
HAIMOS framework for the different forecasting tasks: accurate 1 to 72 hours DNI and
GHI point forecasts, accurate probabilistic forecasts, and prediction of large irradiance
ramps. The goal for this task consists in developing and testing adaptive training
techniques that were tested using data from the previous three tasks. The successful
completion of this task consisted in obtaining HAIMOS point forecasts for DNI and GHI
1 to 72 hours in the future, with skill over the smart persistence model, equal to or
above 30%.

Optimization of HAIMOS framework (BP2: Task 6): This task consists in a detailed
framework to optimize every component of the HAIMOS framework: input preprocessing
and selection, machine-learning technique (regressive models, deep learning, nearest-
neighbors, etc.), objective function, and post-processing ensembling. The optimality of
the resulting model was assessed using data collected in Task 1.

New-generation cloud forecasting tools (BP2: Task 7): In this task we applied the
HAIMOS model to new data sets in order to identify and correct problems such as
training data overfitting. In this task we also included new-generation exogenous data
as inputs to HAIMOS. The goal is to increase HAIMOS accuracy in the 1-to-6-hour
horizon by using high-resolution imagery from the new GOES-16 satellite and improve
cloud cover forecasts obtained from LES run at UCSD. LES simulations were nested



DE-EE0008216
University of California, San Diego

over the areas of interest to simulate the local meteorology and solar forecasts up to a
few hours ahead, at resolutions of seconds and 100 m. The WRF-Solar runs from Task
3 provided boundary conditions for LES.

Area 1 test framework validation (BP3: Task 9): The purpose of this task is to apply
the HAIMOS forecast model developed in this project to the test framework developed
in Area 1. This task entailed collecting the necessary exogenous data for the locations
and time period determined by the test framework. HAIMOS was retrained using the
endogenous data provided by the test framework and exogenous data produced by this
project. In the last stage of this task, HAIMOS provided the forecasts according to the
guidelines for model validation (variables, resolution, conditions, measurements, etc.)
stipulated by Area 1 test framework.

Project Results and Discussion

Selection of training sites and data collection
Forecasting models rely on quality-controlled data for proper training. HAIMOS was
developed for GHI and DNI data from diverse locations with potential for high solar
penetration. Thus, it was necessary to create a data set of historical irradiance data
(DNI and GHI). This section describes the selection data from six locations in the USA
with potential for high solar penetration with the requirement that they are climatological
distinct. This task generated a quality-controlled database of irradiance and exogenous
data that was used in the development of the forecast models.
This task started with the collection of data from several candidate locations in the
CONUS. These data were collected from publicly available repositories (SURFRAD'
and SOLRAD?) and from instruments owned and maintained by UCSD. Data from the
candidate locations as pre-processed according to the following:

e Removed values flagged (SOLRAD and SURFRAD flag questionable data)

e Removed unrealistic values (negative values)

e Normalized GHI and DNI values using a clear sky model explained below.

Fort Peck, Montana x
Organization  Lat Lon Alt Period Data Available
SURFRAD 483078 -1051017 6340 2016and 2017 GHI, DNI, Diff
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Figure 1: Location of candidate sites. Irradiance data (GHI and DNI) was collected for
each site.

L https://www.esrl.noaa.gov/gmd/grad/surfrad/
2 https://www.esrl.noaa.gov/gmd/grad/solrad/
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Table 1: List of candidate sites with information about location and data availability.

Desert Rock, NV DRA SURFRAD 36.6237 -116.0195 1007 2016102018  GHI, DNI, other
Bondville, II BON SURFRAD 40.0519 -88.3731 230  2016t0 2018  GHI, DNI, other
Table Mountain, TBL  SURFRAD 40.1250 -105.2368 1689 2016102018  GHI, DNI, other
CcO

Fort Peck, MT FPK  SURFRAD 48.3078 -105.1017 634  2016t0 2018  GHI, DNI, other
Sioux Falls, SD SXF  SURFRAD 43.7340 -96.6233 473 2016102018  GHI, DNI, other
Penn. State, PA PSU SURFRAD 40.7201 -77.9309 | 376  2016t02018  GHI, DNI, other
Goodwin Creek, GWN SURFRAD 34.2547 -89.8729 98 2016 t0 2018  GHI, DNI, other
MS

Folsom, CA FOL UCSD 38.6434 -121.1477 | 97 2016 t0 2018 = GHI, DNI, other
Bellingham, WA BEL UCSD 48.7540 -122.4890 7 2016 t0 2018  GHI, DNI, other
Albuquerque, NM ALQ @ SOLRAD 35.0380 -106.6221 1617 2016 to 2018 GHI, DNI, other
Bismarck, ND BIS SOLRAD 46.7718 -100.7596 503 2016 t0 2018  GHI, DNI, other
Hanford, CA HNX | SOLRAD 36.3136 -119.6316 73 2016 t0 2018 = GHI, DNI, other
Salt Lake City, UT  SLC = SOLRAD 40.7722 -111.9550 1288 2016102018  GHI, DNI, other
Seattle, WA SEA  SOLRAD 47.6869 -122.2567 20 2016 t0 2018 = GHI, DNI, other
Sterling, VA STE  SOLRAD 38.9767 -77.4869 85 2016 t0 2018  GHI, DNI, other

Figure 1 shows the locations of 15 candidate sites, whose data was explored in this

task. Table 1 lists the sites and provides additional site information.

Clear-sky model

The clear-sky model returns irradiance for a given geographical location and time when
clouds are absent. However, even in this condition the broadband irradiance at ground
level is influenced by other environmental conditions such as the aerosol content and
precipitable water, primarily, and atmosphere ozone, nitrogen dioxide and site pressure
secondarily.

The presence of aerosols and water in the atmosphere can be quantified through the
atmospheric turbidity. Several turbidity parameters have been introduced with the most
popular being the Linke turbidity factor. Many models have been developed to estimate
the clear-sky irradiance and comprehensive comparisons of some of the most popular
models can be found in Ineichen (2006); Gueymard (2012). In this work we used the
clear-sky model proposed by Ineichen and Perez (Ineichen and Perez, 2002), as it is
one of the best performing models, and one of the simplest. It requires as inputs the
solar elevation and the Linke turbidity. The solar elevation for a given latitude and
longitude is computed from the sun's orbital elements. The Linke turbidity is obtained
from the worldwide monthly averaged maps available at Solar Energy Services for
Professionals (2004 )3. Figure 2 compares the GHI and the clear-sky GHI obtained with
the Ineichen model for three days in diverse locations where the UCSD team has
instruments: Ewa Beach (left) and San Diego (right). This figure demonstrates that the
clear-sky model fits the GHI for cloudless periods very well.

3 Solar Energy Services for Professionals, 2004. Climate: Averages, Normals, and Typical Years.
http://www.soda-is.com/eng/services/climat_free_eng.php.
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Figure 2: GHI and clear-sky GHlI irradiance for a period of three days for Ewa Beach
(left) and San Diego (right).

Data variability

Using the clear-sky index, k; and kg, for GHI and DNI, respectively, we computed the
daily metrics to characterize the irradiance. In this step we computed the daily average

N
1
AVG(k,), = NZ ky; fork,; €Dayd
i=1

and the daily standard deviation

N
1
STD(k,), = m2|ku-AVG(k,)d|2 fork,; €Dayd
i=1

Where k; is k or kg. This procedure results in a list of pairs of (AVG(k;)4, STD(k;)4)
with as many elements as the number of days in the dataset. Figure 3 shows the
respective scatter density plots for three of the candidate sites: Folsom, CA (FOL),
Table Mountain, CO (TBL), and Seattle, WA (SEA).

These sites were selected since they represent cases of low, intermediate and large
irradiance variability. In the figure, lighter and larger dots indicate large concentrations
of (AVG(k;)4, STD(k;),) pairs. This data representation allows to identify the most
common daily behavior for GHI and DNI in these locations. For instance, the large
concentration of points near (AVG, STD) = (1,0) for Folsom, indicates that the irradiance
at this location is dominated by clear-sky days with low variability. This observation
applies to both GHI and DNI. The density plots for the other two locations show large
densities at lower levels of AVG and higher levels of STD, indicating much more
variability in the irradiance. In the case of DNI for Seattle (bottom-right panel in Fig. 2), it
is notable that the highest density occurs near (AVG, STD) = (0,0) which reveals that
DNI at this location is often and consistently close to 0. Given that it is not
straightforward to compare density plots from all the 15 sites, Figure 4 plots the average
AVG(k;),; and average STD(k;), for all locations. These figures condense the
information from the density plots into a single point. This figure allows to readily
distinguish between low and high variability sites.

8
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Figure 3: Plots of (AVG(k;)4, STD(k;),) for three locations in the initial dataset. From
top to bottom: Folsom, CA (FOL), Table Mountain, CO (TBL), and Seattle, WA (SEA).
The left column shows results for GHI and the right column the results for DNI. Lighter
and larger dots indicate large concentrations of (AVG(k;)4, STD(k;),) pairs.

One of the aspects emphasized by the FOA is the need to quantify the uncertainty in
irradiance and the onset, magnitude, and rate of ramps. Ramp characteristics depend
on the location’s weather patterns and are related to the variability analysis presented
above. To compare quantitatively the different sites, hourly ramps were computed as:
r(t) = k;(t + 1hr) — k;(t)
where k;(t) is the one-hour average of the clear-sky index in the interval [t — 1hr, t].
Using the clear-sky index in this equation limits ramps to deviations with respect to the
clear-sky irradiance and removes ramps due to deterministic variations in the solar
resource. This equation was applied to the 15 locations and two irradiance components.
Figure 5 shows the cumulative density function (CDF) for the ramp magnitude (the
absolute value of the equation above). The ramp CDFs for GHI and DNI are shown in
the left and right panels, respectively. These plots illustrate clearly that the presence of
large ramps varies from location to location. For instance, as the figure indicates, a
ramp higher than 0.375 (indicated by the vertical dashed line) has a probability of 0.02
(=1-0.98) for Folsom, CA (FOL) and 0.07 (=1-0.93) for Table Mountain, CO (TBL). As
expected, DNI shows large ramps more frequently, with the previous probabilities
increased to 0.04 and 0.12, respectively.
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Figure 4: Average for the pairs of (AVG(k;),, STD(k;),) for all the 15 locations. GHI
and DNI data are shown in the left and right panels, respectively.
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Figure 5: Cumulative density function for ramp distribution for GHI (left) and DNI (right).
Each location is identified by a different combination of line color and style.

Again, to facilitate comparisons, the information in Figure 5 is condensed into a single
number. In this case, a simple way to quantify the probability of the occurrence of large
ramps is by computing

1
81 ES 1 _f CDFI dT‘I
0

This value quantifies the area above the ramp magnitude CDF for each location. The
larger the value the higher the probability of large ramps. For this reason, this value is
denoted as ramp density. Applying this equation to GHI and DNI for all locations results
in Figure 6, in which the ramp density for DNI is plotted against the ramp density for GHI
for all locations. In this figure, points located towards the top-right corner indicated that
large ramps in DNI and GHI are frequent.
An additional, and simple way to assess the irradiance variability consists in studying
the persistence forecast. Here, GHI and DHI forecasts are produced according to

It +A) =k (t) X Is(t+A)
where A= {1,2,3,4,5,6} hours, and [ denotes the irradiance forecast (either GHI or
DNI). The forecast error is then analyzed in terms of bias:

10
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1o,
MBE, = NZI(t+A)— I(t + B)

and magnitude:

RMSE, = \[%ZUA(HA) — I(t+ )
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Figure 6: DNI ramp density versus GHI ramp density for all locations.
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Figure 7: RMSE vs MBE for hourly GHI forecasts 1 to 6 hours ahead of time for the 15

candidate sites. The annotations in the leftmost curve indicate the forecasting horizon.
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Figure 8: Same as Figure 7 but for DNI forecasts.

Pairs of (MBE,, RMSE,) are plotted in Figures 7 and 8 for GHI and DNI forecasts,

respectively. In these figures, deviations from the dashed gray vertical line indicate
forecast error bias. As expected, in all cases the error magnitude increases with
forecast horizon (A). On the other hand, the bias variation is not consistent across all 15
sites: some sites show a positive bias and others a negative bias with increasing A,
most likely due to existing biases in the clear-sky models for these locations.
Nevertheless, the variability characteristics seen above are imparted in the forecast
errors: locations with low variability such as FOL and HNX are clearly “easier” to
forecast (i.e., lower persistence forecast error) than locations with large irradiance
variability such as TBL and GWN. These results also demonstrate that there is a group
of four to six locations with very similar forecasting performances.

In this analysis, GHI and DNI for the 15 candidate sites were analyzed and several
quantitative metrics were computed for each location:

1. Cluster centers for (AVG(k,;)4, STD(k;),) pairs.

2. Ramp density

3. MBE, and RMSE,.
Based on these values, 6 sites are selected out of the 15 locations available. The goal
in selecting a limited number of sites is to create a dataset of climatologically distinct
locations based on the three values listed above. The six sites are listed in Table 2.
They are also marked in Fig. 1 by a green marker. The development of HAIMOS was
done with data from these locations, primarily. The ground data described above is
augmented with publicly available Numerical Weather Prediction (NWP) forecasts
produced and published by the National Centers for Environmental Prediction (NCEP)*.

4 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-
system-nam

12



DE-EE0008216
University of California, San Diego

For this purpose, it was selected the North American Mesoscale Forecast System
(NAM) model due to our previous knowledge of this forecasting product. We extracted

GHI and cloud cover forecasts for the six selected locations identified above. Figure 9

compares the NAM forecasts against the ground data for three of the six locations. The
NAM forecasts for all the six locations are available in the project website. Other

forecast outputs, such as wind speeds and barometric pressure, for instance, are also

of interest and available to the project team.

Table 2: List of selected sites and the respective selection metrics. All values are
unitless except for MBE, and RMSE, which are given in Wm-.

GHI DNI GHI DNI GHI DNI GHI DNI GHI DNI
Large TBL 0.78 0.60 0.23 0.29 0.14 0.17 [3, 29] [18, 131] [123, 227] [213, 418]
Large PSU 0.61 0.37 0.21 0.23 0.13 0.14 | [-47,-7] [-28, -9] [104, 205] [165, 315]
Medium BON 0.66 0.46 0.20 0.22 0.12 0.13 | [-37, -6] [-0, 7] [93, 189] [160, 313]
Medium SXF 0.71 0.49 0.18 0.22 0.12 0.13 | [-39, -5] [-15, -2] [88, 193] [163, 318]
Low FOL 0.78 0.65 0.13 0.16 0.09 0.10 | [-20, -2] [2,12] [64, 132] [130, 247]
Low HNX 0.80 0.66 0.15 0.18 0.10 0.11 | [-53,-8] | [-40, -12] [66, 158] [131, 251]
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Figure 9: NAM GHI forecasts plotted against ground data for six days in February 2017.
The figure shows the comparison for three of the six selected locations (TBL, BON, and

HNX).




Improvement of cloud cover identification
For cloud identification, we make use of GOES-16 irradiance products. Initially we
explored the longwave channels 7-16 (wavelength > 4 ym). The longwave channels are
favored over shortwave channels for the following reasons:
the longwave irradiance in the atmosphere can be approximated as diffuse, so
there is no need to consider the satellite view angles, solar angles and relative
angles between the satellite, the sun and the ground stations.
because of the diffuse nature of longwave irradiance, a two-flux radiative model
(Li et. al. 2018) can be used to estimate spectral longwave irradiance in the
entire atmosphere at minimal computation cost (takes less than 1 minute to run
with a spectral resolution of 0.1 cm").
most surfaces (grassland, desert, ocean) can be approximated as black surface
in the longwave spectrum, while their shortwave albedo varies.
the outgoing shortwave irradiance measures the albedo of the atmosphere-Earth
system; therefore, cloud identification becomes hard to distinguish from highly

reflective snow/ice.
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the outgoing longwave irradiance also provides information about cloud top
temperature (i.e. cloud location) while outgoing shortwave irradiance is
independent of cloud temperature.
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Figure 10: The effects of changing the model parameters on the spectral OLR [W m
cm] for (a)--(b) clear-sky conditions (COD = 0) and (c)--(d) cloudy conditions (COD > 0).
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Figure 10 plots modeled Outgoing Longwave Radiation (OLR) responses with surface
temperature, relative humidity, cloud optical depth at 497.5 nm (COD) and cloud base
height (CBH). For all plots, the location and bandwidth of the 10 longwave Advanced
Baseline Imager (ABI) channels are highlighted, with inset plots added to better show
the effects on the spectral range that contains channel 7 (2300--2700 cm™). Also, the
spectral OLR is shown with a resolution of 10 cm for improved readability, whereas the
results in the rest of the study are based on 0.1 cm™.

The black dashed line in each subplot shows the blackbody radiation predicted by
Planck's distribution at T = 294 K, the surface temperature of the Air Force Geophysics
Laboratory (AFGL) midlatitude summer profile.

The figure also shows

a) The effect of changing the surface temperature by AT while keeping @ fixed at
50%.

b) The effect of varying @, while keeping T fixed at 294 K (AT = 0 K).

c) The effect of varying the COD of a cloud layer (base height: 2.72 km, thickness:
0.5 km, cloud average temperature: 279 K), while keeping T and @ fixed at 294 K
(AT =0 K) and 50%, respectively.

d) The effect of the varying the cloud base height (CBH) of a single cloud layer with
COD =1.0, T =294 K, and @ = 50%. Increasing the CBH is equivalent to
decreasing the cloud temperature from ~289 K (CBH = 1 km) to ~231 K (CBH =
10 km) for the AFGL midlatitude summer profile.
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Figure 11: Accuracy of cloud detection of our method and CIMSS cloud mask over 7
SURFRAD stations.

Using GOES-R longwave ABI irradiance per channel, together with the measurement of
local air temperature and relative humidity and the radiative model, the cloud optical
depth and base height per pixel can be estimated. The pixel is deemed ‘clear’ if the
normalized ABI irradiance in channels {11, 13, 14, 15} are within 5% of modeled clear
sky OLR. If local irradiance measurements are available, clear sky periods are
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identified by analyzing GHI and DNI time series, as detailed in (Inman et al. (2015)).
Figure 11 shows the accuracy of our satellite-model clear sky detection for seven
SURFRAD stations over the entire year of 2018. The ‘ground truth’ clear sky is derived
by GHI and DNI time series analysis. For comparison, the accuracy of clear sky
detection from the Cooperative Institute for Meteorological Satellite Studies (CIMSS)
cloud mask® are plotted in Figure 11. The accuracy is defined as:

(# of correctly identified as clear + # of correctly identified as cloudy

A =
ccuracy # of data points

For CIMSS, data from March 12th to April 02th, 2019 are used. For 6 out of 7 stations,
our method outperforms CIMSS cloud mask. Note that CIMSS has no data for station
FPK.

Improvement of cloud optical depth estimation

Initially we used all 10 longwave ABI channels to select optimal pairs of (COD, CBH).
With further analysis, we found that channels 8, 9, 10 do not respond to COD variation,
therefore are used to select CBH (see Figure 10). Thus, the COD and CBH are now
selected in a two-step manner: (i) selects CBH based on channels {8, 9, 10}; (ii) selects
COD using channels {7, 11, 13-15} based on the CBH from (i).
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Figure 12: Comparison of DLW prediction error during daytime cloudy periods using
two variations of the cloudy property estimation method. Method A: estimate COD and
CBH at the same time using all ten LW channels. Method B: first estimate CBH based

> http://cimss.ssec.wisc.edu/clavrx/
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on channels 8--10, then use the estimated CBH value with channels 7, 11, and 13--15

to estimate COD. Positive MBE values correspond to the model over-predicting DLW.
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Figure 13: Comparison of DLW prediction error during nighttime without a temperature
inversion (Method A) and with a temperature inversion at 1 km (Method B).

Table 3: Summary statistics for the DLW validation during (1) daytime clear, (2) daytime
cloudy, and (3) nighttime all-sky conditions. The error metrics are computed against
ground measurements of DLW from Eppley PIR instruments, which have measurement
uncertainty of £5 W m2. For the daytime cloudy and nighttime all-sky cases, the DLW is
predicted using COD and CBH values estimated solely from the OLR, with no model
output statistics or other corrections applied. Negative MBE values correspond to the
model under-predicting DLW, either due to a lower value for COD, a higher value for
CBH or a combination of the two.

MAE [W m~?] MBE [W m~2] RMSE [W m~?]
Site Clear Cloudy Night Clear Cloudy Night Clear Cloudy Night
BON 8.4 12.8 22.2 -5.8 1.7 13.2 10.0 17.1 29.2
DRA 14.7 15.2 12.1 11.1 9.3 -2.4 19.7 20.8 15.4
FPK 6.5 11.5 19.8 -2.9 2.2 13.7 8.2 16.2 26.5
GWN 6.6 12.8 21.8 -3.4 6.6 16.8 7.7 16.8 29.5
PSU 9.5 14.4 26.5 -9.0 2.5 21.0 11.0 19.3 33.1
SXF 7.6 12.8 23.7 -5.4 1.4 16.5 9.1 17.9 31.8
TBL 16.1 14.5 18.2 -16.0 -8.0 2.0 17.6 17.8 23.8
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Figure 12 shows that by applying the two-step selection methods, the (COD, CBH) pairs
generate smaller error when estimating surface downwelling irradiance (DLW) for all
seven SURFRAD stations, indicating more accurate COD and CBH estimations.

To improve solar irradiance forecasts in the early morning, cloud properties before dawn
are necessary. Therefore, we expand our method of COD and CBH selection to the
nighttime. A temperature profile with inversion at 1 km is used to during the nighttime.
Figure 13 shows that by applying the nighttime inversion, the method is more accurately
estimating downwelling longwave (DLW) radiation during the night, indicating more
accurate COD and CBH estimations.

The DLW estimation errors (as an indicator of the accuracy of COD and CBH
estimations) for daytime clear sky periods, daytime cloudy sky periods, daytime all sky
periods (without prior knowledge of knowing whether the sky is clear) and nighttime all
sky periods are shown in Table 3. The relative error is smaller than 10% for all cases.

Set up HAIMOS framework

A key aspect in improving the forecast skill and especially the prediction during large
variability periods resides in the selection of the proper inputs available in the search
space. In proposal we tested input selection based on techniques such as clustering
analysis and time series correlation analysis.

The input data available to HAIMOS was collected from UCSD resources, CIFP,
irradiance networks (SURFRAD and SOLRAD), and other publicly available sources.

Table 4: Data used in for HAIMOS input selection

Data Description

Measured data | Irradiance data measured

Modeled Satellite-derived irradiance data for the target locations and

irradiance neighboring nodes (49 in total)

CIF; Forecasted irradiance from the CIFP. Several forecasts are
available, denoted by the subscript /i, depending on data used (e.g.,
HRRR).

NAM GHI from the NAM model NAM

NAMcc Total Cloud cover from NWP model NAM

The data-driven nature on HAIMOS explores all these inputs to obtain a more accurate
irradiance forecast with focus on periods of large ramps and variability.

Clustering:

HAIMOS seeks to optimize the input selection depending on the current and future
irradiance variability. Thus, clusters are formed based on the average and standard
deviation of the clear-sky index k; at the forecast issuing time t, and the average and
standard deviation of the clear-sky index at the future time t + At. Values at time t are
defined using the measured data. At time t + At, there are several options from the data
listed in Table 4. In this work, we opted to used NAM forecast given that these are
publicly available.
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Using this strategy, three clusters are defined. In general, the resulting three clusters
are characterized by the following weather conditions: (i) cloudy periods (low
irradiance), (2) partially cloudy periods (medium irradiance), and (iii) clear-sky (high
irradiance).

HAIMOS input selection
The HAIMOS optimization algorithm selects the best set of inputs for each cluster and
forecast horizon with the goal to minimize both the forecasting error bias and variance.

The algorithm first tests adding all available inputs, then ranks the input addition in
terms of bias-variance metrics (MAE, MBE, BMSE). The best input is the one that ranks
highest in all the metrics. The algorithm proceeds then to test the addition of the
remaining, unselected inputs until no improvements are observed in the error metrics.

Results

In this section we present a representative subset of the results obtained in this task for
GHI forecasting. The results shown below correspond to the locations of Bondville
(BON) and Penn. State University (PSU). These locations are characterized by medium
and large irradiance variability, respectively, as documented previously. Furthermore,
this task concerns the anticipation of periods of large variability, thus it is focused on
forecast horizons ranging from 1 to 5 hours ahead of time.

Figures 14 and 15 compare HAIMOS normalized MBE and RMSE against the
competing models. The MAE comparison and improvement is very similar to RMSE,
thus omitted from this report. Besides CIF and NAM forecasts we also include in the
comparison the persistence model (Pers.). The bottom panel in the figures indicates
HAIMOS performance relative to the best of the other models for a given horizon
(indicated in the x-axis). In general, HAIMOS reduces bias and variance errors, the only
exception happens for MBE, where at times HAIMOS is worse than one or more
competing models (see middle figure in the bottom panels). This issue impacts little the
forecast accuracy since the bias error is low, as evidenced by the figures in the top
panels.

Also, as expected, forecasts error metrics for all models are higher for PSU than BON.
A clear indication of the higher level of irradiance variability at this location.
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Figure 14: Normalized MBE (left), and RMSE (right) for the validation testing set for
BON as a function of the forecasting horizon. HAIMOS forecast is in black and
competing forecasts are in color. The top panel shown the error metric and the bottom
panel shows HAIMOS improvement relative for the best competing model the horizon in
the x-axis. Error metrics are normalized by the average irradiance in the validation set.
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Figure 15: Same as Fig. 14 but for PSU.

Figures 16 and 17 indicate the inputs selected for the HAIMOS used to obtain the
results shown above, for BON and PSU, respectively. For each forecast horizon
identified by the label on the left-hand side the figure indicate which inputs are selected
per cluster. The background colors indicate the origin of the inputs, and the color of
selected inputs varies from black (most important) to white (least important).
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Figure 16: Input selection as a function of cluster and forecasting horizon for BON. The
horizon is indicated in the left. The colored background indicates the provenance of the
input, and the gray scaled rectangles indicate that the input was selected by HAIMOS.
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Darker gray color indicates higher importance, form black (most important) to white
(least important).
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Figure 17: Same as Fig. 16 but for PSU.
A few insights can be discerned from these results:
1. As time horizons increase the importance of measured data decreases.

2. From the CIFP forecasts CIF1 is clearly the most important and reliable input (it's
also the one with the lowest error as shown in figures 14 and 15).

3. Spatially resolved data (Satellite-derived GHI) becomes more important for
longer horizons.

4. For locations with higher irradiance variability (PSU in this case — Fig. 17) the
satellite-derived GHI is selected more often than for BON.

5. There is no obvious pattern in the input selection with respect to the clusters.

These insights and the input selection algorithm were applied in the subsequent
development of HAIMOS. One area that requires further study is the effect of clustering
in the input selection. The fact that no patterns emerge in the input selection as a
function the data variability associated to the clusters, suggest that new clustering
approaches could lead to better forecasts.

As mentioned above, in the following iterations we augmented the input search space
with new data. These will include data from subtasks 3.1 and 3.2 as reported above, as
well as other data such as WRF-Solar (subtask 3.3).

Training and optimization of machine-learning models for HAIMOS

In this task we identified the best type of machine-learning (ML) approximator to map
the input data into the target irradiance data. We explored mainly stochastic models as
they offer many advantages over purely deterministic models. Algorithms such as deep
machine learning, of which artificial neural networks (ANN) are a subset, k-nearest-
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neighbors (kNN), support vector regression (SVR) and non-linear least squares were
included in the pool of model candidates.

Initially, these two subtasks were addressed separately. In that strategy, input selection
and ML algorithm selection are done independently and sequentially. If input selection is
done in the first place, that requires the use of a reference ML algorithm (kNN in this
case), which may result in an input selection optimized for that reference algorithm.
Thus, we opted to tackle the two subtasks simultaneously via the use of a genetic
algorithm (GA). The GA is also used to optimize the clustering (number of clusters and
clustering variables).

The GA minimizes the problem:

N

arg)[nin %Z(Ii—i(x)i)2

i=1

where [; and T(x)i denote measured and forecasted irradiance for a training data set,
respectively. The argument x is a vector that describes a specific HAIMOS instance.
The GA operates over x to return the lowest forecasting error as indicated in the
previous equation. The elements of x control:

1. The variables used in the clustering. The pool of variables used to define clusters
include all the data collected in subtask 4.1. GA chooses which of those to
include in the clustering along with the number of clusters.

2. The ML algorithm to be used to produce 1(x)..

Once clusters and ML algorithm are defined, the input selection is performed with a
greedy search algorithm. The algorithm is initialized by producing a forecast for all the
available inputs, separately. Then ranks the inputs in terms of bias-variance metrics
(RMSE, MBE). The best input is the one that ranks highest in all the metrics. The
algorithm proceeds then to test the addition of the remaining, unselected inputs until no
improvements are observed in the error metrics.

Ground Cluster 1
telemetry

Cluster 2
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Figure 18: Schematic o the optimization framework used in this work. The blank
ellipses in the figure indicate that additional clusters may be defined.

Figure 18 illustrate the GA optimization. The blue arrows indicate the input selection for
clustering from the variables shown in the left (grouped by data origin). Then several
clusters are produced and for each cluster the GA selects a specific ML algorithm
(indicated in green in Fig. 18). The greedy input selection then selects which variables
to include, indicated by the green and read arrows in this illustration.

The algorithm outlined above is deployed to every location for all the horizons and for
GHI and DNI separately. Figure 19 shows a typical convergence plot for a GA run, in
this case the run for GHI from TBL for the 1-hour horizon.
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Figure 19: Convergence of the GA optimization for the HAIMOS GHI model for TBL for
the 1-hour horizon and for the first 11 generations. The scatter dots represent all
HAIMOS configurations analyzed, the dashed line the average fitness (RMSE) across a
generation and the solid line the best fithess for the respective generation.

Results for HAIMOS optimization using GA

The framework described above was applied to data from the six selected
locations with hourly data from Jan 2016 to June 2017 (1.5 years). The forecasting
accuracy is computed with an independent testing data set that ranges from July 2017
to Dec 2018. HAIMOS' performance is compared against a baseline smart persistence
model

I (¢ + AL) = ko (8) Ls(t + Ab)

where k; is the clear-sky index at forecasting issuing time t, I.;(t + At) is the clear sky
irradiance (DNI or GHI) at time (t + At) and I, the resulting forecasted value. The
forecasting performance is evaluated in terms of bulk error metrics
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RMSE (1)

where I denotes the average irradiance. The error metrics are computed for daytime
only, defined in terms of solar zenith angle 6,(t + At) < 85°.
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Figure 20: nMBE and forecast skill for GHI (top) and DNI (bottom) for the six locations
and forecast horizons ranging from 1 to 5 hours. The minimum and maximum skill
values for all locations and horizons are indicated by the vertical dashed lines. The
average skill across location and horizon is indicated by the vertical solid line.
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Figure 20 summarizes the forecast nMBE and s for GHI (top) and DNI (bottom). Results
are shown for the six locations and five forecast horizons At = {1,2,3,4,5} hours. The
pairs of (nMBE, s) for each location and different At values are grouped by the shaded
patches. The horizons At are identified explicitly for TBL and BON by the numeral 1 to
5. For clarity these annotations are omitted for other locations, but their placement
would follow the same trend as shown for BON and TBL. The vertical dashed lines
indicate the minimum and maximum skills attained. The vertical solid line indicates the
average skill across all locations and horizons.

Given that this project focuses on improving forecasting for periods of larger irradiance
variability, the same error metrics are computed for a data subset representative of
cloudy weather. For this analysis, we consider the simple filter

cloudy if k.(t) < 0.9 and k.(t + At) < 0.9
clear otherwise

Figure 21 shows the resulting error metric after removing all clear periods from the
testing dataset.
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Figure 21: Same as Fig. 20 but for cloudy periods.

The locations listed in the figures’ legend are sorted from top to bottom according to the
irradiance variability, with FOL as the lowest and TBL the highest. The variability
analysis is based on the ground data, and it was presented previously.

From figures we can conclude the following general aspects about the HAIMOS
forecasts:

e On average HAIMOS can achieve a forecasting skill ~30% for both GHI and DNI
across different climate zones and forecasting horizons. For GHI, the skill values
range from just under 20% for 1-hour forecasts to over 40% for the 4- and 5-hour
ahead forecasts. In the case of DNI the larger skills are near 40%.

e As expected, the forecasting skill increases when considering only cloudy
periods.
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e The small forecasting bias increases two-fold or more when considering only
cloudy periods.

e The lowest skills are obtained for the shortest horizons. This is expected since
those are the horizons for which smart persistence works best, and for which
other types of telemetry not used in this work are best suited

e HAIMOS prediction skill is not strongly dependent on the level of variability
specific to each location. This is indicated by the overlapping of the projections of
the colored patches upon the x-axis.

e For cloudy periods (Fig. 21), HAIMOS forecasts tend to overpredict the irradiance
(denoted by a negative nMBE). This fact is more pronounced in the case of DNI.

e The impact of variability is more noticeable on the forecast bias. Figure 21 shows
that, in general, forecasting for locations with higher variability (PSU and TBL) is
more biased than the forecasting for other locations.

The figures also allow for some additional location-dependent findings:

e HAIMOS’ GHI forecasting skill for HNX (a location with low irradiance variability)
covers a wider range, almost twice as wide as the range of other locations. The
same does not occur in the case of the DNI forecasts.

e Bias for TBL is much larger than the bias for any other location: twice as much
for GHI and up to three times for DNI.

Developing adaptive protocols for HAIMOS
In this task we developed adaptive protocols for HAIMOS as a function of the forecast
goal (GHI or DNI) and the forecast horizon. We tested two approaches in this task:

1. Continuous training in which the ML models identified by the GA optimization are
trained daily using data from the training set plus all new data from the testing
dataset (up to the updating time).

2. Analog training in which the ML models are retrained as in 1, however, the
training is preceded by a data selection process that keeps only data in the
historical record that is analogous to current data.

From the two approaches it was concluded that the first one yielded more robust results
given that the conditions for the preceding day(s) are typically very well correlated with
the present day. The results are shown in Fig. 22 for cloudy periods only.
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Figure 22: nMBE and forecast skill for GHI (top) and DNI (bottom) for the six locations

and forecast horizons ranging from 1 to 5 hours. These results are for the adaptive

HAIMOS forecasts for cloudy periods. For both DNI and GHI, the mean value of the

forecast skills is on or above 30%, a result never reported before for these time horizons

and for a wide range of solar microclimates.

The figure shows the non-adaptive HAIMOS results (the ones from Fig. 21) as light-
colored dots. The new skill and nMBE are shown as darker dots. The (non-adaptive,
adaptive) pairs are connected by a light line. Pairs that show a trajectory towards the
ideal point (0,100), that is 0 nMBE and 100% skill, indicate that the adaptive algorithm
improved the HAIMOS predictions. The annotations in the top-left corner of the figures
indicate the change (in percentage) over the non-adaptive results for each location
averaged across all forecast horizons. A positive value indicates an improvement
(higher skill or lower nMBE). Negative values indicate worse predictions with respect to
those metrics.

From the two plots it is possible to draw the following conclusions:

e The adaptive framework implemented was more successful in improving the DNI
forecasts than GHI forecasts. For DNI, skills improved between 0.1% for BON to
8.5% for HNX; nMBE shows changes between -50% and 26%. Note that relative
changes for nMBE can show large numbers since the denominator is close to 0.

e For GHI the adaptive HAIMOS shows improvements in both metrics for TBL
(4.3% increase in skill and 11.6% reduction in bias). For SXF it results in worse
skill and nMBE, although by small margins. For the other locations it improves
one of the metrics at the expense of the other. For example, for BON, bias
improved by 20% but skill is also reduced by 0.8%.

e The largest improvement is observed for TBL in terms of bias as denoted by
large positive displacement in the y-axis.
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Optimization of HAIMOS framework
Virtually all solar forecasting models are optimized to minimize some bulk error metric
for the irradiance over a large training set. That is a poor approach when optimizing
models to predict ramps since in a large training set large ramps comprise a very small
subset and have little weight in the fitness of the forecast model. For this reason, we will
test in this project model optimizations subject to new objective functions that penalize
the model’s fitness as function of ramps. Thus, we advanced this task by:

1. Setting up the framework for ramp forecasting evaluation.

2. Evaluating the ramp error for HAIMOS and benchmarking models.
In this task we follow the recommendation for ramp forecasting evaluation set up by the
team in Topic Area 18 where irradiance ramps are defined as
I(t +nAt) —I1(t — (n—1)At)

At

where [ is the measured irradiance, t the forecast issuing time and nAt the forecasting
horizon, given in multiples of the forecasting resolution (At). The predicted ramps are
computed the same way but replacing I by I (the forecasted irradiance). Figure 23
shows measured and forecasted ramps in a graphical form.

r(t,n,At) =

Forecasted ramp

Forecasted irradiance
Measured ramp

Irradiance

Measured irradiance

I
t l t + 5At
t +4At
Figure 23: Irradiance ramp definitions.

We assessed the HAIMOS forecasting ability in predicting ramps and compared it

against the smart persistence model. That was done by computing the predicted

HAIMOS ramps:

Iyaimos(t + nAt) — Iyamos(t — (n — 1)At)
At

Tuaimos =

and smart persistence (SP) ramps
Lp(t + nAt) — Ip(t — (n— 1)At)
At

The models are then evaluated in terms of bias and variance by computing the MBE
and RMSE, respectively. Finally, HAIMOS forecasts are compared to the SP model via
forecasting skill for ramps

Tsp =

_ RMSE(r, rya1m0s)
RMSE(r, rgp)

® https://solarforecastarbiter.org/metrics/
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The results for this analysis are shown in Fig. 24 for GHI (left) and DNI (right) ramps.
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Figure 24: MBE and forecast skill for GHI (left) and DNI (right) ramps for five locations
and forecast horizons ranging from 1 to 5 hours. The minimum and maximum skill
values for all locations and horizons are indicated by the vertical dashed lines. The
average skill across location and horizon is indicated by the vertical solid line.

From these results it's possible to observe that:

e Forecast skills vary between 10 and 20% for all locations studied.

e Higher skills are observed for shorter horizons. This behavior is the opposite of
what was observed for the irradiance forecast, as expected given that the
reference forecast for irradiance (persistence) decays faster for longer horizons.

e Bias across locations varies as expected with larger errors for locations with
more variable weather patterns (e.g. PSU and TBL).

The accuracy in detecting ramps can also be measured using event detection metrics
such as probability of detection (POD), false alarm ration (FAR), etc.

In this task we ensembled HAIMOS point forecasts to create prediction intervals for GHI
and DNI forecasts. The quality of the prediction intervals is measured via the Prediction
Interval Normalized Averaged Width (PINAW) and the Probability Interval Coverage
Probability (PICP). In this task we aim to achieve PICP > 90% and PINAW<20% for all
the forecast horizons and target locations. These two metrics can be computed from the
predicted and measured data (GHI or DNI) as

PINAW = 1iﬁ i
ImaXN =1 ' '
and
N
PICP = lz
=N &
i=1
where

_ {1 |fIl € [Ei' ﬁl]
& =

0 otherwise
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and [L;, U;] is the predicted Prediction Interval, I; is the measured irradiance (GHI or
DNI), Ihax the maximum measured irradiance, and N is the number of forecast
instances in the validation dataset.

The results for the probabilistic HAIMOS forecasts are shown in Fig. 25 for horizons 1 to
5 hours and all locations. These results show that PICP and PINAW are clearly related
with the variability of the target location and variable. Also, given that DNI is much more
variable than GHI, it's harder to obtain low PINAW and large PICP for this variable.

35, .. GHI 50 - DNI
35
4 5
30 N ,i’ 7‘3 N % ,
L % 40 N
\\\,\ — R 5
\ 2 o N3
W 230 N
= — JHNX .,
\ g BON \
: = 207 sxr
PSU
10 TBL
~~~~~~~~~~~ datal
data2
L 1 L ) O L 1 L L I
70 80 90 100 50 60 70 80 90 100
PICP [%] PICP [%]

Figure 25: Irradiance (GHI and DNI) probabilistic forecast PINAW vs PICP for all
locations and horizons from 1 to 5 h. Values computed using the validation dataset
(2018). Models trained with data from 2017. Forecasts lower and upper bounds
computed using a KNN model that uses as features the best set of inputs for each
location and horizon. Set of inputs are identified by HAIMOS as shown previously. Note
that values for PINAW and PICP are comparable to the best values found for short-term
forecasts based on sky imaging (Chu et al., 2015, and Chu and Coimbra, 2017. The
target values for ramps should be adjusted to reflect the fact that 80-90% PICP for GHI
and 65-90% PICP for DNI are likely to be best targeting.

New-generation cloud forecasting tools

GOES-16 high-resolution cloud cover identification

In this task we explored the potential of the CNN-derived cloud mask model to
generalize to new locations and test the advantages of combining locations for training.
Data was processed and partitioned. The processing allowed classification of clear and
cloudy based on the model from Reno and Hansen (2016) with a 20-min sliding window
on 5-min resampled data. This was shown to produce similar classification metrics
among the 12 locations and, when evaluated against the ABI cloud mask, produced
accuracy metrics matching those reported in the data product technical document
(Heidinger, A. and Straka (2012)). The repartitioning provided three distinct sets from
the data: training, validation, and test. The partition was made randomly on dates, first
at 80% training and 20% test from the full set of post-processed data. Then the training
set was further partitioned at 85% training and 15% validation. The validation set was
used for model tuning, while all model evaluation was performed using the test set.
Results from the CNN cloud mask (CCM) are compared to the ABI cloud mask (ACM) in
Table 5.
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TPR=7p N
(TP X TN) — (FP x FN)

McC =
J(@TP +FP)(TP + FN)(TN + FP)(TN + FN)

Table 5: Numerical values of the ACM and CCM TPR and MCC scores. For each CCM
score, a standard deviation from 10 iterations is given.

TPR MCC
Location ACM CCM ACM CCM

BON 0.800 0.880 £0.023 0.390 0.710 £ 0.023
DRA 0.899 0.920 £ 0.007 0.591 0.751 £ 0.007
FPK 0.920 0910 £ 0.015 0.631 0.723 £ 0.015
GWN 0.994 0.929 £ 0.009 0.537 0.721 £ 0.009
PSU 0.811 0946 £0.014 0.517 0.707 £ 0.014
SXF 0.808 0.868 £ 0.051 0.560 0.685 4 0.051
TBL 0.832 0916 £0.013 0.596 0.768 + 0.013
ABQ 0.940 0.895+£0.012 0.655 0.800 £ 0.012
BIS 0.871 0.904 £0.018 0.515 0.666 + 0.018
HNX 0.951 0.945 £0.015 0.636 0.735 &= 0.015
SLC 0.959 0.854 £0.022 0.661 0.742 £ 0.022
STE 0.862 0.889 £ 0.027 0.474 0.639 £ 0.027
AVG 0.887 0.905 £0.076 0.564 0.721 £+ 0.058

Table 5 also shows true positivity rate (TPR) and Matthews correlation coefficient
(MCC) scores per location for the ACM and CCM. Both terms are defined below in
terms of confusion matrix components: true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). The CCM outperforms the ACM in every location
when evaluated by the MCC score, which is the less biased of the two for binary
classification of unbalanced data classes. The average percent improvement in MCC is
30.0%.

TPR describes the fraction of correctly identified positive cases, clear sky states in this
case, from total positive samples in the test set. In TPR, the CCM shows 2.47%
improvement across locations, or roughly comparable performance. Confusion matrix
metrics provide a more complete picture of model performance by capturing each
combination of true and false positives or negatives.

While some model tuning was completed to optimize convolutional layer width, learning
rate, fully connected (linear) layers, and dropout rate, a full hyperparameter optimization
was outside the scope of this project, which aims to study the potential of a CCM and its
ability to generalize to new locations. While it may certainly be possible to further
optimize model hyperparameters, we determined the performance achieved here
represents sufficient skill, without needing to specify different hyperparameter sets for
different locations. For reference, desert locations like Albuguerque and Desert Rock
tend to achieve higher performance with deeper and more complex networks, while
locations with more varied cloud conditions like Bondville and Penn State saw
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diminishing or even negative returns on increasing complexity. The basic structure of
the CNN is described in Table 6 and is built on two convolutional-pooling layers plus two
fully connected layers with use of batch normalization and drop out to improve
regularization.

Table 6: CNN architecture used in this project.

Block Layer Parameter Output size
[size, stride]
or weight
input 11x11x16
conv-pool Conv2d [3,1] I1x11x12
BatchNorm2d 11x11x12
ReLLU 11x11x12
MaxPool2d [1,1] I1x11x12
conv-pool Conv2d [3,1] 11x11x24
BatchNorm2d 11x11x24
RelLU 11x11x24
MaxPool2d [2,0] 5x5x24
reshape
FC1 BatchNorm1d 600
dropout 0.1 600
Linear 256
ReLU 256
FC2 BatchNorm1d 256
dropout 0.1 256
Linear 2
0.5
| B ACM [ CCM

FPR
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Figure 26: Comparison of confusion matrix values of the ACM and CCM per location.
The CCM shows slight improvement in TPR and FNR and significant improvement in
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FPR and TNR. The CCM maximizes performance in all four categories of the confusion
matrix, rather than only maximizing accuracy in clear sky detection.
Figure 26 shows the confusion matrix metrics per location. For perfect performance,
TPR and TNR should be unity while FPR and FNR are zero. Error bars on the CCM
values represent standard deviation in evaluation of 10 identically trained CCMs.
In Figure 26 we see that CCM shows comparable to slight improvement in TPR and
FNR with significant improvement in FPR and TNR across locations. This demonstrates
that the CCM improves correct detection of cloudy states, which contributes to overall
performance improvement without detrimental impact to correct detection of clear
states.
Transfer learning and the improvement potential of training on multiple locations are
explored through two scenarios. The CCM is trained on either (1) one source location or
(2) a combination of two source locations, then applied to a new target location.
Performance scores and other metrics are indexed to identify the transfer learning
scenario. Case (1) is identified by the subscript i’k where the model is trained on data
from the source location (/) and applied to data from a target location (k), where i # k.
Case (2) is denoted by ij:k where i # j # k.
Results show that transfer learning performance is asymmetric. In general, mccix or the
MCC score of a CCM trained on i and applied to k will show better performance if the
mean value of ABI channel 1 is greater in the source location than in the target location
and if the standard deviation of ABI channel 1 is smaller in the source location than in
the target location. To put this more succinctly: mccik > mcck; when pi > ux and gi < ok.
For each location, a set of 10,000 samples was selected, uniformly spaced throughout
the training set. Per channel, each 11x11 pixel image was reduced to an average value.
A second average and a standard deviation was then calculated from the sample set.
From these per channel mean and standard deviation values, Pearson correlation
coefficients were calculated with respect to the baseline MCC score, mcci;, resulting in
an evaluation of the predictive potential of each channel. Channel 1 had the highest
positive correlation coefficient at 0.740. Subsequent analysis thus used channel 1 mean
and standard deviation to characterize closeness of input data characteristics between
source and target locations. Channels 2 and 3 also showed high positive correlation
with coefficients of 0.734 and 0.714, respectively. This suggests, similar results could be
shown with respect to channels 2 and 3.
As noted before, transfer learning shows significant asymmetry, exemplified in Figure
27 for i:k models and in Figure 28 for jj:k models. The y values on the x-axis capture a
percent difference in channel 1 means between the source and target location, as:

HMichl — HMk,chl

Xik,chl =
Hk. chl
Oi,chl — Ok,chl

Pik,chl =
Ok,chl
Similarly, the metric ¢ is introduced on the color bar to show percent differences in
standard deviation in channel 1. The non-uniform color mapping is meant to highlight
regions of interest, namely standard deviations less than and greater than 10% apart in
both the positive and negative directions.
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The (a) subplots show MCC scores, with standard deviations from sets of 10 models
shown by vertical error bars. The (b) subplots show a percent penalty score that can be
interpreted as the performance percentage lost by using a transfer learning model, i:k or

ij:k, relative to a local model like k:k.
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Figure 27: Showing asymmetry of model transferability. (a) MCC scores from ik
models and (b) Penalty of i:k models in comparison to k:k models.
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Figure 28: Same as figure 27 but for jj:k models.

HAIMOS refinement, ingestion of new-generation cloud data

In this project, we also explored merging GOES images and HAIMOS data. The model
implemented is described in Fig. 29. The HAIMOS data produced previously is
formatted into a 11x11 matrix and concatenated with the 11x11 GOES images.

The model was trained 10 times for each location and forecast horizons in order to
account for the random initialization of the CNNs. Figure 30 compares the forecasting
accuracy for the validation set, in terms of RMSE, for all locations and horizons, for the
models without GOES data (dashed lines) against models with GOES data (solid lines
and shaded band). The solid lines indicate the average RMSE for the 10 CNNs. The
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shaded band indicates the minimum and maximum RMSE obtained out of those 10
models. By merging HAIMOS data obtained from ground stations and CIF forecasts
with GOES data RMSE is consistently reduced.

GOES + HAIMOS Convolutional Neural Forecasting/Modeling
data Network of Solar Irradiance = HAIMOS data reshaped
into 11x11 matrices

Measured
Convolution
Pooling \

Convolution

= GOES images centered over
target location

Prediction

Pooling

Irradiance

Fully Connected \L/\

Figure 29: CNN model that ingest HAIMOS data and GOES imagery.

The model improvement, in terms of RMSE reduction, is shown in Fig. 31. As in figure
30 the solid line shows the average improvement and the band the minimum and
maximum values. The figure indicates that models for HNX show the largest (horizon =
4 hours) and lowest improvement (horizon = 5 hours), as well as a more unstable
evolution across horizons.

In all cases the models are improved with RMSE reductions ranging from 2% to 18%.
On average this task reduced RMSE by ~7%.
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Figure 30: RMSE for GHI forecasting as a function of the horizon. The solid lines
represent results that merge GOES data and HAIMOS. The dashed lines represent
HAIMOS results without GOES data.

The results in Figs. 30 and 31 were obtained with data for 2018. The training and
validation sets are depicted in the figure below. Both sets contain data from every
season. The whole month of September is included in the validation set. This results
from the comparison against data for GHI modeling from Laszlo et al (2020).
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Forecast lead time: 14 hours
Forecast run length: 24 hours
Value type: interval mean
Interval length: 1 hour

o Interval label: beginning
These requirements do not match the set up used to develop HAIMOS, which was
focused on intra-day horizons and multiple aggregations (15, 30 minutes, etc.). For this
reason, we retrained HAIMOS under these guidelines.
Quality controlled GHI and DNI data were collected from the Solar Forecast Arbiter
(SFA) for the years 2017 to 2020 for the 10 locations selected by Area 1 team. Data for
the year of 2018 were used as validation set. The remaining data were used as training.
Figures 33 and 34 show the data for Humboldt State and Langley, respectively
The 1-minute data was augmented with clear-sky irradiances and solar geometry using

the pvlib” library and then averaged into 1-hour bins according to the Area 1 testing
guidelines (Figs. 35 and 36).
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Figure 33: Quality-controlled GHI and DNI data for Humboldt State, California (NREL
MIDC).
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7 https://pvlib-python.readthedocs.io/en/stable/index.html
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Figure 34: Quality-controlled GHI and DNI data for Langley (NASA, BSRN).
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Figure 35: Hourly averaged GHI and DNI data for Humboldt State, California (NREL
MIDC) for a 10-day window in the validation set.
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Figure 36: Hourly averaged GHI and DNI data for Langley (NASA, BSRN) for a 10-day
window in the validation set.
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Exogenous data for this task includes several products from NWP models. We
downloaded and processed data from the NAM and HRRR models for the period 2017
to 2020. For each location, several variables were extracted and synchronized with
ground data. The variables used include:

e DSWRF: Downward Short-Wave Radiation Flux [W/m”2]

e TCDC: Total Cloud Cover [%]

e LCDC: Low Cloud Cover [%]

e MCDC: Medium Cloud Cover [%]

e HCDC: High Cloud Cover [%]
Cloud cover variables (CC) were converted to GHI or DNI using a simple model:

CcC(t
Le(t) = <1 - T(O)) L5 (t)

were I.; denotes the clear-sky irradiance and 1., the resulting irradiance.
To avoid data leakage, that is, the use of data that would not be known if HAIMOS was
run in real time, all the NWP-derived data must the available at the forecasting issue
time of 10 am local standard time. That is ensured by using only NWP data whose
reference time (time when the data is produced) precedes the forecasting issue time.
Figure 37 shows some the NWP-derived data used as input to HAIMOS for Humboldt
and Langley. This process was run for all locations and for DNI.
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Figure 37: Some of the NWP-derived GHI for Humboldt (top) and Langley (bottom).

HAIMOS forecasting for Area 1 test framework

We prepared and uploaded HAIMOS forecasts the SFA according to the guidelines
from Area 1 test framework. The HAIMOS forecasts were submitted to the SFA platform
under the “TA2 evaluations” forecast metadata/endpoints.

Figure 38 shows the HAIMOS forecast for GHI for Humboldt and Fig. 39 shows the DNI
forecast for Langley.
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/Sites/NREL MIDC Humboldt State
University/Forecasts/UCSD Humboldt State GHI

Forecast Metadata

Name: UCSD Humboldt State GHI

UUID: e047a162-b1ea-11eb-858b-0a580a8002db
Copy UUID

Site: NREL MIDC Humboldt State University

Extra parameters ¥

Download Metadata

Variable: GHI (W/m*2)

Value type: interval mean

Interval label: ending

Interval length: 1 hour

Issue time of day: 18:00Z

Run length / Issue frequency: 1 day
Lead time to start: 14 hours

Start: 2018-01-01 00:00:00Z

End: 2018-12-31 23:00:00Z
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Figure 38: GHI forecasts for Humboldt.
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/Sites/WRMC BSRN NASA Langley Research
Center/Forecasts/UCSD Langley DNI

Forecast Metadata

Name: UCSD Langley DNI

UUID: df64dSe2-b1ea-11eb-aa51-0a580a8002db
Copy UUID

Site: WRMC BSRN NASA Langley Research Center

Extra parameters ¥

Download Metadata

Variable: DNI (W/m*2)

Value type: interval mean

Interval label: ending

Interval length: 1 hour

Issue time of day: 15:00Z

Run length / Issue frequency: 1 day
Lead time to start: 14 hours

Start: 2018-01-01 00:00:00Z

End: 2018-12-31 23:00:00Z
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Figure 39: DNI forecast for Langley.
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Once the forecasts were uploaded, we used the report functionality in SFA to validate
HAIMOS under the Area 1 framework. Figures 40 and 41 show snapshots of the table
that lists the forecast error metrics computed by SFA and the forecasting skill of
HAIMOS against the reference NAM forecasts prepared for the Area 1 team. NREL’s

forecasts are also included in this report. Such reports are produced for GHI and DNI for
all locations.

Table of total metrics

Forecast MAE MBE RMSE Skill r
UCSD Humboldt State GHI 411 5.67 91.6 0.226 0.931
NREL Humboldt State GHI 457 0.718 101 0.149 0.915

Figure 40: Error metrics computed by SFA for Humboldt's GHI. Skill is computed
against the reference NAM forecasts.

Table of total metrics

Forecast MAE MBE RMSE Skill r
UCSD Langley DNI 784 6.92 145 0.194 0.876
NREL Langley DNI 76.9 2.52 152 0.156 0.864

Figure 41: Error metrics computed by SFA for Langley’s DNI. Skill is computed against
the reference NAM forecasts.
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Figure 42: GHI forecasting skill relative to NAM’s reference forecasts for all the teams

in topic area 2. Dots show the skills for each location. Horizontal lines show the average
skill across locations.
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Figure 43: Same as figure 42 but for DNI.

A direct comparison between the HAIMOS methodology and the other day-ahead
forecasts produced by Area 2 participants is depicted in figures 42 and 43. Both the
robustness and the effectiveness of the HAIMOS methodology are clear, as the
forecasting skill of the HAIMOS method is consistently higher across the multiple
locations, even though most of the HAIMOS methodology has been primarily optimized
for intra-day forecasts.

Budget and Schedule

The budget and schedule originally approved by the DOE has been followed closely
throughout the duration of this project. There were no significant delays in any phase or
budget period despite the disruptions caused by the ongoing pandemic. Starting in early
2020, minor changes in budget categories have been adjusted to reflect changes in
personnel and workload due to the pandemic. Overall, both the project budget and the
project schedule have been proposed and managed properly since the beginning of the
project. There were minor delays in invoicing by a subcontractor, but none that
compromised the progress of the project. UC San Diego also went through a massive
financial system overhaul in 2020, which unfortunately affected some of the financial
reporting from central campus to DOE. All technical and financial reports generated
from our research group have been submitted on time and in agreement with
procedures outlined by the DOE and by campus policies.

Path Forward

The HAIMOS project was unique among the Area 2 projects in the sense that it did not
rely on WRF-Solar improvement but offered a comprehensive methodology for
producing improved forecasts based on best practices in physical modeling and
machine learning. The project demonstrates the effectiveness and robustness of the
methodology used (see Figs. 42 and 43). Although not included in the SOPO, this
project also allowed us to study the effectiveness of CNNs for cloud masking and their
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potential for producing forecasts that utilize an entirely different set of inputs from WRF-
Solar. As such, we submitted two (2) proposals to DOE in order to continue this effort.
One proposal was for the development of CNN-based forecasts as a new reference
forecast for the entire CONUS, and the other was a collaboration with EPRI on long-
term solar forecasts for improved grid operations at high penetration of renewables.
These proposals were submitted in 2020 in response to DE-FOA-0002243. Both
proposals were declined by the DOE, and as a consequence of the COVID-19
pandemic impact on personnel combined with the loss of continued DOE funding, the
UC San Diego solar forecasting effort will likely end with this project. There is a remote
possibility of continuing this research effort with funding from the California Energy
Commission or the National Science Foundation, but no direct applicable funding
opportunities by either agency have been announced at this point.

As for technology transfer and commercialization, we will continue to openly publish our
methods, data and results in technical journals and conferences. We will also engage
with interested parties that show interest in high-fidelity solar forecasts. That said, the
ability to commercialize best practice methods for solar forecasting has always been
difficult due to the conservative nature of the energy industry. With few exceptions,
power generators show little interest in better understanding solar resourcing, much less
forecasting. Utility companies and system operators also see little reward in high-fidelity
forecasts given that they can continue to dispatch carbon-intensive reserve units in
response to solar and wind variability. As a result, operational forecasts show
substantially lower skills than the ones reported here. By publishing and presenting our
research findings and data in journals and conferences, we hope that eventually the
methodologies presented in this project will make their way into the operational
forecasting systems used by the energy industry.
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