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2021 Virtual Theoretical Division Lightning Talk Series

Meeting Information

Meeting number:177 689 9045

Password: cSBDBdep757

Meeting link: https://lanl-us.webex.com/lanl-
us/].php?MTID=me7d1bdea59975¢2c49673d7813b90b60

Tuesday, July 27, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Claire Adams

Group: T-3, Fluid Dynamics and Solid Mechanics
Mentor(s): Richard Lebensohn

Student Status: GRA

School Affiliation: Washington Student University

Fast Fourier Transform (FFT)-based modelling of microstructural effects in additively
manufactured (AM) metals

Abstract: Additive manufacturing is becoming a very popular processing method for
metallic parts in fields such as aerospace or biomedical. However, standardization of
this process is still needed to reduce variance in properties. Using an FFT-based
micromechanical model, the overall goal of this project is to study process-structure-
property relationships in AM metals. This talk aims at showing my understanding of
LANL's elasto-viscoplastic FFT-based (EVPFFT) model and code, and explain how it
could be applied to model AM processing. Conceptual understanding of EVPFFT is
provided, and predictions

Student Speaker: Manav Bhati

Group: T-1, Physics and Chemistry of Materials
Mentor(s): Sergei Tretiak

Student Status: GRA

School Affiliation: Rice University

Investigating electronic excitations in non-stoichiometric quantum dots

Abstract: Quantum dots (QDs) that exhibit tunable optoelectronic properties find
applications in numerous fields (solar cells, LEDs, quantum communication,
photocatalysis). While most of the experimentally synthesized QDs are non-
stoichiometric, the theoretical exploration has mostly focused on stoichiometric QDs.
Here, we aim to understand the optoelectronic properties of non-stoichiometric QDs
using atomistic simulations. We find a distinct nature of low-energy electronic
excitations in non-stoichiometric QDs, that corresponds to a charge transfer (CT)



phenomenon between QD core and surface. Such CT arises due to the inequivalent
number of anionic and cationic atoms on the QD surface. Understanding CT
phenomenon is crucial for emission characteristics and the insights can be utilized to
manipulate QDs for various applications, such as photocatalysis.

Student Speaker: Martin Larocca

Group: T-4, Physics and Condensed Matter and Complex Systems

Mentor(s): Patrick Coles and Marco Cerezo

Student Status: GRA

School Affiliation: Departamento de Fisica “J. J. Giambiagi” and IFIBA, FCEyN,
Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

Diagnosing barren plateaus with tools from quantum optimal contro/

Abstract: Variational Quantum Algorithms (VQAs) have received considerable attention
due to their potential for achieving near-term quantum advantage. However, more work
is needed to understand their scalability. One known scaling result for VQAs is barren
plateaus, where certain circumstances lead to exponentially vanishing gradients. It is
common folklore that problem-inspired ansatzes avoid barren plateaus, but in fact, very
little is known about their gradient scaling. In this work we employ tools from quantum
optimal control to develop a framework that can diagnose the presence or absence of
barren plateaus for problem-inspired ansatzes. Such ansatzes include the Quantum
Alternating Operator Ansatz (QAOA), the Hamiltonian Variational Ansatz (HVA), and
others. With our framework, we prove that avoiding barren plateaus for these ansatzes
is not always guaranteed. Specifically, we show that the gradient scaling of the VQA
depends on the controllability of the system, and hence can be diagnosed through the
dynamical Lie algebra obtained from the generators of the ansatz. We analyze the
existence of barren plateaus in QAOA and HVA ansatzes, and we highlight the role of the
input state, as different initial states can lead to the presence or absence of barren
plateaus. Taken together, our results provide a framework for trainability-aware ansatz
design strategies that do not come at the cost of extra quantum resources. Moreover, we
prove no-go results for obtaining ground states with variational ansatzes for controllable
system such as spin glasses. We finally provide evidence that barren plateaus can be
linked to dimension of dynamical lie algebra.

Wednesday, August 4, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Sneha Banerjee
Group: T-CNLS Center for Nonlinear Studies
T-5 Applied Mathematics and Plasma Physics
Mentor(s): Chengkun Huang, Andrei Piryatinski, Anna Marie Alexander
Student Status: GRA



School Affiliation: Michigan State University

Theory and modeling of quantum mechanical transport for electron and negative-ion
sources

Abstract: Electron and negative-ion sources are critical for applications such as fusion,
high-energy particle accelerators, neutron generation, and mass spectroscopy. Electron
field emission, which relies on quantum mechanical tunneling of electrons from surfaces
under a strong bias electric field, plays a crucial role in the development of coherent
electron sources. Similar quantum tunneling principles are also important to negative-ion
sources. In this work, we first investigate the transverse properties of the electron beam
emitted from a high aspect ratio semiconductor nanotip. We use Monte Carlo approach
combined with scattering and emission models to simulate the electron transport and
emission through a diamond nanotip. Our model includes the effects of conduction band
quantization and electron-phonon scattering. We study the divergence ratio of the
emitted beam for different input parameters, such as, externally applied field,
temperature, and initial quantum states of the particles. Next, we develop simple
analytical and numerical models to characterize charge capture phenomenon in a
negative ion source. We found that the surface-to-atom charge transfer probability and
the negative ion yield strongly depends upon the surface to atom distance, applied electric
field, work function of the cathode, and the electron affinity of the atom.

Student Speaker: Brendan Miller

Group: T-1 Physics and Chemistry of Materials
Mentors: Christian Negre, Joshua Finkelstein
Student Status: GRA

School Affiliation: Northern Illinois University

A Three-Dimensional Graph-Based Model for Porous Media Fluid Flow

Abstract: The understanding and modeling of the flow of fluid in porous media remains
a significant theoretical and computational challenge. Previous work has demonstrated
a successful computational model in two spatial dimensions which models the flow of
fluid using a graph-based approach to represent the pore network. In this talk, we
describe our recent efforts to build on this two-dimensional model and extend this
graph-based approach to three dimensions. We will present two new approaches of
building a pore network in two-dimensions which generalize to three-dimensional
porous media. We will conclude with a simple example of a three-dimensional porous
medium and the associated centrality computation.

Thursday, August 5, 2021
10:00 a.m. - 11:00 a.m.



Student Speaker: Gabriela (Abby) Roat

Group: T3, Fluid Dynamics and Solid Mechanics
Mentor’s name: Trevor Hillebrand and Matthew Hoffman
Student Status: UGS

School Affiliation: Colorado College

Characterizing changes in 21st century subglacial hydrology at Humboldt Glacier, north
Greenland

Abstract: Located in northern Greenland, Humboldt glacier (HG) has experienced
accelerated retreat since the 1990s. With the potential to contribute 19 cm to global
sea-level rise, understanding the systems which drive HG's retreat is imperative to
quantifying how it will change in the next century. Here, we examine the impact of the
subglacial hydrologic system, which is comprised of inefficient, distributed ‘sheet’
drainage that can evolve to efficient subglacial channels when water flux is large. The
character of subglacial hydrology impacts subglacial water pressure and thus basal
friction determining, in part, the speed at which the glacier will flow. Currently, many
ice sheet models do not take seasonal changes in the subglacial hydrologic system into
account when determining basal friction. We use the subglacial hydrology component of
the MPAS Albany Land Ice (MALI) ice sheet model to characterize subglacial hydrology
at HG during the 21st century, specifically investigating how increases in surface melt
draining to the bed change the character of drainage and impact ice effective pressure
and associated basal traction. A projected four-fold increase in summer surface melt
draining to the glacier bed late in the 21st century causes a substantial change in the
character of drainage, with the proportion of total subglacial meltwater conveyed by the
channelized system during the late summer nearly doubling. However, this increased
channelization has only a slight moderating effect on seasonally-averaged effective
pressure as surface melt increases. This suggests that while subglacial channelization can
offset some of the impacts of increasing surface melt on ice dynamics, it is insufficient to
prevent meltwater-induced speedup of HG in the coming decades.

Tuesday, August 10, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Shahriar Khan

Group: T-1, Physics and Chemistry of Materials

Mentor’s name: Sergei Tretiak, Brendan Gifford

Student Status: GRA

School Affiliation: Auburn University, Department of Chemistry and Biochemistry

Characterization of Graphene Quantum Dots in terms of Their Optical Properties
Graphene Quantum Dots (GQDs) are promising materials for their possible application as

semi-conductors. Based on the size, shape, and functionalization of GQDs, the electronic
and optical properties are tunable. The goal of this project is the theoretical investigation



of the optical properties of GQDs using electronic structure theory. We have studied
hexagonal, square and rhombus shape of two-dimensional sp?-hybridized graphene flakes
and their edge functionalized species. For the square Ciis graphene sheet, two and four
methylene substitution at the edge is probed and the change of optical properties of these
species (including isomers) is reported. Also, a comparison between Cos hexagon, and Coe
rhombus shape graphene flakes is studied, and we found that the optical properties vary
depending on the shape of the edge (zigzag or armchair) of GQDs. Finally, the effect of
the substituent groups (CHs, F, Cl, Br) functionalized at the edge of the graphene sheet
is presented.

Student Speaker: Quinn Parker

Group: T-1, Physics and Chemistry of Materials
Mentor(s): Thomas Vogel, Danny Perez
Student Status: UGS

School Affiliation: University of North Georgia

Simulating the Thermodynamic properties of Tungsten Grain Boundaries

The boundaries between grains of a material play a key role in the mechanical strength
of the material and affect its response to irradiation. The ability to investigate such
grain boundaries (GB), in particular phase transitions and GB structures, are critical in
the search for finding new ground- and low-energy states and multiple phases within
the system. Current methods of analysis typically consider one structure that minimizes
the energy in a y-surface search at a finite temperature, leaving out the possibility that
multiple structures could coexist. In our work, the interfacial structure of two body-
centered cubic (bcc) Tungsten GBs is determined; one 25[001] (310)-twist GB and a
[100] tilt GB. We do so by sampling from the grand-canonical ensemble, that is,
considering atomic relaxation in systems with variable particle numbers, along with
multicanonical adaptive biasing force sampling methods. We report the full entropic
information of the GB, and the relevant minimum free-energy GB structures with
respect to total particle number and temperature.

Student Speaker: Jacob Spurlock

Group: T-1, Physics and Chemistry of Materials
Mentor(s): Danny Perez

Student Status: UGS

School Affiliation: North Carolina University

Unraveling the Thermodynamics of Copper Grain Boundaries in the Grand-Multi-
Canonical Ensemble via Adaptive Biasing Force Simulations

The boundaries between grains of materials at an atomic level play a critical role in the
properties of these materials. Changing grain structure and grain boundaries (GB) can
allow for optimization of the system's properties, such as increasing the overall strength



and resistance of the system. However, current conventional models typically consider
only one structure at a finite temperature, which ignores the possibility of multiple
structures of the GB. Using a 11 asymmetric tilt and a 45 asymmetric tilt/twist copper
GB, we systematically study their structures in multi-canonical and grand-canonical
ensembles that allow for a more complete analysis of the GB. This allows us to locate
relevant structures at different temperatures and conduct simulations that more
extensively sample these complex systems. Extensive simulations and analysis of
simulation data resulted in obtaining the full thermodynamic functions of the system
and the identification of configurations that form low-energy structures.

Wednesday, August 11, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Emma M. Archer

Mentors: Ping Yang, Enrique Batista, Dan Burrill
Group: T-1, Physics and Chemistry of Materials
Student Status: GRA

School Affiliation: Colorado School of Mines

Exploring of Electronic Structures of Dipicolinic Acid Derivatives with Am>*and
Nd3+

The separation of trivalent lanthanides from trivalent actinides is crucial to the nuclear fuel cycle,
particularly in steps of waste reprocessing, remediation, and long-term storage. However,
trivalent lanthanides and actinides have similar chemical and physical characteristics posing
serious challenges to the chemical separation of these species. To tackle these separations, the
exploration of the fundamental chemistry of the An(IIl) and Ln(III) must be understood leading
to molecular species that preferentially bind one of the two. The contraction of the ionic radii of
the actinide series would lead one to anticipate the interaction of these ions to be ionic. However,
recent studies have explored ligand systems with the trivalent actinides from Am-Cf and found
increasing 5f orbital participation in bonding with the 2p ligand orbitals resulting in covalent
bonding. This was reported in studies of heavy actinides coordinated by dipicolinic acid (DPA),
a well-studied ligand for separations. Due to the open functionalization points on the DPA
pyridine ring, the ligand can be modified to change its electronic structure. Computational
methods are being used to focus on Am** and its lanthanide size analog Nd** to unravel the
effects on the metal-ligand interactions as function of the substituents in a DPA derivative series.
The derivatives were chosen for their electron withdrawing or donating character in the para
position include the hydroxymethyl, methylpiperizine, morpholine, or trimethylamine
substituents. Utilizing density functional theory, it is observed that there are more metal to ligand
interactions in the Am** complexes compared to the Nd** complexes. In addition, the 4f orbitals
of the Nd** complexes reveal more contribution to the frontier orbitals than the 5f orbitals of the
Am?* complexes. These results support the hypothesis that covalent interactions in actinide
complexes can be probed and tune



Student Speaker: Christopher Montez

Group: A-1, Information and Modeling and T-CNLS, Center for Nonlinear Studies
Mentor: Kaarthik Sundar

Student Status: GRA

School Affiliation: Texas A&M University

Post-Optimality Sensitivity Analysis of Routing Problems Solved Using Branch-and-Price

Vehicle routing problems (VRPs) are combinatorial optimization problems that occur in a
wide array of applications such as operations research, crew scheduling, logistics,
robotics, and many more. As a result, VRPs are of great importance and have been
intensely studied by researchers. For some applications, it may be beneficial to consider
how removing vertices or changing the fleet size will affect the solution to a VRP. We
show how to compute an upper bound on the objective value of a VRP when
performing either of these changes. This upper bound is computed using the branch-
and-bound tree used to solve the original VRP. As a result, an upper bound is
immediately available for little computational cost. As an example we solve the well-
known team orienteering problem and show the computed upper bounds are relatively
tight and quick to compute.

Student Speaker: Felipe Pereiro

Group: T-1, Physics and Chemistry of Materials
Mentor: Ping Yang, Enrique Batista, Daniel Burrill
Student Status: GRA

School Affiliation: Colorado School of Mines

Eu Redox Modulation through Ligand Functionalization: A DFT Study
Felipe Pereiro*, Ping Yang, Enrique Batista, Daniel Burrill

Nuclear power supplies the United States with 20% of its energy economy, while
supplyingcountries like France with as high as 80% of energy needs. Despite the high
energy density and low carbon footprint of nuclear power plants, high level waste (HLW)
remediation and management remains a concern for existing and future power plants.
Chemical separationsbetween lanthanides (Ln) and actinides (An) in HLW have proven
to be one of the most difficult chemical challenges to date as a result overlapping ionic
radii, core-like behavior of f-electrons, and the dominance of the trivalent oxidation state
among both series. Building off the widely-usedredox-based PUREX process, the obstacle
of similar ionic radii and oxidation states can be overcome by stabilizing divalent and
tetravalent redox states of Ln/An, which would alter the ionicradii and access different
chemical behaviors apart from that of the trivalent state. In addition to the
aforementioned redox separation, previous work on transition metals and select
lanthanides show that metal-ligand orbital interactions and reduction potentials can be
shifted with the appropriate choice of ligand and functional group. In this study, density



functional theory is employed to screen a series of dipicolinic acid (DPA) derivatives
functionalized with different substituents in order to promote metal-ligand interactions
that allow for modulation the EU™™ reduction potential. DPA was specifically chosen for
its tunability, relevance to f-element separations, and ability to saturate f-element
coordination spheres. The Eu™™ reduction was chosen as a model redox couple because
of its experimental accessibility and availability of reported experimental ligand-
functionalization work on the couple. This talk will focus onhighlighting the change in
bonding character of the functionalized ligands in Eu(III/II) complexes. Ongoing and
future work are focused on obtaining reproducible geometric and thermodynamic data
on the Eu-DPA systems of interest.

Thursday, August 12, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Ryan Park

Group: T-1 Physics and Chemistry of Materials

Mentor:Mark C. Zammit

Student Status: UGS

School Affiliation: Tulane Unversity, Department of Chemical and Biomolecular

Comparison of transport coefficients derived from electron-neutral scattering angular
distribution functions via two-term Boltzmann solversimulations.

Ryan Park,lr 2 Willem Kupets,1 Mark C. Zammit,lr 2) James Colgan,1 Christopher J. Fontes,3 Xian-Zhu Tang,1
Liam H. Scarlett,4 Dmitry V. Fursa,4 Igor Bray,"r and Nathan A. Garlandl: > 6: )

Y Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

) Tulane Department of Chemical and Biomolecular Engineering, Tulane

University, New Orleans, LA 70118, USA

Zgzmputaﬁona/ Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545,
Y Curtin Institute for Computation and Department of Physics, Astronomy and Medical
Radliation Sciences, Curtin University, Perth, Western Australia 6102, Australia

% School of Environment, Science & Engineering, Southern Cross University, Lismore, NSW

2480,

Australia

% School of Environment & Science, Griffith University, Brisbane, QLD 4111, Australia (Dated: 19
July 2021)

7)

State-of-the-art Monte Carlo plasma simulations use statistical methods to account for
collisional behavior of parti-cles and require accurate angular distribution functions to
describe scattering events during runtime. In light of newangular distribution models
developed for H, Hz, and He here at LANL, we sought to investigate the impact of the
present work in the calculation of plasma transport parameters, as opposed to previously
utilized angular distribution functions. After deriving He elastic momentum transfer cross
sections corresponding to each angular distribution function, we tested these models
using a popular Boltzmann equation solver, BOLSIG, to obtain transport coef- ficients. It
is shown that our present model is significantly more accurate than previous



approaches in describing collisional anisotropies, and is more consistent with
benchmark convergent close-coupling (CCC) collision modelsand swarm experiment
measurements than other commonly used angular distribution models. Utilizing the new
angular distribution functions resulted in error reduction of the calculated mobility and
diffusion coefficients by as much as 50-100%.

Student Speaker: Braden M. Weight

Group: T-1, Physics and Chemistry of Materials; CINT, Center for Integrated
Nanotechnologies

Mentor(s): Sergei Tretiak, Brendan Gifford

Student Status: GRA

School: University of Rochester (PhD)

Non-adiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with
Topological sp>-defects: An On-the-fly NEXMD Study

Braden M. Weight!?2, Andrew Sifain?, Brendan Gifford?, Sergei Tretiak?

!Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, U.S.A.
2Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los
Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

3Department of Chemistry, Princeton University, Princeton, NJ, 08540, USA

Single walled carbon nanotubes (SWCNTs) functionalized with sp3-hybridized defects are
a promising material for many optical applications, including single-photon emission at
telecommunication wavelengths, photoluminescent sensing in biological applications, and
in spintronics. These surface-bound defects increase the photoluminescence yield
compared to pristine SWCNTs by forming low-energy, defect-localized bright states.! /n
this work, we present non-adiabatic dynamics simulations of sp>-defected SWCNTs of
varying chirality, defect morphology, and defect chemical composition. We include
excitonic effects at the configuration interaction singles (CIS) level utilizing the collective
electronic oscillator (CEO) method to provide solutions for the single-electron density
matrices. We propagate the electronic wavefunction by means of Tully’s fewest switches
surface hopping (FSSH) trajectory-based algorithm with decoherence corrections. The
ground state is solved self-consistently using the semi-empirical Austin Model 1 (AM1)
parameterized Hamiltonian.? The time-dependent population of the initially excited S;
state is tracked and shows strong dependence ( lifetime around = 50 — 450 fs ) on the
chemical composition of the sp3-defect as well as its morphology, which impacts the utility
of these materials for optical applications.

(D Gifford, B. J.; Kilina, S.; Htoon, H.; Doorn, S. K.; Tretiak, S. Controlling Defect-State Photophysics
in Covalently Functionalized Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2020, 53(9), 1791-1801.
(2) Malone, W.; Nebgen, B.; White, A.; Zhang, Y.; Song, H.; Bjorgaard, J. A.; Sifain, A. E.;
Rodriguez-Hernandez, B.; Freixas, V. M.; Fernandez-Alberti, S.; Roitberg, A. E.; Nelson, T. R.; Tretiak, S.
NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J. Chem.

Theory Comput. 2020, 16 (9), 5771-5783.



Tuesday, August 17, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Kyle Perez

Group: T3, Fluid Dynamics and Solid Mechanics
Mentor’s name: Duan Zhang

Student Status: GRA

School Affiliation: Rice University

Modelling Continua with the Discontinuous Galerkin Method

Abstract: The Discontinuous Galerkin (DG) Method is a method of numerically solving
differential equations. This scheme can be applied to the equations of motion of continuous
systems; those of solids and fluids. We present a basic overview of the differential equations we
are looking to model, and then visit the update rules of the DG Method. Finally we look some
details of the computation of terms in the update rules.

Wednesday, August 18, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Chris Kang

Group: T-CNLS, Center for Nonlinear Studies
Mentor’s name: Yen Ting Lin, William Hlavacek
Student Status: GRA

School Affiliation: Washington State University

Efficient Bayesian Inference with MCMC Samplers
Chris Kang, Zachary Fox, Yen Ting Lin, William Hlavacek

Abstract: When applying the Bayesian inference approach to quantify parameter
estimates of given data, one requires the use of Markov Chain Monte Carlo (MCMC)
methods to sample the posterior. While traditional MCMC choices, such as the
Metropolis-Hastings algorithm, may be sufficientfor modeling low-dimensional data, the
performance of the sampler is not scalable as the parameter dimensions grow.
Alternative MCMC samplers such as the Hamiltonian Monte Carlo(HMC) and No-U-Turn
Sampler (NUTS) are promising in that they utilize gradient information (sensitivity of
the likelihood with respect to parameters) to effectively span the parameter space.The
current state of these samplers in probabilistic programming languages such as Stan,
however, resort to Automatic Differentiation (AD) to compute the sensitivity. While AD
is excellent in gradient computation when the likelihood function is analytical, in most
cases of modeling, analyticity should not be assumed, nor should it be guaranteed.
Here, we propose to perform a shallow survey of sensitivity methods, including Adjoint
Sensitivity Analysis, and implement these in HMC and NUTS in the context of fitting an



SIR-model and its derivatives. Our long-term goal is to qualitatively characterize the
computational improvements of the MCMC samplers with different sensitivity methods
and provide an informed decision matrix formodelers.

Thursday, August 19, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Liam Herndon

Group: T-6, Theoretical Biology and Biophysics
Mentor’s name: S. Gnanakaran

Student Status: GRA

School Affiliation: Stanford University

Machine Learning to Guide Design of Novel Antibiotics

Abstract: The outer membrane (OM) and efflux pumps are key to antibiotic resistance in gram-
negative bacteria. The OM acts as a barrier to drug entry, and efflux pumps expel compounds
from the cytoplasm. These mechanisms allow gram-negative bacteria to be resistant to
numerous antibiotics by preventing them from reaching targets in the cytoplasm. A key focus of
antibiotic development is therefore to design compounds that can permeate the OM and avoid
efflux pumps. In recent years, significant progress has been made in this field. Recent research
has identified key physico-chemical properties of OM permeators and efflux avoiders. Many of
these properties are broad and can be achieved through a range of structures. We present an
algorithm that provides more specific guidance in the design of OM permeator and efflux
avoiders. This algorithm uses a nonlinear machine learning model to compare compounds
based on structural motifs. This software can accurately identify the stronger OM permeator
and efflux avoider from pairs of highly analogous compounds, meaning that it could predict how
potential modifications to antibiotics would affect OM permeation and efflux avoidance.

Student Speaker: Elena Violeta Romero

School Affiliation: University of Washington

Group Name: T-6, Theoretical Biology and Biophysics
Mentor: Brian Foley

Student Status: GRA

School Affiliation: University of Washington

Creating a genome browser for SARS-CoV-2 visualization.

Abstract: Recently, SARS-CoV-2 has had an extensive impact on the health and ways of
life of people across the globe. While enormous progress has been made with the
development of several vaccines for the virus, cataloging its diversity remains important
as new variants arise. A subset of these variants, such as the well-known “Delta” or
B.1.617.2. variant, bring with them new challenges and concerns in our fight against
the virus. Due to this, researchers find themselves in need of bioinformatics tools that



help visualize SARS-CoV-2 diversity and features of specific variants. The SARS-CoV-2
Genome Browser is one such tool that aids researchers by providing information on the
locations of genomic changes carried by variants. It then maps these changes to
domains of interest. This can provide clues as to what newly arising variants are likely
to allow the virus to evade current vaccines and thus should be monitored further.

Thursday, August 26, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Abigail Coker

Group: T-4/T-CNLS: Physics and Condensed Matter and Complex Systems and Center
for Nonlinear Studies

Mentor: Jian-Xin Zhu

Student Status: GRA

School Affiliation: University of Utah

Spin Dynamics in the Kagome Lattice

Abstract: The Kagome lattice is attracting a multitude of research interest as a result of
its recently discovered ability to host the elusive quantum spin liquid state and
topologically protected bands. The ability to harness control of these intriguing states of
matter presents potential avenues for significant technological advancement. To do this,
it is necessary to understand the spin dynamics and underlying microscopic processes
within this family of materials. In this study, we consider a Heisenberg Hamiltonian to
elucidate the effect of the exchange interaction on the ground state and spin dynamics,
and proceed to study the effects of an applied magnetic field, on-site anisotropy, and
Dzyaloshinskii-Moriya exchange interaction. Competition between these interactions
drives the system to exhibit a rich phase diagram consisting of interesting spin
configurations and textures. By evaluating our model numerically, we explore the spin
waves of these configurations with varying parameters associated with each of the
considered interactions. This allows us to thoroughly inspect the form of the spin
waves, including the ability to determine whether or not spin excitations are gapless.
Such examination has the potential to provide key insights to the promising nature of
Kagome materials in development of spintronics and other quantum information
systems

Student Speaker: Lillian Petersen

Group: T-CNLS: Center for Nonlinear Studies
Mentor: Christina Steadman

Student Status: UGS

School Affiliation: Harvard University

Genome-Wide Association Study for Female Infertility



Abstract: Polycystic ovarian syndrome (PCOS) is the largest cause of infertility,
affecting approximately 10% of the population. PCOS is highly heritable (about 70%),
but current research has been largely unable to find the genetic basis for this
heritability.The goal of my research is to conduct a genome-wide association study
(GWAS) to find the biological pathways behind PCOS and determine a female’s genetic
risk for developing it. Previous GWAS for PCOS had limited power for two primary
reasons: small databases and underreporting of PCOS. This study aims to improve on
previous research on both of these fronts. First, I use data from the UK Biobank, a
database housing the genotypes and phenotypes of over 250,000 females in the UK.
However, underreporting remains a problem: the UK biobank reports a mere 330 cases
of PCOS. To address this, I collaborated with GWAS and infertility experts Dr. Liang
and Dr. Mahalingaiah of Harvard Medical School to create a model that predicts
whether an individual has PCOS based on their existing medical records. This model
raised the number of PCOS individuals to about 1500. I am currently in the process of
conducting the PCOS GWAS using this new PCOS diagnostic criteria. Next, I plan to
find the genetic overlap between PCOS and other heritable diseases such as diabetes
and asthma, which will illuminate their biological relationships. In the future, I hope to
further this research by extending to whole exome or whole genome sequences. These
richer sequencing data have only become available at scale in the last year and hold
huge potential to advance the field of genetic association studies.

Student Speaker: Aaron Phillip

Group: T-1: Physics and Chemistry of Materials
Mentors: Benjamin Nebgen, Guoqing Zhou
Student Status: High School Co-op

School Affiliation: Los Alamos High School

Transition Path Search for Light-Driven Molecular Motor

Abstract: Molecular machines are molecules that convert energy into dynamic function;
proteins in living organisms are a result of specific combinations of several molecular
machines. A subset of molecular machines, molecular motors, have the specific role of
producing repetitive rotation. Dr. Ben Feringa et. al. at the University of Groningen
developed a light-driven molecular motor and its cycle of rotation takes place over four
distinct reaction steps. With controlled external stimulus like heat or light, the motor
will rotate with cycles of photochemical and thermal isomerizations. Due to the
complex geometries of these motor molecules, traditional methods for finding the
transition path fail with unrealistic intermediate states. To study the dynamics, this
project will find a realistic transition path between isomers by generating intermediate
geometries and optimizing them. We explore various constraints and implement a
trained machine learning model based on semi-empirical theory to obtain atomization
energies of each geometry in order to assess the viability of the generated transition
path. The reaction cycle of the motor has provided evidence that the motor can serve
as a molecular propeller, so study of intermediate geometries is valuable in



determining ways to further optimize the rotation rate.

Tuesday, August 31, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Armando Bellante

Group: T-4, Physics and Condensed Matter and Complex Systems
Mentors: Rolando D. Somma, Gopikrishnan Muraleedharan
Student Status: GRA

School Affiliation: Politecnico di Milano

Solving the quantum simulation problem via signal analysis

Abstract: The computation of scattering amplitudes soon becomes an intractable
problem for a classical computer as the size of the quantum system and the evolution
time grows. Nevertheless, this problem is in the class BQP, where a quantum computer
can offer an efficient solution in time polynomial in both the system size and evolution
time. The currently available quantum devices (NISQ) have enough qubits to represent
challenging instances of this problem. However, because of errors, they can not run the
simulations for long times. Our research frames the quantum simulation problem as a
signal analysis one to combine NISQ devices' power and classical computation. The goal
is to devise an algorithm that can forecast the expectation values at longer times with
bounded error, given the outcome of short-time simulations. Using a Matrix Pencil
approach, we conduct numerical experiments that suggest that the predictions can be
accurate under certain conditions. At the same time, we are aware of adversarial
problem instances that can make the prediction hard.

Student Speaker: Maksim Kuichenko

Group: T-1, Physics and Chemistry of Materials
Mentors: Justin S. Smith, Sergei Tretiak
Student Status: GRA

School: Utah State University

Diversification of ML Datasets Using Bias Potentials as Functions of "Uncertainty”

Abstract: One of the central issues in machine learning is a dataset. Its diversity, size,
and preparation time are the variables which researchers always aim to optimize. The
purpose of this work is to capture as much chemical space as possible using active
learning and biased potentials embedded in the molecular dynamics.

Active learning is the technique which allows to keep the dataset as diverse as possible
using the ensemble of neural networks. Within MD framework this means augmentation
of dataset with only those MD steps where ensemble of neural networks feels
uncertain. By constructing biased potentials which are functions of the “uncertainty”, we
want to make poorly sampled regions more energetically favorable. Thus, artificially
forcing the MD to avoid well sampled regions, bias potentials within active learning may
significantly accelerate datasets preparation time while increasing the data diversity.



Wednesday, September 1, 2021
10:00 a.m. - 11:00 a.m.

Student Speaker: Jessica Lalonde

Group: B-11, T-CNLS: Bioenergy and Biome Sciences, Center for Nonlinear Studies
Mentors: Babetta Marrone , Ghanshyam Pilania

Student Status: GRA

School Affiliation: Duke University

A Machine Learning Approach for Polymeric Degradation Prediction

Abstract: The environmental impacts of plastic degradation affect all aspects of the
global ecosystem for many generations. Bio-based plastic alternatives have emerged as
an important materials solution in the transition towards a future sustainability-focused
economy. Poly(hydroxyalkanoates) (PHAs) are one large class of naturally derived
bioplastics that have been extensively studied since the 1970s as replacement materials
for food and commercial packaging. While PHAs offer a large chemical space for design,
their degradation is currently not well understood or modeled. Machine learning can be
employed to predict and better understand how these materials break down in a wide
variety of environments by learning from trends in previously published, open-access
degradation data. Previous studies have examined the critical factors affecting
degradation rate for traditional plastics but have often been limited to specific
environmental conditions or restricted to one or two classes of materials. In this talk, I
will describe the development of a machine learning model to predict polymer
degradation behavior in a variety of environmental conditions (hydrolytic, enzymatic,
water- and soil-based environments). Employing a manually-accumulated database of
over 1,600 data points and 195 samples of traditional plastics and conventional
biopolymers, containing both monomers and copolymers of PHAs, here we train a
random forest model to predict specific parameters which physically represent the long-
and short-term degradation factors affecting the breakdown of the material. The
validated and tested model is then employed to predict chemical trends over a wide
range of multicomponent polymer chemistries to understand their degradation behavior
and the relative importance of the factors affecting it.

Thursday, September 2, 2021

10:00 a.m. - 11:00 a.m.

Student Speaker: Faith Cengil

Group: T-5: Applied Mathematics and Plasma Physics
Mentors: Harsha Nagarajan, Russell Bent

Student Status: GRA

School Affiliation: University of Arkansas

Learning to Accelerate Globally Optimal Solutions to the AC Optimal Power Flow
Problem



Abstract: In this work, we propose to use ML to accelerate global solutions by
effectively extracting information from previously solved ACOPF instances. We will also
replace ad-hoc heuristics with ML-based policies, which can aid in predicting

better greedy steps towards global optimality on similar instances with different
parameters. Further, we will present numerical results on a diverse set of realistic and
large-scale IEEE benchmarks to empirically show the efficacy of ML-based acceleration
methods. We will also provide out-of-distribution experiments to study the robustness
of proposed methods.

Student Speaker: Olawale Ikuyajolu

Group: T-3, Fluid Dynamics and Solid Mechanics
Mentors: Luke Van Roekel, Steven R. Brus (ANL)
Student Status: GRA

School Affiliation: Georgia Institute of Technology

Porting Wave Action Source Terms to GPU on WaveWatch 11T

Abstract: Present and future simulations of extreme events by Earth system models
(ESMs) are of fundamental importance in guiding policy decisions on climate change.
Consequently, effective climate change policies heavily depend on the continuous
development and improvement of ESMs. Accurate representation of small-scale physical
processes such as ocean surface gravity waves and their impact on ocean mixing and
surface fluxes is still missing in most state-of-the-art ESMs. Despite the growing
literature on the importance of ocean surface waves in modulating air-sea fluxes,
inclusion of ocean surface waves in most state-of-the-art global climate models is
lacking. Wind-wave processes (small-scale) have traditionally been excluded from ESMs
due to high computational costs.

The Department of Energy (DOE) Next Generation Development (NGD) project for the
ocean partly focuses on the inclusion of a wave model (WaveWatch III -WW3) into the
Energy Exascale Earth System Model (E3SM). In order to incorporate WW3 to E3SM, we
need to make it computationally less expensive. Taking advantage of the hybrid
architectures at DOE leadership computing facilities, this work proposes to move the
computationally intensive section (wave action source terms) in WW3 to GPGPU
through the use of OpenACC pragmas. We discuss initial scalings of WW3, the strong
potential for speed up with GPGPUs, and progress toward porting the wave action
source terms to GPGPU.

Student Speaker: Carlos Mora Perez

Group: T-1, Physics and Chemistry of Materials
Mentor: Amanda Neukirch

Student Status: GRA

School Affiliation: University of Southern California



Defect study on the electronic structure of a novel 2D-perovskite: n=1, BA:MAy-1PbnIz+1

Abstract: Two-dimensional (2D) perovskites constitute a new realm of semiconducting
materials suitable for solar cells and light emitting devices limited by nonradiative
charge and energy losses facilitated by defects. In this work, 2D perovskite absorbers
with the chemical formula BA2MA4-1Pb/l30+1 (MA: methylammonium and BA:
butylammonium) with n value of 1 are investigated. We are focusing on low formation
energy and common point defects (Vea, Vear, Veor2, Vi (in-plane), I (out-of-plane), Ir (in-
plane)). Halide defects that localize the hole or electron are the most detrimental to the
electronic structure leading to lower performance. Ab-initio simulations are crucial for
determining point defects with adverse effects on the development of high-efficiency
devices.

Student Speaker: Akram Touil

Group: T-CNLS: Center for Nonlinear Studies

Mentor: Wojciech H. Zurek

Student Status: GRA

School Affiliation: University of Maryland, Baltimore County

Eavesdropping on the Decohering Environment: Quantum Darwinism, Amplification,
and the Origin of Objective Classical Reality

Abstract: One of the major open problems in theoretical physics is
understanding the emergence of classicality from underlying quantum
principles. These seemingly peculiar principles are directly at odds with our
classical intuition since they are absent in our familiar physical reality.
However, within the framework of Quantum Darwinism, the well-studied
features of quantum mechanics such as superposition and entanglement are
the building blocks of nature that explain and account for our classical
everyday observations, hence our perception of classicality. In this talk, I will
give a brief overview of Quantum Darwinism, and some of the recent results
we established within this framework regarding the capacity of the
environment as a communication channel.
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Spent Nuclear Fuel

« Waste highly radiotoxic

— Long-lived minor actinides
= Am(Ill) and Cm(lIl)
— High volume

 Partitioning via solvent extraction

— Reduce volume

— Transmute the waste to shorter lived species

— Prolong life of nuclear fuel

Radiotoxic inventory (Sv/iHM)
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Salvatores, M. Nuclear Fuel Cycle Strategies Including Partitioning and Transmutation. Nucl. Eng. Des. 2005, 235 (7), 805-816.
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Veliscek-Carolan, J. Separation of Actinides from Spent Nuclear Fuel: A Review | Elsevier Enhanced Reader. J. Hazard. Mater. 2016, 318, 266—281.
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Partitioning

» Ln(lll) and An(lll) are chemically similar
- Same oxidation state
— Similar ionic size

» EXxploit electronic structure differences

— 5f orbitals extend more
— An(lll) softer acids than Ln(lll)

 Ultilize ligands that will be selective for
An(lll) over the Ln(lIl)

Neidig, M. L.; Clark, D. L.; Martin, R. L. Covalency in F-Element Complexes. Coord.
tra LO§ A!amos Chem. Rev. 2013, 257 (2), 394-406. https://doi.org/10.1016/j.ccr.2012.04.029.
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Ligands

« Many types
- O,N, S
* N donors are reported to be the most

selective for An(lll)
— Mixed N and O donors are even better

 Dipicolinic acid (DPA)
— Highly symmetric
— Tris-chelate
— Makes 1:3 complexes
— Radiolytically stable

Am(DPA),3*

— Silver, M. A;; Cary, S. K.; Johnson, J. A.; Baumbach, R. E.; Arico, A. A; Luckey, M.; Urban, M.; Wang, J. C.; Polinski, M. J.; Chemey, A;; Liu, G.; Chen, K.-W_; Van Cleve, S. M.; Marsh, M. L.; Eaton, T.
"q LOS Alamos M.; Van De Burgt, L. J.; Gray, A. L.; Hobart, D. E.; Hanson, K.; Maron, L.; Gendron, F.; Autschbach, J.; Speldrich, M.; Kégerler, P.; Yang, P.; Braley, J.; Albrecht-Schmitt, T. E. Characterization of
&S \ATIONAL LABORATORY Berkelium(lIl) Dipicolinate and Borate Compounds in Solution and the Solid State. Science (80-. ). 2016, 353 (6302), 888. https://doi.org/10.1126/science.aaf3762.



Dipicolinic Acid Derivative System

0 HO N  Functionalizing 4 position with
[N] = various groups
N B B - Very few substituent effect
o M B YN O P studies with An(lll) selectivity
N
oH  OH oH OH OH OH  « Model these ligands with Am3*
4-morphylinyl DPA 4-Hydroxymethyl DPA atrimethylamineDPA  and Nd3*
— Size analogs
N
~ )
YOY ®
OH OH ON WP
OH OH

DPA L
4-methylpiperizine DPA
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Calculation Process

Geometry Optimization:
GGA:PBE
TZP basis
Scalar relativity
Small core

|

Optimized coordinates

i%® Los Alamos
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Frequency:
GGA:PBE
TZP basis

Scalar relativity

Small core

Single Point:
Hybrid:PBEO
TZP basis
Scalar relativity
Small core

l

Vibrational modes,
thermodynamic data,
etc.

Implicit solvation model: COSMO water

|

Orbital population,
contribution, energies,
spin densities, Mulliken
charges, bonding
energies, etc.




Frontier Orbital Results

* The trend is the same for both
metals

— Ligand dictates the trend

- QDPAis more e- withdrawing and
stabilizes the HOMO/LUMO gap

« Am?3* has a larger HOMO/LUMO gap
— Increased metal-to-ligand interaction

AAAAAAAAAAAAAAAAA

HOMO/LUMO Energy Differences (eV)
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Frontier Orbital Results

« Nd3* valence e have larger
contribution to frontier orbitals

— e~ more localized on the metal
— more ionic bonding

Total percent contribution (%)

94.00%

89.00%

84.00%

79.00%

74.00%

HOMO Orbital Contribution

mpip-DPA DPA QDPA hm-DPA
Ligand Complex

e A 5F (%) Nd 4f (%)

mor-DPA




Conclusions and Future Work

« Main takeaways * Moving forward
— Modifying a ligand with various — Look into the thermodynamic
substituents allows us to probe results of the water solvated
and tune electronic properties of calculations
the An(lll) and Ln(lll) - Experimental work to compare
— The DPA derivatives interact more these results

strongly with Am3* which means
that modifying the ligand will
change the interaction

e ames
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Fast Fourier Transform Based Model

Contents lists available at SciVerse ScienceDirect

S FFT-Model

International Journal of Plasticity

journal homepage: www.elsevier.com/locate/ijplas /,’7

An elasto-viscoplastic formulation based on fast Fourier transforms
for the prediction of micromechanical fields in polycrystalline materials

Microstructure

Ricardo A. Lebensohn®*, Anand K. Kanjarla?, Philip Eisenlohr”

* Materials Science and Technology Division, Los Alamos National Laboratory, MS G755, Los Alamos, NM 87845, USA
" Max-Planck-Institut fiir Eisenforschung, Max-Planck-Str. 1, 40237 Dilsseldorf, Germany

ARTICLE INFO ABSTRACT . .
Article history: We present the infinitesimal-strain version of a formulation based on fast Fourier trans- M eC h an I C al P r O p ertl eS
Received 26 August 2011 forms (FFT) for the prediction of micromechanical fields in polycrystals deforming in the

Received in final revised form 12 December

elasto-viscoplastic (EVP) regime. This EVP extension of the madel originally proposed by
Moulinec and Suquet to compute the local and effective mechanical behavior of a hetero-
geneous material directly from an image of its microstructure is based on an implicit time

2011
Available online 28 December 2011

Also: Texture development during deformation

in alloys Improve & Advance AM

‘pa Los Alamos Lebensohn RA, K. A., Eisenlohr P. "An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of
&oF NATIONAL LABORATORY micromechanical fields in polycrystalline materials." International Journal of Plasticity. 2012;32-33: 59-69.



Conceptualizing EVPFFT

Elasto-viscoplastic fast Fourier transform based model

+ Direct Problem
Initial Microstructure mmp FFT-Model to Obtain Properties

* Inverse Problem
Desired Properties B8 FFET-Model to Adapt Microstructure

i £

i@ Los Alamos
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Single Process Multi-Process

* No initial load o _ * Initial thermal internal stresses
« Deformation (i.e. uniaxial tension) - Deformation (i.e. uniaxial tension)

32x32x32 Copper Voronoi polycrystal 64x64x64, 90% Austenite, 10% Ferrite
Showing stress field

Showing stress field

(>~
‘d_g NLAQB""N !L\ !gm8.§ 712712021 4



Stress Field Strain Field

3D microstructure

Modeled Microstates
Stress Field (left)
Strain Field (right)
Elastic Strain

Strain Rate

Single Process
[e1sAioA|od Jaddo)

Code Type
Single Process (Top)
Multi-Process (Bottom)

Multi-Process

y
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Thermal Internal Stresses

)

lI- =

Spacing between atoms
Austenite = FCC Ferrite = BCC ( ) get smaller, not the

atoms themselves

- Femite I -

AsT|
bars want to...

tﬁ Los Alamos 702712021 6
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Next Steps

* Real electron backscatter
diffraction (EBSD) data of TijAl,V
- Rather than synthetic data

* Thermal stresses from build
temperature to room temperature

Titanium (Alpha)

Example of of TizAl,V sample, (a)(a’) Micrographs, (b)(b’) Inverse
pole figure maps from EBSD, with build direction perpendicular and
vertical respectfully

"a Los Alamos Riyad IA, Feather WG, Vasilev E, Lebensohn RA, McWilliams BA, Pilchak AL, Knezevic M. “Modeling the role of crystallographic 212712021 7
- correlations in microstructures of Ti-6Al-4V using correlated structure visco-plastic self-consistent polycrystal plasticity formulation.”

= NATIONAL LABORATORY
Acta Materialia. 2021:203(116502)



Questions?
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What is microstructure?

* “The structural features of an
alloy (e.g. grain and phase
structure) subject to observation
under a microscope”

« Grain shape and size

®) 50 pm

Photomicrographs of (a) a-ferrite (b) austenite

‘5 Los Alamos Callister WD, Rethwisch DG. Materials Science and Engineering: An Introduction. 9" ed. John Wiley & Sons; 2014.
-
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2D slices of 3D microstructure

Copper Voronoi polycrystal
Single process, 100 “randomly” oriented grains, 32x32x32 points
X-cut at varying cut levels

AAAAAAAAAAAAAAAAAA



“Randomness” in terms of computers

* Pseudo random number generator

— Generates number sequence
based on an initial integer or “seed”

-123456879...
- 258963741...
- 345789162...

* Randomness corresponds to grain
positions

Both x-cut slices at point 1 of 32, but different
random seeds were used

‘5 Los Alamos 702712021 11
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Why do crystal structures contract or expand with
temperature?

) —
 Most solid materials will naturally 0 — mleralomic ditance
. f1rp
expand upon heating and contract T :
upon cooling g :
» Coefficient of Thermal Expansion 5 3 1
(CTE)
— Relates to how the size of something @ 2
changes with temperature S
— From atomic perspective: average =
interatomic distance increases with >
temperature
— Higher temperatures raise vibrational Demonstrates the increase in interatomic
energy separation with rising temperature

‘5 Los Alamos Callister WD, Rethwisch DG. Materials Science and Engineering: An Introduction. 9t ed. John Wiley & Sons; 2014.
-
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Why does one phase contract more than the other?

» Austenite contracts more than ferrite in iron-carbon system
 Different materials, different phases, have different CTE’s

« Contraction between phases may be affected by different equilibrium distance
between atoms

— Want equilibrium distances that minimize energy

— Equilibrium positions of atoms in lattice as function of temperature are affected
differently

AAAAAAAAAAAAAAAA
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Solving the quantum simulation problem via signal analysis

Armando Bellante Gopikrishnan Muraleedharan Rolando D. Somma
Politecnico di Milano  Theoretical Division, T4  Theoretical Division, T4

—~
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Quantum simulation problem

Assume access to a system of n qubits in the quantum state p and to a Hamiltonian H.

We consider the quantum simulation problem whose goal is to compute

8, u(t) = Trie="p]

within additive error € and with success probability at least c.

1@ Los Alamos



Computing 2(7) with a quantum computer

This problem is in BQP.

Compute g(r) = Re{g(D)} + Im{g(®)}

° W =pa,0_pa,1

Relg01 ()
o« SM{g(®)} =ppo— Py

7))

0/1
10) H I H i
1p) Wi —itH
0/1
H — R(3) I H

—1itH

7/

With current NISQ devices we can’t run the simulation for too long.

.@ Los Alamos  The figure above is a modified version of Fig. 1 from arxiv:2104.08181.



Quantum simulation with signal analysis

h

Let /1j, |l//j) be thejt eigenvalue and eigenvector of H respectively.

We can write the problem as:

M
— —itH ;1 _— —iA;t
g() = Trle™pl = ) pe™
J
M
where p; = [(y;| p | ¥) | denotes the probability of finding p in |w;) and ij = 1.
J

1@ Los Alamos



Quantum simulation with signal analysis

Signal properties: o M 7

_ —i _ —iA;
« Finite number of components g(®) =Trle pl = E P
. Frequencies at /1]-/(2%) J

» Complex periodic
» Stationary, mean zero

P20, ) p=1

J

.~
1@ Los Alamos



Quantum simulation with signal analysis

Signal properties: o M

_ —1 —
. Finite number of components ~ &(£) = Trle™""p] = E P;
- Frequencies at 4,/(27) Jj

» Complex periodic
» Stationary, mean zero

P20, ) p=1
j

0 25 50 75 100 125 150 175
t
Our Goal:
.

Given N samples of g(¢), to absolute precision &, at distance 6 one another, we want to
predict g(¢'), with ¢ > NJ, to absolute precision € ~ O(f(¥, N, 6, £)) for some function f.

1@ Los Alamos



Why is this problem important?

» Physics simulations (e.g., scattering amplitudes)
* Promising application for current NISQ devices (it is a BQP problem)
» Might provide useful insights in complexity theory

1@ Los Alamos



The approach

.~
1@ Los Alamos



The shift-matrix &

.~
1@ Los Alamos

&

|

o~ M=1)5

=é€

—iA:6

|

o~ M-1)5

,Vj € [M]



The shift-matrix &

&

|

o~ M=1)5

=é€

—iA:6

|

o~ M-1)5

,Vj € [M]

M
We define g, = g(dk) = ije_’%f(ké), ke {0,..,N—1}.

1@ Los Alamos
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The shift-matrix &

We can compute the shift matrix as:

8o 81 o 81 81 & 8L
ces g g g - M
Go=| 8 & 7 & g=|% 8B 8 T = argming||TGy — G4 ||
8N-1L-1 8N-L " 8N-2 EN-L 8N-L+1 °° 8N-1

When L > M and N — L > M, then e 49 are among the eigenvalues of £.

This formulation admits different solutions:

0 1 - 0
L o |
s -_ GO Gl ~ cee cee 0 1
g a4y -+ dp
M non-zero eigenvalues M eigenvalues on the unit circle

.~
1@ Los Alamos



Two ways to go

1. Estimate the parameters { pjs /1]-} (Matrix Pencil approach):
» Compute T = GG,

- Find the eigenvalues e "4 of ¥
M

1 1 - —rN — —ilt

_ ?1) P I 7 VAR T g(t) - ije !
K3 ;

omiAQIN=15 =ik [(N-1)3
- Compute the 4; as ilog¢(e

Po

« Compute | m

PM—1

—iﬂj5)
2. Directly use the approximate shift matrix to predict the signal:

80
goH)y=[1 0 --- 0] st/é[ ]

EM-1
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Numerical Simulations

.~
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Predicting g(t) at long times .

» 20 frequencies - amplitudes
uniformly at random in (0,1]

« 180 samples, 0=1, 90x90 matrices

0.0

imag

—~
1% Los Alamos

Probability
°
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Direct estimation

Parametric estimation




Predicting g(t) at long times ' | :

®

1024 frequencies - amplitudes
uniformly at random in (0,1] N 9
frequencies in 16 bins of 0.001 e
180 samples, 6=1, 90x90 matrices ‘ ‘

10 5=— 0.07 I

- o006+ [ | |

- sl

— - sl b e Lt

- Sl LLLLLL T

- ol LULLLELTLETELT L]

- MERRRRRRERRRRRERR

- ol LU

Los Alamos

NATIONAL

LABORATORY

Parametric estimation



imag

Predicting g(t) at long times .

» 1024 frequencies, amplitudes
uniformly at random in (0,1]. Noise € = 107>,

« 180 samples, 0=1, 90x90 matrices

o
= s‘hg 0.02 |
\ 0.001 : ok é!
—— 'mm_mli-ms il
600 800 0.0 0.2 0.4
Eigenvalue
| imag
0.4
1.0 — original — original
predicted predicted
08 02
06
0.0
0.4 \J
-02
0.2
LA _/\/—\ . W 0.4
0.0 ~ A A
0 50 100 150 200 250 300 0 50 100 150 200 250 300
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Direct Est. + SVD denoising.
» 1024 frequencies, amplitudes
uniformly at random in (0,1]. Noise € = 107>, .
« 180 samples, 0=1, 90x90 matrices
ol |
PR avn RS I el (I T
N— -l ddserfatiieid L L oo aus]
——— | | SSRRRIRICANIRRS | ., . SO=1 20
T LRl 0 -
80 81 8L-1 81 82 : 8L ] imag
Go=| $1 & 8 lg=| % & s T == | AIWARTR
SN-L—1 8N-L " 8N-2 SN-L 8N-L+1 - 8n-1| ] AN
8 8 8L % :
G=| o & S
8N-L-1 &N-L 8N-1 S | ,//‘—\w/\‘\/\f/“\‘/\v\‘/\,«f\‘ e B B R

—~
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Analytical bounds - Sampling error + known freq.

. Perfect knowledge of /Ijs g(t) _ Z 17] e—iﬂjt
« Error € on the signal estimates ||g — g||; < € )

TR | L |20 —z0)| < llp -l
e—iﬁ(;iz'v—m =i 0N=03 | | By, g;;;l

lp-pll <llo™'lle = [s0-E0] <107le

.~
1@ Los Alamos



Analytical bounds - Sampling error + known freq.

M
. Perfect knowledge of A:s N — —iMt
s q=Y g
« Error € on the signal estimates ||g — g||; < € )

ll N Hﬁ”j} |2 - 20| < llp -5l
8

e—itoWN=D8 .. =i (N=DS| B, |

lp=7ll, <0 e = 8 —20)| <1107l

However, ||O~!|| can be very large, particularly if you have two
frequencies that are close to each other

.~
1@ Los Alamos



Overcoming the bound

« 5 frequencies - amplitudes
/13-[01 0.1001, 0.5, 0.8, 0.9]

=[0.28571429, 0.28571429, 0.14285714, O. 14285714 0 14285714]

5 samples, noise ¢ = 1073

p = argmin [|Qp — g
p

lp = pll, = 361.14 0P -zl =3-10""
10" llllg — &l = 449.82

eeeeeeeeeeeeeeeeee

.~
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Overcoming the bound

« 5 frequencies - amplitudes

/18‘[01 0.1001, 0.5, 0.8, 0.9]
=[0.28571429, 0.28571429, 0.14285714, O. 14285714 0 14285714]

5 samples, noise ¢ = 1073
Non-Negative least square
p =argmin||Qp — g p=argmin||Qp—gll s.1.p >0
p p
lp —Pll, =361.14 lop—gll=3-10"" lp —pll; =0.71 10p — gll = 0.018
107" lllg — 8ll, = 449.82
 oretaes T etiaes T s | imag“ f
Iy /\/ ) /\} f /\} /
g N\/\/\\/\//\/\/\/\ \/\//N\A N /M\M/VM MW/A\ o \ ‘C ‘\‘ ! " /‘ a8 /‘ ' }‘ |
\/\\ //\} \/\\ //\j \/\\ //\) J\ v ‘/‘\\ (\/ I /\/
J y = : \

.~
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An adversarial case

p,=|GHZ)Y{GHZ, | 1
p_=|GHZ_Y{GHZ_|

Y.
n J

)
J
1
where |GHZ,.) = 7(|OO---) £ [11-))and ¥,
2

are the Pauli operators.

g.() = E[COS(Z‘/ n)" + sin(t/n)"] g ()= %[cos(t/ n)* — sin(t/n)"]

.~
1@ Los Alamos

b= 0.0 A

0.4 A

real

0.2 1

-0.2 1

—0.4

— g+(t)

g-(t)

0 200

400 600 800 1000
t

These functions are exponentially close and they start differing significantly at t ~ Q(n).




Thanks!

Predict g(7) at longer times from short time evolutions by modeling the quantum
simulation problem as a signal problem.

e \We can frame this quantum simulation problem as a signal analysis one.

e There is hope to predict g(7) from short-time measurements, though some signals are
harder than others.

e Non-negative least square and SVD denoising can help in case of sampling error.

e Study how the distribution of frequencies/amplitudes affects the prediction.

e Refine the bounds in case of sampling error with non-negative least square.

e Study to what extent we can use the same shift matrix when we use the same H on
two different states p{, ps.

1% Los Alamos
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Motivation

®
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Electron and negative-ion sources are critical for fusion, high-energy particle
accelerators, neutron generation, and mass spectroscopy.

Both electron and negative-ion sources rely on field emission.

Electron field emission = quantum mechanical tunneling of electrons from surfaces
under a strong bias electric field

Nanotip based electron emission sources produce high current electron beams.

Electron transport and emission properties of a diamond nanotip have been
investigated by Ref [1], including the effects of quantum confinement.

A comprehensive study of beam’s transverse properties is required.
The state-of-art models [2][3] to characterize negative ion sources use assumptions to
simplify the charge transfer process from surface-to-atom.

[1] Piryatinski et al., J. Appl. Phys. 125, 214301 (2019) [2] M.E. Kishinevskii, Zh. Tekh. Fiz. 48, 1281 (1978)

[3] Vadim Dudnikov, “Development and Applications of Negative-
lon Sources”, Springer (2019)



Introduction

Electron transport and emission from a
semiconductor nanotip modeling

l Transport & Emission model
/I\ — for nano-tip: quantum effect

Nano-tip

Bulk

Material Transport & Emission model

for the bulk

Diamond pyramid
photo-cathode

Piryatinski et al., J. Appl. Phys. 125, 214301 (2019)

Goals

* Toinvestigate the transverse properties of the
emitted electron beam.

* Toimprove the divergence ratio.

E;

Negative-lon Source Modeling

vm:

[ = Cathode, Il = Barrier 1 and 2, III = Potential Well

Er
I

Potentlal near the cathode surface in the
presence of an ion/atom

Goals

To model the resonant electron transfer process
from cathode to nearby atoms.
To improve the negative ion yield.

Wq Los Alamos

ﬁ MICHIGAN STATE UNIVERSITY

NATIONAL LABORATORY




Electron Emission from Diamond Nanotip

Enq(eV)
4 Nanojunction Model \ s
T asente (A . / * Methods : Monte Carlo
| ncidente, (FA I Tronamited e ) 4 . .
(W(} ) o/ approach combined with
/ Reflected e ‘ - A
/Quantum ! 1 lcci
Csgment | seaterng | Resegment % scattering and emission
\_  regon ) - j models. Includes the effects of
o conduction band quantization
- and electron-phonon
scattering.
e Radial momentum k,,
. surface . .
... Jcidente, [of Potenta * Longitudinal momentum
| Reflected e Radial confinement poten
Nanotip Segment EnubsmnR_egwn k — Z_m (E _ V) _ KZ
\ Emission Region Model j Z flz ar
. . K
Priyatinski et al., J. Appl. Phys. 125, 214301 (2019) * Divergence ratio = k—“
Z

(>~ o
() Los Alamos G MICHIGAN STATE UNIVERSITY



Divergence Ratio of the Emitted Beam

T = 300K F =50 Mv/m
7000 : : - - 2500 : :
F [Mv/m] = T[K] =
6000 20 1 — 300
— 50 2000 +
100 — 700
5000 P50 1 900
X e | —— 1500
=2 4000 N
o 2
zs -
= 3000 £ 1000/
S
2000 | ]
500 |
0 N 0
005 01 015 0.2 025 0.3 0.1 0.15 0.2 0.25
Ka/kz Ka/kz

K, . . .
. k—“ decreases when external field F increases. The spread of the histograms also decreases.

V4

K . .
. k—“ decreases when temperature T increases. However, the spread increases because more

zZ

electrons move to higher quantum state n.
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Negative lon Source Modeling

EUG’.C
¢
£ Obijective:
F o . .
To calculate the probability of trapping or yield 5 and
1 o 1O (4] . . . .
investigate its parametric dependence.
Cathode Barrier 1 Barrier 2
0 L L+d X >
O Analytically solved _Bd% [V(x) —E]JY =0inregion1,2,3,4
Zm dxz g ? 7 7 .
In (1) : 1 (x) = a; exp(ikix), In (2) : Y, (x) = aAi(—n) + b,Bi(—n)

In (3) : Y3(x) = azexp(ikzx) + bz exp(—ikzx),In (4): Y,(x) = a4(Ai(—77) — iBi(—n))

O Total outgoing flux is calculated from ¥ (x) and Y. (x) O pis calculated from [1]

‘5 LOS Alumos ﬁ MICHIGAN STATE UNIVERSITY [1] R K Janev 1974 J PhyS. B Atom |V|0| Phys 7 1506
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Yield of The Negative lon Source

Vo=WF +Ep=2eV F[V/nm]=0.1V/nm

1
0.8 0.8+
0.6 06T Vo=WF + Ep =
0= F=
Q. Q.
0.4 0.4F
0.2 0.2+
ol AN Y, B 0 ' L ‘
10° 10 102 103 10* 10° 10° 10’ 102 103 10* 10°
vy (M/s) Vo (m/s)

* Trapping probability S increases with the velocity of the atom v,

* [ increases with applied field F and decreases with work function of the cathode.

0@ Los Alamos ﬁ MICHIGAN STATE UNIVERSITY
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Summary and Future Work

* We investigated the divergence ratio of an electron beam emitted from a diamond
nanotip, and found it depends on applied field, temperature, and initial quantum
states.

* In future, the Monte Carlo transport and scattering model can be extended to include
bulk transport and arbitrary number of nanowire segments.

* We have developed an analytical framework to model a negative ion source. We
found that the trapping probability depends on atom velocity, applied field and work
function of the cathode.

* |n future, negative ion yield can be investigated for

— i) different electron excitation, ii) electron affinity levels of the cathode surface, iii) properties
of the approaching atoms.

0@ l.AOS Alamos ﬁ MICHIGAN STATE UNIVERSITY
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Thank you!
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Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Power Flow Network

 Bus
 Branch Generator 1
« Generator =l
« Admittance on branch Line 12

z=j0.25 pu
° VOItage Bus 1 Buis 2
* Phase angle difference Line I3 Line 24

z=j0.4 pu z=j0.4 pu
* Apparent power
: M . &

« Reactive power Linesé

z=j0.5 pu

 Power demand

%@ Los Alamos
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Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Tightened bounds
for vm & td

Y ¢\

Convex Bound

Upper bound

Relaxation of Tightening
ACOPF Algorithm

vm: Voltage magnitude

td: Phase angle difference

*  Optimization-Based Bound Tightening using a Strengthened QC-Relaxation of the Optimal
Power Flow Problem

+ K. Sundar, H. Nagarajan, S. Misra, M. Lu, C. Coffrin, R. Bent
* arXiv:1809.04565

1% Los Alamos
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Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Convex
Relaxation
of ACOPF

Upper
bound

1% Los Alamos

NATIONAL LABORATORY

Tightened bounds for
the selected vm & td

Neural Bound

Network

Tightening
Algorithm

__J

Subset selection to
tighten vm & td

4/5/21 5



Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Model 1 AC Optimal Power Flow (AC-OPF) problem

minimize: E e2i(R(S9)?) + e R(S7) + ey (1a)
=G
subject to:

Msgosi= N Sy vieN (1b)
e e
keGq (i,j)c8ER
Sij =YWy — YWy V(i,j)e & (1c)
Sji — YIJ ‘[l[j i }/-z J ](_1(;1_;; v (i, j] = (1 d}
lr'{"rﬁ = -Vi 2 Yie N (]_Q}
l’ir-z._} — T'ri.T':r v I ? J: = E-’ {1f]|
0., < 0;; <0 V(i,j)eé& (1g)
(vh2 < Wy < (v¥)? VieN (1h)
S?I = Sf = S?u Yie G (1i)
Sijl < sf V(i,j)e&u ex (1j)

*  Optimization-Based Bound Tightening using a Strengthened QC-Relaxation of the Optimal
Power Flow Problem

+ K. Sundar, H. Nagarajan, S. Misra, M. Lu, C. Coffrin, R. Bent

* arXiv:1809.04565
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Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Relaxation of Non-linear, Non-convex Terms

N

5 /2T — iz 2
Wi =v VieN — T F e (2 4 ab)e — vt
— iy = xly + yle — 2ty
. R L ry = x¥y + ytr — oy
Wy~ ViV V(i) et 1 gy [Ty aty
. Y=y +y r—ary
- Yy < aty + yle — vyl
— - 1—cos(=™) _92
(cos(z))C = S Wj:
SIS ~ _ cos(x')—cos(z™ i1
cs = — kiﬁ—ff ) + cos(x”)
ﬂ%lﬁi"u} = WUy cos( 9.@;} vll?.?} e &
(e i T ™ o™
J(Wij) = vivysin(fi;) Vii,j)e &€ 7 SN = cos (IT) (.‘1 — m—) + sin ( S )
iin =cos (T (2 4+ 22) _sin (=2
sin(z))S = | §h = cos [ 5 ) (:1.4— 5 ) a.m( - )
5N = "1"']'";!“’“"'“" (r—ab)+sin(2h) if 2t =0
— | $h < "l"'f“"m:::ﬂ'm (z—axb)+sin(xl) if 2% <0
R(W,) = (vv;85,)  W(ij)ee | N 4:: L A @k&k 6;: &k
I(Wi,) = (v;u;8n,;>  V(i,j)e & .
Wi SR _ Li_lf’tk—h Ne=0 VE=1,...8
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Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Algorithm 1 The OBET Algorithm

Input: A QC Relaxation (Model 2/3/4) to construct (2
Output: ot, v*, 6L, g»

1: repeat

2 vm\ _Uuﬂ‘ HID._ Huﬂ o 1‘-'!._ T HE. gu

3: 2 « QC relaxation given v!?, v»0, !0 guo
4: for all i € N do

5: 'i[-“E «— minjv; : 2}

6: v} « max{v; : 12}

=l

for all (7,j) € € do
l . i

0:; — min{#;; : {2}

9: 0;; max{f;; : 2}

10: until !0 pu0 GO0 guo _ 4l yu gl gu

* Optimization-Based Bound Tightening using a Strengthened QC-Relaxation of the Optimal
Power Flow Problem

+ K. Sundar, H. Nagarajan, S. Misra, M. Lu, C. Coffrin, R. Bent

* arXiv:1809.04565
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Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Hidden
Inputs Layers Outputs
* Relaxed terms

« Sin
« Cos : .
. g ""ﬁ{‘? "'}d‘

Trilinear terms _ \t\*’fff
. Voltage : : _,?_-l._&;_,;i_.

magnitude \ ' XX Ranking of the buses
* Phase angle and branches in terms

difference of subset selection

+ Power flows

* Real power

* Reactive power
« Power generation

« Activation function: RelLU, Sigmoid

* Optimizer: Adam
» Loss Function: Mean Squared Error (MSE)

‘@ Los Alamos 45121 9
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Learning to Accelerate Globally Optimal Solutions to the
AC Optimal Power Flow Problem

Preliminary Results

Optimality Gap (%)

Average running time (sec.)

Instances IN| |E| R-Squared|TLM w/out OBBT|GO-OBBT w/out NN |GO-OBBT with NN |GO-OBBT w/out NN |GO-OBBT with NN |Time reduction (%)
caseld_jeee__ api 14 20 0.94 5.13% 0.08% 0.71% 25.7 9.3 63.8%
caseld jeee_ sad 14 20 0.85 19.16% 0.18% 0.44% 30.1 15.4 48.9%
case30_ieee 30 41 0.62 5.45% 0.16% 0.23% 64.9 49.6 23.6%
case30_ijeee__api 30 41 0.66 18.67% 0.09% 0.75% 209.0 52.2 75.0%
case30_ieee__sad 30 41 0.71 5.66% 0.04% 0.14% 65.2 44.0 32.6%
case73_ieee_rts__sad 73 120 0.52 2.37% 0.03% 0.46% 571.2 437.0 23.5%

%@ Los Alamos
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Magnetism for technological advancement

Aoof h A bottleneck in technological advancement:

e Limitations on the size, speed, and reliability
of electronic computing devices

e [ook to quantum mechanics

e Solutions in magnetism

\)
| ’ A B LN SREA Y SR <=
. L LN A et

R. Morganstein. 2006. https://www.morgenstein.com/

Quantum ‘spin’:
* Magnons for information transport

* Spin liquid state for topological

> m r
‘:9 hgﬁﬁ!gmgg quantum oo pUte = Kok-Wei Bong et al. 2021




Spin waves for quantum computation

* Spin waves: propagation of a disturbance in the quantum mechanical
property ‘spin’ throughout the atoms in a lattice

* Spintronics: the development of devices which utilize spin waves as a means
to transport information

Electronic excitations -> eV

Spin waves -> meV

= Smaller environmental footprint

= QOrders of magnitude faster

= Greater computing power for scientific
research

= More reliable systems

= A compelling answer to our computing
‘@ Los Alamos needs!

NATIONAL LABORATORY
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An ideal host for spintronics

Spins interact via:
— magnetic dipole-dipole coupling
— “exchange” interaction

/

Lattice structure is very important

\

Want to identify ideal lattice structures
for hosting unique spin dynamics

N__—

~
i@ Los Alamos

Wikimedia commons. Retrieved 2021



The Kagome Lattice

* Tri-hexagonal lattice

* EXhibits unique spin behaviors
- spin liquid candidacy
T.-H. Han et. al. Nature. 2012

topologically protected bands
R. Chisnell et al. PRL. 2015
dirac material

M. Kang et al. Nature Materials. 2019
magnon transport
J. Mukherjee et al. PRB. 2021

—1I.D- 05 00 05 10
R. Chisnell et. al. PRB. 2016 k(A7)

-X. Yi I. N . 201
M. Kang et al. Nature Materials. 2019 J in et al. Nature. 2018




The Kagome Lattice

* Tri-hexagonal lattice
* EXhibits unique spin behaviors
* (Geometric magnetic frustration

1% Los Alamos
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The Kagome Lattice

* Tri-hexagonal lattice
* EXhibits unique spin behaviors
* (Geometric magnetic frustration

1% Los Alamos
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The Kagome Lattice

* Tri-hexagonal lattice

* EXhibits unique spin behaviors

* (Geometric magnetic frustration

* Hosts unique static spin configurations

1% Los Alamos
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The Kagome Lattice

* Tri-hexagonal lattice

* EXhibits unique spin behaviors

* (Geometric magnetic frustration

* Hosts unique static spin configurations
* Promising candidate for spintronics

1% Los Alamos
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Moving forward with the Kagome Lattice

* Robustly characterize the spin dynamics in the
Kagome lattice

* Identify the behavior of various interactions’
contribution to the spin waves

H = —% > JiiSi-S; - ZDi(S,i)ﬁ — BZS,I-Z — ) DM,;-S; xS

i3 i3
Exchange Anisotropy M?glizﬂc Antisy}rlnmetric
ie exchange

%@ Los Alamos
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Demystifying the energy components

:__ZJ“S UU; 'S, —DZ(U 1§,)2 —BZ(U 1S,). ZDJ‘»Lu U;'S; x U;'S,;

7]

8= Be—dlas H _@_'_ Hl W )

"q Los Alamos

NATIONAL LABORATORY A. A. Coker. et al. 2021. PRB




Qualifying the spin waves




Characterizing the Kagome Lattice

* Determine the ground
state

* General formula for the
spin waves

* Use the ground state
to explore effects of
competing energy
components on the
spin-waves

%@ Los Alamos
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A. A. Coker. et al. 2021. PRB




Exploring the spin waves

* Use python libraries to numerically
calculate spin waves
* Various distorting and amplifying
parameters:
— Different static spin
configurations l"‘D
— Effect of imbalance of exchange
interaction between atoms
— Weight of exchange (J) vs
antisymmetric exchange (DM)
— Effect of Anisotropy
— Applied magnetic field results

%@ Los Alamos
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Conclusion

What we are accomplishing

=
@ LosAlamos ",

NATIONAL LABORATORY

Determine the ground state
Introduce a previously un-
quantified interaction

Build spin dynamics profile for
neutron scattering
experimentalists

Uncover details on efficacy of
kagome materials in spintronics
In-depth characterization of key
physical behaviors in lattice

oVv\/

Nonlinear Studies

Theoretical spin wave

analyses

Experimental results

e D=2 14 Model 1: LSWT
cerd-=-D =15
— D=1 [] = 12
_ E 10
i - - 2 - 5 B
-~ 2 i w7 =
S e 5 ¢ N S—
A \ 0 ” ] : W - b
0 X K I Y I M
T M K r

A. A. Coker. et al. 2021. PRB
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Thank you for your time!

Questions?
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Motivation:

« Chemical Warfare Agents (CWAs): extremely toxic, artificial materials that can be
dispersed as a gas, liquid, or an aerosol that can be lethal or incapacitate humans

* Types:
« Blood, Blister, Nerve, Nettle, Pulmonary, Vomiting
 History: mainly used in the world wars
« WW |: mustard and chlorine
« WW II: sarin and soman
» Biggest use today: terrorism and war situations
« Why do we want to detect them so quickly?
* Prevent a loss of life to those exposed
« Determine quantity and type released to create a subsequent treatment plan

This gif is a scene
from the movie
Wonder Woman,
but mustard gas
isn’t able to crack

glass
~
@ Los Alamos
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Nuclear Magnetic Resonance (NMR)

 Definition: a method of observing local magnetic fields are atomic nuclei
using spectroscopy. (Like a medical MRI)

* |t has become the most prominent technique for analyzing organic structures

« Good results can be obtained with samples of less than a milligram (with
good instruments)

* NMR is non destructive Earth’s Field 50 microtesla NMR

High Field 16.0 T NMR

wne ke
.‘ » ';

ULTmay

ron

| >
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J-Coupling
* Through bond interaction between nuclei containing spin, like the hydrogen,
phosphorus, and fluorine found in CWAs
 J couplings split the NMR Signals into distinct patterns
« Pascal’s Triangle pattern: ratio of heights of each peak in a split pattern

« J couplings are the primary information source in LANL's Earth’s field NMR
spectrometers

« Ratio and height of peaks can allow us to determine the composition of a

molecule if it is unknown O Earth’s field

I spectrum of this

molecule
1 H=0 H,C—O0—P—0O-
1 1 H=1
1 2 1 H=2 CH3
1 3 3 1 H=3
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1 18 il
1 7 21 3 35 21 7 1
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Project At LANL
Goal:

 Better way to identify CWAs in the field
» Earth’s field NMR = affordable and portable

 Find a correction factor between our simulated J couplings and our
experimental J couplings

» Use this to simulate unmeasured molecules
« Create a database of J coupling values
« Use this data to quickly identify chemical warfare agents

1% Los Alamos
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Project At LANL

Steps:
1. Build all the molecules in Avogadro

2. On the high performance computers (HPCs) run a job to optimize the
geometry of each molecule and carry out the NMR simulations

3. Extracting all the J coupling data for the preferred nuclei and filling out the
excel sheet

4. Find correlation between simulated value and experimental standard by
graphing a linear regression

1% Los Alamos
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Project At LANL

 After creating an excel database:
« Create a correlation between the simulated value and the experimental
value to correct future data
* Things to fix:
* Which electronic contribution is most important
« Making a graph for each contribution to see which data set gives us the
most ideal R? value

Experimental Value vs Simulated Value of P-H J
coupling

80

’ Slope = .5819
Intercept = 15.771

w0t sans 4 c®w - R2=.036320

60

40

Simulated Value
N
o
®

0 5 10 15 20 25

SR

-40
Experimental Value

—~
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All About Gaussian

« Gaussian is a quantum chemistry program

« Based on Density Functional Theory (DFT): predicts
and calculates the behavior of materials based on
quantum mechanics

* Primarily investigates the ground state
 Electrons and their behavior

« Why Gaussian?
« Experiment live would be too dangerous

» Already has a precedent for extracting valuable J-
coupling data

» Using badger HPC cluster

* What | am doing on the HPCs?
« Geometry optimization
* NMR calculations

* Functional: cM06

* Basis set: a set of functions that describe the electron
density:
» 6-311g™*

AAAAAAAAAAAAAAAAA
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Data Set/Example

methylphosphonic acid difluoride

OD
N AT
/N

methyl ethylphosphonofluoridate

a b
CH:CH
IR //o
Cc /p\
CH;0 F

—~
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J Couplings between P and ‘A’
Average = 21.176433Hz

Experimental Value = 19.4Hz

J Couplings between P and ‘A’
Average = 22.30331Hz

Experimental Value = 21.4Hz

J Couplings between P and ‘B’
Average = 24.5241Hz

Experimental Value = 19.3Hz



Expected Results and Next Steps

* We hope that:
» The expected value is equal to or similar to the value from the simulation
» Often, the number is within 2 Hz, but not exact.

* Next Steps:

« Examining the correlation between the expected value and the simulated
number

 Linear regression -> correction factor
» Then apply the correction factor to other molecules to determine

accuracy
- Finding J couplings from other atoms, not just hydrogens and phosphorus
 Hydrogen-hydrogen ‘\( iy ::::

* Phosphorus-Fluorine
* Hydrogen-Fluorine
- Simulating Earth’s Field spectra for CWAs |

AAAAAAAAAAAAAAAAAA



Final Conclusions and Big Picture

« CWA'’s are a threat to national security and human life
* By using NMR, specifically J-coupling, we hope to quickly identify
CWAs based on their chemical composition

« Gaussian provides us with a safe option to measure NMR
parameters

* My work this summer: finding the J couplings of 127 molecules using
Gaussian simulations and comparing our simulated data to
experimental constants to find a correction factor

 This correction factor tests the accuracy of the general procedure

1% Los Alamos
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Exploring Nuclear Magnetic Resonance
Spectroscopy, specifically J - coupling,
for Identifying Chemical Warfare Agents.
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Status: Undergraduate

School: University of California, Davis
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a survey of challenges
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Agenda

3 Prevalent Defeaters to Inference to Causality

« Example Hard Case
- Epistemic/ Behavioral Variable influences
— Dependent variable (suicidal ideation) is itself inferred... from patient testimony

 Bolstering/ defeating (both in degrees) the available inference toward
causality using directed acyclic graphs

* Formal log likelihood

 Structuring with decision trees

- Example: Mental Health dx and MI dx can proceed from precisely the same data
set

— Aim: identify variables that bolster/ defeat inference regarding branch progression

—~
1% Los Alamos



Inferring Causality: 3 defeaters

Direct Causal Effect

Davis, A. (2018). Applied Data Analysis.

Pearl, J., & Mackenzie, D. (2018). The Book of Why: the new science of cause and effect. Basic
Books.

Sprites, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and
search. MIT press.

1% Los Alamos
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Reverse Causality

@_

Confounding
(Omitted Variable)

& ©

Conditioning on a
Collider

N\ _/



Confounding Variable

Y=a*Z+el
<::> <::> X=b*Z+e2
N/

L=e3

@ X—e2/b=2Z
Y=a*(X—e2/b)+el

Y=(a/b) * X—(a/b) *e2 + el

~ N
1% Los Alamos



Collider

N@ »

Davis, A. (2018). Applied Data Analysis.

Sprites, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and
search. MIT press.

1% Los Alamos
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Reverse Causality

(O—O O—O

No statistical way to distinguish them

a posteriori knowledge such as
X preceding Y in time

1% Los Alamos
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Agenda

3 Prevalent Defeaters to Inference to Causality

« Example Hard Case
- Epistemic/ Behavioral Variable influences
— Dependent variable (suicidal ideation) is itself inferred... from patient testimony

» Bolstering/ defeating (both in degrees) the available inference toward
causality using directed acyclic graphs

* Formal log likelihood
» Structuring with decision trees

— Example: Mental Health and M| dx can proceed from precisely the same data set
— Aim: identify variables that bolster/ defeat inference regarding branch progression

‘@ Los Alamos 45021 7
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Example Hard Case: Suicidal Ideation

Disease

/ N

Suicidal
|deation

Health Hygiene:
exercise, nutrition,
sleep, risk-opting

Epistemic Attitude

\ and/ or

Instinct (Darwin)

1% Los Alamos
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Agenda

3 Prevalent Defeaters to Inference to Causality

« Example Hard Case
— Epistemic/ Behavioral Variable influences
— Dependent variable (suicidal ideation) is itself inferred... from patient testimony

 Bolstering/ defeating (both in degrees) the available inference toward
causality using directed acyclic graphs

* Formal log likelihood
» Structuring with decision trees

— Example: Mental Health and M| dx can proceed from precisely the same data set
— Aim: identify variables that bolster/ defeat inference regarding branch progression

‘@ Los Alamos 4/521 9
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Bolster/ defeat the inference in favor of causality

Defeating Externalities:
e.g. distance to medical
services, transportation,

housing, crime hazard,
environmental hazard

Defeating Behavior:
Smoking & substance
use, thrill-seeking risk
exposure behavior

Bolstering Behavior:
Health Hygiene:
exercise, nutrition,
sleep, seeks effective
medical/ dental care
when indicated

1% Los Alamos
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Compromised

. i
homeostasis disease

A \
/

v

/

Epistemic Attitude/ Instinct:

Survive/ Thrive
(Darwin)

All-cause
Mortality




Agenda

3 Prevalent Defeaters to Inference to Causality

« Example Hard Case
— Epistemic/ Behavioral Variable influences
— Dependent variable (suicidal ideation) is itself inferred... from patient testimony

 Bolstering/ defeating (both in degrees) the available inference toward
causality using directed acyclic graphs

* Formal log likelihood
 Structuring with decision trees

— Example: Mental Health and M| dx can proceed from precisely the same data set
— Aim: identify variables that bolster/ defeat inference regarding branch progression

‘@ Los Alamos asiz1 11
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HbA1c example: Predictive/ Protective

[
I
|

=
<r-oo'<nos
< = = = B
2 E 2L
< < T =
$2253
= S
w |
™ o

Logistic regression provides 0.75 AUROC
Random forest provides 0.80 AUROC
TabNet (Nnet) provides 0.82 AUROC

1% Los Alamos
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Agenda

 Structuring with decision trees
- Example: Mental Health and MI dx can proceed from precisely the same data set
— Aim: identify variables that bolster/ defeat inference regarding branch progression

1% Los Alamos
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A Tale of 2 Trajectories

- T HgbA1C Qualia: -

* l 02 Saturation =— T Cortisol —— sense of — SUICI(,jal

. 1 ESR intractable Ideation
_ distress

- 1 HgbA1C

- | O, Saturaton —  IBMI —— HTN — M

- 1 ESR

Imbens, G. W. (2020). Potential outcome and directed acyclic graph approaches to causality:
Relevance for empirical practice in economics. Journal of Economic Literature, 58(4), 1129-
79.

1% Los Alamos

NATIONAL LABORATORY



Cardiac and Mental Health ICD Codes dominate

t x Prevalence for Each ICD-9 Category
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Thank You

» Los Alamos National Laboratory/ T-6
Ben McMahon

Nick Hengartner
Sayera Dhaubhadel

« Carnegie Mellon University, Engineering & Public Policy
(Pittsburgh, PA)

* The GEM Consortium

AAAAAAAAAAAAAAAAAA
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Machine Learning to
Guide Design of Novel
Antibiotics

Liam Herndon

19 August 2021
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Outer Membrane and Efflux
Pumps Create Barriers to Drug
Entry

Need for novel antibiotics

Gram-negative bacteria are particularly
hard to develop antibiotics for

Outer membrane hard to permeate

Multi-drug efflux pumps expel drugs

1% Los Alamos
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Efflux Avoidance Descriptors

HB-WATER-IL-HEAD

Computational Models Have HESEEE 1
Identified Relevant Physico- AL |-
Chemical Properties A yindricity —
SD_A30 (kcal/mol)
SD_A20 (kcal/mol)
SD_K2
* Previous research on top permeators and GX&@S&E
efflux avoiders HB-WATER-IL-GLY
SD_RMSF (A)
* Focused on physico-chemical properties ] EsRoz_%cE
 Assigned coefficients describing effects of o RLEEL216711%/6\
properties Tl DET-enordy..

Axy-IL-GLY (x106...
PRO668_A
HB-TAILS
HB-CORE-1

Axy-LIPID-A (x106.. =

04 02 0 02 04

Mehla et al. 2021 Coefficient

1% Los Alamos
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Many Ways to Achieve Target
Properties

« Some potential antibiotics are poor
permeators

» Want to add groups to improve permeation

» Past research suggests broad properties

» Hundreds of ways to achieve properties

AAAAAAAAAAAAAAAAAA

OU-31526




Assessment of Modifications

» Expensive to empirically test all
modifications

» Want to predict affects of modification
before designing compound

* Need algorithm to predict effects of
proposed modifications

AAAAAAAAAAAAAAAAAA




Fragments Provide More
Detailed Information About
Compounds

» Describe atoms within 1 or 2 bond lengths
of central atom

« >2,000 unique fragments generated from
library of compounds

» Can compute descriptors for fragments

AAAAAAAAAAAAAAAAAA

Mansbach et al. 2020

Legend

@ CN
@ cc(c)CNC




Vector-space of Fragment
Descriptors Can Describe

Modification

Modification Site
ccc(C(N)=0)c(c)N
cccc(c)N

cc(c)N
cc(C)cc(c)N
ccc(N)ce

AAAAAAAAAAAAAAAAAA

Other Regions
ccene
ccc(cc)NC
cccn+](c)C
cc(c)NC(c)=0
ccc(cc)C(N)=0




Machine Learning to Score Modification

Hie

N
N
V)

\ 7
al
Y

Probability of Strong OM Permeation | | N,
NH
NH,

10 NH
6
0.9
4
0.8
2
0.7 0 NH 0
g o ——
0.6
-2
0.5 ﬁ
-4
6 0.4
0.3 HN 0 HN
2 0 2 4 & 8 10
PC1
N

» Calculate probabilities with ML model
» Assess how modification affects

HN

probabilities i

R\
b\

/
/
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Validation of Model

» Validated on existing modified compounds

» Reliable accuracy
- 67.9% for permeation
- 62.5% for efflux avoidance

« Can effectively narrow down modifications to synthesize

1% Los Alamos
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Recommended Compound

H,c 0

TR

H.,C CH.
| i P 3 -t

4] N N

Z il :

/

: H.C N NH
H

NH

0

=ZT

HN

\

| /H L

0
0 NH
\n/c”“
I 0
HN HN 0
HN
S + H,C CH,

‘{9 Los Alamos N
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/

PC2

Probability of Strong OM Permeation

0.88

15
0.80

10
0.72

5
0.64

0 —

0.56

=5
0.48

-10
0.40

=15
0.32

-5 0 5 10 15 20 25

Probability of Strong Efflux Avoidance

0.72

=5 0 5 10 15 20 25
PC1
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Conclusions

« Fragment analysis can accurately predict the effects of specific groups on OM
permeation and efflux avoidance

» This focus on the effects of individual groups is ideal for predicting how specific
modifications will affect drug activity

» These predictions can potentially guide drug modification to design antibiotic
analogs with improved permeation and efflux avoidance

AAAAAAAAAAAAAAAAAA
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Antibiotic Resistance Poses a
Critical Threat to Public Health

 Antibiotic resistance outpaces drug

discovery

« Emergence of multi-drug resistant strains

* Post-antibiotics era

—~_
1@ Los Alamos

O’Neill 2014

Tetanus
60,000

Road traffic
accidents

1.2 million

Measles
130,000

Diarrhoeal
disease

1.4 million

AMR in 2050
10 million

Cancer
8.2 million

AMR now

[/ 700,000

(low estimate)

Cholera
100,000—
120,000

Diabetes
1.5 million




PORTING WAVE ACTION SOURCE TERMS TO ({3 ¥
GPU ON WAVEWATCH IIl e
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Motivation

» WAVEWATCHIII is a 3rd generation wind wave
spectral model developed at the Marine Modelling
and Analysis Branch (MMAB) of the Center of
Environmental Prediction (NOAA/NCEP).

» Wind generated waves play an important role in
modifying physical processes at the atmosphere-
ocean interface

» Such processes include:
¢ Momentum, heat and moisture fluxes
*  Ocean vertical mixing
*  Albedo white-capping
*  Fracturing of sea-ice

» Wind wave are also crucial for simulation of

coastal flooding

[ Sources: Calveri et al'2012; Melet et al 2018; Tolman 2008

Solar & Longwave

Radiation \/

nnnnn

T 1T 1 V4 .

Kinetic Energy
Fluxes

FREE ATMOSPHERE

Sea-state dependent
drag

ATMOSPHERIC
BOUNDARY LAYER

Wind-wave dependent processes in the coupled climate system
Towards coupled wind-wave-AOGCM models

’»‘vv-v"wvw;"«"‘«‘. )

e
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BT, '
S

Swash
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Motivation

» Wind-wave processes (small-scale) have generally been
excluded from coupled Earth system models due to its
high computational cost.

» The Next Generation Development (NGD) goal focuses
on the inclusion of a wave model (WaveWatch Il —
WW3) into E3SM

» Can we utilize GPU capabilities to reduce
the computational cost of WW3?

| "Sources: https://e3sm.org/about/organization/ngd-sub-projects/ngd-coastal-waves/

Existing E3SM Components

Driver

Coupler
(cpl7)

Sea lce
(MPAS-CICE)



https://e3sm.org/about/organization/ngd-sub-projects/ngd-coastal-waves/

WaveWatch Il (WW3)

Solves the random phase spectral action density.

F
N(@,/‘{,O',H,t) = E

F - Energy density
@:lon; A - lat; o-relative frequency; 8-direction ; t-time
ON  3(C4N)

Spectral space
Physical space

t directions 1

The prognostic variable is the

spectral wave energy density

as a function of spatial and
spectral coordinates and of
time.

a(C;LN)a(aN) a(cezv)
ot T o T * ‘Z

e Ay

Advection by Sources and

group velocity Sinks of
and currents energy/action

Refraction
(bending)

Frequency
Dispersion
(Stretching)

Sas1(k,0) = —2u.hk2pN (k, 6)

| "Sources: https://e3sm.org/wp-content/uploads/2020/06/AllHandsPresentation 06-25-2020 opt.pdf;

N SN A

S,,— Wind input

S, — Dissipation

S,,— Nonlinear wave interactions
S,ot— Wwave-bottom interactions
S,,— Triad wave-wave interactions
S..— scattering

S,er— reflection

Sa»— depth limited breaking

S..e — Wave-ice interactions

https://polar.ncep.noaa.gov/waves/workshop/pdfs/



https://e3sm.org/wp-content/uploads/2020/06/AllHandsPresentation_06-25-2020_opt.pdf
https://polar.ncep.noaa.gov/waves/workshop/pdfs/
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WW3 Setup

» Unstructured global domain with
16,160 nodes and 30,559 elements

» 50 x 36 spectral grid resolution on a
global domain

» 1 day simulation period

Hardware: Kodiak

» CPU: Intel(R) Xeon(R) CPU E5-2695 v4 @
2.10GHz

» GPU: Tesla P100-PCIE-16GB

WW3 GRID and MPI

BTN
l
R
|
T
|
5
|
B

Application Performance
Valgrind, HPC & Intel-advisor

Parallelize loops - openAcc

Data Management
Optimize Memory

Optimize loop



WW3 GRID & MPI

GRID CELLS

Local grid
Counter

+ MPI Process

1 3 5 6

1 3 5 6

1

1

1

1

1

1

1 3 5 6

1 ‘2 ‘3 »4 5 1 2 3 4 5 1 2 3 4 5
6 7 8 79 710 6 7 8 79 710 6 7 8 79 710
1 12 | 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20

Spectral Grids

Oz 3 4 5 °2 3 4 5 °2 3 4 5
6 >7 >8 9 710 6 7 >8 79 710 6 7 >8 79 710
11 12 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20

Source Term Integration

DO I = 1, LocGRIDS
CALL WSCRE(XY,)
END DO

WSCRE(XY;) SUBROUTINE CALL

DO =1, NTH
CALL W3SNLyy (/)
END DO

NTH = Freq x NDIR




Application Performance Valgrind/Callgrind: 6 Nodes and 1 day

Initialization
Main wave
model

Source
terms
integration

7398 852 x

w3srcdmd_mp_w3sind_ PMPI_Waitall w3uostmd_mp_uost_initgrid_

0,85 % EN12.01 % H16.38 %

1398 852 x 1432 x

w3srcemd_mp_w3srce_

W 163.97 %
6 025 92...
w3srcdmd_mp_w3sind_

9,85 %

[121 994 6...
T ey



Application Performance Intel Advisor: 6 Nodes

L i =l i
summary 5 Survey & Roofline f| Refinement Reports IHT[LM“H
e

& Top time-consuming loops®@

Loop Self Time @ Total Time®
O loop in w3snll at w3snllmd.F90:302 68.132s 68.132s
O loop in w3sds4 at w3srcdmd. F90:2082 65.604s 65.604s
O loop in w3snll at w3snllmd.F90:341 20.477s 20.477s
O loop in w3sds4 at w3srcdmd.F90:1751 38.606s 38.606s
O loop in w3sind at wisrc4md. FO0:442 37.824s 47.324s

® Refinement analysis data®

No data available. Collect MAP or Dependency to see the resuilts.

& Recommendations@

Vectorize math function calls inside loops loop in w3sds4 at w3srcdmd.FO0:1664

Vectorize math function calls inside loops loop in w3sds4 at w3src4dmd.F30:1839

Vectorize math function calls inside loops loop in w3outg at w3iogomd.F90:1355
Add data padding loop in wasds4 at wasrcAmd.FO0:1681
Vectorize math function calls inside loops loop in w3sprd at w3src4dmd.F90:233




Parallelize Loops: OpenACC

OpenACC is a directive-based
API for parallel computing on
accelerators (mostly on NIVDIA

GPU).

It is designed to simplify GPU

programming

Energy Exascale
Earth System Model

Source Code

DO IFR=1, NFR

COMNX TPIINY # SIG(IFR) * CG(IFR)

DO ITH=1, NTH
IsP = ITH + (IFR-1)*NTH
UE (IsSP) AlIsSP) / COMNX
CON(ISP) = CONX
END DO

END DO

DO IFR=MFR+1, MNFRHGH
DO ITH=1, NTH
IsP = ITH + (IFR-1)*NTH
UE(ISP) = UE(ISP-NTH]) * FACHFE
END DO
END DO

DO ISP=1-NTH
UE (IsSP)
sAl (ISP)
sA2 (ISP)
DALIC(ISP)
DALP(ISP)
DALIM{ISP)
DAZC(ISP])
DAZP(ISP)
DAZM({ISP) =
END DO

IFR=1, NFR
CONX = TPIINV / SIG(IFR) * CG(IFR)

DO ITH=1, NTH
IspP = ITH + (IFR-1)*NTH
UE (ISP) A(ISP) 4 CONX
CON(ISP) CONX
END DO

END DO

acc
DO IFR=NFR+1, NFRHGH
DO TTH=1, NTH
ispP = ITH + (IFR-1)*NTH
UE(ISP) = UE(ISP-NTH) * FACHFE
END DO
END DO

Els-
DO ISP=1-NTH, ©
UE (ISP)

DAZM(ISP) =
END DO

U.S. DEPARTMENT OF

ENERGY
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» Parallelize the top two
computational WSRCE subroutines

[EY

0.8

> GPU code is x4 the serial code

» Too many data transfers between
host and device due to WW3 code
structure
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Current Challenges

» WW3 code structure

» Repeated launch of OpenACC kernels

Source Term Integration

DOI = 1, LocGRIDS
CALL WSCRE(XY;)
END DO

DOJ=1, NTH
CALLW3SNLyy, (j)
END DO

CALL WSCRE
DOI= 1, LocGRIDS
DOJ= 1, NTH
CALL W3SNLyy,(j)
END DO
END DO

363.487s

78.6162s
.224245
2.87860s
.90924s
.89094s

.58382s
45.536ms
462 .56
144, 22us
337.065s
Z2.71918s
1.66745s5
788.10ms
546 .93ms
480 . 26ms
97.490ms

acc_enqueue_launch@w3snllmd.F9@

acc_ex1t data@w3snllmd.F90:276
acc_enter_data@w3snllmd.F90:276
acc_enter_data@w3snllmd.F90:272
acc_ex1t data@w3snllmd.F90:272
acc_compute construct@w3snllmd.

acc_walt@w3snllmd.F90:276
acc_device 1nit
acc_update@w3wavemd.F90: 460
acc_enqueue_upload
cuEventSynchronize
cuLaunchKernel
cuEventRecord
custreamSynchronize
cuDevicePrimaryCtxRetain
cuEventElapsedTime
cuDevicePrimaryCtxRelease




Moving Forward

1. Move the source term subroutine to GPU

2. Parallelize the other source term
integration subroutine

3. Optimize loops

4. Optimize number of GPUs

WW3 GRID and MPI

l

Application Performance
Valgrind, HPC & Intel-advisor

l

Parallelize loops - openAcc

l

Data Management
Optimize Memory
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Lightning Talk Summer Project

Problems in Bayesian inference of model parameters:

® The performance of most common Markov chain Monte Carlo
(MCMC) methods is not scalable as the parameter dimensions
grow.

® However, there are a few methods that may be scalable:
Hamiltonian Monte Carlo (HMC).

Chris Kang shortinst
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Lightning Talk Summer Project

We want to answer the following...

¢ Given that the gradient (sensitivity in respect to the
parameters) evaluation of the Likelihood function is
expensive... is HMC practical?

Chris Kang shortinst
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Lightning Talk Summer Project

More on HMC and other MCMC samplers

® Metropolis-Hastings algorithm randomly explores the
parameter space. Not scalable!

® |n contrary, HMC uses the gradient information to
deterministically explore the parameter space.

® When dealing with ODE model-constrained likelihood
functions, the gradient information depends on simulation
outputs. This computation is expensive!

shortinst
4/8

Chris Kang
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Lightning Talk Summer Project

Case study: Susceptible-Infected-Recovered (SIR) model

We aim to infer parameters (infection rate, k; and recovery rate,
ko) of the SIR model with HMC with different gradient
computation methods.

Chris Kang shortinst
Efficient Bayesian Inference with MCMC Samplers 5/8




Lightning Talk Summer Project

Tasks Accomplished So Far:

e Applied gradient computation for linear/non-linear system of
ODEs with analytical solutions.

® Finite Difference
® Forward Sensitivity
® Adjoint Sensitivity

® |mplemented a small Python module of gradient computation
methods for HMC in the SIR model.

e Began utilizing different MCMC samplers with the gradient
methods for other ODE-constrained models.

Chris Kang shortinst
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Lightning Talk Summer Project

Future Directions

Qualitatively measure the practicality of HMC with increasing
number of parameters.

If HMC is indeed impractical, it will require the development of
a new algorithm.

Implementation of an efficient sampler in PyBioNetFit.

® Use-case in my own thesis.

Chris Kang shortinst
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Motivation

Graphene Quantum Dots

Graphene
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Motivation

Tunable Optical Features of Graphene Quantum

Graphene Quantum Dots

Graphene

“Branch 1

Dots from Edge Functionalization

Finite size (< 100 nm)

Two-dimensional honeycomb
lattice made of sp2-hybridized

@
]
7
D
&
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Quantum confinement and

edge effect

carbon atoms

Application

Tunable optical and

photoelectronic properties
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Presentation Outline

Theoretical Investigation of Graphene Quantum Dots (GQDs) in terms of their optical and electronic properties

Part | Part Il
Different Shapes of Cg; graphene flakes Different isomers of C,,3S graphene flakes

Isomer E Isomer F [somer G

Methodology: Electronic Structure Theory (CAM-B3LYP/6-31G)

~
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Change of Optical Properties based of different Shapes
of Co¢ Graphene Flakes
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Change of Optical Properties based of different Shapes
of Co¢ Graphene Flakes

Cost CosR,
5.0 et 4.0 x:;r' S 4.0
4.5 o3 ju' 351 X ':' hyby 4
40 . - | <3t 8 & A
] . ’ 254 rXTIIYY
5;:- -‘- S ‘l Z 2.0 ) :J - | £2.0
2 \ S3 |‘ S4 H].s— “
| 1
1 | | Il
\ : S | ]
S] /| 0.04 4SL2—J A} 0.0 _5|$2 ":"—‘I !
) ; s 20 25 30 35 00 05 10 15 2 25 30 35 4 s
ergy (eV) (eV) (V)
Pristine

1% Los Alamos

AAAAAAAAAAAAAAAA



Change of Optical Properties based of different Shapes
of Co¢ Graphene Flakes
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Change of Optical Properties based of different Shapes
of Co¢ Graphene Flakes
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Change of Optical Properties for Different Isomers of

C,1s Square Graphene Flakes

! o, "
““lsomerB © 7 IsomerC , , , . ., Is

[somer A

[somer F [somer G

Isomer E

Zigzag Edge
Armchair Edge

Seven isomers based on the position of CH, substitution
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Change of Optical Properties for Different Isomers of
C,1s Square Graphene Flakes

Count
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C-C bond distances for isomer D
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Change of Optical Properties for Different Isomers of
C,1s Square Graphene Flakes
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In Summary

+ We have studied hexagonal, rhombic and square shape of two-
dimensional sp? hybridized graphene flakes and their edge
functionalized species

* A comparison of optical properties between Cyq hexagon and
Cge rhombus graphene flake is reported. Cog rhombus with all-
armchair edge has higher absorption energy than all-zigzag
edge

* For the Cg¢ rhombus shape, the armchair edge has additional
flexibility for edge functionalization

* For C,5 square graphene flakes, four methylene substitution at
the edge is probed

« The position of methylene substitution determines the
electronic and optical properties of the corresponding graphene
flakes

—~
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Predicting Cardiovascular disease (CVD) risk using VA
patients data
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Cardiovascular Diseases

Diseases that affect the circulatory system

Heart Attack (AMI), Stroke and Atherosclerotic CVD (ASCVD) death
According to the CDC, about 655,000 Americans die from heart disease

cach year—that’s 1 in every 4 deaths



Pooled Cohort equation (PCE)

e risk prediction equations from Framingham Heart Study served as the basis for developing PCE
e provide sex and race specific estimates of 10-year ASCVD risk for patients between ages 40 - 79

e Current clinical practice uses eight variables and a score to estimate CVD risk

We want to use 200 time-dependent variables, including Labs, Vitals, Comorbidities and Treatments

Age,y Sex Systolic BP Total HDL Smokes Diabetes
BP, mm Hg Treatment Cholesterol Cholesterol Tobacco
Level Level

mmol/L mg/dL mmol/L mg/dL

Black-white estimated risk ratios <0.7 per 2013 PCEs

1 46 Male 108 No 6.79 262 0.85 33 Yes No
2 68 Male 115 No 5.08 196 1.04 40 No No
3 43 Female 111 No 7.28 281 2.07 80 Yes No
- 76 Female 132 Yes 3.63 140 1.73 67 No No
5 70 Male 138 No 3.96 153 0.96 37 No No



Approach

0.5

0.0

-0.5

Collect predictor variables (labs, diagnoses, treatments) on 1 million patients
with CVD outcome and 1 million controls
use predictive modeling to predict outcome

o Logistic Regression: 0.75 AUC

o Random forest (decision tree): 0.80 AUC

o Deep learning (neural network): 0.82 AUC

compare accuracy measures and understand determinants of outcome

MACE4, even cohorts, Dx, drugs, CPT
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Longitudinal Case-control Study Design is efficient

2 years 2 years

Figure 1: Case-Control Study Design

Cases and Controls- 1 million each, using measurements of 200 variables.
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Results are more interpretable if standard of care used

Table 1. High-, Moderate-, and Low-Intensity Statin Therapy (Used in the RCTs Reviewed by the

Expert Panel)*
High intensity Moderate intensity Low intensity

7 D
Daily dosage lowers LDL-C by approximately Daily dosage lowers LDL-C by approximately Daily dosage lowers LDL-C by [ \

2 50% on average 30% to 50% on average < 30% average N e —. * |
Atorvastatin (Lipitor), 407 to 80 mg Atorvastatin, 10 (20) mg Simvastatin, 10 mg 1 I
Rosuvastatin (Crestor), 20 (40) mg Rosuvastatin, (5) 10 mg Pravastatin, 10 to 20 mg /

Simvastatin (Zocor), 20 to 40 mg Lovastatin, 20 mg
_ e £ E B/8
Pravastatin (Pravachol), 40 (30) mg Fluvastatin, 20 to 40 mg = ff” a8 3 E
, : |
Lovastatin (Mevacor), 40 mg Pitavastatin, 1 mg % e 2 = §
=1 < (3]
Fluvastatin XL (Lescol XL), 80 mg S = .g' » -
D [t
Fluvastatin, 40 mg twice daily — N

Pitavastatin (Livalo), 2 to 4 mg

Mapping the drugs and dosages to the standard of care leads to a clear, interpretable resuit



Next steps

Work through the rest of the variables.

Optimize variables/ model and compare risk predicting abilities with
that of PCE

Expand on the impact of Genetics on variable and how it can increase

or decrease risk
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Make Dataset Better

Purpose: the ideal

= Capture as much conformational and configurational
space as possible

= Dataset diversity increase

ratio between
Time, Size, Diversity

= Dataset preparation time decrease




Angular environment
Angle over j,k neighbors centered on atom i

The ANI neural network potential
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Bias potential -

function of
uncertainty

Well sampled space

Poorly sampled space

Property prediction

ENSEMBLE
DEVIATION

High
prediction
deviation

Low prediction deviation High
® prediction
b 3 3
W deviation
‘\

Conformation space
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Uncertainty
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0.0070 -

0.0065 -

0.0060 A
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0.0045 -

- Normal MD
-®- UQ Biased MD

0 2000 4000 6000 8000 10000 12000
MD step




t-SNE
Latent Space

Plot biased and non-biased

Active learning over lond scale
MD (25 ns)

Molecule Embedding
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« Bias AL
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Feeding Long Range MD data to...

Model trained on non-biased AL data

Model trained on biased AL data
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.ANI 1 CCX NN pOtentia]. E Uncertainty of Acetylacetone at Cs GM geometry with respect to H position
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Diagnosing Barren Plateaus with tools from
» Quantum Optlmal Control. ArXiv 2105.14377
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Introduction to Variational Quantum Algorithms (VQAs) and Barren Plateaus

g

Quantum Computers
promise speed-ups.

Present Day devices
are noisy and error
prone.

L

U

Hybrid Quantum-Classical
Algorithms are believed to
constitute a way around
this problem.

However, Barren Plateaus
may arise and compromise
their trainability (and thus
speed-ups).

Do these forecast a winter
for variational algorithms?
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Introduction to Quantum Optimal Control

“free” evolution )
Parametrize the control fields

[¥(2)) {0:(t)} = &

4
/ " n M
/ controlled” evolution

H“,’ P10k (8)}))
W)

Define cost function
C(6) = Tr[p(6)O]

Ho + >, 0k (t) Hx
\ Find optimal parameters

Q .
N 0 ,pt = argmingC(0)
0;. t)



Generalized Framework for QOC and VQA

Variational Quantum Algorithms
Updated Parameters

Qubits

R

Measurements

One Layer

Goal: minimize Cost
Message: the circuit is

N mln C(e) fundamentally determined by

6 the set of generators
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Barren Plateaus'?

No Barren Plateau, trainable Barren Plateau, untrainable (random walk)

It is crucial to determine which conditions allow barren plateaus to arise... can we predict their presence?

1. McClean et al., “Barren plateaus in quantum neural network training landscapes,” Nature communications 9, 1-6 (2018).
2. Cerezo et al., “Cost function dependent barren plateaus in shallow parametrized quantum circuits,” Nature communications 12, 1-12 (2021).






Controllability and the Dynamical Lie Algebra (DLA)

What's the set of all possible reachable states?

Set of Generators

Uilt)

Set of Reachable Unitaries

G = {Hir}i g G = é*

Set of Reachable States

Lie Algebra G |w>

g = span <iH0, P 7iHK>Lz'e

The bigger G, the more
“expressible” the control system.



Algebra, Expressibility and Gradient Scaling

Consider two sets of unitaries, one solving problem A and another solving problem B

Cost function
-_ 5 Landscape

Unitary Group

Observation 1. Let the state p belong to a subspace Hy,
associated with a DLA gi. Then, the scaling of the vari-
ance of the cost function partial derivative is inversely

proportional to the scaling of the dimension of the DLA
as

“,\. / Varg[0,C(0)] € O (m) . (24)

The|more expressible The harder to train Expressibility is directly connected to
the (size of) algebra!

||| polynomially growing algebras can exhibit
\/ polynomially vanishing gradients

exponentially growing algebras will exhibit
exponentially vanishing gradients.

* Holmes et al., “Connecting ansatz expressibility to gradient magnitudes and barren plateaus,” arXiv:2101.02138 (2021).


https://arxiv.org/abs/2101.02138




Example: Transverse Field Ising Model

Single layer of

the circuit
TFIM
011 01,2
=
%7
7 X
zz| | i
:
LTFIM
011 02 O3

Z7

z7

Shh .
S

Expressibility? Look at the
algebras!

TFIM has a Polynomial algebra

LTFIM has an Exponential algebra

Varg [80(9)]

1 @ TFIM closed

Numerics

Variance vs qubits

A.,
A LTFIM closed s A
| © TFIM open A A
A LTFIM open oA
5 10 15 20
n






Summary

Our work provides rigorously proven theorems connecting the dimension of algebra to the existence or absence of barren plateaus.

Corollary 1. Let the single layer expressibility of a con-
trollable system be H.Agl)(o)um = 1—4(n), with 6(n)
being at most polynomially vanishing with n, i.e., with

d(n) € Q(1/poly(n)). Then, if L(n) € Q(n/d(n)), U(O)

Proposition 1 (Controllable). There exists a scaling
of the depth for which controllable systems form e-
approzimate 2-designs with e € O(1/2"), and hence the
system exhibits a barren plateau according to Definition 1.

Theorem 1. Consider a controllable system. Then,
the PSA U(0) will form an e-approzimate 2-design, i.e.
||.Ag()9)\|oo = ¢ with € > 0, when the number of layers L
in the circuit is

will be no worse than an e(n)-approzimate 2-design (i.e.,
||A§J2<)9)Hco < e(n)) with e(n) € O(1/2"), where we have
added the n-dependence in L and € for clarity.

log(1/¢)

R4 s S (14)
tog (1/1A4 )l )

Corollary 2. Consider a PSA of the form in (2) giv-
ing rise to a reducible DLA, and let p € Hy, with
Hy some invariant subspace that is controllable (i.e.
the DLA reduced to such subspace is full rank). If,
Tr[(H,)%. Tr[0%] € O(2"), the cost function will exhibit
a barren plateau for any subspace such that dj, € O(2™).

Theorem 3. Consider a system that is reducible and let
p € Hy with Hy an invariant subspace of dimension dj.
Then, the variance of the cost function partial derivative
is upper bounded by

Theorem 2 (Subspace controllable). Consider a system
that is reducible (so that the Hilbert space is H = @, H;
with each H; invariant under G), and controllable on
some My of dimension di. Then, if the initial state is
such that p € Hy,, the variance of the cost function partial
derivative is given by

Proposition 2. The following two sets of generators
generate full rank DLAs, and concomitantly lead to con-
trollable systems: with

Gp(p®) = (HAU(B’W ((P(k))w)

Vary[9,C(6)] < min{G.a(p®), Gr(0®)}, (21)

Vare[8,0(0)] = 22

= @ - AEIA0)AE®). (6

n
i=

® Gupa = {Xi-yi} ; U {E::ll ZiZiy1 (s

A(e®)
e dzp— 7 ) Tr |:<X2>U‘(4k):|

A(OK)
) = df_ — ) T [<Y2>U‘(;>:| .

e Gsa = {SI X0 Si, (Zi+ 1y ZiZ5)}, with

Ga(0®) = (HAU(AH ((0®)=2)
hi, Jij € R sampled from a Gaussian distribution.

Implications of our results

e Novel insights into circuit design for quantum machine learning tasks, e.g. predict if a given ansatz, or a
modification of one, will be trainable.

e Some ansatz proposals in the literature need to be revised.

e Pave the way towards trainability-aware circuit design.



Thank you! questions?
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What are colloidal Quantum dots (QDs)?

« Semiconductor nanocrystals (artificial atoms) in a solution

Bulk crystal Nanocrystal

% = 0D crystals

=  Quantum confinement effects

1 )
' hv{ . i

Bandgap| Ve = Size dependent properties
1

= = Facile and cheap synthesis

Tunable

Why they are |mportant’?

LEDs, displays, solar cells

Bio-imaging, labeling

Photocatalysis

Quantum computing: need QDs that emit single
wavelength photons image: Samsung o oy eTEccine 2006

Our work CdlSe (Se-rich)

Stoichiometry breaks in most experimentally synthesized QDs @& ?&" ¢

Electronic excitations in non-stoichiometric QDs @Agﬁﬁ

¢'Q Los Alamos

NATIONAL LABORATORY



Oscillator strength

Stoichiometric vs Non-stoichiometric QDs:
Absorption spectra

Se-rich Cd-rich
Cd—ad 2
. i
@&‘ &»&* b ot R
' $ o >
o o o Csaka” 4
o
0.351
Smax n
0.201 0.301 J 0.20
| 0.251
0.15 0.151
0.20
0.10 0.15 010{ Si
0.101
0.051 0.05 1
0.05 S, *
0.00 0.00 T /ﬂ\ 'I 0.00 T T
2.5 3.0 3.5 4.0 4.5 2.5 3.0 35 4.0 45
Transition energy [eV]
 S;: Lowest energy transitions -> represent emission

* S, Maximum oscillator strength -> represent absorption
» Non-stoichiometric QDs: poor emission, good absorption (especially in Se-rich QD)

1% Los Alamos
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Stoichiometric vs Non-stoichiometric QDs:
Electronic excitations

Cd33Se33 Se-rich
S1 Smax Sl Smax

t

1

@Z&@& e
(18 HTr

« S, in non-stoichiometric QDs: higher charge localization —> poor emission

*  S,ax IN non-stoichiometric QDs: lower charge localization —> good absorption
(similar to stoichiometric QD)

AAAAAAAAAAAAAAAAAA



Stoichiometric vs Non-stoichiometric QDs:
Nature of electronic excitations

S1 Smax

100%

100%

75% 75%

[
= Surface 8
m Core 3
£ 50% 50%
o
@)
25% 25%
0% 0%
+ | + | + | + | + | + |
<= Q <= Q <= Q < Q <= Q <= Q
Cd;;Ses; Se-rich  Cd-rich Cd;;Ses; Se-rich  Cd-rich
Qsurface +0.10 -0.80 +0.40
Acore -0.10 +0.80 -0.40
* Se-rich: surface to core = h* on surface .
_ good for photocatalysis
* Cd-rich: core to surface = e~ on surface

S, in non-stoichiometric QDs: Charge transfer (CT) because of charge imbalance =>poor emission
Spax IN non-stoichiometric QDs: No CT (similar to stoichiometric QD) ->good absorption

‘@ Los Alamos 7127721 5
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Conclusion

* Investigated electronic excitations in less explored non-stoichiometric QDs

» Non-stoichiometric QDs have charge localization and CT type excitations at low

energy transitions - poor emission and good absorption

* Non-stoichiometric QDs - photocatalysis

+ Stoichiometric QDs - quantum computing

« Working on strategies to improve emission in non-stoichiometric QDs

Cd33Se33 Se-rich Cd-rich
B EP SRS ct

(o 455 b

& 1

. AL

Contribution

100%

75%

50%

25%

0%

qcore

S,

+ 1 + + 1
= = = Q
Cds;Ses; Se-rich  Cd-rich

-0.10 +0.80 -0.40

¢'Q Los Alamos

NATIONAL LABORATORY

Thank you!

Bhati M., Ilvanov S. A., Tretiak S., Ghosh D., 2021 (in preparation)
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Eigenvector Centrality

 Ranks nodes based on their influence

Ac; = Z Ct

tEN(D)

—
;{Ci= Z AUC]
JEV(G)

—
Ac = Ac

* A = adjacency matrix

* ¢; = centrality score of node i

» For sparse matrices, a small § term is added to each entry

AAAAAAAAAAAAAAAAA



Graph Theory and Porous Media

» Extract a “pore network” from a porous medium
— 2-D image or 3-D volumetric image

» Use eigenvector centrality to find influential nodes

« Compute a Spatially Projected Eigenvector Centrality

2D porous medium Distances to nearest Pore-network Graph
(binary image) objects (edges and nodes)

—————
e S

Jimenez-Martinez & Negre (2017)

1% Los Alamos
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Network Extraction

» OIld method found edges first
— Nodes defined as intersections of edges
— Lines of local maxima become edges

* Does not generalize well to 3-D
— Local maxima form planes or curved surfaces

* New methods propose nodes first
— We present the methods for 2-D first

GIF of 3-D DNO transform

1% Los Alamos

NATIONAL LABORATORY



Network Extraction: Skeletonizing

» Convert grayscale DNO transform back to BW
— Use adaptive threshold
— Goldilocks situation

« Skeletonize new image

. 2-D Porous Medium 2-D Pore Network
%@ Los Alamos

NATIONAL LABORATORY



2-D

porous DNO
medium transform
DNO
transform Skeletonized
converted image
to BW

1% Los Alamos
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Generalization to 3-D

« All methods stay the same!

3-D Porous Medium

3-D Pore Network

250

1% Los Alamos
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Skeleton and DNO Transform

3-D Pore Network

AAAAAAAAAAAAAAAAA

3-D DNO Transform



Centrality Changes (Tentative)

Old adjacency matrix:
A = {e_l/sif i adjacent to j
N 0 otherwise

* s;; = size of pore throat

Add small 6 term to each entry

New adjacency matrix:
A = e~ 1/5ij x g~ 4ij/do no object between i and j
N 0 otherwise

* d;j = distance between nodes i and j

* d, = average distance to nearest neighbor

AAAAAAAAAAAAAAAAA



Normalized Centrality

* New adjacency matrix yields a well-connected network
— No need to add small § term

« Using normalized centrality prevents localization

Porous medium (left) and node locations with centrality score (right)

1% Los Alamos
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What are Vehicle Routing Problems (VRPSs)

Brief Notation Introduction

Graph: ¢ = (V,E)
Vertices Edges I I
Start: seV
End: deV VRP
m vehicles go from s to d while satisfying
Number of Vehicles: m certain constraints

1% Los Alamos



Why Do We Care?

Many Real-World Applications

— Crew scheduling for airlines

— Task scheduling for factories

— Robot path planning

— Dirilling holes for boards

C‘q Los Alamos 811201 3

NATIONAL LABORATORY



Modeling (Mathematical Programming)

Score
. = _ —
Maximize Z = X, coPrXk Collected

Constraints
subject to Ax < b +— Ex: “At most m vehicles used” or
“Each vertex used at most once”

X, €{0,1}, Vr, €Q

/ \

x,=1 = 1, used Exponentially many routes
x, =0 = 1, notused

Use branch-and-price to
generate routes while solving

1% Los Alamos
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What is Sensitivity Analysis?

Study effects of slightly perturbing a problem

— One morel/less vehicle used
— One more/less place to visit
— Multiple visits allowed

— Different costs

Los Alamos

AAAAAAAAAAAAAAAAAA
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Issues with Sensitivity Analysis

« Computationally expensive

— Original and perturbed problems are hard

— Typically solve perturbed problem from scratch

« Sophisticated methods may be difficult to implement

Resolution: Use information from original solution

1% Los Alamos
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Post-Optimality Sensitivity Analysis

« Use information from given/found solution to make conclusions about
a perturbed problem

« Type of perturbation affects what conclusions can be made

— Change constraint or change objective

- Method of solving affects what conclusions can be made

— Some methods contain more information than others
— Brute force has a large amount of information, but is too costly

— Trade information for speed to solve problems typically

1% Los Alamos
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Work Done

« Upper bound for change in number of vehicles and addition/removal
of vertices

Ax < b - Ax < d

« Could NOT find upper bound for change in objective

Z Pr Xk L z D'k Xg

TkE.Q TkE.Q.

1% Los Alamos
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Work Done

Upper bounds without solving the perturbed problem

— Takes advantage of the structure of branch-and-price

— Requires slightly more memory, but typically not an issue

— Increase in computational time is practically negligible

— Can easily be generalized for multiple scenarios using a single solution

— Can be easily implemented

1% Los Alamos
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Defect study on the electronic
structure of a novel 2D-perovskite
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Metal Halide Perovskites

Motivation Challenge
» Perovskites most abundant mineral » Perovskite Dimensionality?
on earth!! — 3D (Bulk) = 0D (Quantum Dots)
« Advantages » How to increase efficiency?
— Direct gap semiconductor - Reduce unavoidable defects
= Easily tunable & cover wide light range = Which defects are most detrimental to
= High PL quantum yield & power conversion performance?
efficiency
= Favorable properties for solar cell & LED
devices
— Low-cost raw materials and
equipment

— Facile Synthesis
= Solution-based methods at low temperature

(>
‘&Q h?ﬁﬂﬂmgﬁ Szuromi, P.; Grocholski, B. Natural and engineered perovskites. Science 2017, 358, 732-733.



2D-perovskite: BA,MA,,_1Pb, 13,1
+ BA: Butylammonium " 7 O\

« Single layer: n=1
- BA,PbI,

* Primitive Cell (1x1x1)
- a= 8.69250 A o =90.0000°
- b=27.60140 A B =90.0000°
- c= 8.87640 A vy =90.0000°
- V =2129.6718 A3
— Formula: HggC5,NgPb,l5 (156 atoms)
— 432 number of electrons

1% Los Alamos
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Low Formation Energy Defects

"
!
v
N

B

V

VF%AI

V, (in-plane)

' . Vll'
O

|, (out-of-plane)
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. — C
» Direct Bandgap (Tr>T) o
- 2.12eV Z 150 v
2 125 — total
 Band edge states are £ .
delocalized across the 8
Pb-I (in-plane) layer s 3
0 : £ = 14
-3 2 1 0 1 2 3 4 5 5
Energy [eV] ch

VBM
Energy: 0.2406 eV

CBM

(>
i@ Los Alamos 02021 5



Halide defects are the most detrimental!

V, (in-plane) V, (out-of-plane)
E E E E E E E (@) E E
VIZ:

l, (in-plane) |, (out-of-plane)

EOEOEOEOE EOEOEOEOE

Qﬁ Los Alamos 9/2/2021
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V, (in-plane) (2x1x2)

200 A

— C
— N
— H
— Pb

N
“— total
S

=

50 4

Direct Bandgap (> IN)

- 0.29 eV (spin states of
same orbital)

Band edge states are
localized near vacancy
-200 A

Introduce N-Type defect 532 4

100 4

50 A

-50 A1

°
DOS [arb. unit]

-100 4

-150 A

ey

Energy [eV]
=

VBM

—_——

e —————
e e —
— T —
= = ==

C—— -

- S - S —
————— s ————

r X u 4 r

9/2/2021 7
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|, (out-of-plane) (2x1x2)

Direct Bandgap (> IN)

- 0.565 eV (spin states of
same orbital)

» Band edge states are
highly localized

 Introduce P-Type defect

1% Los Alamos
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DOS [arb. unit]

150

100 +

50 A

01—

-50 4

-100 A

-150 A

Energy [eV]

CBM
lEnergy: 1.156 eV

VBM
TEnergy: 0.591 eV

Energy [eV]

9/2/2021
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V, (in-plane) layer dependence

» Defect state remain
regardless of layer depth

s
S g
Energy [eV]

Energy [eV]
Energy [eV]

1% Los Alamos
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Future of the project

Lessons learned

» Defects which break electron pair
introduce trap states.

significantly perturb the electronic

. .st;r‘\uc.ture. .
) 0..0.0 0.000
adiat 0
KRR O X X X

» Trap states remain regardless of
cell thickness.

1% Los Alamos
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Continued work

» Non-adiabatic molecular dynamics
(NAMD)

— Charge carrier lifetimes/dynamics
» Pristine
=V, (in-plane)
= |, (in-plane)



LOW-TEMPERATURE PLASMA TRANSPORT
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NUCLEAR FUSION

> Nuclear fusion reactions require extreme
temperatures (~10 keV), where hydrogen exists as
plasma

* Magnetic Confinement of Plasma

* High temperature ionized gas

* Large magnets suspend plasma away from reactor walls

* Detachment is essential for an efficient and lasting
reactor

D-T Fusion: ¢H + 3H — SHe +n + 17.5MeV
inner poloidal
toroidal magnetic field coils Coil current outer poloidal

magnetic field coils

magnetic field coils




ITER AND THE WALL PROBLEM

J . - /\ il =
* International Thermonuclear Experimental Reactor (ITER) - ,/l‘-gﬁ-“ﬁ-_\\‘: .
X . i\

* Has been in the works since 1985

* A research experiment with a lowest projected cost over $20 billion

* The wall problem

* Plasma-surface interactions are critical to steady-state operation www.iter.org/mach e

> High energy (MeV) electrons can destroy the walls of the reactor " _ 1
g ‘ > Y; -
* Disruption can cause quenching and generate these runaway electrons o e Pl -l SRR
g@, - 3 —1 —J .
* Desire for accurate low-temperature plasma modeling near the wall | - -
2 3

A damaged Beryllium wall.



METHODS FOR MODELING PLASMA

Particle in Cell (PIC) technique

Numerical method to integrate equations of motion

Challenging to deal with the singularity of collisions

Monte-Carlo techniques can be used to account
for collisions (PIC-MC)

Scattering cross sections and the angular distribution
Boltzmann Solvers

Numerical solution to the Boltzmann Equation

Boltzmann and PIC calculators solve the same

problem

Integration of equations of
motion, moving particles

My~ w5

Weighting Particle loss/gain
at the boundaries
(E,B); = F; (emission, absorption, etc.)
A
@
\ 4
Integration of field Monte-Carlo Collisions

equations on grid

v, = v
(p7 J)J — (E7B)j

Weighting

(CI:, U)i — (pa J)J




SCATTERING CONCEPTS FOR MONTE-CARLO

Types of scattering
Elastic e~ (€) + He - e~ (¢, %) + He g Differential solid angle d Q
Excitation € (€) + He > e (€4, %) + He"
lonization e~ (€) + He = e~ (€4, xq) + e~ (€p, xp) + He™ . |
Differential cross section d o
There is an angular distribution associated with each *"
Impact parameter b

type of scattering

do (€, x) Scattering center Scattered particle

x(e) - 20 - I(€x)

Scattering Angle — Dif ferential Cross Section — Angular Distribution




THE LANL ANGULAR DISTRIBUTION

Comparison of Angular Distributions compared to benchmark CCC data for He elastic collisions.

The LANL Angular Distribution 15ev 10 &V
M - -_ - " '0‘
Elasticc e (e) + He » e (g, ) + He A@”'Y “S/eﬂf
Applies to neutral species, (H, D, T, H,, D5, T, He) at %0'1 : - %
low-temperatures 5 7 Present work | 8101 \ ]
o . t_“ E_U ~ ”/ 7 - —
Characterized by greater backscattering at lower =y el =y :/’
energies = =
Benchmark Tee.
. . . 0 100 150 0 50 100 150
Monte-Carlo requires an invertible angular Angidogres) s ey
e e
distribution to run efficiently
i ; . 100
It is too complicated to predict when, where, and how C C
2 S
every single collision will occur. 2 2
k2 k2
Instead, estimate a collision frequency for each type of E :\310'1
collision 2 —_— | £
For each collision and each particle, sample from the 10-2]

o
L BT

angular distribution.

0 50 100 150 0 50 100 150
Angle (degrees) Angle (degrees)
mmmm CCC == = Present = = = Surendraetal. Khrabrov ]

W. Kupets et al.in preparation (2021); M. Surendra, D. B. Graves, and G. M. Jellum, Phys. Rev.A 41, 1 112 (1990);A.V. Khrabrov and I. D.
Kaganovich, Physics of Plasmas 19,093511 (2012); I. Bray, D.V. Fursa,A. S. Kheifets, and A.T. Stelbovics, J. Phys. B 35, R1 17 (2002).




CROSS SECTION MODELS FOR HELIUM

LANL Transport
Coefficients

Surendra Transport
Coefficients

N

s N
LANL
(——LANL Angular Distribution—>» Momentum Transfer ———  » LANL He Model
Cross Sections (—>
CCC Integrated - 7
Cross Sections p ~ p
Surendra
;Surendra Angular Distribution—> Momentum Transfer » Surendra He Model > BOLSIG
Cross Sections —> >

\\ J N\

Elastic CCC He

Differential Cross

Sections
p
k CCC Momentum Benchmark
»  Transfer Cross > CCC He Model
Sections | —>

G

Inelastic CCC He 1 Inelastic CCC

Differential Cross > Integrated Cross )

Sections J Sections

oy (€) = 2mo(€) jnl(e, x)(1 — cosy)sinydy
0

Benchmark
CCC Transport
Coefficients




RESULTS

Benchmark CCC curves based on cross sections obtained from QM calculations
Error in Surendra et al. significant at > 1.0 Townsend

Transport behavior is especially improved for larger reduced electric fields

Electron transport in Helium at ambient temperatures

10!
102 4 102 -

i 0 o ] o .
by, 6%10 | |
— (75} 9]
lE T T

0 | 1 | 1 |
- 4x10 S 10 S 10
| < <
= 3x10°] X R
I — —
O N N
Z 2x10° = 100 > 1001
z 8 8
=

100 T T T oo T T T oo T T T oo T 10_1 T T T T T T T T T T 10_1 T T T T T T oo T T T oo
101 100 10t 102 1071 109 101 102 1071 100 10! 102
E/N (1d) E/N (Td) E/N (Td)
== CCC === Surendra et al. Pack et al. (1992) Elford (1974) (293.0 K) Y% DallArmi et al. (1992) Cavalleri (1969) G
we= LANL  /\ Kucukarpaci et al. (1981)




CONCLUSION

We have motivated use of the LANL angular distribution in state-of-the-art PIC-MC by demonstrating more accurate

transport behavior emergent from a more realistic scattering model

Currently being implemented in modern PIC codes at LANL

Plan to make recommendations for the complete range of collision processes that are used in PIC-MC
Extend approach to other neutral species such as Nitrogen, Argon, and Xenon

lonization processes (energy sharing and angular distributions)

Excitation angular distributions

This work is in preparation and to be submitted to PSST

Work funded by the Los Alamos National Laboratory (LANL) Laboratory Directed Research and a
Development program project number 20200356ER.
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Pre-irradiation 3.2x101° m2

100 nm 100 nm
r

El-Atwani, O., Hinks, J., Greaves, G. et al. In-situ TEM observation of the response of ultrafine- and
nanocrystalline-grained tungsten to extreme irradiation environments.
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Main Question

How do we predict grain boundary structures within the
system?

1% Los Alamos
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Process

We simulate a crystal with degrees of freedom in total particle numbers
and with a range of temperatures

1 2

An Adaptive-Biasing Force scheme Sample within the whole

iteration runs with each total particle = Grand-Canonical Ensemble, with
number, N fixed temperature

1% Los Alamos
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Made up example of free energy landscape

24

TR
70 3

D.J. Wales, Ann. Rev. Phys. Chem., 69 (2017)

AAAAAAAAAAAAAAAAA
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Two body-centered cubic (bcc) Tungsten grain
boundaries, seen below in constructed state

[100] tilt GB $5[001] (310)-twist GB

- represents fixed Tungsten atoms represents Tungsten atoms that move
during simulation

—~
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Two body-centered cubic (bcc) Tungsten grain
boundaries, seen below in constructed state

[100] tilt GB $5[001] (310)-twist GB
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- represents fixed Tungsten atoms represents Tungsten atoms that move
during simulation
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Entropy

Entropy vs Energy
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first derivative of Entropy

Derivative and Second Derivative of the Entropy

First derivative
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Derivative and Second Derivative of the Entropy

First derivative
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The derivative of Entropy

dsS/du -1
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The derivative of Entropy

dsS/du -1
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Take-Home Message and Conclusion

% Don’t look at grain boundaries through a toilet paper roll: experiments
suggest a range of temperatures and particle numbers of GBs must be
simulated to find minimum free energy structures.

ds/dut

5500
4500
3500
2500

— T

> 81
2460

Particle Number 2520

. 8.6 Energy per Atom in eV
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Take-Home Message and Conclusion

7/

% Don’t look at grain boundaries through a toilet paper roll: experiments
suggest a range of temperatures and particle numbers of GBs must be
simulated to find minimum free energy structures.

ds/dut

5500
4500
3500
2500

— T

> 81
2460

Particle Number 2520

. 8.6 Energy per Atom in eV
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Why to Model Continuous Systems Numerically

* These systems display nonlinear behavior that usually lack analytic solutions.

* The dynamics of solids and fluids have important applications in everyday life

alongside research performed at LANL.



Equations of Motion

ap
E—FV'([)V)—O

ov

p(— + (v-V)v) =V -0+ pf

ot

An Equation of State

Continuity Equation

Momentum Equation

Examples
Ideal Gas Linear Elasticity
p=(y—1)pe €ij = 5(8333- 8_1131

0ij = —POij
/ J Oij = E Yiiki€ri
el



Discontinuous Galerkin Method (DG Method)

il

—V-f+b
atV-l—

Models equations of the form

The function g is modeled over k subvolumes. g in each
subvolume is referred to as g*.

The simulated function gets reassembled as ¢(z,t) = @) ¢"(x, 1)
k



DG Method (cont)

Each g” is represented as ¢"(z.,1) Zq@

System evolves via

da*
Z& f Si(2)S;(z)dV = / f* . 0" Sk (2)dS — / f.-VSE(z)dV + / bSF(z)dV
- ot Vk oVk vk

VEk
Evolves both the Continuity Equation and Momentum Equation

Evolution equation is a matrix equation



The Surface Integral

The evolution equation contains the term | - n"S;(z)dS

The asterisk captures the effect of
neighboring cells on the cell k.

0
Example: Momentum Equation: a(ﬂv) =V (0 —pv®V)+pg
We have And can pick
k
_ : 1 —
fi; = 0ij — pviv; (qv)* - n" = M 2n (¢"+q )+ |v-nF 5 a((f -q )

q=pv

o is user-defined



Computing Integrals

Update rule involves integrals of the form f -ndS and / pdV
aVv %

Error versus Step Size for Gaussian Quadrature n =5

Integrals can be done using Gaussian Quadrature:

[ sty S wiste)

When applied to 3d: o ||

/V Sx)AV = 3 wyd(x(6,)) T (x(,))]



In Progress

Results




Thank You!
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Summary

« Female infertility is a rising problem, affecting more than 1 in 10 women

« Infertility is highly heritable
— Currently very little understanding of genetic risks & biological pathways

« Goal: conduct a Genome-Wide Association Study for female infertility
- Improve diagnosis, early treatment, fertility outcomes
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Human Genetics: An Overview

3 billion Nucleotides (A, T, G, C) in human genome

99% of nucleotides are identical between all humans
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Human Genetics: An Overview

3 billion Nucleotides (A, T, G, C) in human genome

99% of nucleotides are identical between all humans

1% of nucleotides differ between humans

“Single Nucleotide Polymorphism” = “SNP”

‘@ Los Alamos 9321 4

AAAAAAAAAAAAAAAAAA



Human Genetics: An Overview

3 billion Nucleotides (A, T, G, C) in human genome

99% of nucleotides are identical between all humans

1% of nucleotides differ between humans
“Single Nucleotide Polymorphism” = “SNP”

 SNPs cause differences between us
* Genotyping identifies the SNPs an individual carries

‘@ Los Alamos 9321 5
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Polycystic Ovarian Syndrome (PCOS)
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Polycystic Ovarian Syndrome (PCOS)
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Genome-Wide Association Study (GWAS) of PCOS

Data from UK Biobank: full genotype of 250,000 females

Problem! Only 330 females report having PCOS (0.1%)

PCOS has 10% prevalence = 25,000 females
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Genome-Wide Association Study (GWAS) of PCOS

Data from UK Biobank: full genotype of 250,000 females

Problem! Only 330 females report having PCOS (0.1%)

PCOS has 10% prevalence = 25,000 females

Solution: Predict which females have PCOS from symptoms

OOOOOOOOOOOOOOOO



Step 1: Predicting PCOS from Symptoms
Consulted with infertility expert Dr. Mahalingaiah of Harvard Medical School

PCOS = Excess Androgen + Irregular Menstruation — other disorders

» Testosterone > 90% * Lack of menstruation e Cancer
» Facial hair » Excessive menstruation  Endometriosis
» Excess acne * Infertility « etc
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Step 1: Predicting PCOS from Symptoms
Consulted with infertility expert Dr. Mahalingaiah of Harvard Medical School

PCOS = Excess Androgen + Irregular Menstruation — other disorders

» Testosterone > 95% » Lack of menstruation « Cancer
« Facial hair  Excessive menstruation  Endometriosis
» Excess acne * Infertility « etc
Before PCOS Prediction After PCOS Prediction
» 330 positive cases « 1735 positive cases
* Insufficient statistical power « Higher statistical power

This is the first study to predict PCOS for genetic association
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» Excess acne * Infertility « etc
Before PCOS Prediction After PCOS Prediction
» 330 positive cases « 1735 positive cases
* Insufficient statistical power « Higher statistical power
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Step 2: Validate Genome-Wide Association Study Method

« Compare to accepted results for Body Mass Index (BMI)
 Linear regressions between SNPs of 500,000 individuals and BMI
* Tool: BOLT Linear Mixed Model

» Hundreds of gigabytes of data, processing time ~2 days

Important Steps in GWAS

» Control for confounding effects
- Age, sex, assessment center, etc
— Top principal components (population structure)

» SNP quality control
— Correlations between nearby SNPs

AAAAAAAAAAAAAAAAAA
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Step 2: Validate Genome-Wide Association Study Method

 Fit linear regressions between SNPs and BMI (500,000 individuals)
» Control for confounding variables

» Validated against accepted results

L. SNPs with high
effect on BMI

(-log10 s

value

Effect on BMI




Step 3: PCOS Genome-Wide Association Study

SNPs with high
effect on PCOS

P-value (-log10 scale)

Effect on PCOS

Chromosome
‘r‘ Los Alamos . 9321 24
B DRSNS SNP Location on each Chromosome



Current Work

 First study to predict PCOS from symptoms and correlate to genetics

* Importance:
— Understand biological pathways
— Predict women’s genetic risk of PCOS
— Improve early diagnosis through genetics

Future Work

* New genome sequencing methods: whole genome (not just SNPs!)

« Machine Learning for Genetic Association Studies
— Incorporate gene-gene interactions and non-linear effects
— Never done before!

AAAAAAAAAAAAAAAAAA
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Transition Path Search for Light-Driven Molecular Motor
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ML Accelerated Approach:

(a) HIPNN (b) PYSEQM

Density

< Coordinates SEQM: CcCore

MNDO Hamiltonian e
AM1 P
PM3  Coulomb —vead o/

Integral

58 Parameters

HIPNN produces optimal semi-empirical Hamiltonian parameters for a molecular configuration

Then passed to PYSEQM which solves the Self-Consistent Field equations to determine the orbits
of electrons and total molecular energy

1% Los Alamos

NATIONAL LABORATORY



Light-Driven Molecular Motor:

<

Synthesized by Feringa et. al. to mimic
processes that occur on a microscopic
biological level

Will respond to photochemical and
thermal isomerizations to produce
unilateral relative rotation

Double bond between central carbons
means most st_able states occur at cis
and trans configurations.

Los Alamos

NATIONAL LABORATORY

Image Credit:
http://www.benferinga.com/research.php



Goal:

« To generate a transition path of the
rotation with realistic intermediates and a
plausible energy barrier

* Note: Rotation through the barrier
produced by methyl-methyl proximity
was studied -- unique structure of the
molecule posed several issues to
generating realistic geometries.
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Execution:

« Ran a Python script on Badger that
used the Pytorch-based
Semi-Empirical Quantum
Mechanics package (PYSEQM)

* This provided both atomization
energies and gradients of the
structures used to optimize
intermediates and output them as
xyz files

1% Los Alamos
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Approach: Dihedral Angle Constraint

 Difference in dihedral angle of
endpoint molecule guides
progression (reaction angle)

 Central carbon atoms and the
two attached carbons closer to
methyl groups used

Intermediate 0 =
Previous 6 +
0.05(A0)

Reaction Angle:
A0=0,-0,

~
1% Los Alamos

Update Geometry

with Angle Output New
Constraint and Intermediate
Optimize




Results:

Progression:

« Endpoint was reached

« Barrier was far higher than
experimental value

« Additional issue was that
the structure used was
inconsistent with Feringa'’s
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Visualization:

» Other tests (eg. constrained endpoints, varied atoms in dihedral, multiple
dihedral constraints etc.) either destroyed molecule while optimizing or had
massive energy barriers

» Due to a few modifications of the molecule being used
Alternate Molecule: Molecule Initially Used:
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Approach: Dihedral Angle Constraint

» One constraint would not drive Two Dihedral Constraints with Altemate Geometry
the progression ..

« Two dihedral angle constraints
were sufficient and generated
initial guesses for the
intermediates

S
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° ®--o--®--9 o

MM-cis-2

 Barrier was still ~2X too large.

0.4 0.6
Progress Along Reaction Angle
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Approach: Dihedral Angle Constraint

» Used geometries genel’ated Dihedral Constrained Atoms with Alternate Geometry
with two constraints and it
optimized each with original
single angle constraint

|
N
o
N
o

» More probable barrier achieved
that reflects the experimental
barrier of ~1eV
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Progress Along Reaction Angle
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Visualization: Intermediates of Interest

5% Progress: 80% Progress:
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95% Progress:




Next Steps:

* Repeat process with the other,
simpler transitions of rotation

« Generate a smoother path by
adding more intermediates
between the current 19
intermediates

« Attempt with a different molecule
to ensure the efficiency of the
method

1% Los Alamos
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Conclusions:

Machine Learning accelerated Quantum
Mechanics method accurately
reproduces experimental barrier height,
opening possibility for theoretical
screening

Motor proteins carry out dynamic
functions on a cellular level by
combining several components with
specialized molecular function (eg.
motor, brake, scissor)

Continued study and development of
synthetic imitations is a huge step
forward in nanotechnology 2



Molecular Car

Example

oo
<

Image Credits: https://cen.acs.org/
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https://cen.acs.org/articles/89/i46/Nanocar-Four-Wheel-Drive.html
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A volume above
floatation (1012 m3)

Mass change (Gt)

1,000

-1,000

-2,000

-3,000

-4,000

-5,000

1980

0_

Mass Loss From GrlS 1980-2020

=12
£
i E
| Total é
-------- IMBIE 2012
i Surface 412
Dynamics
19‘85 19‘90 19‘95 20I00 2!;05 20I10 20‘15 2020
IMBIE Team (2018)
Humboldt Glacier sea level contribution 21st c.
B B 0
L 2 /g
— €
O —
452
]
] ©
L N %
O
(0]
8
2020 2040 2060 2080 2100
Year

Hillebrand et al. (in prep)

~50% of that mass loss is from
surface mass balance
~ 50% is from ice dynamics.

Negative 21st Greenland surface mass balance

600
300 4
- 04 0
5
g 556 F 0.5
o F 1.0
S @ RACMO2 ERA (1)
o CESM2 HIST (12) F 1.5
-600 @ CESM25SSP1-26(2)
GESM2 SSP2-4.5 (3) F 2
_900 - CESM2 SSP3-7.0 (2) - 2.5
@ CESM2SSP5:85(2)
@ RACMO2 SSP5-8.5 (1)) - 3
-1200 T T T T
1950 1980 2010 2040 2070 2100

Large uncertainty in
Humboldt glacier sea level
contribution through the
21st century

Year

Noél et al. 2021

Sea level rise [mm yr]



The subglacial system

Moulin

Supraglacial Lake

Glacier

Subglacial
System
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The subglacial system

Moulin

£ ne®

Supraglacial Lake

Glacier

Subglacial
System

Distributed system (inefficient)

Channelized system (efficient)




The subglacial system

Moulin

Supraglacial Lake

Glacier

Subglacial
System

Will increased surface
melt lead to a change in
the character of
subglacial drainage?
How will that impact
subglacial water
pressure, and thus, ice
dynamics?




Modeling subglacial drainage

Model: MPAS Albany Land
Ice (MALI) Ice sheet model

Solve equations for:
e Mass conservation
e Water flux law
e Cavity space
evolution

Distributed Drainage Channelized Drainage
e Slow, inefficient e Fast efficient
e Cauvities open as ice slides e  Conduits open by melting from

over bumps
P heat dissipation in water flow

Q1= P1 ~_ " Qt= Pl

Critical discharge in distributed
system leads to channelization



Experimental Design:

e  Model run with daily varying melt from
historical and CESM derived RACMO
projections from 1990-2100 (ongoing).

e determine extent of channelization
and basal water pressure

Inputs:
e Summer surface melt drained
to the bed
e |[ce sliding velocity (constant)
Outputs:
e \Water pressure
e Distributed and channelized:
o Water volume
o  Water flux

Surface runoff

— 66e-04
£

o
2
00004 3
[
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00002 £
a

— 0.0e+00

Water Thickness and
Channel Area
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Summary and conclusions

Increasing surface melt has a substantial impact on the character of drainage.
o Increased channelization has only a slight moderating effect on seasonally-averaged water pressure as

surface melt increases.
This suggests that this increase is insufficient to
prevent meltwater-induced speedup of HG in the
coming decades.

Future work

Finishing century scale runs

Coupling to these subglacial hydrology runs to
ice dynamics

Coupling surface melt and discharge to MPAS-O
(and other E3SM models)

mean summer water pressure (Pa)

1e7 summer surface melt vs summer water pressure (3km resolution)
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Creating a genome
browser for SARS-CoV-2
visualization.

Elena Romero
Group: T-6
Graduate Student at University of Washington

Mentored by: Brian Foley
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World wide spread of SARS-CoV-2 has generated large
amounts of viral diversity.

Variant data from

Los Angeles

Los Alamos

NATIONAL LABORATORY

. 06/26/2021 Through 07/26/2021
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Not all variants are created equal.

Variant data from

Phoe@g

Los Angeles
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) N
- ] e
¢ £ o NeggYork
W 3 -
0 ua\h gton
o/ e
L
Y 4
4
>

}

A.25.2
A.23.1
A.27
Alpha+E484K
Alpha+F490S
Alpha+T20I
Alpha+W152R
Ancestral
B.1.1.318
B.1.1.519
B.1.1.523
B.1.1.7=Alpha
B.1.214.2
B.1.258.17
B.1.351=Beta
B.1.429/7=Epsilon
B.1.525=Eta
B.1.526.1
B.1.526.2
B.1.526=lota
B.1.575
B.1.617.1=Kappa

B.1.617.2=Deltat+A222V

B.1.620
B.1.623

4/8/21 3


http://cov.lanl.gov

How can researchers assess what variants present
further threats?
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How can researchers assess what variants present
further threats?

* They can perform in vitro experiments.

» They can collect and analyze data such as outcomes for patients who have
contracted the variant.

AAAAAAAAAAAAAAAAAA
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How can researchers assess what variants present
further threats?

* They can perform in vitro experiments.

» They can collect and analyze data such as outcomes for patients who have
contracted the variant.
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The SARS-CoV-2 Genome Browser helps provide
detailed information about specific variants.

‘@ Los Alamos 4/8/21
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The SARS-CoV-2 Genome Browser helps provide
detailed information about specific variants.

 This information can be used to identify what variants are likely to have the
biggest impact.
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These common mutations are often relevant to
variants such as the delta variant.

Phylogeny
Genotype at Ssite 452,478 A
L/T Q/T
R/T L/R
M/T

Tree from nextstrain.org

~
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Each site of interest in the genome has a link to more
information about that site.

SNV

Primary Data
Type SNV
Description SNVL->R

Position NC_045512_surface.glycoprotein-spike:452..452
Length 1 bp

Attributes

AF 0.008291
alternative_alleles R
description SNVL->R
reference_allele L

seq_id NC_045512_surface.glycoprotein-spike

OK
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Variants’ mutations can also be viewed alongside the

protein annotations.

Genome Track View Help
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Researchers can also utilize the whole genome
nucleotide view to see the bigger picture.

Genome Track View Help co Share
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 281000
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Conclusions

 The Genome Browser provides:
* A nucleotide view of the Sars-Cov-2 Genome
 Protein views of major genes and open reading frames

* On top of these views, annotations of key regions and common mutations
help provide researchers with a quick way to assess new variants.
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Conclusions

 The Genome Browser provides:
* A nucleotide view of the Sars-Cov-2 Genome
 Protein views of major genes and open reading frames

* On top of these views, annotations of key regions and common mutations
help provide researchers with a quick way to asses new variants.
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Anti-corrosion 2D Surface Coatings for Uranium
Dioxides Studied with Density Functional Theory

Ligﬁming Talk

Geeta Sachdeva
T1, Theoretical Division, LANL
Mentors- Dr. Ping Yang, Dr. Gaoxue Wang
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Outline

« Background

» Spent nuclear fuels- prevention from corrosion
 Anti-corrosion coatings for UO, surface

» Results and Discussions

¢ Summary
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Background

Nuclear power plant
Spent fuel

Storage and disposal

Nuclear Fuel Process

Fresh fuel

Conversion and Enrichment
Mining and milling

ot 7
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Spent nuclear fuels

1,000,000 Fission gas

bubble release
Total for spent fuel

|

100,000

10,000

1

1,000 -
Actinides &
100 1 daughters

HZOZ' OH', =U4+ _> U6+

Radioactivity (relative scale)

1 HO,,H,, O "
e Radioactivity of il Us‘c H,0, HCO,3
uranium ore Fuel oxidation /
| I e o e \ reduction by g U022+(aq)
Fission & activation products radiolytic oxidants Oxidation of
0 l . . the fuel :
0 10 1,000 100,000 matrix

A Gap release uo, - UOo,,, U%* secondary
Years after processing (volatile FPs & nhase
fission gas) precipitatios

O The corrosion of UO, is a persistent problem for their safe usage and long-term storage.

= Corkhill et al., IOP Publishing, 2018
‘59 h?ﬁﬂgm?g Tanijil et al.,Coatings 9, no. 2 (2019): 133.



2D Materials as Anti-corrosion Coating

 Advantages: atomic thickness, inert and impermeable to common gases,
excellent thermal and mechanical properties
 Synthetically achievable

 Used as coatings for photocathodes

Screening of best candidate
4000 2D materials

4

Thermod
stabili

Band align

\ DFT validatiot’

v

10 candidates

Wang, Gaoxue, Ping Yang, and Enrique R. Batista, Physical Review
Materials 4, no. 2 (2020): 024001.
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2D Materials as Anti-corrosion Coating

O Binding strength of 2D nanomaterials on nuclear materials
O Driving forces for the interaction
O The change of surface properties after coating with 2D materials

i Graphene Semi-metal H::
‘ h-BN = [nsulator O >
N——— S — VG o
High oxidation \
Mo energy barrier Q b
\ B )s ~
____| High oxidized VAR
Mg=es state energy b o
) d o
" Various
i TihC(Oy) === functional
. groups

7, g,

Guo et al., ACS Applied Nano Materials 4, no. 5 (2021): 5038-5046
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Methodology

Uranium dioxide - UO, (fluorite structure)

Q Electronic structure calculations based on
density functional theory (DFT)

0 Perdew-Burke-Ernzerhof (PBE+U) exchange-
correlation functional with a Hubbard U

O Spin polarized calculations

Density functional theory (DFT)- VASP

Binding Energy, Density of states, Bader’s
charge transfer etc.

%@ Los Alamos
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Results: Comparison of various 2D materials coatings

Binding strength

Eb=

BE/A Bader’s charge | Interlayer distance
(3/m2) transfer (e) (A)
UO2/BN -0.38 0.03 34
UO2/Graphene -0.37 0.03 3.4
U02/MoSe2 -0.94 0.3 3.1
UO,/Graphene UO,/MoSe2

UO,/BN

Electron localization function (ELF)

Eyop — (Ey + Ezp)

A



Effect on the structure

2.6

uo,

2.5

N
~

Bond Length (A)
N
w

N
N

2.1

2.0
0123456 78 910111213 14151617 m UO,/MoSe,

Uranium Atom

N
I

Bond Length (A)
N N
N w

N
|

01234567 -8- 91011121314151617
Uranium Atom



Density (states/eV)

Electronic Density of States

UO,/Graphene
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Hybridization between coating and UO, orbitals can be seen
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Wang et al.,Journal of Physical Chemistry C 123, no. 50 (2019): 30245-30251.
Guo et al., ACS Applied Nano Materials 4, no. 5 (2021): 5038-5046




Summary

> Interfacial properties including atomic configuration, electronic structure, charge transfer,
and binding strength of representative 2D coatings (graphene, h-BN, MoS,, MoSe,, Ti,CO,

and Ti,CO ) on UO, surfaces were studied.

» Stronger binding energy reflects stronger protection to UO, surface. Graphene and BN have

smaller binding energies, while MoSe, has much stronger binding strength on UO, surface.

» Orbital hybridization is observed between the 2D nanomaterials and UO, surface

represents interaction between the surface and the coating.
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Thank you!
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Unraveling the
Thermodynamics of Copper
Grain Boundaries in the
Grand-Multi-Canonical
Ensemble via Adaptive Biasing
Force Simulations

By: Jacob Spurlock, Dr. Thomas
Vogel, and Dr. Danny Perez
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Introduction

|
|

<~

* What am | analyzing? 4 o’
« What is a Grain Boundary? R 1o
«  Why do GB matter? . V-
» .
i

O. Hardouin Duparc et al. / Acta Materialia 55 (2007)
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Introduction

* What am | analyzing?
« What is a Grain Boundary?
* Why do GB matter?

D.J. Wales, Ann. Rev. Phys. Chem., 69 (2017).
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Introduction

Creation of Cell

Structure
) Use ABF on that Cell
« What is the process? to get Free Energy
 Multi-Canonical vs Gradients

Grand-Canonical? Integrate over the Free
' Energy Gradient to get a

function of Entropy

‘ Calculate the Density

of States

Take System and run it
through a Grand
Canonical Run

Calculate the
Integration Constants

‘s Los Alamos 4/8/21
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\ Background

Simulation type - Adaptive Biasing Force(ABF)
How does it work?

Free Body Diagram:

!

4/8/21 5
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\ 211 Asymmetric Tilt Grain Boundary

« System size varies from 2265 -
2385 particles

* Runs are done for each system
size

Pegte e 0% 0 0%
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\ 245 Asymmetric Tilt/Twist Grain Boundary

« System size varies from 2370 -
2460 particles

* Runs are done for each system
size

™

AAAAAAAAAAAAAAAAAA
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Rescaled free-energy gradients from ABF runs

Raw Data

« The Machine outputs raw noisy
data(top)

« We can adjust the y-axis to
represent temperature(bottom)

- This data is then sent into a python

code to be processed

-0.003

0
-8400 -8200 -8000 -7800 -7600 -7400 -7200 -7000
Uinev
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Integral of the Data - Entropy

Entropy of the Asymmetric Tilt Grain Boundary

* The python code then integrates
over the data cumulatively

* The result is the Entropy of the
system

-8200 -8000 -7800 -7600 -7400 -7200
UineV
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First and Second Derivative of the Entropy

First derivative of the Entropy

T T T

1 1

l ) U
'2385_data.dat' u 2:3

-3.3 -3.25 -3.2
UineV
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Rate of change of T ¢

Second derivative of the Entropy
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Entropy of the Systems

Entropy of the Asymmetric System Entropy of Asymmetric Tilt/Twist Grain Boundary
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Data: Asymmetric vs Sutton

ABF Simulation for Asymmetric Boundary ABF Simulation for Sutton Boundary
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Zoomed into the transition

ABF Simulation for Asymmetric Boundary ABF Simulation for Asymmetric Boundary

1400 1400

1350 1350
Tabs 1300 Tabs 1300
1250 1250

1200

UineVv
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Results

Entropy from Grand-Canonical Run Entropy from Grand-Canonical Run with Integration Constant

666 oooooooco
WNHOFNWE UV
T1T 1T 1T 1TrTrTrTrrr1
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Results
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What lies ahead

» Further analysis of data at wider temperature ranges
* More boundaries to explore

Special Thanks To:

* Dr. Blas Uberuaga
* Dr. Danny Perez

* Dr. Thomas Vogel

* Quinn Parker
 T-1 & Scidac Group
 VFP Program
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Eavesdropping on the Decohering Environment:
Quantum Darwinism, Amplification, and the Origin of
Objective Classical Reality

Akram Touil

9/02/2021

"M‘g% Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 9/02/2021 1
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Delineating the border between the quantum realm ruled by the Schriédinger equation and the classical realm
ruled by Newton’s laws is one of the unresolved problems of physics. _




Decoherence Theory

» Decoherence is the basis dependent process of loss of quantum coherence.

> We consider a quantum system S interacting with an environment £ ( pse pure) .

von Neumann S - g
term

> Environment as a sink for information.
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Quantum Darwinism

» Environment as a witness —=>e.g. Photon environment

> Observers eavesdrop on fragments of the environment “F,,,”

» Objective: Quantifying information that can be obtained from the environment

I(S:Fpn) & D(S:Fn) & JS:Fn)

1% Los Alamos
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Quantum Darwinism

> Big picture:

Einselection Q. Darwinism

S-& ‘ Pointer states ‘ Objective reality

Interaction

‘ Quantum to classical
> Pointer states & einselection: States robust to decoherence.

» Objective reality: Independent observers agree on their measurements.

1% Los Alamos
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Take-home message

» Quantum mutual information and discord quantify quantum to classical transitions

» Environment as a witness (through the quantities D(S : Fy,,)and J(S : Fyp))

> Universal rise of the mutual information and the Holevo bound
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Motivation
 SWCNTs are quasi-one-dimensional structures
* Highly tunable diameter (0.5—-—2 nm)

* Each chirality is labeled by (n,m) which determine

all properties:
* Diameter (D)

e Chiral Angle \

* Emission Energy (i.e, E~ 1/D?) :::Qnduction
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Motivation

* Pristine SWCNTs exhibit low PL due to
symmetry-disallowed low-energy states

=
@ Los Alamos Phys. Rev. B 2005, 72, 241402(R)



Motivation

* Pristine SWCNTs exhibit low PL due to
symmetry-disallowed low-energy states

New
Defect State

e Covalent surface functionalization breaks
this symmetry and provides new, bright
low-energy states

* Configuration and chemical composition of
defects can further tune the emission
energy of the system by up to 300 meV
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Methodology

e Hamiltonian:

* Excited States:
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5 cIs
RPA Equations in CIS Approximation % *
Solutions for transition density matrices 3 Indep. .
provided by the collective oscillator (CEO) Ire.
method DFTB AM1  DFT  MC-SCF

Hamiltonian

* Non-adiabatic Molecular Dynamics:
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NEXMD Package

Fewest Switches Surface Hopping (FSSH) m

Instantaneous Decoherence Corrections (6,2) 0.57 2.93
Unavoided Crossing Detection (11,0) 0.86 2.70 354
Linear Response Solvation (6,5) 0.75 3.94 394

Microcanonical Ensemble (NVE)
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AM1 (NEXMD) [

Initial Conditions ® . £ - _
1.0 - Eqf _

- 1
i) [
* Nuclear wavepacket sampled from B _
ground state dynamics trajectory o 057 -

* NVT Ensemble, T =300 K =

0.0 1 o

* 300 trajectories <] | T | !
1.25 1.50 1.75 2.00

* Initial Electronic Configuration Photon Energy (eV)

* o= lk><k], k=2 0.0 fs Active State S2

e [|nitial Wavefunction:
¢ ﬁo = ﬁR® ﬁel.
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Population Dynamics
(Chirality/Configuration) i 200
0.8+ — (6,5) O(++) [
] — (11,0) O(++)
W(R®)) = ) ca® «(RW®)) | |
“« o 0.6 1, ~455fs |
Cj = —leEj — Z CkR . d]k _
) 0.4 !
Pi(t) = pj;(t) = | (D) _
0.2 I
Single-exponential Fit: S,(t) ~ exp[ - t/t, ] 5 20 160 %0 200 25—;-- 200 7:;3'—150

Time (fs)

e Population dynamics are strongly chirality-dependent
* (11,0) shows uniquely fast relaxation
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(Configuration/Composition)

W (

. B N - (D
Cj = —leEj — Zk CkR . d]k

Pi(t) = pj; () = I (0)|?

Population Dynamics

R®))= ) ca® «(RW®))

0.2 -

L]
-
..........

Single-exponential Fit: S,(t) ~ exp[ - t/t, ] —

0 50 100 150 200 250 300 3

Time (fs)

Population dynamics strongly dependent on chemical composition

Alkyl and Aryl defects act similarly
Halide attachment produces fast relaxation
Ortho(-) coupled with halide produces largest change from alkyl/aryl rate
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Absorption

Rate of Relaxation
E 400 A -
(11,0) =
ey T AM1 (NEXMD) | -
104® g, s L £ 300- :
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1.25 150 1.75 200 £ 490 i
Photon Energy (eV) — - O A
0 - ! L T | L LA B T
100 150 200 250 300

Time constant ~ E(S,) — E(S,)
(6,2) Ortho(-) 2F shows a strong deviation from this trend

Sy(t) ~ exp[ - t/ry, ]

(sub-gap energy)

Sub-gap Energy E(S,) - E(S,) (meV)

Chirality-dependent change in time-constant cannot be explained by diameter or chiral angle
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Conclusions and Future Work

Using a semi-empirical Hamiltonian at the CIS level, we have investigated non-adiabatic molecular
dynamics of SWCNT systems of 300+ atoms

The population dynamics of these model systems are well-approximated by a single exponential
function during the simulated time scale

The gap law is roughly satisfied for alkyl/aryl-type defects
* Direct halide attachment produces deviations from this hypothesis. Why?

Chirality-dependent relaxation rates are not well understood and do not stem from diameter or
chiral angle
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