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Introduction 

Los Alamos National Laboratory (LANL) is an important fixture in the United States 

Department of Energy’s (DOE) National Nuclear Security Agency (NNSA) complex. LANL is one 

of the largest national laboratories in the country, and the laboratory’s primary mission is to 

support the nation’s nuclear stockpile. The lab functions as a design agencies for the NNSA and 

performs extensive testing on weapons as part of that mission. The shock and vibration test team 

at LANL utilizes electrodynamic shaker systems for important qualification testing in support of 

the laboratory’s mission.  

Modern engineering relies heavily on bolted joints to connect two objects. During these 

shaker tests, engineers depend on bolted joints to secure the test article to a fixture and the fixture 

to the table. The test article may be hazardous and contain high explosives which could create a 

safety issue if a bolted joint failed. A loss of preload in a bolt will affect the way energy is input to 

the system and may introduce nonlinearities as the joint opens and closes. The loss of preload 

can create challenges controlling the test and make acquired signals useless. Being able to 

monitor preload within bolted joints during testing can improve the quality of the data and keep 

workers safe. 

Operational Evaluation 

Bolts can lose preload in a variety of ways during dynamic environments, but sometimes, 

they never even achieve the designed preload. In the case of test engineering, an article will be 

subjected to numerous environments in three orthogonal directions requiring frequent 

reconfiguration of the article. This handling is done by engineers and technologists in the 

laboratory space, and forgetting to torque a bolt is a frequent concern. A typical fixture may have 

20 bolts securing the fixture to the table and another dozen mounting the test article to the fixture. 

As two or even three people reconfigure the test article between axes, there is a chance that not 

all the bolts will be torqued and some may only be hand-tight.  

Another common mechanism for missing preload comes from the torquing process. 

Measuring the preload in a bolt is not a simple task and requires advanced sensors. To circumvent 

instrumenting every bolt in a fixture, the shock and vibe team relies on applying a torque 



specification correlated to the desired preload. There are many factors that may affect an applied 

torque load such as material, corrosion, or thread lubrication. The most common tool for torquing 

bolts is a torque wrench which has an associated error with it, usually 3-5%, and can result in a 

bolt with insufficient preload. An insufficiently torqued bolt may continue to lose preload under 

dynamic loading. 

The experiments described in this report were not subject to common data acquisition 

constraints. The tests were conducted in an indoor, climate-controlled laboratory space. This 

laboratory space is not permitted to contain hazardous articles, so there were no safety concerns. 

The data acquisition unit used for testing was a Siemens device and had sufficient channels for 

the sensors used. The sensors were available from the shock and vibration team’s inventory, but 

were not calibrated at the time of testing. 

However, during an actual shaker test, accelerometers mounted near bolted joints on the 

test article and fixture will be subjected to operational environments more extreme than those 

completed during this benchtop testing. In these cases, the sensors will need to withstand the 

conditions while still taking measurements and transmitting data. The shakers used for qualifying 

complete systems are capable of high displacement, velocity, and acceleration outputs, which 

sensors will experience if located on the armature or any other portion of the moving mass. Some 

shock and vibration tests are performed while test articles are thermally conditioned. These 

combined thermal-mechanical tests may be run at temperatures between -54oC and 74oC. 

Sensors located on the moving mass of the shaker or the slip table would need to be able to 

operate under these temperature conditions.  

Experimental Set-up 

 Testing was performed on a complete BARC (Box Assembly with Removable Component) 

structure manufactured at Los Alamos National Laboratory. The complete BARC structure is 

pictured in Figure 1. The removable component is bolted to two C channel components, each with 

a single #10-32 threaded fastener torqued to 5.7 Newton-meters (50 inch-pounds). Each C 

channel component is bolted to the box assembly with four #6-32 threaded fasteners torqued to 

a specified 2.3 Newton-meters (20 inch-pounds), seen in Figure 2. The bolted joint between the 

box assembly and the C channel is the joint being studied. The BARC was instrumented with two 

triaxial PCB 356A32 accelerometers, one on either side of one C channel/box assembly joint. 

These locations were chosen to monitor the transmissibility across the bolted joint and monitor 

for changes in the signal indicating a loose fastener. 



 
Figure 1 – BARC assembly mounted to slip table 

 

 
Figure 2 – Bolted joint being studied and bolt numbers for identification 

 



The input to the shaker was a flat, broadband random excitation with 1g RMS. The input 

frequency range was defined over 10-3000 Hz with a constant amplitude of 0.004 g2/Hz. This 

broadband profile was chosen to excite non linearities within the bolted joint and is pictured 

below in Figure 3. 

 
Figure 3 - Shaker input to excite BARC structure. 

 

The damage cases are listed below in Table 1. The types of damage being studied in 

this experiment are loose and missing bolts. The table displays the percentage of the 

specification each bolt was torqued to for each individual case. The torque specification for all 

four bolts is the same, 2.3 Newton-meters (20 in-lbs) and the 50% torque value is 1.15 Newton-

meters (10 in-lbs). The reduced torque was applied by loosening the bolt completely, then re-

tightening to the damaged specification. 

 

Table 1. Definition of Damage Cases. 

Case ID Bolt 1 Torque Bolt 2 Torque Bolt 3 Torque Bolt 4 Torque 

1 (Healthy) 100% 100% 100% 100% 

2 100% 100% 100% 50% 

3 100% 100% 100% 0% (removed) 

4 100% 100% 50% 50% 



5 100% 50% 50% 50% 

6 50% 50% 50% 50% 

7 50% 50% 100% 100% 

8 50% 50% 50% 100% 

 

Data Acquisition 

Shaker 

The shaker used to excite the BARC structure was the Modal Shop model 2075E, a 334 

Newton (75 pound force) electrodynamic shaker. It is rated from 8-5000Hz and has a peak force 

output of 334 Newtons (75 pounds) [1]. The shaker was fixed to the K2075E-HT, a horizontal 

slip table 152.4 millimeters (6 inches) long and 190.5 millimeters (7.5 inches) wide. The slip 

table has a 25.4 millimeter (1 inch) grid hole pattern for attaching fixtures or test articles. The 

maximum acceleration of the bare slip table is 196 m/s2 (20 g) and is reduced when a test article 

is mounted to the table [2]. The shaker and slip table are pictured in Figure 1. 

Sensors 

 The experimental setup consisted of three accelerometers. One uniaxial accelerometer, 

an Endevco 2250AM1-10, was located at the front edge of the slip table farthest from the shaker 

connection. The uniaxial accelerometer was only used to control the experiment and no 

measurements were used in the model for determining the structure’s health. The uniaxial 

accelerometer had a nominal sensitivity of 1.02 mV/m/s2 (10 mV/g) and was secured to the slip 

table with superglue and allowed 24 hours to cure.  

 Two triaxial accelerometers were located on either side of the bolted joint being studied 

as seen in Figure 4. Both triaxial accelerometers were PCB model 356A32 with nominal 

sensitivities of 10.2 mV/m/s2 (100mV/g) in each axis. Both triaxial accelerometers were mounted 

to the BARC structure after the surface was abraded with 220 grit sandpaper and cleaned with 

acetone. The adhesive used was superglue which was allowed to cure for 24 hours before 

testing began. Superglue is a common adhesive used to mount sensors in ambient 

environments. 

  



 
Figure 4 – Sensor locations and orientations 

Data Acquisition Unit 

The control and data acquisition software is Siemens Simcenter Testlab, and the 

hardware used was the Simcenter SCADAS Mobile. The data acquisition unit can 

accommodate up to 40 channels, but the experiment only used seven channels. This software 

and hardware is standard in LANL’s shock and vibration test facilities.  

Control Computer 

A standard laptop PC running Windows operating software was set up next to the shaker 

to control the test and allow the test operator to monitor output data. No special computing 

capabilities were required to control the test and collect data and most current engineering PCs 

have more than enough storage and computing power to analyze the collected data.  

Feature Extraction & Normalization 

Measurements and Signal Conditioning 

 The sensors mounted to the BARC structure were triaxial piezoelectric accelerometers 

which record voltage and convert it to acceleration. In this study, only the data from channels in 



the same axis as the excitation input are used for analysis. This criteria means that the -Z axis 

data from the top accelerometer and the +X data from the bottom accelerometer were used for 

analysis. The recorded time histories are transformed into the frequency domain, and then a 

transmissibility is calculated between the in-axis channels of the two accelerometers. This 

transmissibility data is referred to as a frequency response function (FRF). The accelerometer 

above the joint was treated as the response output and the accelerometer on the box assembly 

was treated as the input. 

 The data collected during testing were sampled at 25,600 Hz to avoid aliasing. 

Transmissibility was calculated averaging 15 one-second windows with zero overlap. Each 

window has a Hanning function applied to prevent leakage. This operation resulted in 240 

transmissibility functions for the healthy system and 20 transmissibility functions for each of 

seven damage cases. The measured transmissibility data had a frequency range between 10 

and 3000 Hz to capture higher frequency modes that are more sensitive to non linearities being 

introduced into a system, such as a joint opening and closing. 

Data Normalization 

 This experiment was conducted in a controlled environment where minimal data 

normalization was required for the model to separate healthy from damaged data. After the 

shaker and control software completes its self-check, the controller steps up in levels from -9dB 

to -6dB and -3dB before finally inputting the nominal 0dB environmental specification. These 

build-up levels allow the software to develop and adjust the control strategy, but are not quality 

data that should be considered when calculating the transmissibility functions for training the 

model. The initial 20 seconds of each time history was trimmed to remove these lower level 

inputs and normalize the data. 

Statistical Model Development 

Model Selection 

 The statistical model chosen to analyze the FRF for indications of decreased preload in 

a bolted joint is a special type of neural network called an autoencoder. Autoencoders are 

designed to match the output to the input via unsupervised learning.  The model takes 

frequency response functions as input data, reduces the input data dimension to just a few 

values capturing the most important features of the FRF, and then attempts to reconstruct the 

original FRF from the compressed latent space. 

 Autoencoders are used to capture salient information during training and are an 

excellent choice when noise is present in the measurements. Another benefit of autoencoders is 

the ability to learn non linear transformations using multiple layers and non linear activation 

functions. The ability to learn non linear transformations made the autoencoder more desirable 

than principal component analysis, which is constrained to learning linear transformations. 

 Autoencoders are only useful for evaluating data similar to what the model was trained 

with. In the case of this research, the model was trained on healthy data measured from the 

undamaged BARC system. Training the model only on healthy data meant the model would be 



sensitive to any changes to the input data, such as a measurement taken from a damaged 

BARC system. The final iteration of the model trained over 1000 epochs and the individual 

neuron weights in the autoencoder were optimized to reconstruct healthy FRFs. Once the input 

data were modified as a result of damage in the system, the weights are no longer optimal and 

our model produces an output FRF with significant error compared to the input.  

 This experiment was performed in a laboratory space where there were minimal 

changes to the operational conditions of the BARC structure. For a given test article undergoing 

shock and vibration environmental testing combined with thermal conditioning, measurements 

would need to be taken of the healthy structure across a spectrum of these conditions. The 

autoencoder is well suited to this scenario where there are more than one operating conditions 

because of the model’s ability to learn non linear transformations. For example, varying the 

temperature may not result in a linear increase of error between the original and reconstructed 

FRFs. Additionally, the interactions between changing temperature and different damage cases 

are unlikely to be linear, but the autoencoder can account for the interaction. 

Model Anatomy 

An autoencoder has two parts: an encoder and a decoder. The encoder takes the input 

data and reduces the dimension down to what is called the latent space. The latent space is a 

low level representation of the input data and may be only a few neurons wide. The decoder 

uses the latent space as the input and expands the data in an attempt to replicate the original 

input to the encoder. The decoder output is compared to the input and the loss is calculated. 

The loss is backpropogated through the model and the weights are updated to perform better on 

the next input data set. This process is repeated as defined by the user until the training time is 

excessive or a suitable level of error is achieved. 

The latent space can appear abstract and may not contain any physical meaning but 

represents the important features of the input data with only a few neurons. The decoder is a 

mirror of the encoder such that the entire network looks like an hourglass on its side as seen in 

Figure 5. 

 
Figure 5 - Graphical representation of simplified autoencoder 



The healthy data was split 50/50 into two sets, one for training and one for testing. Each 

data set contained 120 healthy system FRFs. The model was trained on the first data set and 

then tested on the second data set as well as all seven damage cases. Figure 6 below shows a 

diagram capturing the flow of data through the model. In the encoder, the input FRFs are 

multiplied by a weight layer and a bias term is added to the product before the logsig transfer 

function is applied. The data output from the logsig function is the latent space representation of 

the data, only 10 neurons. These 10 neurons contain the salient information learned during 

training that result in minimized reconstruction error as it is passed through the decoder. The 

decoder performs a similar process to the encoder, taking the latent space weights as input 

data, multiplying by another layer of weights, adding a bias term, and applying the decoding 

transfer function, also logsig. 

 

 
Figure 6 - Example of data operations during model training. 

Selected Model Hyperparameters 

All data processing was completed in Matlab 2021b. The only required toolbox was the 

Deep Learning toolbox which simplified building the autoencoder model and allowed for 

hyperparameter tuning. Table 2 details the hyperparameters used in the final model. The first 

hyperparameter, MaxEpochs, refers to the maximum number of times the model will train on the 

entire data set before completion. The transfer function used in both the encoder and decoder 

was a logistic sigmoid function, or logsig. A plot of the logsig function is displayed in Figure 7. 

 

Table 2. Hyperparameter Settings for Autoencoder. 

Hyperparameter Value 

MaxEpochs 1000 

L2WeightRegularization 0.005 

SparsityRegularization 4 

 



 
Figure 7 - Logistic sigmoid activation function used in encoder and decoder [3]. 

 

The L2WeightRegularization was increased slightly from the default value to help avoid 

overfitting the model to the training data. If a model begins to overfit the data, it will achieve 

100% accuracy in training, but will adapt poorly to new data during testing. While overfitting may 

sound like a beneficial feature for the application of detecting loose bolts as any damaged data 

would have sizeable reconstruction error, it would likely also mislabel new healthy data as 

damaged. To avoid overfitting the model to the training data, the L2 weight regularization term is 

increased. 

The SparsityRegularization hyperparameter was also increased from the default value. 

The sparsity regularization term refers to a constraint placed on the sparsity of the output from 

the hidden layer. Increasing the value encourages sparsity in the hidden layer output and 

produces better results classifying damaged data [4]. The model’s cost function is a modified 

mean squared error function that includes the L2 regularization and sparsity regularization. 

 

Results 

Measured and Model Reconstructed Transmissibility 

Figure 8 compares the measured FRF to the FRF reconstructed by the model for the 

healthy system. The blue data is the FRF calculated from the measured time data. The orange 

data is the FRF reconstructed by the model. Several of the peaks in the plot show that the 

reconstructed FRFs had a lower amplitude than the measured FRFs. This result is caused by 

the autoencoder’s structure when the data is compressed down to the latent space, and is then 

reconstructed to the full length FRF from 10 to 3000 Hz. Some smaller details in the data are 

sacrificed to preserve the most important features in the training data, resulting in the slight 

differences between the measured and reconstructed FRFs of the healthy system. 

 



 
Figure 8 - Comparing measured and reconstructed FRFs from healthy system. 

 

Figures 9a and 9b compare the measured FRF to the FRF reconstructed by the model 

for the damaged system. In both figures, the blue data is the FRF calculated from the measured 

time data while the system was damaged, in this example, Case 5. The orange data is the FRF 

reconstructed after the data has been compressed and reconstructed by the autoencoder. 

Figure 9b is a zoomed view of the same plot in Figure 9a, just over the frequency range 250-

3000 Hz which makes the differences more visible. In this plot, error can be seen in peak shifts, 

such as at 300 Hz. This error is a result from trying to replicate a damaged system FRF with a 

model that was optimized for healthy system FRFs. The difference is then used to calculate 

MSE and compared against the damage threshold to assess the state of the system’s health. 



 
Figure 9a - Comparing Measured and Reconstructed FRFs from Damaged System. 

 
Figure 9b - Comparing Measured and Reconstructed FRFs from Damaged System (zoomed in 

from 250-3000Hz). 

 



Damage Detection and Classification 

Figure 10 plots a histogram of four unique damage cases compared to healthy system 

data. The horizontal axis is MSE, mean squared error, which is calculated between the input 

FRFs and the reconstructed output FRFs from the testing data set. Each bin width is 0.5. The 

vertical axis is occurrence frequency for each MSE bin. The vertical axis has been normalized 

such that the sum of probabilities for each individual test case is equal to one. The blue data 

represents the healthy system data which is located farthest left on the plot, indicating low MSE. 

Low MSE is expected as the model was trained to minimize the error between the measured 

input FRFs and reconstructed FRFs from healthy system data. 

 
Figure 10 – Histogram comparing MSE from healthy and damage cases as more bolts lose 

preload. 

Cases 1, 3, 4, and 5 show incrementally more damage present in the bolted joint. Each 

case has an additional bolt torqued to 50% of the specified value. Cases 4 and 5 have high 

MSE, on the order of four to seven times the MSE present in the healthy system data. The two 

cases are also distinguishable from one another, Case 5 exhibiting higher MSE than Case 4. 

Case 5’s higher MSE is to be expected as there is more damage present in the system with an 

additional loose bolt. 

However, Cases 1 and 3 display opposite behavior where the less damaged joint, Case 

1, has higher MSE than the more damaged joint, Case 3. This phenomenon is counter intuitive 

and may be an artifact of the autoencoder’s latent space reconstruction. The model’s weights 



were optimized to encode and decode the healthy system FRFs, but it’s possible that these 

weights also reconstructed the Case 3 FRFs with less error than Case 1, despite the greater 

damage in the bolted joint.  

Figure 11 compares the results of a loose bolt versus the same bolt completely 

removed. The other three bolts were torqued to the specification in both Cases 1 and 2. The 

trend is obvious in the plot as the case with a missing bolt exhibited a much higher MSE 

compared to the case with the same bolt torqued to 50% of the specification. The clear 

separation between these two classes are promising as the system can be identified for 

damage and the type of damage can be classified. In test engineering, a loose bolt may not 

warrant pausing a test, but identifying a missing bolt would certainly stop work. 

 
Figure 11 – Histogram comparing MSE from damage cases with a loose bolt versus a missing 

bolt. 

 

Figure 12 explores reciprocity in the experiment. In Case 3, bolts 1 and 2 were torqued 

to specification while bolts 3 and 4 were torqued to 50% of the specification. In Case 4, the 

scenario was flipped such that bolts 3 and 4 were torqued to specification while bolts 1 and 2 

were torqued to 50% of the specification. Case 3 exhibits less error than Case 6.  



 
Figure 12 – Histogram comparing MSE from damage cases with mirrored bolts missing preload. 

 

Previously, it was hypothesized that Case 3 had low error because the weights of the 

model may have also represented this damage case well. However, Case 6 explored the same 

scenario with two different bolts loosened and exhibited higher error. As seen in Figure 4, the 

two sensors collecting measurements were spatially located closer to bolts 1 and 2 which could 

be a factor contributing to the increased error. However, the relationship is unclear and more 

data would need to be collected and analyzed before a conclusion could be made. 

The below figure, Figure 13, is a histogram plot with mean squared error on the 

horizontal axis and normalized frequency on the vertical axis. The bin width is 0.05. The black 

dashed line represents the average MSE of the healthy system’s reconstructed FRFs and the 

red dashed line is three standard deviations from the mean MSE. The majority of the data falls 

within three standard deviations, but several reconstructed FRFs resulted in error higher than 

the three standard deviations. The damage threshold was defined to be three standard 

deviations under the assumption that the distribution of the healthy data histogram could be 

approximated at Gaussian. Three standard deviations would capture 99.7% of data in a 

Gaussian distribution. The threshold could be set higher, such as five standard deviations, but 

would increase the number of false negatives the model detects. In Figure 10, there is visible 

overlap between healthy and damaged cases, so while a higher damage threshold would 

minimize false positives, it would also increase false negatives. 



 
Figure 13 – Histogram of healthy data with established damage threshold. 

 

As seen in previous plots, several damage cases have instances where the MSE 

overlaps the healthy system outliers and fall within the three standard deviation mark. This 

overlap creates a challenge defining a distinct threshold for defining damage in the bolted joint 

system. The overlap can be seen in Figure 14. The healthy system data color was changed to 

green for easy identification among the seven damage cases and the damage threshold line is 

plotted. As in Figure 13, the false positives can be identified where the green bars exceed the 

damage threshold. Similarly, false negatives are visible for three damage cases, Cases 1, 3, 

and 7, where blue, yellow, and red bars fall underneath the damage threshold. The other 

damage cases can be easily classified as damage because all of the tested instances exceed 

the damage threshold. Table 3 prints the resulting confusion matrix with the damage threshold 

set to three standard deviations from the healthy system’s average MSE.  

 



 
Figure 14 – Histogram of reconstruction error for all test cases with damage threshold 

visible. 

 

Table 3. Confusion matrix for classification results. 

n = 260 
Predicted:  

NO 
Predicted: 

YES 
 

Actual: NO TN = 116 FP = 4 120 

Actual: YES FN = 13 TP =127 140 

 129 131  

  

The resulting accuracy of this damage threshold is 93.5% with a precision of 96.9%. The 

miss rate is 6.5%. This damage threshold is a basic approach and could be improved. With 

more data to work with, outliers might be identified and can be eliminated during the data 

normalization process, reducing the false positives. A more sophisticated statistical approach 

would be required to separate the healthy system from the damage cases that have overlapping 

instances, like Cases 1, 3, and 7. An example may be closer analysis of how the distributions 

are shaped and classifying instances based on other statistical features. 

 

 



Implementation Issues and Recommended 

Improvements 

  If a test engineer were to implement this system on a real environmental test at a LANL 

facility, they would face several issues. As mentioned above, real environmental tests 

experience high acceleration, velocity, displacement, and possibly thermal conditioning. These 

environments create an expansive space of conditions that will cause a healthy system to 

exhibit changing FRF signals. However, the changes in these healthy system signals do not 

indicate damage, and the model must learn to fit the entire operating condition space. 

Additionally, there is the possibility that re-torquing bolts in between configurations could lead to 

the model falsely identifying damage. 

Further data normalization would become crucial for the implementation of this sensor 

system and statistical model into a live environmental test. As the system is excited by different 

inputs and subjected to different temperatures, healthy signals may look different when 

compared to one another but do not indicate damage. The initial scope seems intimidating, but 

because these environmental tests are conducted in controlled settings and the fact that nearly-

identical tests are often conducted more than once, it would not be impossible to normalize data 

for the entire operational space of the test.  

This experiment had rudimentary cross validation and would benefit from an in-depth 

analysis. The hyperparameters were individually varied, usually increased or decreased by an 

order of magnitude, to determine if the change improved the model’s performance. A more 

sophisticated method may randomly sample different combinations of all the hyperparameters 

between predetermined bounds and use that to achieve the most accurate model. 

 Traditional structural health monitoring systems require procurement of ample 

equipment including sensors, data acquisition hardware, and a computer. However, by 

leveraging LANL’s testing capabilities, all of the equipment is already available. There are 

various sensors, spare channels on data acquisition units, and capable computers at the facility 

that could be used to implement a SHM system on various test articles with bolted joints. Even if 

this experiment was scaled up to a full system, the number of channels would not likely exceed 

the existing capabilities within testing facilities in place.  

 

Conclusion 

This experiment showed that autoencoders are a good statistical model for monitoring 

the health of a bolted joint. The model was able to detect decreased preload in several different 

combinations of bolts by comparing the model’s reconstructed FRF to the measured FRF. When 

the model is trained on healthy signals, and a healthy signal is tested, the reconstructed signal 

has very little error. When a damaged signal is introduced, the reconstructed signal has 

significant error and can be classified as damage. 

The threshold for damage was defined to be three positive standard deviations from the 

mean MSE of the healthy system data. This simple threshold was able to detect damage with 

an accuracy of 93.5% and a miss rate of 6.5%. There are several ways that this threshold could 



be improved to achieve better accuracy and miss rate, but would rely on more sophisticated 

statistical methods. 

Additional data and a wider variety of damage cases would help train the model to be 

more robust and allow it to be deployed in more scenarios. The results from this experiment 

indicate that studying a single joint with accelerometers located in close proximity can be 

successful. However, studying joints with more bolts with sensors located sparsely throughout 

the system could create a more challenging detection problem. The autoencoder model appears 

to be well suited for these problems, especially if trained on large datasets that encompass 

various healthy states of the system. The hyperparameters can be tuned to be increasingly 

sensitive to changes in the input FRF data and would make the damage easier to identify in a 

sparsely instrumented system. 
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