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Introduction

Los Alamos National Laboratory (LANL) is an important fixture in the United States
Department of Energy’s (DOE) National Nuclear Security Agency (NNSA) complex. LANL is one
of the largest national laboratories in the country, and the laboratory’s primary mission is to
support the nation’s nuclear stockpile. The lab functions as a design agencies for the NNSA and
performs extensive testing on weapons as part of that mission. The shock and vibration test team
at LANL utilizes electrodynamic shaker systems for important qualification testing in support of
the laboratory’s mission.

Modern engineering relies heavily on bolted joints to connect two objects. During these
shaker tests, engineers depend on bolted joints to secure the test article to a fixture and the fixture
to the table. The test article may be hazardous and contain high explosives which could create a
safety issue if a bolted joint failed. A loss of preload in a bolt will affect the way energy is input to
the system and may introduce nonlinearities as the joint opens and closes. The loss of preload
can create challenges controlling the test and make acquired signals useless. Being able to
monitor preload within bolted joints during testing can improve the quality of the data and keep
workers safe.

Operational Evaluation

Bolts can lose preload in a variety of ways during dynamic environments, but sometimes,
they never even achieve the designed preload. In the case of test engineering, an article will be
subjected to numerous environments in three orthogonal directions requiring frequent
reconfiguration of the article. This handling is done by engineers and technologists in the
laboratory space, and forgetting to torque a bolt is a frequent concern. A typical fixture may have
20 bolts securing the fixture to the table and another dozen mounting the test article to the fixture.
As two or even three people reconfigure the test article between axes, there is a chance that not
all the bolts will be torqued and some may only be hand-tight.

Another common mechanism for missing preload comes from the torquing process.
Measuring the preload in a bolt is not a simple task and requires advanced sensors. To circumvent
instrumenting every bolt in a fixture, the shock and vibe team relies on applying a torque



specification correlated to the desired preload. There are many factors that may affect an applied
torque load such as material, corrosion, or thread lubrication. The most common tool for torquing
bolts is a torque wrench which has an associated error with it, usually 3-5%, and can result in a
bolt with insufficient preload. An insufficiently torqued bolt may continue to lose preload under
dynamic loading.

The experiments described in this report were not subject to common data acquisition
constraints. The tests were conducted in an indoor, climate-controlled laboratory space. This
laboratory space is not permitted to contain hazardous articles, so there were no safety concerns.
The data acquisition unit used for testing was a Siemens device and had sufficient channels for
the sensors used. The sensors were available from the shock and vibration team’s inventory, but
were not calibrated at the time of testing.

However, during an actual shaker test, accelerometers mounted near bolted joints on the
test article and fixture will be subjected to operational environments more extreme than those
completed during this benchtop testing. In these cases, the sensors will need to withstand the
conditions while still taking measurements and transmitting data. The shakers used for qualifying
complete systems are capable of high displacement, velocity, and acceleration outputs, which
sensors will experience if located on the armature or any other portion of the moving mass. Some
shock and vibration tests are performed while test articles are thermally conditioned. These
combined thermal-mechanical tests may be run at temperatures between -54°C and 74°C.
Sensors located on the moving mass of the shaker or the slip table would need to be able to
operate under these temperature conditions.

Experimental Set-up

Testing was performed on a complete BARC (Box Assembly with Removable Component)
structure manufactured at Los Alamos National Laboratory. The complete BARC structure is
pictured in Figure 1. The removable component is bolted to two C channel components, each with
a single #10-32 threaded fastener torqued to 5.7 Newton-meters (50 inch-pounds). Each C
channel component is bolted to the box assembly with four #6-32 threaded fasteners torqued to
a specified 2.3 Newton-meters (20 inch-pounds), seen in Figure 2. The bolted joint between the
box assembly and the C channel is the joint being studied. The BARC was instrumented with two
triaxial PCB 356A32 accelerometers, one on either side of one C channel/box assembly joint.
These locations were chosen to monitor the transmissibility across the bolted joint and monitor
for changes in the signal indicating a loose fastener.



Figure 2 — Bolted joint being studied and bolt numbers for identification



The input to the shaker was a flat, broadband random excitation with 1g RMS. The input
frequency range was defined over 10-3000 Hz with a constant amplitude of 0.004 g?/Hz. This
broadband profile was chosen to excite non linearities within the bolted joint and is pictured

below in Figure 3.
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Figure 3 - Shaker input to excite BARC structure.

The damage cases are listed below in Table 1. The types of damage being studied in
this experiment are loose and missing bolts. The table displays the percentage of the
specification each bolt was torqued to for each individual case. The torque specification for all
four bolts is the same, 2.3 Newton-meters (20 in-lbs) and the 50% torque value is 1.15 Newton-
meters (10 in-lbs). The reduced torque was applied by loosening the bolt completely, then re-

tightening to the damaged specification.

Table 1. Definition of Damage Cases.

Case ID Bolt 1 Torque Bolt 2 Torque Bolt 3 Torque Bolt 4 Torque
1 (Healthy) 100% 100% 100% 100%
2 100% 100% 100% 50%

3 100% 100% 100% 0% (removed)
4 100% 100% 50% 50%




5 100% 50% 50% 50%
6 50% 50% 50% 50%
7 50% 50% 100% 100%
8 50% 50% 50% 100%

Data Acquisition

Shaker

The shaker used to excite the BARC structure was the Modal Shop model 2075E, a 334
Newton (75 pound force) electrodynamic shaker. It is rated from 8-5000Hz and has a peak force
output of 334 Newtons (75 pounds) [1]. The shaker was fixed to the K2075E-HT, a horizontal
slip table 152.4 millimeters (6 inches) long and 190.5 millimeters (7.5 inches) wide. The slip
table has a 25.4 millimeter (1 inch) grid hole pattern for attaching fixtures or test articles. The
maximum acceleration of the bare slip table is 196 m/s? (20 g) and is reduced when a test article
is mounted to the table [2]. The shaker and slip table are pictured in Figure 1.

Sensors

The experimental setup consisted of three accelerometers. One uniaxial accelerometer,
an Endevco 2250AM1-10, was located at the front edge of the slip table farthest from the shaker
connection. The uniaxial accelerometer was only used to control the experiment and no
measurements were used in the model for determining the structure’s health. The uniaxial
accelerometer had a nominal sensitivity of 1.02 mV/m/s? (10 mV/g) and was secured to the slip
table with superglue and allowed 24 hours to cure.

Two triaxial accelerometers were located on either side of the bolted joint being studied
as seen in Figure 4. Both triaxial accelerometers were PCB model 356A32 with nominal
sensitivities of 10.2 mV/m/s? (100mV/g) in each axis. Both triaxial accelerometers were mounted
to the BARC structure after the surface was abraded with 220 grit sandpaper and cleaned with
acetone. The adhesive used was superglue which was allowed to cure for 24 hours before
testing began. Superglue is a common adhesive used to mount sensors in ambient
environments.



Figure 4 — Sensor locations and orientations

Data Acquisition Unit

The control and data acquisition software is Siemens Simcenter Testlab, and the
hardware used was the Simcenter SCADAS Mobile. The data acquisition unit can
accommodate up to 40 channels, but the experiment only used seven channels. This software
and hardware is standard in LANL’s shock and vibration test facilities.

Control Computer

A standard laptop PC running Windows operating software was set up next to the shaker
to control the test and allow the test operator to monitor output data. No special computing
capabilities were required to control the test and collect data and most current engineering PCs
have more than enough storage and computing power to analyze the collected data.

Feature Extraction & Normalization

Measurements and Signal Conditioning

The sensors mounted to the BARC structure were triaxial piezoelectric accelerometers
which record voltage and convert it to acceleration. In this study, only the data from channels in



the same axis as the excitation input are used for analysis. This criteria means that the -Z axis
data from the top accelerometer and the +X data from the bottom accelerometer were used for
analysis. The recorded time histories are transformed into the frequency domain, and then a
transmissibility is calculated between the in-axis channels of the two accelerometers. This
transmissibility data is referred to as a frequency response function (FRF). The accelerometer
above the joint was treated as the response output and the accelerometer on the box assembly
was treated as the input.

The data collected during testing were sampled at 25,600 Hz to avoid aliasing.
Transmissibility was calculated averaging 15 one-second windows with zero overlap. Each
window has a Hanning function applied to prevent leakage. This operation resulted in 240
transmissibility functions for the healthy system and 20 transmissibility functions for each of
seven damage cases. The measured transmissibility data had a frequency range between 10
and 3000 Hz to capture higher frequency modes that are more sensitive to non linearities being
introduced into a system, such as a joint opening and closing.

Data Normalization

This experiment was conducted in a controlled environment where minimal data
normalization was required for the model to separate healthy from damaged data. After the
shaker and control software completes its self-check, the controller steps up in levels from -9dB
to -6dB and -3dB before finally inputting the nominal 0dB environmental specification. These
build-up levels allow the software to develop and adjust the control strategy, but are not quality
data that should be considered when calculating the transmissibility functions for training the
model. The initial 20 seconds of each time history was trimmed to remove these lower level
inputs and normalize the data.

Statistical Model Development

Model Selection

The statistical model chosen to analyze the FRF for indications of decreased preload in
a bolted joint is a special type of neural network called an autoencoder. Autoencoders are
designed to match the output to the input via unsupervised learning. The model takes
frequency response functions as input data, reduces the input data dimension to just a few
values capturing the most important features of the FRF, and then attempts to reconstruct the
original FRF from the compressed latent space.

Autoencoders are used to capture salient information during training and are an
excellent choice when noise is present in the measurements. Another benefit of autoencoders is
the ability to learn non linear transformations using multiple layers and non linear activation
functions. The ability to learn non linear transformations made the autoencoder more desirable
than principal component analysis, which is constrained to learning linear transformations.

Autoencoders are only useful for evaluating data similar to what the model was trained
with. In the case of this research, the model was trained on healthy data measured from the
undamaged BARC system. Training the model only on healthy data meant the model would be



sensitive to any changes to the input data, such as a measurement taken from a damaged
BARC system. The final iteration of the model trained over 1000 epochs and the individual
neuron weights in the autoencoder were optimized to reconstruct healthy FRFs. Once the input
data were modified as a result of damage in the system, the weights are no longer optimal and
our model produces an output FRF with significant error compared to the input.

This experiment was performed in a laboratory space where there were minimal
changes to the operational conditions of the BARC structure. For a given test article undergoing
shock and vibration environmental testing combined with thermal conditioning, measurements
would need to be taken of the healthy structure across a spectrum of these conditions. The
autoencoder is well suited to this scenario where there are more than one operating conditions
because of the model’s ability to learn non linear transformations. For example, varying the
temperature may not result in a linear increase of error between the original and reconstructed
FRFs. Additionally, the interactions between changing temperature and different damage cases
are unlikely to be linear, but the autoencoder can account for the interaction.

Model Anatomy

An autoencoder has two parts: an encoder and a decoder. The encoder takes the input
data and reduces the dimension down to what is called the latent space. The latent space is a
low level representation of the input data and may be only a few neurons wide. The decoder
uses the latent space as the input and expands the data in an attempt to replicate the original
input to the encoder. The decoder output is compared to the input and the loss is calculated.
The loss is backpropogated through the model and the weights are updated to perform better on
the next input data set. This process is repeated as defined by the user until the training time is
excessive or a suitable level of error is achieved.

The latent space can appear abstract and may not contain any physical meaning but
represents the important features of the input data with only a few neurons. The decoder is a
mirror of the encoder such that the entire network looks like an hourglass on its side as seen in
Figure 5.
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Figure 5 - Graphical representation of simplified autoencoder



The healthy data was split 50/50 into two sets, one for training and one for testing. Each
data set contained 120 healthy system FRFs. The model was trained on the first data set and
then tested on the second data set as well as all seven damage cases. Figure 6 below shows a
diagram capturing the flow of data through the model. In the encoder, the input FRFs are
multiplied by a weight layer and a bias term is added to the product before the logsig transfer
function is applied. The data output from the logsig function is the latent space representation of
the data, only 10 neurons. These 10 neurons contain the salient information learned during
training that result in minimized reconstruction error as it is passed through the decoder. The
decoder performs a similar process to the encoder, taking the latent space weights as input
data, multiplying by another layer of weights, adding a bias term, and applying the decoding
transfer function, also logsig.

Meural Metwork

Figure 6 - Example of data operations during model training.

Selected Model Hyperparameters

All data processing was completed in Matlab 2021b. The only required toolbox was the
Deep Learning toolbox which simplified building the autoencoder model and allowed for
hyperparameter tuning. Table 2 details the hyperparameters used in the final model. The first
hyperparameter, MaxEpochs, refers to the maximum number of times the model will train on the
entire data set before completion. The transfer function used in both the encoder and decoder
was a logistic sigmoid function, or logsig. A plot of the logsig function is displayed in Figure 7.

Table 2. Hyperparameter Settings for Autoencoder.

Hyperparameter Value

MaxEpochs 1000

L2WeightRegularization 0.005
SparsityRegularization 4
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Figure 7 - Logistic sigmoid activation function used in encoder and decoder [3].

The L2WeightRegularization was increased slightly from the default value to help avoid
overfitting the model to the training data. If a model begins to overfit the data, it will achieve
100% accuracy in training, but will adapt poorly to new data during testing. While overfitting may
sound like a beneficial feature for the application of detecting loose bolts as any damaged data
would have sizeable reconstruction error, it would likely also mislabel new healthy data as
damaged. To avoid overfitting the model to the training data, the L2 weight regularization term is
increased.

The SparsityRegularization hyperparameter was also increased from the default value.
The sparsity regularization term refers to a constraint placed on the sparsity of the output from
the hidden layer. Increasing the value encourages sparsity in the hidden layer output and
produces better results classifying damaged data [4]. The model’s cost function is a modified
mean squared error function that includes the L2 regularization and sparsity regularization.

Results

Measured and Model Reconstructed Transmissibility

Figure 8 compares the measured FRF to the FRF reconstructed by the model for the
healthy system. The blue data is the FRF calculated from the measured time data. The orange
data is the FRF reconstructed by the model. Several of the peaks in the plot show that the
reconstructed FRFs had a lower amplitude than the measured FRFs. This result is caused by
the autoencoder’s structure when the data is compressed down to the latent space, and is then
reconstructed to the full length FRF from 10 to 3000 Hz. Some smaller details in the data are
sacrificed to preserve the most important features in the training data, resulting in the slight
differences between the measured and reconstructed FRFs of the healthy system.
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Figure 8 - Comparing measured and reconstructed FRFs from healthy system.

Figures 9a and 9b compare the measured FRF to the FRF reconstructed by the model
for the damaged system. In both figures, the blue data is the FRF calculated from the measured
time data while the system was damaged, in this example, Case 5. The orange data is the FRF
reconstructed after the data has been compressed and reconstructed by the autoencoder.
Figure 9b is a zoomed view of the same plot in Figure 9a, just over the frequency range 250-
3000 Hz which makes the differences more visible. In this plot, error can be seen in peak shifts,
such as at 300 Hz. This error is a result from trying to replicate a damaged system FRF with a
model that was optimized for healthy system FRFs. The difference is then used to calculate
MSE and compared against the damage threshold to assess the state of the system’s health.
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Figure 9a - Comparing Measured and Reconstructed FRFs from Damaged System.
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Figure 9b - Comparing Measured and Reconstructed FRFs from Damaged System (zoomed in
from 250-3000Hz).



Damage Detection and Classification

Figure 10 plots a histogram of four unique damage cases compared to healthy system
data. The horizontal axis is MSE, mean squared error, which is calculated between the input
FRFs and the reconstructed output FRFs from the testing data set. Each bin width is 0.5. The
vertical axis is occurrence frequency for each MSE bin. The vertical axis has been normalized
such that the sum of probabilities for each individual test case is equal to one. The blue data
represents the healthy system data which is located farthest left on the plot, indicating low MSE.
Low MSE is expected as the model was trained to minimize the error between the measured
input FRFs and reconstructed FRFs from healthy system data.

Nomalized Histogram of FRF Reconstruction MSE
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Figure 10 — Histogram comparing MSE from healthy and damage cases as more bolts lose
preload.

Cases 1, 3, 4, and 5 show incrementally more damage present in the bolted joint. Each
case has an additional bolt torqued to 50% of the specified value. Cases 4 and 5 have high
MSE, on the order of four to seven times the MSE present in the healthy system data. The two
cases are also distinguishable from one another, Case 5 exhibiting higher MSE than Case 4.
Case 5’s higher MSE is to be expected as there is more damage present in the system with an
additional loose bolt.

However, Cases 1 and 3 display opposite behavior where the less damaged joint, Case
1, has higher MSE than the more damaged joint, Case 3. This phenomenon is counter intuitive
and may be an artifact of the autoencoder’s latent space reconstruction. The model's weights



were optimized to encode and decode the healthy system FRFs, but it's possible that these
weights also reconstructed the Case 3 FRFs with less error than Case 1, despite the greater
damage in the bolted joint.

Figure 11 compares the results of a loose bolt versus the same bolt completely
removed. The other three bolts were torqued to the specification in both Cases 1 and 2. The
trend is obvious in the plot as the case with a missing bolt exhibited a much higher MSE
compared to the case with the same bolt torqued to 50% of the specification. The clear
separation between these two classes are promising as the system can be identified for
damage and the type of damage can be classified. In test engineering, a loose bolt may not
warrant pausing a test, but identifying a missing bolt would certainly stop work.

Nomalized Histogram of FRF Reconstruction MSE
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Figure 11 — Histogram comparing MSE from damage cases with a loose bolt versus a missing
bolt.

Figure 12 explores reciprocity in the experiment. In Case 3, bolts 1 and 2 were torqued
to specification while bolts 3 and 4 were torqued to 50% of the specification. In Case 4, the
scenario was flipped such that bolts 3 and 4 were torqued to specification while bolts 1 and 2
were torqued to 50% of the specification. Case 3 exhibits less error than Case 6.



Normalized Histogram of FRF Reconstruction MSE
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Figure 12 — Histogram comparing MSE from damage cases with mirrored bolts missing preload.

Previously, it was hypothesized that Case 3 had low error because the weights of the
model may have also represented this damage case well. However, Case 6 explored the same
scenario with two different bolts loosened and exhibited higher error. As seen in Figure 4, the
two sensors collecting measurements were spatially located closer to bolts 1 and 2 which could
be a factor contributing to the increased error. However, the relationship is unclear and more
data would need to be collected and analyzed before a conclusion could be made.

The below figure, Figure 13, is a histogram plot with mean squared error on the
horizontal axis and normalized frequency on the vertical axis. The bin width is 0.05. The black
dashed line represents the average MSE of the healthy system’s reconstructed FRFs and the
red dashed line is three standard deviations from the mean MSE. The majority of the data falls
within three standard deviations, but several reconstructed FRFs resulted in error higher than
the three standard deviations. The damage threshold was defined to be three standard
deviations under the assumption that the distribution of the healthy data histogram could be
approximated at Gaussian. Three standard deviations would capture 99.7% of data in a
Gaussian distribution. The threshold could be set higher, such as five standard deviations, but
would increase the number of false negatives the model detects. In Figure 10, there is visible
overlap between healthy and damaged cases, so while a higher damage threshold would
minimize false positives, it would also increase false negatives.
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Figure 13 — Histogram of healthy data with established damage threshold.

As seen in previous plots, several damage cases have instances where the MSE
overlaps the healthy system outliers and fall within the three standard deviation mark. This
overlap creates a challenge defining a distinct threshold for defining damage in the bolted joint
system. The overlap can be seen in Figure 14. The healthy system data color was changed to
green for easy identification among the seven damage cases and the damage threshold line is
plotted. As in Figure 13, the false positives can be identified where the green bars exceed the
damage threshold. Similarly, false negatives are visible for three damage cases, Cases 1, 3,
and 7, where blue, yellow, and red bars fall underneath the damage threshold. The other
damage cases can be easily classified as damage because all of the tested instances exceed
the damage threshold. Table 3 prints the resulting confusion matrix with the damage threshold
set to three standard deviations from the healthy system’s average MSE.
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Figure 14 — Histogram of reconstruction error for all test cases with damage threshold
visible.

Table 3. Confusion matrix for classification results.

Predicted: Predicted:
n =260 NO YES
Actual: NO TN =116 FP =4 120
Actual: YES FN =13 TP =127 140
129 131

The resulting accuracy of this damage threshold is 93.5% with a precision of 96.9%. The
miss rate is 6.5%. This damage threshold is a basic approach and could be improved. With
more data to work with, outliers might be identified and can be eliminated during the data
normalization process, reducing the false positives. A more sophisticated statistical approach
would be required to separate the healthy system from the damage cases that have overlapping
instances, like Cases 1, 3, and 7. An example may be closer analysis of how the distributions
are shaped and classifying instances based on other statistical features.



Implementation Issues and Recommended
Improvements

If a test engineer were to implement this system on a real environmental test at a LANL
facility, they would face several issues. As mentioned above, real environmental tests
experience high acceleration, velocity, displacement, and possibly thermal conditioning. These
environments create an expansive space of conditions that will cause a healthy system to
exhibit changing FRF signals. However, the changes in these healthy system signals do not
indicate damage, and the model must learn to fit the entire operating condition space.
Additionally, there is the possibility that re-torquing bolts in between configurations could lead to
the model falsely identifying damage.

Further data normalization would become crucial for the implementation of this sensor
system and statistical model into a live environmental test. As the system is excited by different
inputs and subjected to different temperatures, healthy signals may look different when
compared to one another but do not indicate damage. The initial scope seems intimidating, but
because these environmental tests are conducted in controlled settings and the fact that nearly-
identical tests are often conducted more than once, it would not be impossible to normalize data
for the entire operational space of the test.

This experiment had rudimentary cross validation and would benefit from an in-depth
analysis. The hyperparameters were individually varied, usually increased or decreased by an
order of magnitude, to determine if the change improved the model’'s performance. A more
sophisticated method may randomly sample different combinations of all the hyperparameters
between predetermined bounds and use that to achieve the most accurate model.

Traditional structural health monitoring systems require procurement of ample
equipment including sensors, data acquisition hardware, and a computer. However, by
leveraging LANL’s testing capabilities, all of the equipment is already available. There are
various sensors, spare channels on data acquisition units, and capable computers at the facility
that could be used to implement a SHM system on various test articles with bolted joints. Even if
this experiment was scaled up to a full system, the number of channels would not likely exceed
the existing capabilities within testing facilities in place.

Conclusion

This experiment showed that autoencoders are a good statistical model for monitoring
the health of a bolted joint. The model was able to detect decreased preload in several different
combinations of bolts by comparing the model’s reconstructed FRF to the measured FRF. When
the model is trained on healthy signals, and a healthy signal is tested, the reconstructed signal
has very little error. When a damaged signal is introduced, the reconstructed signal has
significant error and can be classified as damage.

The threshold for damage was defined to be three positive standard deviations from the
mean MSE of the healthy system data. This simple threshold was able to detect damage with
an accuracy of 93.5% and a miss rate of 6.5%. There are several ways that this threshold could



be improved to achieve better accuracy and miss rate, but would rely on more sophisticated
statistical methods.

Additional data and a wider variety of damage cases would help train the model to be
more robust and allow it to be deployed in more scenarios. The results from this experiment
indicate that studying a single joint with accelerometers located in close proximity can be
successful. However, studying joints with more bolts with sensors located sparsely throughout
the system could create a more challenging detection problem. The autoencoder model appears
to be well suited for these problems, especially if trained on large datasets that encompass
various healthy states of the system. The hyperparameters can be tuned to be increasingly
sensitive to changes in the input FRF data and would make the damage easier to identify in a
sparsely instrumented system.
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