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ABSTRACT

Stereo photogrammetry makes use of calibrated camera pairs to obtain three-dimensional information from two-dimensional 
images. The accuracy of the extracted measurements is extremely dependent on the selection and setup of the camera system. 
For a given test object and desired viewing orientation, there is no one “correct” stereo camera setup, but rather a range of 
potential setups with some approaching an optimal system with respect to maximizing the measurement resolution. The open-
ended nature of this test design exercise is compounded by equipment availability and the fact that many of the setup parameters 
have dependent characteristics, e.g. changing focal distance will affect stand-off distance, field of view, and image projection, 
among others. This work describes a planning tool that utilizes projective and Euclidian geometry to iteratively estimate optimal 
camera poses for available equipment, determines the most efficient image size, and also performs checks for lens diffraction, 
minimum focal distance, and adequate depth of field. Integrating a finite element model with these calculations further extends 
planning capabilities by allowing (1) an accurate definition of the volume to be imaged and (2) the ability to estimate response 
displacements in pixels due to an arbitrary excitation applied to the test object. This latter capability is critical for pre-test 
determination of the chosen camera setup’s ability to successfully extract three-dimensional measurements. The theory and 
workflow are presented along with an experimental demonstration.
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1 INTRODUCTION
Photogrammetry is well established as a diagnostic capability for quasi-static displacement and strain measurements as well as 
large-scale (integer pixel) motion tracking [1-4]. Optical measurement techniques have many benefits, such as being non-
contact and very fast to field. Photogrammetry’s use in structural dynamics, where higher frequency displacements are typically 
sub-pixel, is gaining popularity as camera technology and bespoke data processing methods are established [5-8]. A recent 
study [9] demonstrated that carefully constructed experimental modal tests using DIC can directly extract modal information 
from displacements as small as 0.001 pixel.

The resolution of any optical system is dependent of the field of view (FOV); optimizing the number of pixels across an imaged 
area of interest (AOI) is critical for measuring sub-pixel displacements. However, because there are an endless number of 
practical considerations for each unique optical test (e.g. camera sensor selection, lenses available, physical space around the 
test object, etc.), there is no single truly “optimized” configuration. Typically, the practitioner must rely solely on their 
experience to select cameras and lenses and then determine their best pose in a stereo rig. Pose is defined here as the physical 
location and orientation of the cameras in space relative to each other as well as the test object.

It is entirely conceivable to set up a stereo system, collect and download images, and post-process the data only to find that the 
displacements of the test object never overcame the noise floor of the optical system. This work presents a photogrammetry 
pre-test planning workflow that will inform the selection of camera/lens pairs and the stereo poses that approximate their 
optimal setup in terms of measurement resolution. This process also considers lens minimum focus distances, depth of field 
(DOF) requirements, and checks for lens diffraction limitations. 

Finally, we use a Finite Element Model (FEM) and the pose optimization results to determine what points in a bounding volume 
will be visible to both cameras and estimate their respective displacement amplitudes on a mode-by-mode basis for a given 
excitation. The modal displacement estimates can be directly correlated to the known (or estimated) noise floor of the camera 
system, easily identifying which modes may or may not be observable by the optical system. Armed with the information from 
the test planning workflow, the practitioner can easily iterate on the test setup (equipment, AOI, pose, excitation, etc.) to have 
the best opportunity to obtain the measurements of interest and meet the test objectives.

The following section provides background information on general stereo camera setups, including the coordinate systems 
which are utilized and a brief coverage of 3D-2D projective transformations. Section 3 presents the iterative pose optimization 
routine and demonstrates output results relative to an actual test. Section 4 provides a stand-alone FEM analysis to determine 
visible nodes and estimate displacements, using the final results from Section 3 as input. The reader is cautioned that these two 
sections use different variable definitions. The final section discusses conclusions and future work under consideration.

2 GENERAL STEREO PHOTOGRAMMETRY SETUP
The test planning workflow described in this work can be applied to a 2D photogrammetry using a single camera. However, a 
single camera test is usually much easier to setup and iterate upon; in this work we will focus on the more complex stereo 
camera setup utilizing two cameras for 3D photogrammetry measurements.

Consider a test article in 3D space which is defined in an arbitrary “world” Cartesian coordinate system, Ow, as depicted in 
Figure 1. It is usually extremely convenient to let the world coordinate system match that of the FEM global coordinate system, 
as is done in this work. Two cameras, denoted Camera 0 and Camera 1, are positioned such that their optical axes are pointed 
in the direction of the test article and have local coordinate systems Oi where i indicates the camera index 0 or 1, respectively. 
The baseline (BL) is the line formed between the origin points of Oi and lies on the same plane containing all points along both 
optical axes, zi. The camera rig is a fourth coordinate system, Or, and is defined at the center of the baseline, oriented such that 
xr points from Camera 0 to Camera 1 and yr is normal to the plane containing the baseline and optical axes. Finally, the image 
planes are located at the focal distance fi along the optical axis zi. Ideally, the image center would lie on the optical axis zi such 
that (𝑐𝑥,𝑐𝑦)𝑖 = (0,0); typically there are slight offsets, but this is a reasonable approximation for a planning tool. By convention, 
the integer pixel indexing in each image space is defined such that (𝑢,𝑣)𝑖 = (0,0) is in the upper left corner as shown in Figure 
1.



Figure 1: Stereo photogrammetry setup

As part of a stereo photogrammetry test, a camera calibration is performed prior to data collection, which establishes both the 
intrinsic and extrinsic parameters of the camera system. In the test planning workflow, we do not have equipment set up to 
perform a calibration, but the form of the results elucidates the parameters needed for planning purposes. The intrinsic 
parameters form Ki and comprise the optical center (𝑐𝑥,𝑐𝑦)𝑖, the focal lengths 𝑓𝑥,𝑓𝑦 𝑖 and a skew term q that is the tangent of 
the angle between the image axes. The extrinsic parameters form [R|T]ir and comprise the rotation matrix and translation vector 
that transforms 3D coordinates X (in homogeneous coordinates) from Or to Oi. Thus, Equation (1) describes the projective 
transform between a 3D point in the rig coordinate system to 2D pixels u in the image frame. The u results are also in 
homogeneous coordinates and should be divided by the homogeneous scalar a to obtain final pixel values. The form of this 
projection will be used throughout the process.
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3 STEREO POSE OPTIMIZATION
An overview of the workflow is provided in Figure 2. At a high level, the process is divided into four main segments: input, 
setup, pose estimation, and pose validation. The following section will elaborate on each segment, providing necessary details 
for those interested in recreating the tool in a programming language of choice.
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Figure 2: Stereo pose optimization flowchart

3.1 User Inputs
First, specifications regarding the available imaging hardware are gathered. Specifically, the following information must be 
compiled:

 Camera sensor specifications:
o Full image size (sx, sy) (pixels)
o Pixel size, 𝜖 (mm)

 Camera orientation (landscape or portrait, see Section 3.3)
 Camera stand orientation (horizontal or vertical, see Section 3.3)
 A list of lenses available and their properties:

o Make and model
o Nominal focal length f (mm)
o Minimum focal distance, smin (mm)
o Aperture f-stop values, N (minimum and maximum)

With the exception of the above hardware specifications, all of the other user inputs presuppose a knowledge of the planning 
process, and will be described in detail in the following sections:

For each stereo angle in range:
Test object size

Establish bounding
box around part

Establish viewing
angles relative to

bounding box

For each lens in catalog:

Set initial camera
intrinsic parameters

For each SOD in range:

Find BL that best centers
bounding box projection in

first image dimension

Find PD that best centers
bounding box projection in

second image dimension

Project bounding box
points with selected

SOD, BL, PD in image space
of both cameras

Calculate minimum
image size

and associated crop factor

Calculate updated camera
intrinsic parameters

Iterate SOD, BL, PD to
adjust for crop factor

Final extrinsic parameters
(SA, SOD, BL, PD):

project bounding box into
camera and image space

Check minimum focus
distance of lens

Check DOF for each
available aperture setting

Check lens diffraction

All optical checks good?

Log potential configuration

Input

Setup

Pose Estimation

Pose Validation

User inputs

Viewing orientation

Camera/lens catalog,
orientation

Positional ranges

Validation tolerances

Optical constants



 Physical size or coordinates of a bounding box that encloses the surfaces to be imaged
 Bounding box margin
 Euler angles that describe the viewing orientation (i.e. how to “look at” test object)
 Space available around the part

o Acceptable range for standoff distance (SOD)
o Acceptable range for camera baseline (BL)
o Acceptable range for camera perpendicular distance (PD)

 Acceptable range of camera stereo angles
 Tolerance ranges for optical validation parameters

o Minimum focus distance
o DOF
o Lens diffraction

 Optical constants that will be used for DOF and lens diffraction estimations
o Acceptable circle of confusion, c (mm)
o Light wavelength, 𝜆 (mm)

There is a tradeoff between minimizing required user inputs and increasing the flexibility of the tool. The workflow presented 
here corresponds to the authors’ current implementation but can easily be modified according to specific application needs.

3.2 Setup: Establish Bounding Box
For the purpose of test planning, we define an imaginary bounding box that contains all surfaces of the test object that are to 
be imaged. Consider an example test object, such as the Box and Removable Component (BARC) [10], from which the areas 
of interest (AOI) include all camera-facing surfaces. The corresponding bounding box is shown in Figure 3 as a red rectangular 
cube encompassing those surfaces; the entirety of the test object does not need to be included in the bounding box volume, 
only the surfaces to be imaged. The bounding box has its own coordinate system Ob, which is centered on the front surface as 
shown in Figure 3. The coordinates of the bounding box nodes are easily defined given its dimensions (bx, by, bz):

Figure 3: Bounding box nodes in local coordinates



In practice, the box node coordinate values may be given in the world/FEM coordinate system along with the dimensions (bx, 
by, bz). In this case, first use the bounding box dimensions to compute the box node positions as shown in Figure 3. Once the 
3D coordinates are known in both Ow and Ob, we compute the transformation between the two, [R|T]bw for later use in Section 
3.4. This is accomplished through least squares rigid motion (LSRM) transformation using multiple point correspondences 
[11].

Although the bounding box is defined by the test object’s dimensions, in practice it is useful to allow the box to expand by 
some margin, which can be specified by the user in all three axes independently. This relaxes the degree of accuracy to which 
the cameras must be placed to retain all AOIs in the image frame. More importantly, this also allows for lens “focus breathing” 
which varies in both direction and severity from lens to lens (more details in Section 3.5). This is easily achieved by defining 
the bounding box “tight” on the test object as shown in Figure 3, then applying the specified margins to the box coordinates in 
Ob.

The bounding box dimensions (bx, by, bz) are user-defined inputs. Similarly, the margin values associated with each box 
dimension are user-defined inputs.

3.3 Pose Estimation
Consideration must be given to the camera (sensor) orientation, relative to how it is defined by the user. For example, if the 
full image size is defined as (2048, 1920) pixels and the camera is mounted such that the 2048 pixels are in the u dimension of 
the image, the camera orientation is considered “landscape” (refer to Figure 1). Conversely, if the 2048 pixels lie along the v 
dimension of the image, the camera orientation is considered “portrait.” Thus, the relationship between the image size and the 
camera orientation defines which axis of the sensor correspond to the image u and v dimensions. Either camera orientation may 
be used, and this is included as an option in the user-defined inputs.

Similarly, consideration is given to the camera stand orientation relative to the test object. When the cameras are aligned along 
the image u dimension, we refer to the stand orientation as “horizontal.” Conversely, if the cameras are aligned along the image 
v dimension, we refer to the stand orientation as “vertical.” This distinction will be important in determining the targets for 
centering the test object within the image frame in subsequent steps. The camera stand orientation is also a user-defined input.

The user is also responsible for the definition of the view angle with respect to Ob. Consider the typical stereo pose where the 
camera rig is placed directly in front of the test object as depicted in Figure 4; in this case it is trivial to place the camera rig in 
space using Ob. However, if the camera rig needs to be positioned somewhere other than directly in front of the part, we can 
define a new coordinate system Ov that makes this task easier. A user-defined set of Euler angles describe a rotation matrix, 
𝐑𝐯𝐛, to transform from Ob to Ov. For example, to look down on the bounding box from the right side, the Euler angles (in this 
case using the Tait-Bryan convention with intrinsic rotations about the axes) 𝜃𝑦 ,  𝜃𝑥′ ,  𝜃𝑧′′ = ( ― 10,15,0)° would rotate into 
a coordinate frame in which the rig position is easily defined, as depicted in Figure 5. The superscripts ′ and ′′ on the angle 
subscripts denotes the once and twice rotated coordinate frame, respectively.

To position the camera rig relative to the bounding box, three positioning dimensions are defined in Ov:

 Standoff distance (SOD) is the distance along the z-axis of Ov to the camera rig.
 Baseline (BL) is two times the distance to either camera along the x-axis of Ov (we assume both cameras are equidistant 

from the rig origin of Or). This is equivalent to the normal definition of baseline which is simply the straight-line 
distance between camera origin points.

 Perpendicular distance (PD) is measured along the y-axis of Ov. 

The user defines the ranges that SOD, BL and PD may fall within based on the space available around the test object. The 
camera positions with respect to Ov are shown in Equation (2). The coordinates Ci are also the origin points of the respective 
camera coordinate systems Oi. The stereo angle, 𝜃𝑠𝑡𝑒𝑟𝑒𝑜, is the angle formed between the optical axes of the cameras (see 
Figure 4). Typical stereo DIC tests will be performed in the ~20-30° stereo angle range [2] as this provides a balance between 
resolving out-of-plane motions and image correlation breakdown. For the planning workflow, the user defines the stereo angle, 
or stereo angle range to consider. Referring back to Figure 2, note that the stereo angle is not changed when iterating the SOD, 
BL, or PD; some configurations will obviously not properly frame the bounding box within the image and are rejected.
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Figure 4: Typical stereo setup with no view angle change

Figure 5: Stereo setup with example view angle change



We now have the tools necessary to project the bounding box 3D coordinates into image pixels for either camera. Referring to 
the form of Equation (1) and noting that transformation matrices can be chained together, the 3D-2D projection from the 
bounding box to image space is:

𝐮𝑖 = 𝐊𝑖𝐑𝑖𝐯[𝐈|𝐂]𝑖𝐑𝐯𝐛𝐗𝐛
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where 𝐑𝑖𝐯 takes into account the camera z-axis flip and stereo angle by rotating Ov to Oi as described by the Euler angles (in 
radians):
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Since no actual camera calibration is performed in the planning workflow, we must make assumptions in order to populate 𝐊𝑖. 
First, we assume the actual focal length of the lenses, f, is the nominal manufacturer value (e.g. 50 mm) and the pixel size is 
square such that 𝑓𝑥 = 𝑓𝑦 = 𝑓/𝜖. Further, we assume the optical axis is aligned with the center of the image such that 𝑐𝑥 = 𝑠𝑥/2 
and 𝑐𝑦 = 𝑠𝑦/2. Finally, in most test scenarios the skew is negligible, and one can assume 𝑞 = 0.

From right to left, the terms in Equation (3) effectively take the 3D coordinates of the bounding box in Ob, transform them into 
Ov, translate them to the camera positions, rotate them into Oi, and finally project them into image space. Thus, for a user-
defined stereo angle and desired viewing angle, one can iterate over the camera positions 𝐂𝑖 to find potential rig poses for which 
the bounding box is completely contained and centered in both camera images.

The iteration process is outlined in the blue boxes on the right side of Figure 2. For each stereo angle considered, the workflow 
will loop over all lenses specified in the catalog, allowing the intrinsic matrices 𝐊𝑖 to be formed. For a first pass, we assume 
the full sensor size will be used (no sensor cropping). Next, the workflow loops over each SOD in the range specified by the 
user. At each SOD step, first assume a PD of zero and iterate over all BL values in the user-defined range to find which best 
centers the bounding box in both images using Equation (3). The camera stand orientation will change which image dimension 
will be affected by a change in BL: u if stand is horizontal (cx is the center target) and v if vertical (cy is the center target). 
Hence, the optimal BL will minimize the difference between the center target and the mean of the projected bounding box 
points. This must be done for both cameras which will have competing “optimal” values, meaning the center target errors from 
both cameras should be evaluated together (e.g. minimizing the RMS error values from both cameras). Similarly, the next step 
is to assume the BL just calculated and iterate over each PD in the user-defined range, finding the value that best centers the 
bounding box in the associated image dimension depending on stand orientation.

This process produces the optimal BL and PD for the current SOD iteration; however, there is no guarantee yet that together 
these 𝐂𝑖 values will project the bounding box completely within the image space. Thus, the optimal values for this SOD are 
passed into Equation (3) and the projection is checked to see if all points fall within the (full) image size. At some instance, as 
SOD iterates outward, the entirety of the bounding box will fit within both camera images. Clearly, some configurations will 
run out of positional range before this occurs, in which case, the current SOD is abandoned, and the next iteration begins. 

Even when the bounding box is properly framed in the image, there will often be “wasted pixels” where the bounding box does 
not fill the image in both directions. In such cases, it makes sense to crop the sensor appropriately and minimize the image size. 
The optimal image size is easily determined since the bounding box pixel positions, and thus extent in both image directions, 
has already been calculated. However, cropping the image size necessitates recalculating new intrinsic camera matrices, 𝐊𝑖. 
Further, a subroutine must be performed in which the current SOD iteration is increased slightly to account for the zoom effect 
of cropping the sensor, and the BL and PD optimization iterations are re-performed. The end result is an optimized image size 
and camera positions (for the current 𝜃𝑠𝑡𝑒𝑟𝑒𝑜, lens, and SOD). Note the user-defined resolution of the steps in the ranges 
provided for SOD, BL, and PD will determine how accurately the algorithm can center the bounding box.



3.4 Pose Validation
Once a potential pose is established, the optical viability must be evaluated (green box, bottom right of Figure 2). The current 
version of the planning workflow evaluates for lens minimum focal distance, DOF, and lens diffraction limitations.

The minimum focal distance and DOF checks can be easily accomplished by recognizing that the bounding box coordinates 
can be transformed into 3D camera coordinates Oi by leaving the Ki out of Equation (3) as:
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Once all bounding box points have been transformed to the camera CS, we can find the center value of their z-coordinates:

𝑠𝑖 = max(𝒛𝑖) + min(𝒛𝑖) 2 (6)

Ideally, the focused plane should lie at the center of the bounding box volume. Since the z-axis is the optical axis of the camera, 
𝑠𝑖 corresponds to the distance between the focused plane and the lens. Therefore, if the calculated focus distances are greater 
than or equal to the minimum focal distance of the lens, such that Equation (7) is true, the pose is considered valid. Generally, 
a relaxation of the equality is beneficial in actual application, in the form of the user-defined tolerance (e.g. ≥ 0.95). Note that 
we have dropped the i subscript denoting individual cameras, but the check must be performed for both cameras.

𝑠 𝑠𝑚𝑖𝑛 ≥ 1 (7)

Next we consider DOF requirements to ensure the entire bounding box will be in focus for both cameras. Since the DOF is a 
function of the lens aperture setting, we must consider each f-stop value, N, of the lens under consideration. The estimated DOF 
for near and far points is [12]:

𝐷𝑂𝐹𝑛𝑒𝑎𝑟 =
𝐻𝑠

𝐻 + 𝑠

𝐷𝑂𝐹𝑓𝑎𝑟 =
𝐻𝑠

𝐻 ― 𝑠

(8)

where H is the hyperfocal distance, given as:

𝐻 =
𝑓2

𝑁𝑐
(9)

and c is the acceptable circle of confusion, which is a user-defined value. The circle of confusion is the largest diameter of a 
spot that will be perceived as a point; it can conservatively be set to the size of one pixel.

Using the coordinates of the bounding box in the camera CS from Equation (5), we can check if the extrema in the z-dimension 
of both cameras are bounded by the calculated DOF for each aperture f-stop to determine if the configuration is valid within a 
user-defined tolerance:

min (𝒛)
𝐷𝑂𝐹𝑛𝑒𝑎𝑟

≥ 1

𝐷𝑂𝐹𝑓𝑎𝑟

max (𝐳) ≥ 1
(10)

Finally, if both the minimum focus distance and DOF checks are valid, the lens diffraction is estimated. In an optical system 
with a circular aperture, a point is not imaged as a point but rather as an Airy disk, which has one central lobe and sequentially 
degrading concentric diffraction rings [13]. The diameter of the Airy disk is:

𝐷 = 2.44𝜆𝑁 (11)

where 𝜆 is the wavelength of the light entering the lens. Since the Airy diameter represents the smallest theoretical spot size 
that can be imaged, we consider the optical system to be diffraction (lens) limited when D is greater than the pixel size, such 
that a valid configuration will satisfy the following equality within a user-defined tolerance:



𝜖 𝐷 ≥ 1 (12)

If a pose configuration passes all three optical validation checks, it is flagged as a viable and all relevant parameters are 
recorded. The process is repeated for the next iteration of SOD lens stereo angle.

The camera positions in Ov are already given by SOD, BL and PD values as given in Equation (2). It may be more convenient 
to also record these coordinates in the bounding box system, Ob, which may be easier to physically measure when actually 
positioning the cameras for a test:

𝐆𝑖 = 𝐑𝐯𝐛
𝑻𝐂𝑖 (13)

where  𝑇 indicates the matrix transpose. Similarly, the camera positions can be recovered in the world (FEM) coordinate system 
Ow by use of the transformation between world and bounding box [R|T]bw established in Section 3.2:
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A list of the primary results to record for each viable pose would include:

 Lens settings (N, s) 
 𝜃𝑠𝑡𝑒𝑟𝑒𝑜
 Optimized image size (pixels, pixels)
 Ci camera positions in Ov (SOD, BL, PD)
 Gi camera positions in Ob
 Wi camera positions in Ow
 Optical validation parameter results
 Camera intrinsic matrices
 Transformation matrices used

3.5 Evaluating Output and Final Pose Selection
The workflow, as presented, will likely output many (thousands) viable pose configurations. For example, for a given stereo 
angle there can be viable poses for each lens, at multiple SODs, and with multiple lens aperture settings. We can easily reduce 
the number of viable poses to a more refined set by realizing that only the pose with the minimum SOD is optimal in the sense 
that it maximizes the number of pixels across the bounding box. Simply flagging the first configuration with a SOD that results 
in a valid pose as optimal is recommended. Additionally, an “image” of how this pose projects the bounding box into the image 
space is useful and easily accomplished with Equation (3). This reduces the output to contain only the best pose for each lens 
in the catalog and its corresponding range of N that will provide adequate DOF and prevent lens diffraction. From this reduced 
list, the user can easily pick which lens and aperture setting make the most sense for the test at hand.

As an example, if we wished to set up a test similar to that shown in Figure 5 with the user inputs listed in Table 1, there are 
thousands of valid poses that are found (exact number will depend on the input parameters such as the number of lenses 
available, SOD/BL/PD range and step size, and number of stereo angles considered). The optimal set is reduced to the number 
of lenses in the user catalog (in this case 9). Examples from two different lenses are shown in Figure 6. The red face represents 
the front (camera-facing) surface of the bounding box, with a line drawn to the origin of Ob.



Table 1: User-defined inputs for example viewing angle shown in Figure 5

Figure 6: Example results for optimal pose configurations for the example viewing angle shown in Figure 5; 
(a) 18mm lens, (b) 135 mm lens

An example DIC test was performed on the BARC with the camera rig positioned directly in front of the test article, similar to 
the configuration depicted in Figure 4, as shown in Figure 7.

Phantom v2640 UHS
-Sensor Size = [2048, 1920] px
-Pixel Size = 0.0135 mm
Zeiss Milvus 2.8/18mm
-Minimum Focal Dist = 250 mm
-Aperture Range = [22, 1.8]
Zeiss Milvus 2.0/135mm
-Minimum Focal Dist = 800 mm
-Aperture Range = [22, 2.0]

Camera Orientation Horizontal
Camera Stand Orientation Horizontal
Stereo Angle (degrees) 30
Bounding Box [bx, by, bz] (mm) [152.4, 206.4, 38.1]
Bounding Box Margin %(x,y,z) [0, 0, 0]
Viewing Euler Angles (degrees; y,x',z'') [-10,15,0]
SOD Range (mm) [200:5:5000]
BL Range (mm) [200:5:5000]
PD Range (mm) [-20:5:30]
Minimum Focus Check Tolerance 0.95
DOF Check Tolerance 0.95
Lens Diffraction Check Tolerance 0.95
Acceptable Circle of Confusion (mm) 0.0135
Lighting Wavelength (mm) 6.00E-04

Cameras

Lenses

(a) (b)



Figure 7: Example stereo DIC test of the BARC structure

The test planning tool was used to estimate the optimal camera position for this test using the settings in Table 1Table 3. The 
optimized pose results (specifically the camera intrinsic and extrinsic parameters that locate the cameras with respect to the 
world coordinate system) were imported into an image rendering software, Blender [14], along with the FEM of the BARC. 
The rendered images are overlaid on the planning tool results for the optimized setup in Figure 8, validating the selected pose 
for an idealized optical system and perfect camera placement in the real world.

However, in practice it is difficult to place the cameras in the exact locations specified by the planning tool output. Slight shifts 
in the actual placement are expected, along with asymmetry between the two cameras with respect to the rig origin. Another 
known difficulty with estimating the composition of the bounding box within the image frame is the phenomenon of lens “focus 
breathing” where the image composition changes as the focus distance is changed. Further confounding the issue is that, in 
some lenses, breathing will cause an apparent increase in magnification as focal distance increases while other lenses do exactly 
the opposite. The current tool only deals with this issue by applying a margin to the bounding box volume. As such, the user 
should be cognizant of the margin used and understand the degree to which the lenses available exhibit this behavior. 

The as-tested pose configuration was quantified by performing a stereo camera calibration and importing the resulting intrinsic 
and extrinsic parameters (see Equation (1)) into Blender, as was done for the optimized configuration. The as-tested 
configuration was then synthesized within Blender allowing for the accurate calculation of the camera positions. The 
differences between the optimized and as-tested camera positions were found to be on the order of approximately 10%:

Table 2: Optimal vs. as-tested camera positions

The (non-optimal) output from the test planning tool that most directly corresponded to the as-tested configuration with the 
actual test images overlaid is shown in Figure 9. The effects of focus breathing are immediately observable, in that the estimated 
projections are not quite zoomed in far enough (apparent lens focal length is too small). The positioning errors are also 
observable, as evidenced by the actual test images not being exactly centered. Even with these issues, the test planning tool 
provided a very good first-order estimate of which lens to select and the corresponding camera positions which would properly 
frame the test object (refer to Figure 8); from this estimate a successful, but not perfect, test setup was easily created. 

The positioning errors are strictly a function of how much time the user devotes to the test setup. The focus breathing 
phenomenon is the primary source of uncertainty (barring massive lens distortions). Future revisions of the planning tool may 
look to make the focal length of the lens a function of focus distance in the iterative optimization routine, although this would 
require very thorough experimental characterizations of each lens by the user. As a rough validation, the planning tool was re-

Optimal As-Tested Error (mm) Error (%) Optimal As-Tested Error (mm) Error (%)

X -195 -219 24 13% 195 182 13 7%
Y 0 10 -10 -- 0 9 -9 --
Z 728 768 -40 6% 728 777 -49 7%

Pose in Ob
(mm)

Camera 0 Camera 1



run with a lens focal length of 93 mm to account for focus breathing and the test images were artificially shifted to center the 
BARC within the image frames, as shown in Figure 10. While this is merely a qualitative comparison, it does provide a level 
of expectation that if focus breathing is accounted for and camera positioning is exact, the planning tool and actual images 
should align quite well.

Table 3: User-defined inputs for the stereo-DIC BARC test

Figure 8: Optimized pose selected for BARC stereo DIC test

Phantom v2640 UHS
-Sensor Size = [1536, 1920] px
-Pixel Size = 0.0135 mm
Zeiss Milvus 1.4/85mm
-Minimum Focal Dist = 800 mm
-Aperture Range = [16, 1.4]

Camera Orientation Horizontal
Camera Stand Orientation Horizontal
Stereo Angle (degrees) 30
Bounding Box [bx, by, bz] (mm) [152.4, 206.4, 38.1]
Bounding Box Margin %(x,y,z) [5, 5, 5]
Viewing Euler Angles (degrees; y,x',z'') [0, 0, 0]
SOD Range (mm) [200:5:5000]
BL Range (mm) [200:5:5000]
PD Range (mm) [-20:5:20]
Minimum Focus Check Tolerance 0.95
DOF Check Tolerance 0.95
Lens Diffraction Check Tolerance 0.75
Acceptable Circle of Confusion (mm) 0.0135
Lighting Wavelength (mm) 6.00E-04

Cameras

Lenses



Figure 9: As-tested pose for stereo DIC BARC test

Figure 10: As-tested pose artificially adjusted for camera translation and focus breathing (f = 93 mm)



4 PREDICTING OBSERVABLE PIXEL DISPLACEMENTS WITH FEM
Once the pose optimization has been performed as outlined in Section 3, a final camera pose is selected, and the resulting 
parameters are fed into the next stage of pre-test analysis which utilizes the FEM. In this section, all quantities are defined in 
the world (FEM) coordinate system Ow. As a separate analysis, this section utilizes different variable definitions from those 
provided in Section 3, and are defined at the point of use. This analysis would also be performed prior to setting up any test 
equipment; the test examples shown in the previous section were to demonstrate the effectiveness of the pose estimation 
algorithm.

4.1 Algorithm to Determine Node Visibility from Camera Placements
The mesh of the test article of interest is created using CUBIT, a meshing toolkit produced by Sandia National Laboratories 
(SNL) [15]. Within CUBIT, the test article mesh is exported as an EXODUS file (*.exo) compatible with Sierra Structural 
Dynamics (SD) analyses, a SNL-produced module for the Sierra engineering mechanics simulation code suite [16]. In the 
definition of the mesh of the test article, the global placement of the mesh should be consistent with the coordinate system 
definitions and placement of the bounding box around the finite element model (FEM) in the camera setup tool discussed in 
Section 3. In the definition of the mesh, surfaces that are candidates for measurement with digital image correlation (DIC) can 
be defined as sidesets. The CUBIT mesh of the example test article is shown in Figure 11(a).

The mesh information, including node coordinate, connectivity, and model output data from a normal modes analysis are 
imported into MATLAB. The nodes on the external sides of the test article model can be identified from the connectivity 
information to form a set of planes that represent the exterior of the test article, which is shown Figure 11(b). This information 
along with the sideset representing prospective measurement nodes, shown as red points in Figure 11(c), comprises the user 
information required in order to predict the observable nodal displacements from a camera position.

Figure 11: Initial steps to determine observable nodes in FEM of test article based on camera parameters and test setup with a 
(a) mesh defined in Cubit processed in MATLAB (b) without and (c) with the prospective measurement surface nodes 

highlighted

In addition to the definition of the set of nodes and planes that form the exterior surface, as well as the prospective measurement 
nodes, camera placements are designated to represent the test setup geometry as provided by the iterative optimization process 
from Section 3. Figure 12 shows how lines are formed from each of the cameras placed, Camera 1 (green point) and Camera 0 
(yellow point), to each of the prospective nodes, shown as red points, for the example digital image correlation setup and 
determination of visible nodes. This tool currently assumes small displacements, such that excitation of the part does not cause 
nodes to go in/out of visibility.



Figure 12: Camera placement and definition of lines representing camera views of each node in a prospective speckling area

The camera placements shown in Figure 12 are an effective set for observing the prospective measurement points chosen. 
Figure 13 shows a poorly placed camera position (orange point, behind the area of interest) viewing the single red measurement 
point to show the detection of nonvisible nodes due to view obstructions. The green inset of Figure 13 shows the view behind 
the poor camera placement, which highlights the detected intersection point in green.

Figure 13: Definition of single view line from camera to a node of interest from a poorly placed camera relative to surface of 
interest



Any intersection of a view line with an exterior surface of the model is calculated by checking to see if the view line intersects 
with any of the planes forming the exterior surface and if the intersection point falls within the edges of the element face being 
represented by the plane. The intersection shown in the inset of Figure 13 is shown in greater detail in Figure 14. Once the test 
article is skinned and prospective measurement nodes are defined, the toolset starts with determining if any intersections occur 
for the view line, or ray, from the camera position to each of the nodes of the prospective measurement set. The toolset can be 
used for hexahedral and tetrahedral meshes without significant user input since the script detects what mesh is used for each 
component of the test article. A slightly different approach is leveraged to detect what prospective measurement nodes are 
obstructed depending on the mesh type.

The intersection example shown in Figure 14 is based on a hexahedral mesh, which is implemented on the BARC test article. 
The Edge 1, 𝐯𝟏𝟐, is defined between Vertex 1 (Yellow Point) and Vertex 2 (Red Point) and Edge 2, 𝐯𝟏𝟒, is defined between 
Vertex 1 (Yellow Point) and Vertex 4 (Gray Point). Using the edge definitions, the plane normal can be defined as:

𝐧 = [𝐷,𝐸,𝐹] = 𝐯𝟏𝟐 × 𝐯𝟏𝟒 (15)

where D, E, and F denote the components of the normal vector for the plane being intersected. Once the normal c=vector for 
the current plane is determined, the general form of the equation of the plane can be defined as:

𝐷𝐱 + 𝐸𝐲 + 𝐹𝐳 = 0 (16)

which can be defined with the parametric definition of the camera view line to determine if the view line intersects the plane, 
is parallel to the plane, or exists in the plane when extending the plane to infinity.

Figure 14: An example of an intersection point and intersect exterior plane on the FEM of the test article based on poor 
camera placement

The parametric line definition for the camera view is:



𝑥𝐶𝑉(𝑠) = 𝑥𝑐 + 𝑈𝑠

𝑦𝐶𝑉(𝑠) = 𝑦𝑐 + 𝑉𝑠

𝑧𝐶𝑉(𝑠) = 𝑧𝑐 + 𝑊𝑠

𝐮𝐂𝐚𝐦𝐞𝐫𝐚 = [𝑈,𝑉,𝑊] = [𝑥𝑚𝑛 ― 𝑥𝑐,𝑦𝑚𝑛 ― 𝑦𝑐,𝑧𝑚𝑛 ― 𝑧𝑐]

(17)

where 𝐮𝐂𝐚𝐦𝐞𝐫𝐚 denotes a vector representing the camera optical axis, [𝑥𝑐, 𝑦𝑐, 𝑧𝑐] the camera position in cartesian coordinates 
shown as the orange point in Figure 13, and [𝑥𝑚𝑛, 𝑦𝑚𝑛, 𝑧𝑚𝑛] is the location of the measurement node shown as the red point 
in Figure 13. If 𝐮𝐂𝐚𝐦𝐞𝐫𝐚 is perpendicular to 𝐧, the view line lies within the plane or is parallel to the plane at an offset. If the 
following equality is satisfied with 𝐮𝐂𝐚𝐦𝐞𝐫𝐚 perpendicular to 𝐧:

𝐧 ∙ 𝐫𝐂𝐚𝐦𝐞𝐫𝐚 ― 𝐧 ∙ 𝐫𝟏 = 0 (18)

where 𝐫𝟏 is the vector from the origin of the global cartesian coordinate frame to Vertex 1 and 𝐫𝐂𝐚𝐦𝐞𝐫𝐚 the vector from the 
origin to the camera placement, then the camera view line is contained within the plane. Otherwise, 𝐮𝐂𝐚𝐦𝐞𝐫𝐚 being 
perpendicular to 𝐧 implies that the camera view line is parallel to the current plane being analyzed on the exterior surfaces of 
the test article.

If the dot product of 𝐮𝐂𝐚𝐦𝐞𝐫𝐚 and 𝐧 is nonzero, the infinite representation of the plane and camera optical axis intersect at a 
single point. The intersection point is defined as:

𝐫𝐈𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭𝐢𝐨𝐧 = 𝐫𝐂𝐚𝐦𝐞𝐫𝐚 ― 𝐮𝐂𝐚𝐦𝐞𝐫𝐚(
―𝐧 ∙ 𝐫𝟏 + 𝐧 ∙ 𝐫𝐂𝐚𝐦𝐞𝐫𝐚

𝐧 ∙ 𝐮𝐂𝐚𝐦𝐞𝐫𝐚
) (19)

where 𝐫𝐈𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭𝐢𝐨𝐧 defines the vector from the origin to the intersection point (𝐼), which is shown as the green point in the 
plane in Figure 14. Up to this point in the calculations, the only difference between processing tetrahedral and hexahedral 
meshes is the number of edges of the plane being reduced by one, due to the element faces being triangles instead of 
quadrilaterals, and Edge 2 being defined between Vertex 1 and Vertex 3 in a tetrahedral mesh in the above calculations.

When determining if the intersection point is contained within the edges of an exterior element face of the model, the methods 
differ slightly depending on the mesh type. For a hexahedral mesh, Varignon's theorem is used alongside Heron’s formula to 
determine if the intersection point is contained on the element face of interest [17]. Varignon’s theorem is used to calculate the 
area of the face of a hexahedral mesh that can be a general quadrilateral, which states for Figure 13 that the area of the element 
face being represented by the finite plane is given as the sum of the area of the parallelogram 𝑎𝑏𝑐𝑑 and triangles 1𝑎𝑑, 2𝑏𝑎, 
3𝑐𝑏, and 4𝑑𝑐. The points a, b, c, and d in Figure 14 are defined as follows:

𝐫𝐚 =
1
2(𝐫𝟏 + 𝐫𝟐)

𝐫𝐛 =
1
2(𝐫𝟐 + 𝐫𝟑)

𝐫𝐜 =
1
2(𝐫𝟑 + 𝐫𝟒)

𝐫𝐝 =
1
2 (𝐫𝟒 + 𝐫𝟏)

(20)

where 𝐫𝐚, 𝐫𝐛, 𝐫𝐜, and 𝐫𝐝are the vectors from the origin to points a, b, c, and d, respectively. In Equation (20), 𝐫𝟐, 𝐫𝟑, and 𝐫𝟒 
denote the vectors from the origin to points 2, 3, and 4 in Figure 14, respectively.

This area can then be compared to the sum of the areas of the four triangles formed from the intersection point and the vertices 
of the plane of interest (1𝐼2, 2𝐼3, 3𝐼4, and 4𝐼1), which denotes that the intersection point is on the element face if equal. The 
area of all the triangles can be calculated with Heron’s formula:

𝑠𝑃 =
1
2 (𝑇𝑆1 + 𝑇𝑆2 + 𝑇𝑆3)

𝐴𝑇 = 𝑠𝑃(𝑠𝑃 ― 𝑇𝑆1)(𝑠𝑃 ― 𝑇𝑆2)(𝑠𝑃 ― 𝑇𝑆3)
(21)



where 𝑠𝑃 denotes the semiperimeter of the triangle, 𝐴𝑇 the area of the triangle, and 𝑇𝑆1, 𝑇𝑆2, and 𝑇𝑆3the side lengths of the 
triangle [17]. In the case of a tetrahedral mesh, Heron’s formula is used in place of Varignon’s theorem to calculate the area of 
the plane representing the current element face being analyzed based on the camera view line. Singularities associated with 
Heron’s formula are not expected to cause issues when a quality mesh is used with low aspect ratios throughout. The above 
process is iterated throughout all the exterior faces of the test article mesh for each view line specified based on the optimized 
camera rig position (the final selection from the pose optimization routine in Section 3) and prospective measurement nodes. 
Additional constraints include accounting for intersection points that occur beyond the length of the camera view line (i.e. 
behind the measurement node) and verifying that the intersection point is the prospective measurement node. The edge of the 
camera view is enforced by leveraging the information about the image size and pixel transformation from the camera setup 
tool discussed in Section 3.

Figure 15 shows an example of the impact of camera placement on the viewable nodes in a prospective set of measurement 
nodes. The red lines in Figure 15 are the sideset representing the nodes that are contained in the area that will be patterned for 
DIC and the purple, orange, and green points represent possible camera placements denoted as 1, 2, and 3, respectively. Placing 
a camera in a obscured view or too close to the part doesn’t allow for the complete set of measurement nodes to be observed 
and causes the nodes with maximum overall displacement to be missed in the camera, which is shown by comparing the view 
from Camera Position 3 (green inset) to either Camera Position 1 (purple inset) or Camera Position 2 (orange inset). This simple 
example shows the toolset is functional with minimum user input, which allows for it to be leveraged in iterative optimization 
process as well as automated setup procedures.

Figure 15: Simulated impact of camera placement on valid measurement nodes in FEM

4.2 Definition of Frequency Response Functions to Assess Arbitrary Inputs
Figure 16 shows the representative model definition for the BARC test setup shown in Figure 7. As stated in Section 4.1, the 
mesh was created in CUBIT. The final hexahedral mesh is shown in blue in Figure 16 and consists of 8-node hexahedral 
elements (HEX8). Once the mesh was created, an eigenanalysis in Sierra SD was utilized to determine the modes of the structure 
using the eigen solution type and to inform a subsequent modalfrf study [16]. Figure 16 also shows the prospective measurement 
nodes in red. 



Figure 16: Representation of BARC FEM for Sierra SD analysis

The modal analysis for the BARC test article in Sierra SD was defined with free-free boundary conditions to replicate the test 
configuration:

0 = ((𝐊 ― 𝜎𝐌) ― 𝛍𝐌)𝛟 (22)

where 𝐊 denotes the stiffness matrix, 𝐌 the mass matrix, 𝛟 the eigenvectors, 𝛍 the eigenvalues of the shifted problem with 
shift 𝜎, which must be a large negative value to ensure 𝐊 ―𝜎𝐌 is nonsingular without being too large to impact the eigenvalue 
solver [16]. The shifted problem shown in Equation (22) is used with eigen in Sierra SD since K is singular in the unshifted 
problem. Original eigenvalues can be obtained with the simple expression:

𝛚 = (𝛍 + 𝜎)2 (23)

where 𝛚 are the original eigenvalues of the unshifted problem. Figure 17 provides the first six flexible modes from the modal 
analysis of the BARC model in Sierra SD.



Figure 17: First six analytical flexible modes of the BARC structure

The inputs for the simulation are applied to the node closest to the location where the shaker is attached in the experimental 
test setup being represented, which is shown as the pink point in Figure 16. The axis of the shaker is parallel to the y-axis, 
which is shown as the green arrow in Figure 16. The mass of the input location is approximated as a portion of the mass of the 
elements containing the node located at the pink point in Figure 16. Bolts of the joints connecting the removable component 
(yellow component in Figure 17) are defined using Joint2G elements, which provides the ability to define the constitutive 
behavior for each degree of freedom of the bolt represented by a node pair. The bolt representation is then connected to the bolt 
holes in CUBIT using the Spider command, which uses rigid bar elements, RBARS in Sierra SD, to represent the connections 
[15, 16]. A uniform modal damping ratio of 0.02 is applied to all real modes.

To determine the motion of each of the prospective measurement nodes, a frequency response function (FRF) study is 
completed in Sierra SD with the modalfrf solution type to define the transfer function matrix relating the input acceleration, or 
force, from the shaker to the displacement of the prospective measurement nodes. The response, or output, spectral density 
function matrix, 𝐒𝐦𝐦, due to an input acceleration at the shaker drive point, 𝐒𝐧𝐧, is expressed as:

𝐒𝐦𝐦(𝜔) = 𝐇𝐦𝐧(𝜔)𝐒𝐧𝐧(𝜔)𝐇𝐇
𝐦𝐧(𝜔) (24)

where 𝐇𝐦𝐧 denotes the transfer function matrix between the response accelerations at the prospective measurements points 
and the input acceleration due to the shaker obtained with the FRF study with Sierra SD, and  𝐇 denotes the complex conjugate 
transpose [18, 19]. Figure 18 provides the input auto-power spectral density (APSD) for the drive point acceleration measured 
in test to the node closest to the attachment point. Figure 19 shows a representative example for the resulting response of a 
prospective measurement node (Node 12188), whose location is shown in the inset, for the x-axis (blue line), y-axis (orange 
line), and z-axis (yellow line).



Figure 18: Auto-spectral density function of input acceleration

Figure 19: Output APSD for a single node of the BARC FEM

4.3 Transformation to Modal Coordinates to Acquire Pixel Displacements for Modes of Interest
The root mean square (RMS) values arising from the responses at each measurement node obtained from the results of the FRF 
study can be used to determine which of the prospective nodes displace enough to surpass an expected noise floor of the optical 
system [8]. From experience, a displacement of 1/100 of a pixel can be used to extract modal information (in optimal cases as 
low as 1/1000 of a pixel). The BARC test setup had an average of 8.8 px/mm for both cameras, resulting in an estimated noise 
floor of approximately 1.1E-3 mm. Modal filtering can be used to obtain the displacement of each pixel due to a mode of 
interest, which may then be compared directly to the noise floor to determine if that mode will be extractable. In the example 
shown in this section, the modes of interest are shown in Figure 20.



Figure 20: Example mode shapes of interest in determining what nodal displacements surpass the assumed noise floor

A full modal filter can be applied to obtain the responses at each of the prospective measurement points in modal coordinates 
with the complete set of modes obtained with Sierra SD:

𝐱 = 𝚽𝐪 (25)

where 𝐱 denotes the displacements for prospective measurement nodes in cartesian coordinates due to the applied APSD, 𝐪 
denotes the displacements for prospective measurement nodes in modal coordinates, and 𝚽 is the complete mode shape matrix 
containing the rigid body and flexible modes. The displacements in the modal coordinates can be obtained by calculating the 
pseudoinverse of 𝚽 , or 𝚽+, and pre-multiplying Equation (25) by the resulting matrix:

𝐪 = 𝚽+𝐱 (26)

The displacement in cartesian coordinates for a specific mode can then be obtained as:

𝐱𝑖RMS = RMS(𝚽𝑖𝐪𝑖) (27)

where 𝚽𝑖 denotes the mode shape for a single mode at the prospective measurement nodes, 𝐪𝑖 the response displacements for 
the measurement nodes due to the current mode of interest 𝑖 in modal coordinates, and 𝐱𝑖RMS the root-mean-square (RMS) 
response displacement due to the mode of interest in physical cartesian coordinates. Using Equations (25)-(27), the 
displacements of the prospective measurement nodes due to the modes of interest shown in Figure 20 are calculated and 
compared to the noise floor to determine which nodes experience displacements that are observable; this result is shown in 
Figure 21.

Additionally, the transformation to pixel coordinates can be completed to determine what nodes are indistinguishable from one 
another based on the camera placements, which is also enforced during this stage of the process. This transformation can be 
defined using the derivations from Section 3:



𝐮𝑖 = 𝐊𝑖𝐑𝑖𝐯[𝐈|𝐂]𝑖𝐑𝐯𝐛𝐑𝐛𝐰𝐗𝐛
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(28)

Accounting for the pixel transformation to Camera 1 (green point in Figure 12) only reduces the number of visible nodes by 2.3% before 
comparing the displacements to the noise floor. It is estimated that 91% of the total prospective measurement points have observable 
displacements for Mode 8 (201 Hz) in comparison to 58%, 64%, and 29% for Modes 9 (243 Hz), 13 (559 Hz), and 20 (1594 Hz), respectively. 
A majority of the points do not have observable motion in the removable component for Mode 20 since the motion is dominated by the 
bottom box.

Figure 21: Comparing nodal displacement to noise floor for example modes of interest

Alternatively, specific measurement points can be chosen to determine what modes do not result in observable motion for the 
chosen point. The locations of Node 8174 (green point) and Node 16296 (yellow point) are shown in Figure 22. The resulting 
RMS displacements for Nodes 8174 and 16296 as a function of mode index is provided in Figure 23. Node 8174 experiences 
detectable motion for 56% of the first 50 modes compared to the 50% for Node 16296. The percentage of modes that are 
indicated to be observable via this evaluation is highly dependent on which node is selected.

Evaluating the observable modes for prospective measurement nodes allows for the best area or points of the model to be 
chosen to measure specific modes of interest. The tools developed in this section can be used to validate measurement surfaces 



chosen or to leverage alongside an iterative optimization process to automate the selection of the optimal measurement 
points/area for a mode of interest.

Figure 22: Locations of nodes used in modal displacement comparison to the RMS noise floor for the first 50 flexible 
vibration modes

Figure 23: Modal displacement comparison of (a) Node 8174 and (b) Node 16296 of FEM to the RMS noise floor for the first 
50 flexible vibration modes



5 CONCLUSIONS AND FUTURE WORK
A framework for iteratively determining a first-order approximation of a set of optimized stereo camera poses, given the optical 
hardware available to the practitioner, has been presented and demonstrated experimentally. The two primary difficulties lie in 
the ability to actually place the cameras in the exact locations specified by the planning tool results, and in the phenomenon of 
lens “focus breathing.”

The placement of the cameras is not a technical issue, but rather one of practicality; getting the cameras within centimeters of 
the optimal position was not found to be overly difficult, but certainly the time that would be spent getting much more accurate 
would outweigh the benefits. The authors are currently exploring the use of a portable coordinate measurement machine for 
test setups requiring very precise positioning of the cameras relative to the test object.

The current implementation of the planning tool only deals with lens breathing through the implementation of a margin around 
the bounding box volume. While effective, it leaves room for improvement, the most straightforward of which could be to treat 
the lens focal length as a function of the focus distance within the iteration. Unfortunately, due to the variations between lens 
designs, this would require the user to conduct a characterization of each lens to establish this relationship.

The pose optimization framework by itself is useful to a practitioner, but the addition of the FEM analysis presented in Section 
4 provides an additional level of utility. The ability to check for occluded areas before testing can potentially save valuable test 
time. Clearly, the end analysis in this work is oriented towards experimental modal testing but could be applied to any analysis 
where displacements are a quantity of interest. Future developments could easily include strain estimations as well. Another 
future development being investigated is to use the FEM to determine the measurement points anywhere around a test object 
that are required for modal characterization (e.g. effective independence), then determine the minimal set of camera poses 
necessary to measure them all.

The ultimate goal of a stereo camera pre-test analysis should be to not only determine where to put the equipment, but also if 
the locations and quantities of interest will be observable – this can only be achieved with the additional FEM analysis. 
Considering the alternative for pre-test planning is a “guess-and-check” method where the practitioner must rely on their 
experience to create a viable test setup, the tools presented herein mark an appreciable improvement, even in their current state. 
Given the high level of automation and minimal user inputs, the pre-test analysis presented has been found to save more time 
that it consumes.

This manuscript has been authored by National Technology and Engineering Solutions of Sandia, LLC. under Contract No. 
DE-NA0003525 with the U.S. Department of Energy/National Nuclear Security Administration. The United States Government 
retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a 
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow 
others to do so, for United States Government purposes.
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