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Motivation: Design optimization of a wind power plant
Provided by NREL

Vattenfall’s Horns Rev wind farm off Denmark*

• Wake steering scenario

• Uncertain inputs

• Maximize total power production

• Black box code

*Figure from https://www.rechargenews.com/wind/will-wind-wake-slow-industrys-ambitions-offshore-/2-1-699430
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SNOWPAC*

OUU problem statement

R∗θ = R f (x∗,θ ) =
Rc

θ
(x)≤0

min
Rc(x,θ)≤0

R f (x,θ )

*F. Augustin, Y. Marzouk, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2017
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SNOWPAC*

OUU problem statement

R∗θ = R f (x∗,θ ) =
Rc

θ
(x)≤0

min
Rc(x,θ)≤0

R f (x,θ )

Features of SNOWPAC:

0. Extension of NOWPAC: Deterministic derivative-free nonlinear constraint optimization method

using trust-regions

1. Estimate robustness measures: Use sampling, e.g. R f
θ

= E[fθ (x)]≈ Rf = 1
N ∑

N
i=1 f (x,θi) + εN

2. Implement new trust region management: Account for noise εN in objective/constraint

evaluations⇒∆k+1 ≥
√

λtεN

3. Introduce Gaussian process surrogates: Mitigate effect of noise ε̃ = α ·2σGP(x) + (1−α) · εN

4. Only feasible trial points, i.e. Rc
ω(xk+1)≤ 0, should be accepted

⇒ Feasibility restoration mode:
mc

k (x)≤τ

min
mc

k (x)≤τ

‖x−xk‖≤∆k

∑
i∈I

(mci
k (x)2 + λgmci

k (x))

*F. Augustin, Y. Marzouk, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2017
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Multilevel Monte Carlo estimator: Mean
Mean in OUU:

max
x

RMean := max
x

E[Q(x ,θ )]

• Estimator†:

E[QL] = µ
ML
0 [QL]≈ µ̂ML

0 [QL] =
L

∑
`=0

µ̂0[Q(`)−Q(`−1)] =
L

∑
`=0

1
N`

N`

∑
i=1

(Q(`)
i −Q(`−1)

i,` ), Q(−1)
i,0 := 0

• Sample allocation:

min
NE
`

L

∑
`=0

C`NE
` ,

s.t. V[µ̂ML
0 ] = ε

2, where V[µ̂ML
0 ] =

L

∑
`=0

V[µ̂
(`)
0 − µ̂

(`−1)
0,` ]

• Solution:

NE
` =

  λ

√
V[Q`−Q`−1]

C`

   , where λ = ε
−2

L

∑
`=0

√
V[Q`−Q`−1]C`

†Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259–328
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Multilevel Monte Carlo estimator: Standard deviation
Mean in OUU:

max
x

RMean := max
x

E[Q(x ,θ )]

Standard deviation in OUU:

max
x

RPback := max
x

E[Q(x ,θ )]−ασ [Q(x ,θ )]
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Multilevel Monte Carlo estimator: Standard deviation
• Estimator:

σ [QL] =
√
V[QL]≈

√
µ̂ML

2 := σ̂ ML
biased

where

V[QL]≈ µ̂ML
2 [QL] =

L

∑
`=0

µ̂2[Q(`)]− µ̂2[Q(`−1)]

=
L

∑
`=0

1
N`−1

( N`

∑
i=1

(Q(`)
i − µ̂

(`)
0 )2− (Q(`−1)

i,` − µ̂
(`−1)
0,` )2

)
, Q(−1)

i,0 := 0

• Sample allocation‡:

min
Nσ
`

L

∑
`=0

C`Nσ
` ,

s.t. V[σ̂ ML
biased] = ε

2, where V[σ̂ ML
biased]≈ 1

4
V[µ̂ML

2 ]

µ̂ML
2

• Solution:⇒ Numerical Optimization

‡For V[µ̂ML
2 ] see FM, GG, DTS, MSE, RNK, HJB, YMM: Higher moment ML estimators for OUU applied to wind plant design, AIAA

Scitech 2020 Forum
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Multilevel Monte Carlo estimator: Scalarization
Mean in OUU:

max
x

RMean := max
x

E[Q(x ,θ )]

Scalarization in OUU:

max
x

RPback := max
x

E[Q(x ,θ )]−ασ [Q(x ,θ )]
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Multilevel Monte Carlo estimator: Scalarization
• Estimator:

S[QL] := E[QL] + ασ [QL]≈ µ̂ML
0 + ασ̂ ML

biased := ζ̂ ML

• Sample allocation:

min
NS
`

L

∑
`=0

C`NS
` ,

s.t. V[ζ̂ ML] = ε
2, where V[ζ̂ ML]≈ V[µ̂ML

0 + ασ̂ ML
biased]

• Variance of scalarization:

V[ζ̂ ML] = V[µ̂ML
0 + ασ̂ ML

biased]

= V[µ̂ML
0 ] + α

2V[σ̂ ML
biased] + 2αCov[µ̂ML

0 , σ̂ ML
biased]

≤ V[µ̂ML
0 ] + α

2V[σ̂ ML
biased] + 2|α|

√
V[µ̂ML

0 ] ·V[σ̂ ML
biased]

• Solution:⇒ Numerical Optimization
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0 ] ·V[σ̂ ML
biased]

• Solution:⇒ Numerical Optimization
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Multilevel MC coupling with SNOWPAC
Generic MLMC error estimators:

• Reminder: (1) Rf = 1
N ∑

N
i=1 f (x,θi) + εN | (2) ∆k+1 ≥

√
λtεN | (3) ε̃ = α ·2σGP(x) + (1−α) · εN

• Mean µ̂ML
0 :

V[µ̂ML
0 ] = (

εN

2
)2

• Standard deviation
√

µ̂ML
2

§:

SE(σ [QL])≈ 1

2
√

µ̂ML
2

√
V[µ̂ML

2 ] =
εN

2

• Scalarization
√

ζ̂ ML:

SE(S[QL])≤

√
V[µ̂ML

0 ] + α2V[σ̂ ML
biased] + 2|α|

√
V[µ̂ML

0 ] ·V[σ̂ ML
biased] =

εN

2
§Delta method: SE [f (θ̂ )]≈ |f ′(θ̂ )|SE [θ̂ ], θ̂ = µ̂2, f (θ̂ ) = θ̂

1
2
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Problem statement
Objective:

f (x) =

    
(x−2)2 if x ≤ 3
2log(x−2) + 1 if x > 3
x ∈ [0,6]

Constraint:

gdet(x) =
2.log(1.5)

2.5
x + 1.− 2.log(1.5)

2.5
gH(x ,ξ ) = gdet(x) + ξ

3

gL(x ,ξ ) = gdet(x) + Aξ
3,ξ ∼U (−0.5,0.5)

OUU:

min
x

f (x)

Mean:
s.t. f (x)≥ E[gH(x ,ξ )]

Push back:
s.t. f (x)≥ E[gH(x ,ξ )] + 3σ [gH(x ,ξ )]
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Sampling Results
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Sampling Results
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OUU Results
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SNOWPAC
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Wind plant application
Setup:

• three NREL 5 MW turbines (RD 130 m, HH 110 m) standing 650 m and 1300 m apart
• RANS model with actuator disk turbine representation using WindSE (https://github.com/NREL/WindSE)

OUU Mean:

max
γ1,γ2,γ3

RMean := max
γ1,γ2,γ3

E[fpower
(
γ1,γ2,γ3,θu,θγ1,θγ2,θγ3

)
]

OUU Push back:

max
γ1,γ2,γ3

RPback := max
γ1,γ2,γ3

E[fpower(·)]−3σ [fpower(·)]

Parameters: (Turbine i = 1, 2, 3)

• Yaw angle design: γi ∈ [−45◦,45◦]

• Yaw angle noise: θγi ∼L (0◦,5◦)

• Inflow wind speed: θu ∼N (7.5m
s ,1

m
s )
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(a) FINE (DoF 494760) (b) MEDIUM (DoF 61476) (c) COARSE (DoF 20760)

Friedrich Menhorn (TUM), et al. | menhorn@in.tum.de | MF strategies for OUU of wind power plants 12

Scientific Computing

Department of Informatics

Technical University of Munich

mailto:menhorn@in.tum.de


Wind plant application
Setup:

• three NREL 5 MW turbines (RD 130 m, HH 110 m) standing 650 m and 1300 m apart
• RANS model with actuator disk turbine representation using WindSE (https://github.com/NREL/WindSE)

OUU Mean:

max
γ1,γ2,γ3

RMean := max
γ1,γ2,γ3

E[fpower
(
γ1,γ2,γ3,θu,θγ1,θγ2,θγ3

)
]

OUU Push back:

max
γ1,γ2,γ3

RPback := max
γ1,γ2,γ3

E[fpower(·)]−3σ [fpower(·)]

Parameters: (Turbine i = 1, 2, 3)

• Yaw angle design: γi ∈ [−45◦,45◦]

• Yaw angle noise: θγi ∼L (0◦,5◦)

• Inflow wind speed: θu ∼N (7.5m
s ,1

m
s )

(a) FINE (DoF 494760) (b) MEDIUM (DoF 61476) (c) COARSE (DoF 20760)

Friedrich Menhorn (TUM), et al. | menhorn@in.tum.de | MF strategies for OUU of wind power plants 12

Scientific Computing

Department of Informatics

Technical University of Munich

mailto:menhorn@in.tum.de


Results
Mean:
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Results
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Summary:

• NOWPAC – Derivative-free trust region methods for constrained nonlinear optimization
• SNOWPAC – Stochastic derivative-free optimization using Gaussian process surrogates
• WindSE – Python Package for Wind Farm Simulations
• DAKOTA – Design Analysis Kit for Optimization and Terascale Applications
⇒ New MLMC estimators for Standard Deviation and Scalarization coupled with SNOWPAC.

Future work and open questions:

• Target different wind applications/setups

• From MLMC to MFMC

Links:

• SNOWPAC: github.com/snowpac/snowpac

• Dakota: dakota.sandia.gov

• WindSE: github.com/NREL/WindSE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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