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Introduction

* Leading edge erosion (LEE) is a prominent issue for wind turbine blade reliability
* Causes gradual performance decrease and persistent maintenance costs
* Main driver of erosion is the impact of rain droplets on leading edge of blade

* Erosion rate typically has an incubation period with little damage, then a linear erosion period
* Initial erosion labeled as category 1 or 2, up to 2% AEP loss

* Structural damage starts at category 3 erosion, and progresses to category 4 with up to 5% AEP loss
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Steady State Power Curve Erosion Effect

* Steady state power curve of the NRT turbine simulated using AeroDyn from the OpenFAST
code suite
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Probabilistic Power Curve Uncertainty Analysis

* Monte Carlo sampling was conducted to randomly sample 10,000 simulations, each 10 minutes long, for
each of the four erosion categories

* Dakota used for UQ analysis, with TurbSim for inflow and OpenFAST for turbine simulation

* Uncertain aleatoric parameters: hub-height wind speed, turbulence intensity, shear exponent, air density, yaw
otfset, collective blade pitch

* Power increase at low wind speeds due to small number of samples relative to inflow variance
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Field Data Analysis

*Archival SCADA data from the turbines and nearby meteorological towers was
collected in 10-minute records.

* Measurements include windspeed, wind direction, temperature, atmospheric pressure, power
production, turbine state, and nacelle direction, among other channels.

*The data is corrected by comparing multiple measurements of the same quantity when
possible. Power curves are then calculated according to IEC 61400-12 [10] for each
turbine over smaller time intervals.

*The power curves were then quantified by mean, standard deviation, and other metrics
over windspeed bins.

* Combining these data points across all the smaller intervals gives a multivariate time series.
From this, any systematic reduction in productivity was identified.

*Specifically focusing on a pair of Class 4 level erosion wind turbines,
Turbine B was repaired in September 2019, while its pair Turbine A was
not repaired.

* Comparing the power generated by each turbine at a given 10-minute time bin
will allow the change in performance based on the repairs.

* The data to compare these turbines spans from January 2016 to June 2020, which
does limit the data available post-repairs.

[10] IEC 61400-12-1:2017 Wind energy generation systems - Part 12-1: Power performance measurements of electricity producing wind turbines, International Electrotechnical Commission, 2017.



Turbine Data Comparative Analysis

Power Curve (Month 4 ) Paired Turbines A and B

Before Repairs

°In the exploratory analysis, power
curved for matched pairs before
and after repairs were made using

the wind speed binning method
described in IEC 61400-12 [10]
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*Some months showed
improvement in Turbine B after
repairs, while some showed little
change.
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Turbine Data Comparative Analysis

Power Curve (Month 1) Paired Turbines Aand B
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*This data was kept in the analysis
since air temperature was also used
within a predictor variable in the
model.
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Turbine Data Comparative Analysis

*Once a model was fitted and assumptions were checked, the model was validated by

comparing simulated data from the model to the observed data
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Power Difference over Wind Speeds Before and After Repairs

10 I Turbine Data Comparative Analysis

*The model shows an increase in Turbine B’s
power generated compared to Turbine A, after
Turbine B was repaired.

*The final model included the following

predictors:
* Indicator of Turbine B having been repaired w e
* Alr Temperature

* Wind Speed
* Power Generated by Turbine A

Difference in Normalized Power Generated (TurB - TurA)

Turbine B Repair Status
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* Difference in set and actual Torque Value for __p——
both turbines

* Torque for both turbines
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* Two created variables related to air density



11 I Results Interpretation

°In region 2 operation, the computational model predicted ~1% power loss
in power for category 2 erosion, 2% for category 3, and 3% for category 4.

*The model predicted relatively constant percentage power loss across region
2, quickly dropping to zero loss as rated power was reached.

*The comparative turbine analysis of the field data showed relatively constant
dimensional power loss across region 2 operation, gradually decreasing as
rated power is approached.

*The field data analysis showed a peak power loss much lower than the model
predictions in repaired versus unrepaired power at lower wind speeds.

*The disagreement in the magnitude of power loss due to erosion indicate
improvements are needed in the computational model and the field data
analysis, which are currently underway.

* Additionally, more field data is anticipated.



12 I Conclusions

*Field data of two turbines was compared to assess the change in performance
before and after leading edge erosion repairs.

°A statistical analysis was performed to assess whether the measured performance
difference was believable, and the analysis showed both that there was an
improvement in power with the repairs that was statistically significant.

*Despite the differences between the magnitude of power loss due to LEE from the
model predictions and the field data analysis, the observation that both data sets
show power loss in region 2 1s encouraging toward future model improvements.

*Future work will include continued analysis over a longer time period and using
more turbines.

*A predictive computational model will be developed that more directly represents
the turbines specific to this site.

*A probabilistic simulation of the specific site conditions over the test period will
also be deployed to better represent observed variability, measurement uncertainty,
and turbine condition uncertainty for comparison to the field data.

*An uncertainty analysis of the field data and modeling data will allow for a direct
comparative analysis, allowing for validation of the computational model.
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