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Abstract— Orthographic visual perception (reading) is en-
coded via a widespread dynamic interaction between different
language centers of the brain and visual cortex. In this
study, we investigated orthographic visual perception decoding
with Magnetoencephalography (MEG), where phrases were
visually presented to participants. We compared the decoding
performance obtained with sensors within the occipital lobe
that with whole-head sensors. Two naive machine learning
classifiers namely support vector machines (SVM) and linear
discriminant analysis (LDA) were used. Experimental results
indicated that the decoding performance using only occipital
sensors is similar to the performance obtained with all sensors
within the task period, which were all above chance level.
In addition, temporal analysis by taking short-time windows
showed that the occipital sensors were more discriminative near
onset compared to later time periods, while using the whole
head sensor setup at later time periods performed slightly better
than occipital sensors. This finding may indicate a sequential
order (from vistual cortex to other areas beyond occipital lobe)
during visual language perception.

I. INTRODUCTION

Visual perception is a neural mechanism that allows the
brain to create patterns of activity to receive, interpret, and
act upon visual stimuli through a series of transformations
of neural signals [1]. Orthographic visual perception is a
“mid-level vision” process that acts as a central interface
between visual and linguistic processing during reading [2].
The role of the occipital cortex, specifically ventral occipital-
temporal cortex (vOT) is found to be crucial by several
functional magnetic resonance imaging (fMRI) studies [3]-
[6]. In regards to recognition of orthographic perception, sev-
eral studies have attempted to explore pattern analysis using
electroencephalography (EEG) [7], [8], fMRI [9], [10], elec-
trocorticography (ECoG) [11], and magnetoencephalography
(MEG) [12]. Very recently, beyond classification, research

This work was supported by the University of Texas System Brain
Initiative under award number 362221 and partly by the National Institutes
of Health (NIH) under award numbers RO3DC013990 and RO1DC016621.

'Debadatta Dash is a graduate research assistant in the Department of
Neurology, Dell Medical School and Ph.D. candidate in the Department of
Electrical and Computer Engineering at The University of Texas at Austin,
TX 78712, USA debadatta.dash@utexas.edu

2Paul Ferrari is the MEG Technical Director at Spectrum
Health and Helen Devos Children’s Hospital MI 49503, USA
paul.ferrari@spectrumhealth.org

3Amir Borna is with the Physics Based Microsystems Divi-
sion at the Sandia National Laboratories, Albuquerque, NM 87123
aborna@sandia.gov

3Joonas Tivanainen is a postdoc researcher with the Physics Based
Microsystems Division at the Sandia National Laboratories, Albuquerque,
NM 87123 jaiivan@sandia.gov

4Jun Wang is an Associate Professor in the Department of Speech,
Language, and Hearing Sciences and in the Department of Neurology, Dell
Medical School at the University of Texas at Austin, TX 78712, USA
jun.wang@austin.utexas.edu

studies have attempted even for neural visual image recon-
struction [13], [14]. These studies have focused on word-
based stimu;i which constrains the complete understanding of
visual lexico-semantic information that can be generated with
a complete sentence/phrase. In addition, we hypothesize that
the neural decoding paradigm on short-time windows might
suggest a sequential order of visual language perception,
where the neural activities start from visual cortex and then
progress to other areas.

In this study, we used phrases as stimuli and explored the
decoding of visual perception of language and the role of
the occipital lobe as a measure of decoding performance.
We used MEG to record the neural activity of healthy
subjects while visually perceiving different phrases. MEG
is a non-invasive neuroimaging modality which measures
post-synaptic neuronal current-induced magnetic fields using
highly sensitive magnetometers and gradiometers. It has a
good spatial resolution (2-3 mm) and an excellent temporal
resolution (< 1 ms) which make this modality ideal to study
fast and dynamic processes such as language perception.
The magnetic permeability of biological tissues (dura, scalp,
skull) is similar to that of empty space and so the magnetic
field recorded by MEG remain undistorted, which is a great
advantage over EEG [15]. Moreover, MEG has been proven
effective for numerous temporal dependence of visual pattern
analysis research including optimal image discrimination
[16], exploration on time-varying representation of visual
patterns [17], decoding stimulus information while manip-
ulating visual consciousness [18], time-series decoding of
object recognition [19]. The high temporal resolution of
MEG makes it advantageous over fMRI to explore on the
temporal dynamics of visual perception.

The objective of this study was to compare the decoding
performance of occipital sensors with the whole-head sensor
setup to understand the role of the visual cortex in ortho-
graphic visual perception. Two machine learning classifiers,
support vector machines (SVM) and linear discriminant
analysis (LDA), were used to classify 5 different phrase
stimuli from the MEG recordings. To further understand,
the temporal dependency of perception mechanism, we com-
pared the decoding accuracies from the occipital sensors with
whole-head sensors by taking different short-time windows.
Overall, the results show that the occipital sensors can decode
the phrases well above chance level similar to while decoding
with all sensors.

II. MEG METHODS

We used two identical Triux Neuromag MEG devices
(MEGIN, LCC) (Figure 1) to collect neuromagnetic signals
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Fig. 1. The MEG unit with a subject and a stimulus “I need help” displayed
on the screen

from 6 healthy subjects (2 females) with informed consent.
We collected data at Dell Children’s Medical Center, Austin,
TX, USA and Cook Children’s Medical Center, Fort Worth,
TX, USA in compliance with the institutional review boards
(IRB) of the participating institutions. The MEG system
has 306 channels with 102 magnetometer sensors and 204
gradiometer sensors. The machine is housed inside a mag-
netically shielded room (MSR) to restrict external magnetic
fields. we used 5 visual stimuli such as: 1. Do you understand
me; 2. That’s perfect; 3. How are you, 4. Good-bye; 5. Ineed
help, those were displayed on a screen, one at a time, written
in English. A stimulus dedicated computer running the
STIM2 software (Compumedics, LTD) connected to a high-
quality DLP projector was used to display the stimuli onto
a back-projection screen situated at 90 cm from the subjects.
Each stimulus was 1 s following a pre-stmuli interval of 0.5 s
for 100 repetitions/trials in a pseudo-randomized order.
Data were recorded with a 4 kHz sampling rate with an
online hardware filter of 0.03—1000 Hz. Bipolar electroocu-
lography (EOG) and electrocardiograph (ECG) sensors were
used for recording the eye movement and cardiac signals,
respectively. The MEG signals were low-pass filtered below
250 Hz with a 4 order Butterworth filter and resampled to
1kHz. Line noise (60 Hz) and harmonics were removed with
a notch filter. Only gradiometer sensor data were considered
for decoding due to their effectiveness in noise suppression.
Sensors that showed a flat or overly noisy response were
discarded from analysis. Through visual inspection, trials
containing large artifacts were removed with an average of
25% rejection rate. Data for one subject had only 63 valid
trials for a phrase after preprocessing. Thus, for an unbiased
comparison, we considered only the first 60 trials per phrase
per subject for decoding. After preprocessing the signals
were further processed through a db-4 wavelet denoising with
2 levels. Root mean square (RMS) values of the signals were
computed as features for training the decoders. RMS features
have been proven to be effective in language-based decoding
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Fig. 2. The MEG sensor map: Modified with permission, from user manual
”TriuxTM” neo Instruction for Use, 2020 (MEGIN, LCC)

studies [20]-[24].
III. DECODING METHODS
A. Classifiers

We used two standard machine learning classifiers as
decoders for the study. They are: support vector machines
(SVM) and linear discriminant analysis (LDA). We used a
second order polynomial kernel SVM following our previous
studies [25]-[27]. The hyperparameters for SVM such as
Kernel scale and C parameter were tuned and selected based
on Bayesian optimization search. Automatic hyperparameter
optimization was performed to find the best LDA parameters
for Dirichlet distributions. The classification was performed
for each subject with a 5-fold cross-validation (CV) strategy.
For bootstrapping, the 5-fold CV was performed 10 times.
The average accuracy across the 5 folds and 10 bootstrap
runs was taken as the final performance.

B. Experiments

We performed two experiments to investigate and compare
the visual decoding of phrases from occipital sensors and all
(whole-head) sensors. First, we trained the decoders with
the RMS features extracted from all sensors (~200) and
then trained the decoders with RMS features extracted from
occipital sensors only (-60) (Figure 2). Sections 3 and 6 of
The MEG sensor map shown in Figure 2 which represent left
and right parietal occipital cortex respectively were chosen
as occipital cortex sensors altogether. Finally, we performed
a temporal analysis where we extracted the RMS features
from the perception segments with an increasing window
of 100 ms starting from the stimulus onset and also with
a decreasing time period of 100 ms from the onset. In other
words, for increasing window analysis, the 10 time segments
were [1-400 ms; 1200 ms; 1-300 ms, ...1-1000 ms].
Similarly for decreasing window analysis, the time segments
were [1 =1000ms; 101 -1000 ms;...901 -1000 ms]. We



computed RMS features and performed decoding from each
of these time segments.

IV. RESULTS AND DISCUSSIONS
A. Occipital Lobe vs Whole Scalp

Figure 3 shows the comparison of decoding accuracies
of visual phrases using all sensors and occipital sensors
only for each subject using 2 classifiers. It shows that a
similar accuracy was obtained with only occipital sensors
(average=42.65%#3.01%) when compared to all sensors
(average=43.5%22.74%). This indicates that only occipital
sensors might be sufficient for visual perception decoding.
However, it might be also due to the possible inclusion of
Wernicke’s area sensors in the left parietal occipital cortex
that is contributing to a similar accuracy. The performance
of LDA and SVM was very similar as expected. Another
important aspect to notice here is the consistency of perfor-
mance for different subjects for these two groups (All and
occipital). For example, the decoding accuracy was highest
for Subject 6 while taking all sensors and also while taking
occipital sensors irrespective of the decoders. Similarly, the
performance of subject 5 was the lowest irrespective of the
decoder and sensor group under consideration. Please note
that the accuracies obtained for each subject and the average
accuracy was higher than chance level (20% for a 5-class
class classification).

These findings suggested that we may not need the whole-
scalp sensors (~200) in MEG for visual perception de-
coding. Recently developed optically pumped magnetometer
(OPM)-MEG [28]-[30] has shown potential for a wearable,
low-cost, higher signal-to-noise ratio, and even shielding-
free MEG. Our findings provide a support to reduce the
number of sensors in OPM-MEG but can still obtain the
similar performace in visual speech perception, which will
significantly reduce the cost of the system.

B. Temporal Analysis

The results for temporal analysis averaged across subjects
is shown in Figure 4 where it can be seen that for individual
chunks of time occipital sensors perform slightly lower than
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when decoding was performed using all sensors. Interest-
ingly, when the initial temporal information was removed
the decoding accuracy was decreased with time for occipital
sensors but remained more or less the same when all sensors
were used as can be seen from decreasing window analysis.
This suggests that the occipital sensors might be contributing
to the pattern recognition during initial periods but for
visual perception, sensors beyond occipital cortex might be
contributing.

A 1-tail t-test was conducted between the performances of
the short-time windows which resulted that the decoding per-
formance ofthe whole-scalp setupissignificantly higherthan
occipital lobe sensors only (p <0.05) forboth increasing and
decreasing window analysis. These findings may suggest a
sequential order of visual language perception, where the
neural activities start from visual cortex and then to other
areas. However, the difference in performance is just in order
of 3 4%, thus, thus, further studies with larger number of
participants are need to verify these findings.

V. CONCLUSIONS

In this study, we investigated the decoding of visual
perception of phrases using MEG. We used two standard
machine learning classifiers and compared the decoding per-
formance of occipital sensors with all sensors and found that
they perform similarly for decoding. MRMR based feature
ranking method indicated that a higher number of sensors
have better predictor score in whole-head sensors compared
to occipital sensors only. Windowed temporal analysis indi-
cated that the similar performance of occipital sensors and all
sensors were mostly during the initial identification stage but
the performance of occipital sensors decreased in the later
time segments. Future study will focus on reconstruction of
phrases from the neuromagnetic activity.

VI. ACKNOWLEDGMENT

We thank Drs. Angel W. Hernandez-Mulero and Saleem
Malik for their help on the data collection. We also thank
Dr. Ted Mau, Dr. Myungjong Kim, Dr. Mark McManis, Dr.
Daragh Heitzman, Kristin Teplansky, Saara Raja, and the
volunteering participants. Sandia National Laboratories is a
multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc.,
for the U.S. Department of Energy National Nuclear
Security Administration under contract DENA0003525. This
paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

REFERENCES

[1] O. Braddick, “Visual perception, neural basis of,” pp. 16269 — 16274,
2001.

[2] Jonathan Grainger, “Orthographic processing: A mid-levelvision of
reading: The 44th sir frederic bartlett lecture,” Quarterly Journal of
Experimental Psychology, vol. 71, no. 2, pp. 335-359, 2018.

[3] Stanislas Dehaene and Laurent Cohen, “The unique role of the visual
word form area in reading,” Trends in cognitive sciences, vol. 15, no.
6, pp.254-262, 2011.



H Subl = Sub2 Sub3 ©“Sub4 ®=SubS ®Sub6

Fig. 3. Comparison of decoding accuracies with All and occipital sensors
for each subject

(4]

[3]

Laurent Cohen, Stanislas Dehaene, Lionel Naccache, Stephane
Lehéricy, Ghislaine Dehaene-Lambertz, Marie-Anne Hénaff, and
Frangois Michel, “The visual word form area: spatial and temporal
characterization of an initial stage of reading in normal subjects and
posterior split-brain patients,” Brain, vol. 123, no. 2, pp. 291-307,
2000.

Cathy J Price and Joseph T Devlin, “The interactive account of
ventral occipitotemporal contributions to reading,” Trends in cognitive
sciences, vol. 15, no. 6, pp. 246-253, 2011.



(6]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[1e]

[17]

[18]

[19]

Increasing Window

N
[

--*--Whole-scalp
--&--Occipital o

IS
b
[$,]

Accuracy (%)

B B B
O O
N (9] N [$,] w o S

¥
&

IS
I
(9]

N
o

Time (sec)

Fig. 4.

JSH Taylor, Kathleen Rastle, and Matthew H Davis, “Can cognitive
models explain brain activation during word and pseudoword reading?
a meta-analysis of 36 neuroimaging studies.,” Psychological bulletin,
vol. 139, no. 4, pp. 766, 2013.

Patrick Suppes, Zhong-Lin Lu, and Bing Han, “Brain wave recognition
of words,” Proceedings of the National Academy of Sciences, vol. 94,
no. 26, pp. 14965-14969, 1997.

Shouyu Ling, Andy C. H. Lee, Blair C. Armstrong, and Adrian Nestor,
“How are visual words represented? insights from EEG-based visual
word decoding, feature derivation and image reconstruction,” Human
Brain Mapping, vol. 40, no. 17, pp. 5056-5068, 2019.

Annelies Baeck, Dwight Kravitz, Chris Baker, and Hans P Op
de Beeck, “Influence of lexical status and orthographic similarity on
the multi-voxel response of the visual word form area,” Neuroimage,
vol. 111, pp. 321-328, 2015.

Adrian Nestor, Marlene Behrmann, and David C Plaut, “The neural
basis of visual word form processing: a multivariate investigation,”
Cerebral Cortex, vol. 23, no. 7, pp. 1673—-1684, 2013.

Elizabeth A Hirshorn, Yuanning Li, Michael J] Ward, R Mark Richard-
son, Julie A Fiez, and Avniel Singh Ghuman, “Decoding and disrupt-
ing left midfusiform gyrus activity during word reading,” Proceedings
of the National Academy of Sciences, vol. 113, no. 29, pp. 8162-8167,
2016.

Alexander M Chan, Eric Halgren, Ksenija Marinkovic, and Sydney S
Cash, “Decoding word and category-specific spatiotemporal represen-
tations from MEG and eeg,” Neuroimage, vol. 54, no. 4, pp. 3028—
3039, 2011.

Le Chang and Doris Y Tsao, “The code for facial identity in the
primate brain,” Cell, vol. 169, no. 6, pp. 1013-1028, 2017.

Guohua Shen, Tomoyasu Horikawa, Kei Majima, and Yukiyasu Kami-
tani, “Deep image reconstruction from human brain activity,” PLoS
computational biology, vol. 15, no. 1, pp. €1006633, 2019.

Sanjay P Singh, “Magnetoencephalography: basic principles,” Annals
of Indian Academy of Neurology, vol. 17, no. Suppl 1, pp. S107, 2014.
ME Van de Nieuwenhuijzen, AR Backus, Ali Bahramisharif, Chris-
tian F Doeller, Ole Jensen, and Marcel AJ van Gerven, “MEG-
based decoding of the spatiotemporal dynamics of visual category
perception,” Neuroimage, vol. 83, pp. 10631073, 2013.

Susan G Wardle, Nikolaus Kriegeskorte, Tijl Grootswagers, Seyed-
Mahdi Khaligh-Razavi, and Thomas A Carlson, “Perceptual similarity
of visual patterns predicts dynamic neural activation patterns measured
with MEG,” Neuroimage, vol. 132, pp. 59-70, 2016.

Anh-Thu Mai, Tijl Grootswagers, and Thomas A Carlson, “In search
of consciousness: Examining the temporal dynamics of conscious
visual perception using MEG time-series data,” Neuropsychologia,
vol. 129, pp. 310-317, 2019.

Erika W Contini, Susan G Wardle, and Thomas A Carlson, “Decoding

Accuracy(%)

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Decreasing Window

45
--+--Whole-scalp
445 - --&--Occipital
44
435 TR
Pants 4
43 H/ * |
425[
-
42 o)
415/ =
410
405 L
40 , , , ,
O QO N QO N
N N N O N
Q,'\Q Q’\Q Q’\Q Q’\Q Q’\Q
N o & N N
Time (sec)

Comparison of temporal analysis

the time-course of object recognition in the human brain: From visual
features to categorical decisions,” Neuropsychologia, vol. 105, pp.
165-176, 2017.

Lei Wang, Ed X. Wu, and Fei Chen, “Contribution of RMS-Level-
Based Speech Segments to Target Speech Decoding Under Noisy
Conditions,” in Proc. Interspeech 2020, 2020, pp. 121-124.
Debadatta Dash, Paul Ferrari, Saleem Malik, and Jun Wang, “Overt
speech retrieval from neuromagnetic signals using wavelets and arti-
ficial neural networks,” in 2018 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, 2018, pp. 489-493.
Alborz Rezazadeh Sereshkeh, Robert Trott, Aurélien Bricout, and Tom
Chau, “EEG classification of covert speech using regularized neural
networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 12, pp. 2292-2300, 2017.

Debadatta Dash, Alan Wisler, Paul Ferrari, and Jun Wang, “Towards
a speaker independent speech-BCI using speaker adaptation.,” in
INTERSPEECH, 2019, pp. 864-868.

Debadatta Dash, Paul Ferrari, and Jun Wang, “Decoding imagined and
spoken phrases from non-invasive neural (MEG) signals,” Frontiers
in Neuroscience, 2020.

Debadatta Dash, Alan Wisler, Paul Ferrari, Elizabeth Moody Daven-
port, Joseph Maldjian, and Jun Wang, “MEG sensor selection for
neural speech decoding,” IEEE Access, vol. 8, pp. 182320-182337,
2020.

Debadatta Dash, Paul Ferrari, Satwik Dutta, and Jun Wang, “Neu-
roVAD: Real-time voice activity detection from non-invasive neuro-
magnetic signals,” Sensors, vol. 20, no. 8, pp. 2248, 2020.
Debadatta Dash, Paul Ferrari, and Jun Wang, “Role of brainwaves
in neural speech decoding,” in Proc. IEEE 28th Eur. Signal Process.
Conf., 2020, pp. 1-5.

Elena Boto, Niall Holmes, James Leggett, Gillian Roberts, Vishal
Shah, Sofie S Meyer, Leonardo Duque Muiioz, Karen J Mullinger,
Tim M Tierney, Sven Bestmann, et al., “Moving magnetoencephalog-
raphy towards real-world applications with a wearable system,” Na-
ture, vol. 555, no. 7698, pp. 657-661, 2018.

Amir Borna, Tony R Carter, Anthony P Colombo, Yuan-Yu Jau,
Jim McKay, Michael Weisend, Samu Taulu, Julia M Stephen, and
Peter DD Schwindt, “Non-invasive functional-brain-imaging with an
opm-based magnetoencephalography system,” Plos one, vol. 15, no.
1, pp. €0227684, 2020.

Xin Zhang, Chun-qiao Chen, Ming-kang Zhang, Chang-yu Ma, Yin
Zhang, Hui Wang, Qing-qian Guo, Tao Hu, Zhao-bang Liu, Yan
Chang, et al., “Detection and analysis of MEG signals in occipital
region with double-channel opm sensors,” Journal of Neuroscience
Methods, vol. 346, pp. 108948, 2020.



