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Visual Decoding of Phrases from Occipital Neuromagnetic Signals

Debadatta Dash1, Paul Ferrari 2, Amir Borna3, Joonas Iivanainen3, Peter D. D. Schwindt3, and Jun 
Wang4

Abstract— Orthographic visual perception (reading) is en- 
coded via a widespread dynamic interaction between different 
language centers of the brain  and  visual  cortex.  In  this 
study, we investigated orthographic visual perception decoding 
with Magnetoencephalography (MEG), where phrases were 
visually presented to participants. We compared the decoding 
performance obtained with sensors within the occipital lobe 
that with whole-head sensors. Two naive machine learning 
classifiers namely support vector machines (SVM) and linear 
discriminant analysis (LDA) were used. Experimental results 
indicated that the decoding performance using only occipital 
sensors is similar to the performance obtained with all sensors 
within the task period,  which  were  all  above  chance  level.  
In addition, temporal analysis by taking short-time windows 
showed that the occipital sensors were more discriminative near 
onset compared to later time periods, while using the whole 
head sensor setup at later time periods performed slightly better 
than occipital sensors. This finding may indicate a sequential 
order (from vistual cortex to other areas beyond occipital lobe) 
during visual language perception.

I. INTRODUCTION
Visual perception is a neural mechanism that allows the 

brain to create patterns of activity to receive, interpret, and 
act upon visual stimuli through a series of transformations  
of neural signals [1]. Orthographic visual perception is a 
“mid-level vision” process that acts as a central interface 
between visual and linguistic processing during reading [2]. 
The role of the occipital cortex, specifically ventral occipital- 
temporal cortex (vOT) is found to be crucial by several 
functional magnetic resonance imaging (fMRI) studies [3]– 
[6]. In regards to recognition of orthographic perception, sev- 
eral studies have attempted to explore pattern analysis using 
electroencephalography (EEG) [7], [8], fMRI [9], [10], elec- 
trocorticography (ECoG) [11], and magnetoencephalography 
(MEG) [12]. Very recently, beyond classification, research
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studies have attempted even for neural visual image recon- 
struction [13], [14]. These studies have focused on word- 
based stimu;i which constrains the complete understanding of 
visual lexico-semantic information that can be generated with 
a complete sentence/phrase. In addition, we hypothesize that 
the neural decoding paradigm on short-time windows might 
suggest a sequential order of visual language perception, 
where the neural activities start from visual cortex and then 
progress to other areas.

In this study, we used phrases as stimuli and explored the 
decoding of visual perception of language and the role of  
the occipital lobe as a measure of decoding performance.   
We used MEG to record the neural activity of healthy 
subjects while visually perceiving different phrases. MEG   
is a non-invasive neuroimaging modality which measures 
post-synaptic neuronal current-induced magnetic fields using 
highly sensitive magnetometers and gradiometers. It has a 
good spatial resolution (2 3 mm) and an excellent temporal 
resolution (< 1 ms) which make this modality ideal to study 
fast and dynamic processes such as language  perception. 
The magnetic permeability of biological tissues (dura, scalp, 
skull) is similar to that of empty space and so the magnetic 
field recorded by MEG remain undistorted, which is a great 
advantage over EEG [15]. Moreover, MEG has been proven 
effective for numerous temporal dependence of visual pattern 
analysis research including optimal image discrimination 
[16], exploration on time-varying representation of visual 
patterns [17], decoding stimulus information while manip- 
ulating visual consciousness [18], time-series decoding of 
object recognition [19]. The high temporal resolution of 
MEG makes it advantageous over fMRI to explore on the 
temporal dynamics of visual perception.

The objective of this study was to compare the decoding 
performance of occipital sensors with the whole-head sensor 
setup to understand the role of the visual cortex in ortho- 
graphic visual perception. Two machine learning classifiers, 
support vector machines (SVM) and linear discriminant 
analysis (LDA), were used to classify 5 different phrase 
stimuli from the MEG recordings. To  further  understand, 
the temporal dependency of perception mechanism, we com- 
pared the decoding accuracies from the occipital sensors with 
whole-head sensors by taking different short-time windows. 
Overall, the results show that the occipital sensors can decode 
the phrases well above chance level similar to while decoding 
with all sensors.

II. MEG METHODS

We used two identical Triux Neuromag MEG devices 
(MEGIN, LCC) (Figure 1) to collect neuromagnetic signals
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Fig. 1. The MEG unit with a subject and a stimulus “I need help” displayed
on the screen

from 6 healthy subjects (2 females) with informed consent. 
We collected data at Dell Children’s Medical Center, Austin, 
TX, USA and Cook Children’s Medical Center, Fort Worth, 
TX, USA in compliance with the institutional review boards 
(IRB) of the participating institutions. The  MEG  system  
has 306 channels with 102 magnetometer sensors and 204 
gradiometer sensors. The machine is housed inside a mag- 
netically shielded room (MSR) to restrict external magnetic 
fields. we used 5 visual stimuli such as: 1. Do you understand 
me; 2. That’s perfect; 3. How are you; 4. Good-bye; 5. I need 
help, those were displayed on a screen, one at a time, written 
in English. A stimulus dedicated computer running the 
STIM2 software (Compumedics, LTD) connected to a high- 
quality DLP projector was used to display the stimuli onto    
a back-projection screen situated at 90 cm from the subjects. 
Each stimulus was 1 s following a pre-stmuli interval of 0.5 s 
for 100 repetitions/trials in a pseudo-randomized order.

Data were recorded with a 4 kHz sampling rate with an 
online hardware filter of 0.03 1000 Hz. Bipolar electroocu- 
lography (EOG) and electrocardiograph (ECG) sensors were 
used for recording the eye movement and cardiac signals, 
respectively. The MEG signals were low-pass filtered below 
250 Hz with a 4th order Butterworth filter and resampled to 
1 kHz. Line noise (60 Hz) and harmonics were removed with 
a notch filter. Only gradiometer sensor data were considered 
for decoding due to their effectiveness in noise suppression. 
Sensors that showed a flat or overly noisy response were 
discarded from analysis. Through visual inspection, trials 
containing large artifacts were removed with an average of 
25% rejection rate. Data for one subject had only 63 valid 
trials for a phrase after preprocessing. Thus, for an unbiased 
comparison, we considered only the first 60 trials per phrase 
per subject for decoding. After preprocessing the signals 
were further processed through a db-4 wavelet denoising with 
2 levels. Root mean square (RMS) values of the signals were 
computed as features for training the decoders. RMS features 
have been proven to be effective in language-based decoding

Fig. 2. The MEG sensor map: Modified with permission, from user manual 
”TriuxTM” neo Instruction for Use, 2020 (MEGIN, LCC)

studies [20]–[24].

III. DECODING METHODS

A. Classifiers
We used two standard machine learning classifiers as 

decoders for the study. They are: support vector machines 
(SVM) and linear discriminant analysis (LDA). We used a 
second order polynomial kernel SVM following our previous 
studies [25]–[27]. The hyperparameters for SVM such as 
Kernel scale and C parameter were tuned and selected based 
on Bayesian optimization search. Automatic hyperparameter 
optimization was performed to find the best LDA parameters 
for Dirichlet distributions. The classification was performed 
for each subject with a 5-fold cross-validation (CV) strategy. 
For bootstrapping, the 5-fold CV was performed 10 times. 
The average accuracy across the 5 folds and 10 bootstrap 
runs was taken as the final performance.

B. Experiments
We performed two experiments to investigate and compare 

the visual decoding of phrases from occipital sensors and all 
(whole-head) sensors. First, we trained the decoders with   
the RMS features extracted from all sensors (  200) and   
then trained the decoders with RMS features extracted from 
occipital sensors only ( 60) (Figure 2). Sections 3 and 6 of 
The MEG sensor map shown in Figure 2 which represent left 
and right parietal occipital cortex respectively were chosen 
as occipital cortex sensors altogether. Finally, we performed 
a temporal analysis where we extracted the RMS features 
from the perception segments with an increasing window   
of 100 ms starting from the stimulus onset and also with      
a decreasing time period of 100 ms from the onset. In other 
words, for increasing window analysis, the 10 time segments 
were [1 100 ms; 1 200 ms; 1 300 ms, ...1 1000 ms]. 
Similarly for decreasing window analysis, the time segments 
were [1 −1000 ms; 101 −1000 ms; ...901 −1000 ms]. We
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computed RMS features and performed decoding from each 
of these time segments.

IV. RESULTS AND DISCUSSIONS

A. Occipital Lobe vs Whole Scalp
Figure 3 shows the comparison of decoding accuracies    

of visual phrases using all sensors and  occipital  sensors 
only for each subject using 2 classifiers. It shows that a 
similar accuracy was obtained with only occipital sensors 
(average=42.65% 3.01%) when compared to all sensors 
(average=43.5% 2.74%). This indicates that only occipital 
sensors might be sufficient for visual perception decoding. 
However, it might be also due to the possible inclusion of 
Wernicke’s area sensors in the left parietal occipital cortex 
that is contributing to a similar accuracy. The performance 
of LDA and SVM was very similar as expected. Another 
important aspect to notice here is the consistency of perfor- 
mance for different subjects for these two groups (All and 
occipital). For example, the decoding accuracy was highest 
for Subject 6 while taking all sensors and also while taking 
occipital sensors irrespective of the decoders. Similarly, the 
performance of subject 5 was the lowest irrespective of the 
decoder and sensor group under consideration. Please note 
that the accuracies obtained for each subject and the average 
accuracy was higher than chance level (20% for a 5-class 
class classification).

These findings suggested that we may not need the whole- 
scalp sensors ( 200) in MEG for visual perception de- 
coding. Recently developed optically pumped magnetometer 
(OPM)-MEG [28]–[30] has shown potential for a wearable, 
low-cost, higher signal-to-noise ratio, and even shielding- 
free MEG. Our findings provide a support to reduce the 
number of sensors in OPM-MEG but can still obtain the 
similar performace in visual speech perception, which will 
significantly reduce the cost of the system.

B. Temporal Analysis
The results for temporal analysis averaged across subjects 

is shown in Figure 4 where it can be seen that for individual 
chunks of time occipital sensors perform slightly lower than
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when decoding was performed using all sensors. Interest- 
ingly, when the initial temporal information was removed  
the decoding accuracy was decreased with time for occipital 
sensors but remained more or less the same when all sensors 
were used as can be seen from decreasing window analysis. 
This suggests that the occipital sensors might be contributing 
to the pattern recognition during initial periods but  for  
visual perception, sensors beyond occipital cortex might be 
contributing.

A 1-tail t-test was conducted between the performances of 
the short-time windows which resulted that the decoding per- 
formance of the whole-scalp setup is significantly higher than 
occipital lobe sensors only (p < 0.05) for both increasing and 
decreasing window analysis. These findings may suggest a 
sequential order of visual language perception, where the 
neural activities start from visual cortex and then to other 
areas. However, the difference in performance is just in order 
of 3 4%, thus, thus, further studies with larger number of 
participants are need to verify these findings.

V. CONCLUSIONS

In this study, we investigated the decoding of visual 
perception of phrases using MEG. We used two standard 
machine learning classifiers and compared the decoding per- 
formance of occipital sensors with all sensors and found that 
they perform similarly for decoding. MRMR based feature 
ranking method indicated that a higher number of sensors 
have better predictor score in whole-head sensors compared 
to occipital sensors only. Windowed temporal analysis indi- 
cated that the similar performance of occipital sensors and all 
sensors were mostly during the initial identification stage but 
the performance of occipital sensors decreased in the later 
time segments. Future study will focus on reconstruction of 
phrases from the neuromagnetic activity.
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