INL/CON-20-58556-Revision-0

An Operational Resilience
Metric for Modern Power
Distribution Systems

December 2020

Tyler Bennett Phillips, Timothy R McJunkin, Craig G Rieger, John Gardner,
Hoda Mehrpouyan

.

|daho National

|_(] oml‘ory INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC



DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.




INL/CON-20-58556-Revision-0

An Operational Resilience Metric for Modern Power
Distribution Systems

Tyler Bennett Phillips, Timothy R McJunkin, Craig G Rieger, John Gardner, Hoda
Mehrpouyan

December 2020

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517



An Operational Resilience Metric for Modern
Power Distribution Systems

Tyler Phillips
National & Homeland Security
Idaho National Laboratory
Idaho Falls, Idaho, USA
tylerphillips1 @u.boisestate.edu

John Gardner
Mechanical & Biomedical Engineering
Boise State University
Boise, Idaho, USA
jgardner @boisestate.edu

Abstract—The electrical power system is the backbone of
our nations critical infrastructure. It has been designed to
withstand single component failures based on a set of reliability
metrics which have proven acceptable during normal operating
conditions. However, in recent years there has been an increasing
frequency of extreme weather events. Many have resulted in
widespread long-term power outages, proving reliability metrics
do not provide adequate energy security.

As a result, researchers have focused their efforts resilience
metrics to ensure efficient operation of power systems during
extreme events. A resilient system has the ability to resist,
adapt, and recover from disruptions. Therefore, resilience has
demonstrated itself as a promising concept for currently faced
challenges in power distribution systems.

In this work, we propose an operational resilience metric
for modern power distribution systems. The metric is based on
the aggregation of system assets adaptive capacity in real and
reactive power. This metric gives information to the magnitude
and duration of a disturbance the system can withstand. We
demonstrate resilience metric in a case study under normal
operation and during a power contingency on a microgrid. In
the future, this information can be used by operators to make
more informed decisions based on system resilience in an effort
to prevent power outages.

Index Terms—Resilience, Adaptive Capacity, Power distribu-
tion

I. INTRODUCTION

Today’s modern society has become increasingly dependent
on the safety and efficiency of modern control systems. At the
foundation of our social and economic way of life, you will
find the electrical power system. It constitutes the most vital
component of the nation’s interdependent critical infrastructure
systems. To ensure a constant supply of electrical power,
utilities and researchers have designed and operated the power
system under the consideration of a set of reliability metrics.
These metrics account for normal weather conditions and
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component failure but do not consider extreme events [1] as
it is generally not cost effective [2].

In the early stages of power system construction, relatively
little attention was given to the distribution networks when
compared with generation and transmission. Generation and
transmission outages are large impact events, whereas distribu-
tion outages have smaller localized effects. However, analysis
of practical utility failure registers and fault statistics reveals
that distribution networks contribute the most to customer
interruptions and failure events [3]. The data shows that 90%
of the power outages occur in the distribution system alone [4].

Complete disaster-resistant protection of the distribution
system is highly impractical, requiring far too much invest-
ment [5]. Therefore, researchers have begun to focus their
efforts on resilience, not reliability, metrics. The concept of re-
liability and resilience are similar but have distinct differences
in both scale and duration. Reliability research concentrates on
small-scale random faults of power system components caused
by internal factors [6]. For example, reliability encompass
the N-1 contingency planning or a single component failure.
At the basic level, it ensures that no single point of failure
would cause the entire system to stop working. In contrast,
resilience considers extreme conditions, or N-k failures, where
k may extend well beyond a single failure point. Resilience
anticipates that during extreme events a certain amount of
degradation to the system is unavoidable. Thus, it can be said
that resilience is characterized by a systems ability to resist,
respond, and recover from a disturbance or attack in order to
maintain core operations [7].

Electrical component failures during extreme weather events
such as hurricanes, winter storms, flooding, wildfires, etc.,
push well beyond the limitations of the current distribution
system which has been design to meet reliability metrics. In
the United States, between 2003 and 2012, extreme weather
events caused an estimated 679 widespread power outages,
affecting at least 50,000 customers [4]. Notable events include



Hurricane Katrina [8], Hurricane Sandy [9], and the wildfires
across California [10] which forced the utility company to de-
energize power lines in an effort to mitigate the risk of starting
new fires, resulting in widespread blackouts. Making matters
worse, our energy infrastructure is aging [11] and climate
change is expected to continually increase the frequency and
intensity of extreme weather [4]. A 2012 study [12] estimates
the cost of weather-related outages to the tune of $25 to $70
billion annually. Moreover, these prolonged power outages can
put the public at a significant risk, having the potential for loss
of life. Data indicates that the 2003 blackout in New York
resulted in approximately 90 deaths [13]. In light of these
factors, it is of upmost importance for researchers to address
the growing concern of electrical power supply during extreme
weather events. New methodologies which enable utilities to
effectively manage power systems must be developed.

In this work, we present a novel real-time operational
resilience metric that utilizes the controllable assets in modern
distribution systems. The metric is an operational aggregation
of assets adaptive capacity in real and reactive power. It
indicates the magnitude and duration of a disturbance a system
is capable of withstanding, and maintain load demand and
stability in voltage and frequency.

The rest of this paper is organized as follows: Section II
gives an introduction to resilience and a literature review. The
modern distribution system (MDS) and background on power
stability is discussed in sectionlIl. We introduce our resilience
metric and give the mathematical details in Section I'V. Finally,
the conclusion and future work are covered in Section VI.

II. RESILIENCE IN POWER SYSTEMS

Pioneering work in resilience of engineering systems is
presented by Hollnagel, Woods, and Leveson in [14]. Many
definitions have been coined by well respected organizations
in engineering literature [15]-[19], policy directives [20], and
the academic community [21]. A general commonality among
sources are the ability to anticipate a possible disaster, adopt
effective measures to decrease loss of load and system compo-
nent failure before and during the disaster, and restore power
quickly through controlled reconfiguration. Quantification of
resilience in power systems is an emerging field. It is an
important open area of research, of great interest to utilities
and stakeholders.

To date, power systems are regulated based upon reliability
metrics. This dates back to the Energy Policy Act of 2005 [22],
where Congress gave the Federal Energy Regulatory Com-
mission authority to oversee the reliability of the bulk-power
systems. The purpose was to ensure the reliable operation
where an instability, uncontrolled separation, or cascading
failures would not occur as a result of a sudden disturbance.
There are two main metrics used to measure the reliability;
the system average interruption duration index and the system
average interruption frequency index. However, some juris-
dictions consider storm related outages as extreme events,
and thus, do not include them as inputs into the reliability
metrics [23].
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Fig. 1. The disturbance and impact resilience evaluation curve, showing the
5R’s of resilience. Image adapted from [30].

There have been several proposed resilience metrics, such as
the resilience triangle and trapezoid. The resilience trapezoid
is an extension of the resilience triangle proposed in [24] by
Tierney and Bruneau. Unlike the triangle which only consid-
ers the disturbance of a system, the trapezoid assesses the
resilience through three phases; the disturbance, degradation,
and the restorative state. The resilience trapezoid has been
applied to a power system framework as proposed by Panteli
et. al [25], which extends the works in [26]-[29].

Another proposed resilience approach is introduced by
Rieger [30]. In this work he takes a controls systems perspec-
tive but doesn’t apply the metric directly to power systems.
System resilience is shown by the notional disturbance and
impact resilience evaluation (DIRE) curve in Fig. 1. The novel
concept introduced is the idea of a resilience threshold, or
the maximum acceptable level of degradation to the system.
This degradation level may be defined by a percentage of loss
load in the system, ability to retain critical loads, etc. The
performance level from optimal operation to the resilience
threshold is defined by the systems adaptive capacity. The
adaptive capacity can be defined as the ability of the system
to adapt or transform from an impact event. An adaptive
insufficiency can be considered the inability of the system to
adapt or transform from an impact, indicating an unacceptable
performance loss due to the given disturbance.

In [31], Woods describes an aspect of assessing a sys-
tems resilience is whether the system is known to be near
an operation boundary condition. This provides information
about how well the system can stretch in response to a
future disturbance. In the context of power systems, McJunkin
and Rieger expand this concept and introduce a resilience
metric to evaluate the design of modern distribution systems
(MDS) [32]. Their approach is based on the adaptive capacity
of a system, defined by an asset or aggregation of assets. In
this work, they demonstrate the temporal adaptive capacity,
or amount of flexibility or stretch, in the real and reactive
power of the controllable assets while also considering energy
limitations. The resulting metric can by represented by a three
dimensional surface, referred to as a manifold, that represents
the maximum adaptive capacity in real and reactive power



over time. The metric can be thought of as a mapping to the
DIRE curve, indicating the maximum disturbance in amplitude
and duration due to cyber or physical disturbances that can be
withstood.

The most recent contributions of the resilience metric pro-
posed in [32] have been developed as a design tool for MDS.
The metric uses a neutral bias assumption to describe the
adaptive capacity of the assets which limits the ability to
accurately model many assets. In addition, the metric does
not lend itself well for use as a real-time operational metric.
Therefore, the goal of this paper is to develop the metric
to have a more accurate representation of the asset adaptive
capacity. In addition, we will bring the metric to a state
where it is suitable to be used as a real-time operational
tool. Therefore, it and can be utilized by control operators
to make resilience based decisions before, during, and after
disturbances. The details of the extension of the metric are
covered in section IV. First, a background on MDS is covered
in the following section.

III. POWER DISTRIBUTION SYSTEM

In this section, a brief introduction to the modernization of
the power grid is given. Then the concepts of power stability
in voltage and frequency necessary for the development of the
metric proposed in this paper are covered in sufficient detail.

A. Grid Modernization

The current modernization of the electrical power system,
has presented a dramatic shift in the way power is generated
and transmitted. It is moving from the traditional centralized
generation to a more distributed power generation architecture.
The MDS integrates information and operational technologies
which can monitor, communicate, and control assets in real-
time. It is predicted that these systems will include a high
penetration of controllable distributed assets in generation and
storage, as well as controllable loads. Control of these assets
have many purposes, including support of the voltage and
frequency across the distribution network, economic benefits,
and reliable utilization of interconnections such as power lines,
transformers, and switches.

This evolving landscape has added a new layer of complex-
ity to distribution systems. It presents many new technical
challenges and opportunities for researchers. For example,
what metric best describes the systems resilience and how
should these metrics be utilized to make control decisions
during normal operation or before, during, and after extreme
events? The modernization of the grid has a tremendous po-
tential for increasing resilience but much work is still needed
in how to accomplish it. In this context, researchers have
suggested numerous resilience based improvements in areas
including microgrids [33], [34], circuit reconfiguration [35]-
[42], improved dispatch and scheduling of resources [43]—
[45], and flexible local resources, such as generation, load,
and energy storage [46].
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Fig. 2. Normalized apparent power, .S, in quadrant I of the complex S-plane.
The highlighted region represents the domain or reachable output in real and
reactive power.

B. Power and Stability

Stability of the distribution system is defined in terms of
voltage and frequency. Frequency stability requires balancing
of the generation of real power, P, and the load demand.
On the other hand, voltage stability requires the balancing of
reactive power, (), across the network due to different types
of loading on the system. Therefore, a resilience metric must
address both the real and reactive power to be extensible in
distribution systems. The real and reactive power components
define a systems apparent power, S in the complex S-plane

where
S(0) = VP2 +Q? 1)
where the real power in relation to the apparent power is
P(6) = Scos(9) 2
and the reactive power is
Q(6) = Ssin(0) 3)

here 0 is the angle measured from horizontal. In power systems
this angle is often referred to as the power factor angle, given

as
f = arctan (?’) 4)

In this paper, the angle 6 is the measurement from 0 to 2.
Here, the left hand plane, 7/2 < 6 < 3w/4, is where an asset
acts as a sink absorbing power from the system.

The normalized maximum apparent power at power factor
angle 6 is depicted in the S-plane in Fig. 2. Here, only quadrant
I is shown, where real and reactive power are positive. The
highlighted region is the domain or reachable output in real
and reactive power. In the following section we use this
principals to define the domain of assets power output used in
our operational adaptive capacity metric.

IV. ADAPTIVE CAPACITY METHODOLOGY

This section describes the mathematical background to
calculate the operational adaptive capacity resilience metric
herein proposed. The metric is based on the adaptive capacity



of the assets, which is a measure of their control ability
to move from the current operating point in both real and
reactive power over time. Assets must be described by a
set of operational characteristics which include the nameplate
rated capacity, energy capacity, latency, and rate of change
limitations. Using these characteristics, the general process to
calculate the adaptive capacity is as follows: determine the
control domain of the real and reactive power, determine the
flexibility from the current operating point, then account for
latency and ramp rates, then impose energy constraints.

A. Real and Reactive Power Domain

The real and reactive power domain, or capability of the
asset, is denoted Pc and ()¢, respectively. The assets name-
plate capacity defines the real power maximum, P,x, and
minimum, P, as well as the reactive power maximum,
Qmax, and minimum, @Qu,i,. Thus, the first limit placed on
the domain of the real power is

PminSPSPmax (5)
and the reactive power is

Qmin S Q S Qmax (6)

here, the maximum is assumed to be in the positive plane and
the minimum in the negative plane, given mathematically for
the real power

Pmin < 0 < Pmax (7)

and for the reactive power

Qmin S 0 § Qmax (8)

These values are then used to determine the bounding con-
straints of the asset in the complex S-plane, given as

< (PP+Q%)? ©)
here, the real and reactive power is a function of the power
factor angle and dependant on the maximum power in each
quadrant of the S-plane. The calculation for the apparent
power constraint for quadrant I to quadrant IV is then given
respectively as

S(6)

S(0) < (P2, cos(d) + Q2o sin())®  (10)
0<<T
S(0) < (P2 cos(0) + QAucsin(9))® (1)
T<o<7
S(0) < (P2, cos(0) + Q2 sin(6)) ? (12)
T<O< 3
S(0) < (P2 cos(d) + QLusin(®))®  (13)
3r <p<am

Using the rated power and limits in the S-plane, the asset
capability in the real and reactive power can be calculated.
In the positive plane the minimum of the two constraints will
define the boundary of the domain. In the negative plane, the
absolute minimum of the two constraints defines the domain
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Fig. 3. The shaded region represents an assets real and reactive power
domain based on its rated nameplate power capacity. The negative real power
represents an asset absorbing power from the grid, such as battery storage
when charging.

boundary. Therefore, the real power domain for quadrants I
and IV, where the real power is positive, is given by

P(9) < min [Scos(d), Puax)

<<%

(14)

3w
2

and the domain for
is negative is

quadrants IT and III, where the real power

) = —min [|Scos(0)], |Puinl] (15)

2T
2

P(o
0<

w3

<

Similarly, the domain of reactive power in quadrants I and II
is given by

Q(0) < min [Ssin(d), Qmax] (16)
0<6<m
and in quadrants III and IV are
Q(0) > —min [|Ssin(9)|, |Quminl] (17)

T<O<2m
Using the real and reactive power domain in the positive and
negative quadrants, the union of the two gives the overall
domain. For the real power this is given as

Peo)={P <0< TV ufpZ <0< ¥} ay)

and similar for the reactive power

Qc(0) = {Qyo << 71'} U {Q|7r << 27r} (19)

The domain of the asset real and reactive power capability
is depicted by the shaded region in Fig. 3. It should be noted
that some assets, such as solar, wind, and hydro, should not be
considered to have constant rated limits and the domain may
need to be updated. For example, solar generation is dependant
on the real-time solar irradiation and therefore should be
updated as solar conditions change. Next, we will discuss how
the power flexibility is calculated using the operational power
output.



B. Real and Reactive Flexibility

The amount of flexibility the asset has in the real and reac-
tive power from the operating point is denoted as, P and Qa,
respectively. This flexibility is calculated using the real and
reactive power domain of the asset and the current operation
point of the asset, Py and Qg. Thus, it is a transformation of
the power domain around the operating point, given as

Pa(0) = Pe — Py (20)

and the flexibility of the reactive power is the same trans-
formation using the reactive power domain and the current
operating point

Qa(f) = Qe — Qo

Here, and in further adaptive capacity derivation, € is the angle
measured from the operating point. The resulting flexibility
is depicted in the top plot of Fig. 4. However, the temporal
characteristics of the asset, shown in the bottom plot of Fig. 4,
need to be accounted for and are developed in the following
section.

21

C. Latency and Ramp Rate

The latency of an asset is the time delay before changes
to the power output can be made. It may consist of multiple
factors including starting latency or a control latency. Starting
latency is a property of the asset, for example, a diesel
generator can’t supply power right when turned on. Control
latency is the time required between data being received,
adjustments made to the output power, computationally or by
an operator, to the time the control command is received by the
asset. For the purpose of this paper, we consider all latency’s
to be aggregated into a single latency variable, .

The ramp rate defines how quick an asset can ramp up or
down, after the latency, from the current operating position
over time, ¢. The real power output when ramping up is given

as
0 if t <A\
Pyt =<7 - 22
() {ﬁf@—n if £ >\ 22
and when ramping down is
0 ift <A
Pt)” =< - - 23
) {ﬁ;u—M if t >\ )
Similarly, the reactive power is given as
0 ift <\
Ot =14 . - 24
) {ﬁfu—n i 6>\ -
when ramping up, and
0 ift <A
) =4 4o - 25
) {ﬁ;u—w if £ >\ 2

when ramping down. The latency and ramp rate constraints are
depicted by the temporal flexibility in real power shown in the
bottom plot in Fig. 4. Here, the shaded region represents the
real power domain and the bounds are defined by the latency
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Fig. 4. Top plot shows an assets real and reactive power flexibility from its
current operating point. The bottom plot shows the temporal flexibility from
the operating point which considers latency, ramp rates, and energy limits.

and ramp rates from the operation point, the maximum flexi-
bility, and energy constraints. The following section describes
the energy constraint of the asset.

D. Energy Constraints

It is possible that assets are constrained with energy limi-
tations in the amount of real power when acting as a source
providing power, or as a sink absorbing power. In the case of
battery storage, it is constrained on both ends where it has an
initial energy of E, and can only be charged (sink) to 100%,
or F.x, and it can only output power (source) until it is fully
drained at 0%, or E\i,. The energy of the system changes as

t
E(t)=FEo+ [ P(t)xadt
t=0

(26)

where P(t) is the operating real power over time. When an
asset runs out of energy or the ability to absorb energy, the real
power must go to zero. The necessary mathematical details
have been covered to give the adaptive capacity equations
covered in the next section.

E. Adaptive Capacity and Aggregation of Assets

The adaptive capacity of the asset is the bounded region
between the flexibility and the temporal constraints in the
positive and negative planes with respect to the operating
point. The real power in the positive plane is given as

Pac(6,t) = min [P(t)*, Pa(6)] 27)

w
3
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and the negative plane

Pyc(0,t) = —min [|P(t)"], [Pa(0)]] (28)
o<
The reactive power it is given as
Qac(0,t) = min [Q(t)*, QA(H)] (29)
0<6<r
in the positive plane, and
Qac(0,t) = —min [|Q(t) |, |Qa(0)]] (30)

T<0<27m

for the negative plane. The resulting adaptive capacity using
the ongoing example in this section is depicted by the manifold
in Fig. 5. The manifold surface represents the maximum
change the asset can make in real and reactive power, from
the current operating point, over time. Recall that the x/y
axis represent the adaptive capacity from the operating power.
Therefore, when the energy limit has been reached the output
power goes to zero which is indicated by the dashed line
separating where the asset transitions between a sink and a
source.

It is expected that the MDS will comprise a collection of
distributed assets. The adaptive capacity may be an aggre-
gation of local assets, such as a microgrid. The aggregation
of assets determines the adaptive capacity of the controllable
assets in the microgrid including the network connection. The
aggregation in terms of real power is

Pac(0,t) = Pac, 31)
k=1
and the reactive power is given by
Qac(.t) = Qac, (32)
k=1
where n represents the total number of assets. The following
section will demonstrate how this metric can be utilized as an

operational metric.

F. Real-Time Operational Metric

Power distribution is a real-time system, therefore it’s imper-
ative that a resilience metric has the ability to reflect the real-
time operation and conditions on the system. In this context,
our algorithm updates the adaptive capacity using threshold
triggers in power outputs, energy changes, and environmental
conditions which we denote C'. Relevant environmental con-
ditions depend on the assets in the system but may include
factors such as solar irradiation, wind velocity, head pressure,
etc... The operational metric is outlined by Algorithm 1.

V. CASE STUDY

In this section, we demonstrate the adaptive capacity re-
silience metric proposed using the modified Institute of Elec-
trical and Electronics Engineers (IEEE) 33-bus distribution
system. We first introduce the modified IEEE 33-bus system
and use a selected portion, or microgrid, to demonstrate in
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Fig. 5. Asset’s adaptive capacity manifold which represents the maximum
change in real and reactive power, from current operation, over time.

Algorithm 1: Real-Time Adaptive Capacity Algorithm

Input : System assets, Real-time system data
Output: Assets adaptive capacity

1 begin

2 Initialize: Pc, Q¢

3 while system running

4 Ps =R, _, — P,

5 Qs = [Qo,_, — Qo,|

6 Es = |E‘0"71 — Eon

7 05 = |C’0n71 — Con‘

8 if any 0 > threshold

9 Update Pc, Q¢

10 Update Pa,Qa

11 for time = 0 to tepq

12 Update P(t), Q(t)
13 Update E(t)

14 for 6 =0 to 27
15 Solve Pac(0,t)
16 Solve Qac(6,1)
17 end

18 end

19 end

20 for k=1 to n

21 Z PACk (97 t)

2 5= Qacy (6.1)

23 end

24 end
25 end
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Fig. 6. IEEE 33-bus distribution system model. Image adapted from [47].

a case study the resilience of the system under two different
scenarios. The first case represents the system under normal
operation and the second represents a scenario where the
network line experiences an outage.

A. IEEE 33-bus Model

The original IEEE model was designed as a radial network
configuration. However, many studies have adapted the model
to include tie-lines, thus, resembling a MDS meshed network,
shown in Fig. 6. Here, the section used for this study has
been highlighted and additional solar and battery storage assets
have been added. The capacity limitations on the power line
conductor for the network is given as 1,050 kW and 1,050
kVAR, and the tie-line limits are 500 kW and 500 kVAR for
real and reactive power, respectively. Loading on buses 23-25
for the real power is 90, 420, and 420 kW, and the reactive
power is 50, 200, and 200 kVAR, respectively.

To resemble a MDS solar generation and battery storage
asset have been added to the model. Their limits are based
on a high penetration of DERs. The maximum power is 30%
of the maximum load which can be supplied by the network
conductor, 315 kW. The battery storage is assumed to have a
total capacity of 1,260 kWh, i.e. under its max output (315
kW) it would go from fully charged to empty in four hours.
The asset operational characteristics are given in Table I.

B. Simulation and Results

Two scenarios are considered to demonstrate the difference
in adaptive capacity of the system assets acting as a micro-
grid. The first case is under what can be considered normal
operation and the second case is when network connection has
been lost, such as a storm outage or potentially a cyberattack,
where the attacker forces a breaker open. For these cases, the
loading conditions on the system are assumed to be constant
and the assets operational power output for both cases is given
in Table I.

Under normal operation the load is fully supplied by the
network and the solar generation is therefore being used to
charge the battery storage asset which is currently assumed to
be at 75% of capacity. The adaptive capacity is calculated for
each of the assets and their manifolds are shown in the top two
rows of Fig. 7, and the aggregation of the assets is shown by
the large manifold at the bottom. The temporal flexibility of
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Fig. 8. Resulting adaptive capacity of the assets when network connection
lost: a) tie-line connection, b) solar generation, c) battery storage, and d)
aggregation of the assets.

the assets real and reactive power in the positive and negative
direction is shown in the top of Fig. 9.

The second case which considered a loss of the network
connection with reconfiguration where the tie-line is being
used to supply power. However, based on its limiting char-
acteristics, it cannot fully support the high loading conditions.
In this situation, the solar asset is supplying power at its full
capacity and the battery storage is able to supply the reaming
load. In this case, we assume that the battery has 197 kWh of



TABLE I
ASSETS POWER PARAMETERS.

Limits Case I Case 11
Asset Prax Pmin Qmax Qmin PO QO PO QO
Network 1,050  -1,050 1,050 -1,050 930 450 0 0
Tie-line 500 -500 500 -500 0 0 450 217
Solar PV 315 0 315 -315 315 0 283 137
Battery 315 -315 315 -315  -315 0 197 96
TRea high penetration of distributed resources. The proposed metric
PR <o R— + Reactive |... provides insight to the ability to control aggregated assets in
= e terms of real and reactive power over time. The metric is
T - . . . .
28- used to analyze a microgrid under different scenarios, such
as a loss of network connection. The metric is demonstrated
o - % indicating the distributed resources can maintain the loads
when the connection is lost, however, the systems adaptive
0 l capacity is greatly reduced, having very little capability to
© > -500 support stability of voltage and frequency if further disruptions
23 \ r oceur,
G 8000/ S o m m e e e e m— - : ) ] )
<O o Future work with respect to improvements to the adaptive
) capacity metric include replacing the linear ramp rates with
2000 5 30 45 60 75 90 non-linear rates. Similarly, the real and reactive bounds in

Time (min)

Fig. 9. Flexibility at power factor angles in the direction of real (kW) and
reactive (kVAR) power. The top plot is under normal operation and the bottom
is when network connection is lost.

stored energy, and therefore can maintain its output of 197 kW
for one hour. The aggregation of the assets adaptive capacity
is shown in Fig. 8. The temporal flexibility in real and reactive
power is shown in the bottom of Fig. 9.

C. Discussion

Results of the case study bring to light a few important
concepts in reliability and resilience of power systems. It can
be stated that even when the network was lost the system
is reliable, as no load needed to be shed. However, when
evaluating the systems using the proposed adaptive capacity
metric there is a quantifiable impact to the resilience of
the system. This is visible by examining the difference in
manifolds and easy to distinguish by inspection of Fig. 9. The
top plot shows that there is adaptive capacity in the real and
reactive power in all directions, but is most “constrained” by
the real (1,149 kW) and reactive (627 kVAR) power in the
positive direction. In the case of losing network connection
this constrain becomes 113 kW and 171 kVAR. Therefore, the
ability to adapt to a future disturbance has been dramatically
reduced. In fact, the system will lose capability to supply the
real power necessary in one hour when the battery storage
runs out of energy. This will result in a loss of the ability to
maintain the frequency of the system if loads are not shed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a resilience metric based on
adaptive capacity for modern distribution systems that have a

certain assets which are not constant, should be replaced by
a function or table to provide better accuracy in the metric.
For example, the ramp rate of a hydro generator is not
constant but dependant on the head pressure. Additionally, the
maximum power is also dependant on the pressure and should
be reflected in the metric.
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