

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-811549

Techno-economic and Life Cycle Assessments for Sustainable Rare Earth Recovery from Coal Byproducts using Biosorption

M. Alipanah, D. M. Park, A. Middleton, Z. Dong,
H. Hsu-Kim, Y. Jiao, H. Jin

June 12, 2020

ACS Sustainable Chemistry & Engineering

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 Techno-economic and Life Cycle Assessments for
2 Sustainable Rare Earth Recovery from Coal
3 Byproducts using Biosorption

4 *Majid Alipanah¹, Dan M. Park², Andrew Middleton³, Ziye Dong², Heileen Hsu-Kim³, Yongqin
5 Jiao², Hongyue Jin^{1*}*

6 ¹ Department of System and Industrial Engineering, University of Arizona, 1127 E. James E.
7 Rogers Way, Tucson, Arizona, 85721, United States

8 ²Physical and Life Sciences Directorate and Engineering Directorate, Lawrence Livermore
9 National Laboratory, 7000 East Ave, Livermore, California, 94550, United States

10 ³ Department of Civil and Environmental Engineering, Duke University, 127A Hudson, Durham,
11 North Carolina, 27708, United States

12 *Corresponding author. Tel.: 1 520-621-7284. E-mail address: hjin@email.arizona.edu

13 **ABSTRACT**

14 Coal byproducts could be a promising feedstock to alleviate the supply risk of critical rare earth
15 elements (REEs) due to their abundance and REE content. Herein, we investigated the economic
16 and environmental potential of producing REEs from coal fly ash and lignite through an integrated
17 process of leaching, biosorption, and oxalic precipitation based on experimental data and modeling
18 results. Two microbe immobilization systems (polyethylene glycol diacrylate (PEGDA) microbe
19 beads and Si sol-gels) were examined for their efficiency in immobilizing *Arthrobacter nicotianae*
20 to selectively recover REEs. Techno-economic analysis revealed that North Dakota lignite could
21 be a profitable feedstock when Si sol-gel is used due to its high cell loading and REE adsorption
22 capacity as well as high reuse cycles. Life cycle analysis revealed that Si sol-gel based biosorption
23 could be more environmental friendly than the prevailing REE production in China due to use of
24 less toxic chemicals. However, fly ash sourced from Powder River Basin coals was neither
25 profitable nor environmentally sustainable, primarily due to low solubility of high-value scandium
26 at an economical pulp density (100 g ash/L of acid solution). To further improve the proposed
27 biotechnology, future research could focus on scandium recovery, leaching efficiency at high pulp
28 density, and reuse cycles of the immobilized microbes.

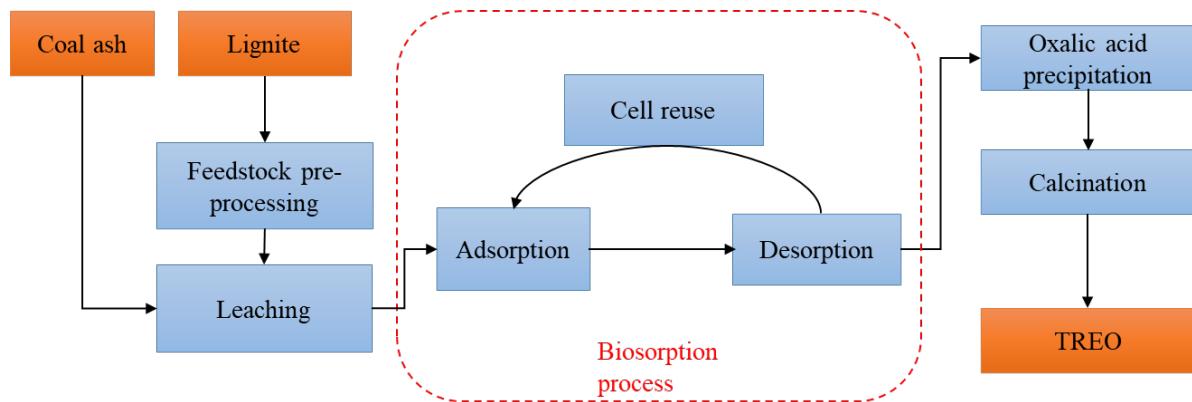
29 KEYWORDS: Rare earth element, Biosorption, *Arthrobacter nicotianae*, polyethylene glycol
30 diacrylate (PEGDA) microbe bead, Silica sol gel

32 **INTRODUCTION**

33 Rare earth elements (REEs) are essential components of many high-tech electronics and low-
34 carbon technologies including wind turbines, solar panels, and (hybrid) electric vehicles.^{1,2}
35 However, the absence of sufficient domestic REE production outside of China leaves many
36 countries dependent on foreign imports and hinders the growth of several renewable energy
37 technologies.² For example, the U.S. relies 100% on importation of individual REEs and rare earth
38 metals, creating a vulnerability in the REE supply chain.³ Because of this limitation, it is crucial
39 to identify diverse sources of REEs and develop novel methods for REE extraction from
40 unconventional sources. For instance, REEs were detected in the deep-sea mud of the Pacific
41 Ocean (at thousands of parts per million (ppm)), the water produced from coalbed methane
42 production ($28.99 \pm 10.79 \mu\text{g/L}$), shale gas produced water (77 to 380 $\mu\text{g/g}$ of shales or solid
43 wastes produced by water treatment), and acid mine drainages (a median concentration of 36.1
44 $\mu\text{g/L}$).^{4,5} Recently, coal and coal byproducts have been recognized as one of the most promising
45 feedstocks for REEs.⁶

46 Coal contains REEs at ppm levels.⁷ Coal byproducts have an elevated REE concentration
47 compared to coal by approximately an order of magnitude.⁷ For instance, fly ash contains 250-800
48 ppm REEs.⁸ As such, coal byproducts are abundant: from the more than 100 million metric tons
49 of coal combustion products generated in the U.S. per year, approximately half are recycled for
50 beneficial reuse applications.⁸ The unused fly ash comprises approximately 8,000 tons of REE
51 reserves per year.⁸ However, these residuals are generally disposed of in landfills and surface water
52 impoundments. REE recovery from coal byproducts may offer strong environmental and economic
53 potentials compared to traditional sources.

54 REE recovery from coal byproducts has yet to be established for commercial production.
55 Thus, techno-economic analysis (TEA) is critical for advancing proposed recovery processes.
56 Das et al. (2018)⁹ investigated REE extraction from coal ash, using supercritical CO₂ and
57 tributylphosphate (TBP) to produce individual rare earth oxides (REOs). However, the cost was
58 high (\$680-\$2,545 per kg of REO), and Sc contributed up to 90% of the revenue, highlighting the
59 importance of Sc recovery. Zhang and Honaker (2018)¹⁰ investigated natural leachate of coal
60 coarse refuse pile using sodium hydroxide precipitation followed by re-dissolution, oxalic acid
61 precipitation, and roasting to produce 94% total rare earth oxides (TREOs). Carlson (2018)¹¹
62 investigated REE recovery from fly ash, using sodium hydroxide pretreatment, HCl acid digestion,
63 and REE separation by carbon adsorption and column chromatography to produce TREOs.
64 Peterson et al. (2017)¹² also investigated REE recovery from fly ash, using nitric acid leaching and
65 solvent extraction to produce 99% pure individual REOs. None of the above-mentioned studies
66 reported a cost-effective process, highlighting the needs for further technology development and
67 process optimization to lower the costs.


68 Another research gap is the lack of literature on quantifying environmental impacts associated
69 with REE recovery from coal byproducts. It has been reported that adsorption-based technologies
70 have the potential to minimize toxic chemical usage for REE recovery from low-grade
71 feedstocks.^{13,14} For example, a metal organic framework sorbent technology has been developed
72 for REE extraction from geothermal brines, utilizing functionalized magnetic beads with chelating
73 ligands.¹⁵ Activated carbon has also been used for REE adsorption from leachates of different
74 geological samples.¹⁶ Although these technologies aimed to offer environmentally benign
75 processes for REE recovery, the environmental impacts have never been quantified especially for
76 coal byproducts. Therefore, environmental life cycle analysis (LCA) is necessary for closing the
77 knowledge gap.

78 This work extends the prior research showing that bioengineered microbes can facilitate the
79 selective extraction of REEs from the vast majority of non-REE impurities.^{17,18} However, the
80 industrial applicability of microbial biomass for REE recovery is currently limited by the energy
81 and time-intensive centrifugation and/or filtration procedure required to separate biomass from the
82 feedstock leachate. To apply microbial biomass for efficient and scalable rare-earth recovery in a
83 flow-through format, we have developed procedures to immobilize cells at a high-density without
84 compromising their adsorptive characteristics. To support the immobilization of microbes for REE
85 recovery, PEGDA- and Si sol-gel crosslinked nanoparticles^{19,20,21} have been developed to embed
86 microbes in the polymer matrix.²² This work focuses on TEA and LCA of PEGDA and Si sol-
87 gel-based biosorption to evaluate the economic viability and environmental impacts for
88 sustainable development of this biotechnology.

89

90 **MATERIALS, PROCESSES, AND METHODS**

91 Figure 1 depicts the overall process flow and system boundary of the current study. In brief,
92 coal byproducts undergo pre-processing (crushing and milling) and acid leaching steps to
93 solubilize REEs in preparation for biosorption. *Arthrobacter nicotianae*, is cultured in minimal
94 medium and immobilized by PEGDA-²² or Si sol-gel-based¹⁹ platforms to selectively absorb REEs
95 in the leachate. Then REEs are recovered from the cell surfaces in a subsequent desorption step,
96 and the immobilized microbes are reused for further adsorption/desorption cycles. Finally, REEs
97 are precipitated and further purified through oxalic acid precipitation and roasting steps to produce
98 95+% pure TREO.

99 **Figure 1.** Process flow diagram and system boundary of our analysis.

100 **Feedstock description**

101 Two types of coal byproducts are considered in this research, including fly ash produced from the
102 combustion of Powder River Basin (PRB) coal and the pre-combusted North Dakota (ND) lignite
103 coal. They were selected based on their availability, REE content, and compatibility with
104 biosorption processes (Table 1). PRB offers the largest low-sulfur subbituminous coal in the world
105 and produces nearly 42% of the total coal in the United States.²³ To scale up the biosorption

106 process, we assumed ~1.5% of the PRB coal fly ash is available for REE recovery, amounting to
107 200,000 tonnes/year.²⁴ North Dakota has the largest lignite reserve in the world from which 25
108 billion tonnes of lignite can be economically mined.²⁵ Similarly, we assumed 200,000 tonnes/year
109 of ND lignite is available for REE recovery, which is a conservative estimate considering the size
110 of the reserves. The same feedstock processing rate allowed us to compare the two feedstocks
111 based on the proposed technology rather than confounding the technology impact with economies
112 of scale resulting from assuming different feedstock processing rates.

113 **Table 1.** Feedstock characteristics.

	Feedstock source	
	Fly ash	Lignite
Location	Powder River Basin (PRB)	North Dakota (ND)
Feedstock availability	13 million tonnes/year ²⁴	25 billion tonnes ²⁵
Feedstock processing rate assumed in this study	200,000 tonnes/year for both feedstocks	
Mining	None	Yes
REE concentration range in solid phase feedstock*	233-406 ppm ⁸	300-600 ppm ²⁶

114 *The individual REE content is available in Table S1.

115 **Leaching**

116 The leaching step for the PRB coal fly ash entailed 1 mol/L of HCl, tested in previous work
117 with a range of pulp densities (10 to 125 g ash per L acid) for 4 hours at 85 °C.^{6,27} The pulp
118 density of 100g ash per L acid was selected (Figure S1) where maximum REE extraction
119 efficiency (more than 80%)²⁷ was achieved while minimizing processing costs.

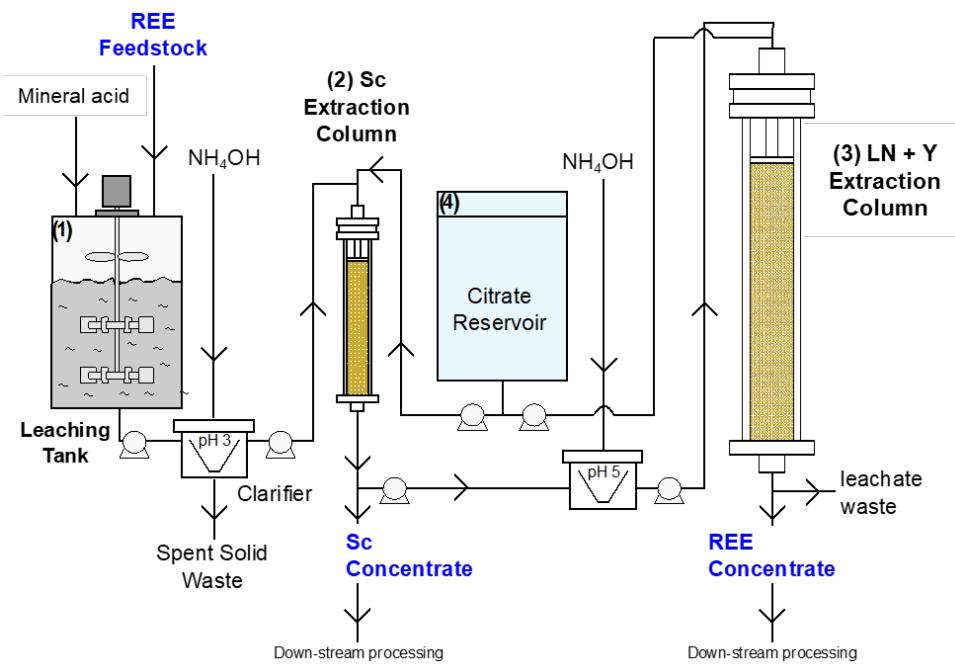
120 The leaching process for the ND lignite was based on prior work that utilized a source from an
121 outcrop of the H-Bed seam in the Harmon-Hanson coal zone in Slope County, North Dakota

122 (Sample 6A).²⁵ This sample contained 551 mg kg⁻¹ total REE (dry whole coal basis), and was
123 leached in 0.5 M mineral acid based on a leaching procedure described in Laudal et al.²⁵ The coal
124 to acid solution ratio was 60 g (dry mass) to 125 mL, and leaching lasted for 48 hours to solubilize
125 82-90% of REE (Figure S2).²⁵ The high REE extractability at high pulp density in lignite was
126 attributed to REEs being predominately associated with organic complexes.²⁵

127 A major distinguishing factor between leaching PRB fly ash and ND lignite is Sc extractability.
128 Efficient extraction of Sc from PRB coal fly ash requires a much lower pulp density (e.g., 40g/L
129 vs 100g/L leachate for Sc and REE, respectively; Figure S3); This is due to the acid consuming
130 property of PRB, which results in Sc precipitation at elevated pulp densities.²⁷ Leaching at lower
131 pulp densities results in (1) a higher degree of contamination or co-extraction of competing metals
132 (e.g., aluminum and iron) that interfere with biosorption, and (2) higher leaching costs. On the
133 contrary, Sc extraction from ND lignite was achieved using a pulp density (480g/L), which is much
134 higher than that of PRB fly ash for non-Sc REEs (100g/L). Therefore, Sc extraction was pursued
135 for ND lignite but not for PRB fly ash.

136 **Biosorption**

137 To apply microbial biomass for flow-through REE recovery in fixed-bed columns, we
138 developed two distinct approaches to immobilize bacterial cells in high-density within a
139 porous polymer matrix. In one approach, a bulk emulsification technique via UV-crosslinking
140 was employed to immobilize microbes in polyethylene glycol diacrylate (PEGDA) hydrogel,
141 forming microbe beads. The REE adsorption properties of the microbe beads under flow-
142 through conditions were recently reported.²² Briefly, the microbe beads exhibited an average
143 diameter of 59 ± 24 µm, an adsorption capacity of 0.5 mg total REE/g of adsorbent when a
144 complex coal leachate solution was used, with 87% REE adsorption capacity retained after 9
145 consecutive adsorption/desorption cycles. In the other approach, bacterial cells were


146 embedded within a Si sol-gel matrix to form microbe particles.²⁰ Although this process yielded
147 larger and more irregular-shaped particles relative to the spherical PEGDA microbe beads,²²
148 it enabled higher adsorption capacity (1 mg total REE/g of adsorbent, 0.37 mg Sc/g) and
149 improved column stability: more than 92% of the adsorption capacity is retained over 12
150 adsorption/desorption cycles.¹⁹

151 A two-stage biosorption/desorption operation scheme has been developed for the sequential
152 extraction of Sc and LN+Y from coal leachates based on prior batch biosorption data (Figure 2).¹⁹
153 Lanthanides and Y can be extracted with high selectivity from ND lignite and PRB fly ash at pH
154 5.²⁸ However, Sc is not soluble at pH 5, precluding a single-step biosorption/desorption process.
155 The high affinity of cell surface functional groups for Sc enables its selective extraction at a lower
156 pH (3) where LN+Y recovery is minimal (<1%).¹⁹ As such, following an acid leaching step to
157 produce a pregnant metal solution, the pH is adjusted to 3 and the leachate is passaged over a
158 microbe resin column where Sc is selectively adsorbed onto the bacterial surfaces. Weakly
159 adsorbing LN+Y and base metals are collected in the flow through. Immediately prior to Sc
160 breakthrough, the inlet feedstock flow is shut down and the microbe resin column is washed with
161 a saline solution (0.9% NaCl) prior to circulating a small volume of citrate solution (10 mM, pH
162 6) to desorb and recover Sc. The Sc-depleted, Ln+Y pregnant flow through solution is adjusted to
163 pH 5 to precipitate Al and most of Fe impurities and passaged over a larger microbe resin column
164 for selective LN+Y adsorption, while weakly adsorbing alkaline earth and d-block metals are
165 discarded in the flow-through. Immediately prior to REE (La) breakthrough, the microbe resin is
166 rinsed with a saline solution and subjected to a citrate circulation step (5 mM, pH 6) to desorb and
167 concentrate LN+Y. Following a saline rinse to remove residual citrate, both extraction columns
168 can be subjected to subsequent adsorption/desorption cycles.

169 Our data suggest that both microbe resin types can be reused multiple times with some loss in
 170 REE adsorption capability defined by mg of REE recovered per g of biosorbent. As the capacity
 171 remained strong after ~12 reuse, we assumed that we can reuse the biosorbents up to 100 times
 172 and modeled the REE adsorption capability linearly as shown in Eqs. 1 and 2. Notably, PEGDA-
 173 based biosorbents lose REE adsorption capacity much faster than Si sol-gel, yielding a lower REE
 174 recovery efficiency per microbe resin over time. The biosorbent is a major cost driver of our
 175 proposed technology, so reusing it for multiple cycles is desirable. Sensitivity analysis will follow
 176 in a later section of this paper to identify the optimal reuse cycles.

177 REE adsorption capacity for PEGDA beads (mg/g) = $-0.00815 * \text{biosorbent use cycle} + 0.50815$ (Eq. 1)

178 REE adsorption capacity for Si sol-gel (mg/g) = $-0.0027 * \text{biosorbent use cycle} + 1.013$ (Eq. 2)

179 **Figure 2.** Two stage packed-bed bioreactor design and process flow diagram for sequential Sc and
 180 LN + Y recovery from North Dakota lignite. The packed bed columns are loaded with either
 181 PEGDA microbe beads or Si sol-gel microbe particles. (1) A coal byproduct leaching tank to
 182 generate a pregnant metal solution. (2) A small volume packed-bed bioreactor for Sc recovery. (3)

183 A larger volume packed-bed bioreactor for LN+Y recovery (LN stands for lanthanides). (4) A
184 citrate reservoir for Sc and LN+Y desorption and biosorbent regeneration. NH₄OH is used for pH
185 adjustment after leaching prior to biosorption when needed. PRB fly ash leachate (pH 4) skips the
186 Sc extraction step and proceeds directly to pH adjustment (to pH 5) and the LN+Y recovery step
187 (3), since soluble Sc is not generated using the current leaching process.

188 **Techno-economic analysis**

189 An industrial-scale adoption of the proposed biosorption technology was modeled based on a
190 hypothetical processing plant that would be in operation for 20 years, and 8,000 hours/year. Direct
191 costs consist of (1) material costs associated with leaching, pH adjustment, biosorbent production,
192 bacterial growth media preparation, desorption, and oxalic acid precipitation; (2) utility costs such
193 as water and electricity for leaching, bioreactor, pumps, and roasting; and (3) other costs which
194 include waste management, feedstock collection, operation and maintenance labor, and
195 maintenance materials and supplies. The hourly wage of operating labor was assumed to be
196 \$46.43¹² and the required number of workers was calculated based on Alkhayat et. al.²⁹ Operating
197 supervision, quality control, maintenance labor and material, and operating supplies were
198 calculated with factors established by Silla.³⁰ Capital cost includes major equipment cost³¹ (i.e.,
199 leaching tank, clarifier, bioreactor for growing bacteria, columns for biosorption, sedimentation
200 tanks, oxalic acid precipitation tank, and oven for REE roasting; see Table S4) and related
201 infrastructures (e.g., land, buildings, and piping).³² Indirect cost includes property taxes, insurance,
202 fringe benefits, and overhead, which were calculated with factors.³⁰ General cost consists of
203 administrative, marketing, research, and development costs with factors.³⁰ To account for various
204 risks associated with the actual process implementation (e.g., equipment failure and supply delay)
205 and future market conditions (e.g., cost increase), contingency costs were added to all the cost

206 categories: 10% for the material cost, 100% for the capital cost due to large uncertainties, 15% for
207 all other costs.

208 It should be noted that the REEs prices³ are currently available for 99+% pure individual
209 REOs, whereas the proposed biosorption process delivers 95+% pure TREO. To estimate the
210 revenue, we discounted the TREO price by 30% from the individual REO prices, similar to
211 the Bear Lodge project.³³ After applying the discount rate, revenue from PRB fly ash was
212 \$16/kg of TREO and that from ND lignite was \$344/kg of TREO.

213 Net Present Value (NPV) was used to evaluate the economic potential of the proposed REE
214 recovery process. Eq. 3 shows that NPV is calculated by aggregating the future net cash flows
215 (NCF_t) discounted by i (i.e., 8% in this study) over the project life n (i.e., 20 in this study).
216 More TEA assumptions are available in Supporting Information Table S3, and the specific
217 TEA data are available in the Supporting Information (two Excel files).

$$218 \quad NPV = \sum_{t=0}^n \frac{NCF_t}{(1+i)^t} \quad (Eq. 3)$$

219 **Life cycle assessment**

220 LCA was conducted to quantify the environmental impacts associated with REE recovery
221 from coal byproducts using the biosorption approach. The LCA system boundary starts with
222 feedstock collection followed by acid leaching, media preparation, biosorption, oxalic acid
223 precipitation, and roasting. The specific material flow for each processing step is available in
224 Figures S4 and S5, with relevant experimental data from Middleton et al,²⁷ Park et al,^{18,22} and
225 Jin et al,³⁴ and Laudal et al.^{6,25}

226 Table 2 shows the unit processes for recovering 1 kg of mixed REOs from ND lignite, and
227 those from PRB fly ash are shown in Table S6 for brevity. The functional unit was set as 1 kg
228 of REO.

229 **Table 2.** Unit processes for recovering 1 kg of mixed REOs from ND lignite.

Unit process	Process	Value
--------------	---------	-------

			PEGDA	Si sol-gel	Unit
Mineral acid {RoW} production APOS, U ^{**}	Leaching	2.51E+02	2.51E+02	kg	
Ammonium hydroxide [*]	Leaching	4.78E+00	4.78E+00	kg	
Water, completely softened, from decarbonized water, at user {GLO} market for APOS, U	Leaching	6.46E+03	6.46E+03	kg	
Transport, freight, lorry, unspecified {RoW} market for transport, freight, lorry, unspecified APOS, U	Leaching	1.20E+01	1.20E+01	tkm	
PEGDA microbe beads/Si-sol gel particles [*]	Microbe bead production	1.13E+02	1.11E+01	kg	
Disodium phosphate [*]	Biomass production	1.38E-03	1.38E-03	kg	
Monopotassium phosphate [*]	Biomass production	8.40E-01	8.40E-01	kg	
Ammonium chloride {GLO} market for APOS, U	Biomass production	7.92E-01	7.92E-01	kg	
Glucose {GLO} market for glucose APOS, U	Biomass production	3.17E+00	3.17E+00	kg	
Magnesium sulfate {GLO} market for APOS, U	Biomass production	9.51E-02	9.51E-02	kg	
Calcium chloride {RoW} market for calcium chloride APOS, U	Biomass production	8.80E-02	8.80E-02	kg	
Iron sulfate {RoW} market for iron sulfate APOS, U	Biomass production	2.41E-03	2.41E-03	kg	
EDTA, ethylenediaminetetraacetic acid {GLO} market for APOS, U	Biomass production	4.63E-03	4.63E-03	kg	
Sodium citrate [*]	Post processing	5.95E-01	5.95E-01	kg	
Citric acid {GLO} market for APOS, U	Post processing	1.35E+00	1.35E+00	kg	
Electricity, medium voltage {GLO} market group for APOS, U	Leaching, biomass and microbe bead production	4.77E+01	4.77E+01	kWh	
<i>Emission to water</i>					
Wastewater		6.46E+03	6.46E+03	kg	

^{*}Refer to Tables S7-S12 for more details.

^{**}Confidential data not disclosed herein.

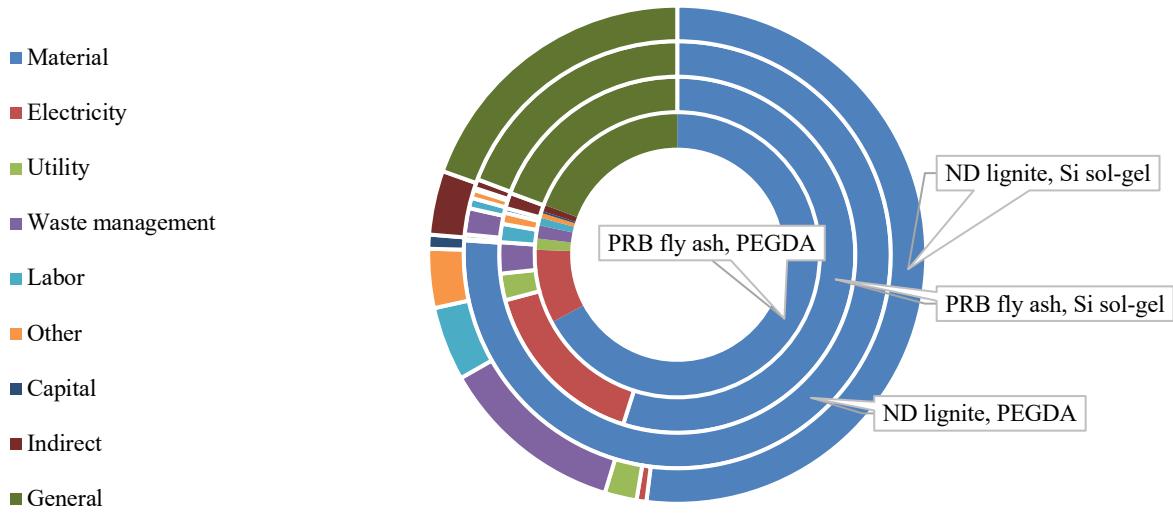
Citric acid was used as a proxy for oxalic acid since both can be industrially produced from carbon monoxide.³⁵ RoW, rest of the world, GLO, global, APOS, allocation at the point of substitution, and U, unit process.

As the output from biosorption includes various REOs, the individual impact of recovering Nd₂O₃ was estimated using economic allocation. Different feedstocks entail different REE compositions, so direct comparison of LCA results based on mixed REO is not feasible. Nd₂O₃ was chosen because (1) it is a critical material with an ever increasing demand in electric vehicles and wind turbines,³⁶ and (2) it is well-studied in the LCA literature, allowing a comparison of the environmental performance of the proposed technology with other REE production routes.^{37,38,39,40,41,42} Economic allocation was chosen because (1) it is the preferred method when co-products offer significantly different values⁴³ (e.g., in our case, scandium oxide is sold at \$4,689/kg, whereas lanthanum oxide at \$2/kg) and (2) revenue is a driving force of value recovery without which the proposed process may not take place and therefore, economic incentives drive environmental impacts.⁴⁴ Table S7 shows the specific allocation factors. Since the focus is REE recovery in the U.S., TRACI (Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts) developed by the U.S. Environmental Protection Agency, was used to classify and characterize the environmental impacts.⁴⁵

249 **RESULTS AND DISCUSSION**

250 **Techno-economic assessment**

251 The economic feasibility of our recovery process varies significantly depending on the
252 feedstock type and microbe immobilization system (assuming 100 reuse time for both systems
253 as the baseline scenario) (Figure 3). Overall, ND lignite is less costly to process than PRB fly
254 ash, and Si sol-gels are less costly than PEGDA beads per kg of TREO recovered (Table S5).


255 *Recovery cost with PEGDA microbe beads*

256 The total cost to recover 1 kg of TREO is estimated to be \$2,853 for PRB fly ash and \$1,635 for
257 ND lignite, with the difference primarily attributed to leaching cost. As PRB fly ash requires a
258 lower pulp density compared to ND lignite, the leaching cost is ~12 times higher per ton of
259 feedstock processed. In addition, the REE concentration affects biosorbent costs per ton of
260 feedstock processed (i.e., the more REEs to recover, the more cells and PEGDA beads are
261 required), so ND lignite has a higher PEGDA bead cost than PRB fly ash. The main cost drivers
262 for REE recovery from PRB fly ash are leaching (25%) and PEGDA beads (34%), and that for ND
263 lignite is PEGDA beads (66%), at the annual feedstock processing rate of 200,000 tonnes (Figure
264 3).

265 *Recovery cost with Si sol-gel microbe particles*

266 The total cost to recover 1 kg of TREO is estimated to be \$1,634 for PRB fly ash and \$297 for
267 ND lignite. As Si sol-gel beads have a higher cell loading and maintain a higher REE adsorption
268 capacity after multiple reuse cycles compared to PEGDA beads, their overall biosorbent cost is
269 much lower (Figure 3). More specifically, Si sol-gel beads only contribute 5% of the total cost
270 for REE recovery from PRB fly ash (as opposed to 34% when PEGDA beads were used). The
271 major cost drivers for ND lignite are Si sol-gel beads (32%) and leaching (12%).

272 It should be noted that PEGDA- and Si sol-gel-based microbe immobilization for REE recovery
273 is a technology at early stages of development and significant improvements (e.g., in adsorption
274 capacity) are expected as the technology matures. Therefore, if the technical hurdle of low cell
275 loading is overcome in the future, PEGDA could be also attractive economically.

276

277 **Figure 3.** REE recovery cost breakdown from PRB fly ash and ND lignite at an annual feedstock
278 processing rate of 200,000 tonnes.

279 *Revenue from REE recovery*

280 The revenue is estimated to be \$16/kg TREO for PRB fly ash and \$344/kg TREO for ND lignite,
281 with the difference attributed to REE concentration and more significantly Sc extractability. ND
282 lignite samples had higher REE concentration than PRB fly ash (551 ppm vs. 337 ppm), yielding
283 higher REE yield with the same feedstock volume. Scandium oxide constitutes about 94% of the
284 total revenue from ND lignite, so the TEA results are sensitive to the scandium oxide price. As the
285 historical scandium oxide price was volatile, we used the average price over the last 9 years (i.e.,
286 \$4,689/kg from 2011 to 2019) reported by the USGS Mineral Commodities Summary report to

287 smooth out the price variation.^{3,46,47,48,49,50,51,52,53} As a result, the profitability is highly dependent on
 288 Sc content in the feedstock, its recovery efficiency, and sales price, highlighting the need to focus
 289 on Sc recovery and market dynamics for economic reasons. Due to the inability to recover Sc from
 290 PRB fly ash, our procedure outlined is not economically viable for PRB fly ash. However, ND
 291 lignite is projected to be a profitable feedstock using the Si sol-gel biosorbent, yielding a net profit
 292 of \$47/kg TREO. NPV is estimated to be more than \$28M over 20 years (see Supporting
 293 Information Table S3 for more details on the financial assumptions and Table A.5 for the
 294 projected cash flow).

295 Table 3 compares the TEA results of our approach with other literature for REE recovery
 296 from coal byproducts. Das et. al⁹ was the only study that reported a profitable process, which
 297 used coal ash located in Poland with a higher REE concentration (934 ppm) than feedstocks
 298 used in this study.

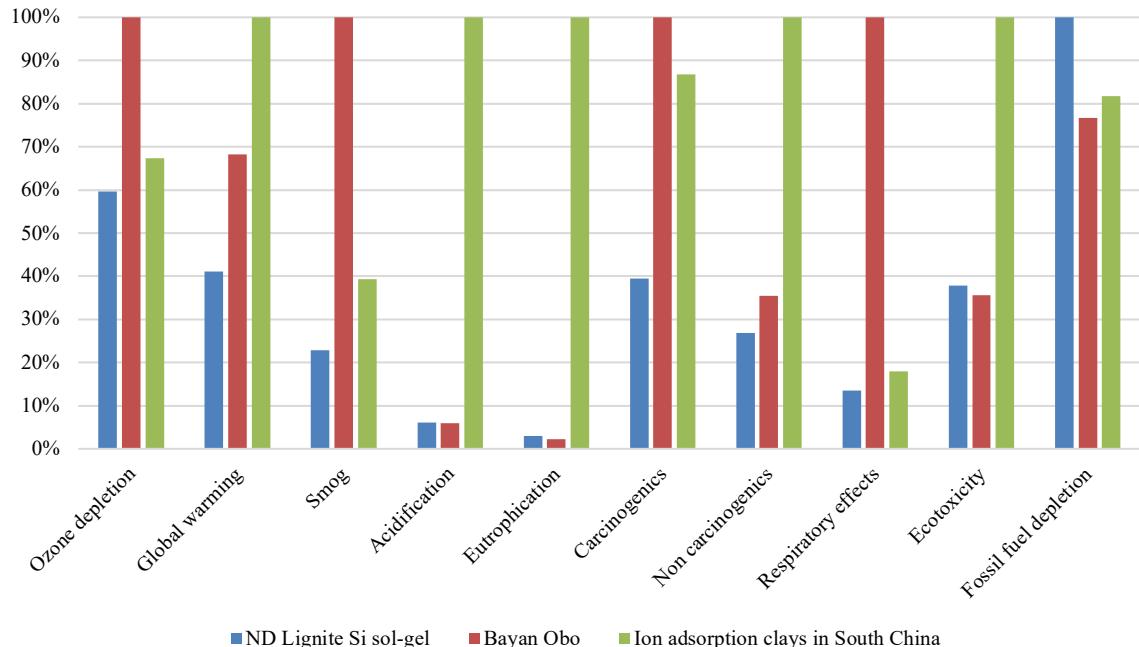
299 **Table 3.** Summary of techno-economic analysis on REE recovery from coal byproducts.

Data source	Feedstock	REE content (ppm)	REO output quality	Revenue (\$/kg REO) (B)	Total cost (\$/kg REO) (A)	Profit rate (B-A)/(A)
This paper	PRB fly ash	337	95% TREO	16	PEGDA Si-sol gel 2,853 1,634	-99% -99%
This paper	ND lignite	551	95% TREO	344	PEGDA Si-sol gel 1,635 297	-79% 16%
Das et al. (2018) ⁹	Coal ash	608-934	Individual REO	577-1,150	680-2,545	-73%-30%
Zhang & Honaker (2018) ¹⁰	Natural leachate of refuse in Kentucky	7	94% TREO	29	34	-15%
Carlson (2018) ¹¹	Louisville fly ash	480	TREO	33	2,669	-99%
Peterson et al. (2017) ¹²	Ohio fly ash	532-558	Individual REO	179	235	-24%

300
 301 **Life cycle assessment**

302 The LCA results for recovering 1kg of Nd₂O₃ from ND lignite after economic allocation are
 303 shown in Table 4, and those from PRB fly ash in Table S14. Similar to the TEA results, ND lignite
 304 was more preferable than PRB fly ash due to the higher leaching efficiency and successful recovery
 305 of high-value Sc. The Si sol-gel sorbent showed lower environmental impacts than the PEGDA

306 sorbent due to the higher adsorption capacity of REEs (and thus less material assumption) and the
307 chemicals involved in the production of the polymer materials (Figure S6, Table S15).

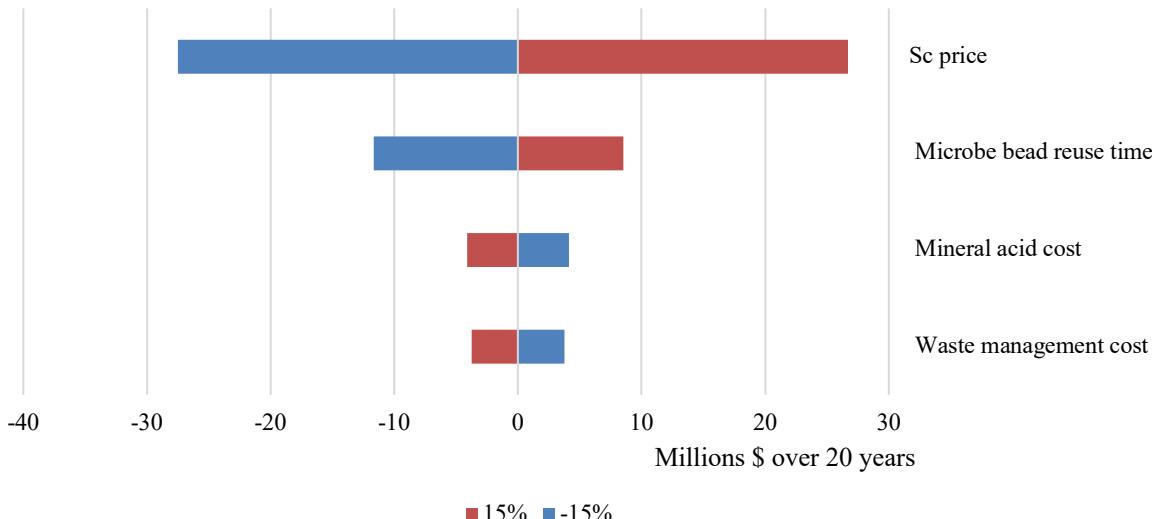

308 **Table 4.** Life cycle impacts for recovering 1 kg of neodymium oxide from North Dakota
309 lignite for both PEGDA and Si sol-gel biosorbents. The results are calculated after applying
310 economic allocation, revealing the impacts of Nd₂O₃ only.

Impact category	Unit	PEGDA (A)	Si sol-gel (B)	A/B
Ozone depletion	kg CFC-11 eq	1.38E-05	3.93E-06	3
Global warming	kg CO ₂ eq	9.67E+01	1.81E+01	5
Smog	kg O ₃ eq	5.74E+00	1.54E+00	4
Acidification	kg SO ₂ eq	6.46E-01	3.40E-01	2
Eutrophication	kg N eq	2.52E-01	7.04E-02	3
Carcinogenics	CTUh	3.59E-06	8.47E-07	4
Non carcinogenics	CTUh	1.46E-05	3.90E-06	4
Respiratory effects	kg PM2.5 eq	1.07E-01	3.49E-02	3
Ecotoxicity	CTUe	3.39E+02	8.33E+01	4
Fossil fuel depletion	MJ surplus	2.86E+02	6.32E+01	4

311
312 As the next step, the environmental hotspots (i.e., the major materials/energy/emissions that
313 contribute significantly to the environmental impact) were identified for REE recovery from both
314 feedstocks. For REE extraction from PRB fly ash using PEGDA beads, the environmental hotspots
315 were cell immobilization (46% of the total global warming potential), and hydrochloric acid (39%)
316 while hotspots using Si sol-gel were hydrochloric acid (67%) and electricity (22%) used for heated
317 leaching and roasting (Figure S7). For REE+Sc extraction from ND lignite using PEGDA beads,
318 the environmental hotspot was solely from cell immobilization (88%), while hotspots using Si sol-
319 gel beads were cell immobilization (41%), electricity for growing cells and roasting (28%), and
320 mineral acid (11%) (Figure S8). Overall, the impact from leaching acid was 37%-56% lower for

321 ND lignite compared to PRB fly ash due to the use of a less hazardous acid and lower acid
322 consumption.

323 The environmental impacts of our approach were compared with two dominant REO production
324 routes in China: mining and REO production from (1) bastnäsite and monazite in Bayan Obo,
325 Inner Mongolia, and (2) ion adsorption clays (IAC) in South China for 92% mixed REO.³⁷ Figure
326 4 depicts the life cycle impacts of recovering 1 kg of Nd₂O₃ (mixed with other REOs) from the
327 specified feedstocks. Our proposed REE recovery process has a comparable purity and lower
328 environmental impacts than Chinese production for all the impact categories of TRACI except for
329 fossil fuel depletion. The higher fossil fuel depletion impacts of our process are attributed to (1)
330 the lower REE concentration in the feedstock (i.e., 551 ppm for ND lignite vs. 6% in bastnäsite
331 and monazite for Bayan Obo³⁷) and (2) the different leaching methods (i.e., 251 kg of mineral acid
332 required for 1 kg of REO recovery from ND lignite vs. ~3.3kg of hydrochloric acid and ~ 2.7kg
333 of sulfuric acid are required for bastnäsite and monazite in Bayan Obo^{37,54} vs. 10.4 kg of ammonium
334 sulfate for IAC in South China³⁵). For the same amount of REEs recovered, our process requires
335 more acid to solubilize a higher volume of feedstock compared to REE recovery from ores in
336 Bayan Obo or IAC.



337

338 **Figure 4.** Comparison of environmental impacts for recovering 1 kg neodymium oxide from
 339 Chinese production routes and our biosorption approach.

340 **Sensitivity analysis and future direction recommendations**

341 As the REE market is volatile and biosorption is a novel technology that has not been
 342 commercialized/tested at the pilot scale, there are significant uncertainties in our TEA and LCA
 343 results. To explore the sensitivity of our analysis, the net profit effects from changing the main
 344 economic and environmental factors are shown in Figure 5 (TEA) and Figure S9 (LCA). By
 345 examining historical prices of mineral acid⁵⁵ and scandium oxide^{3,46,47,48,49,50,51,52,53} in the last 9 years
 346 (2011-2019), it can be found that the maximum and minimum prices of mineral acid were in $\pm 11\%$
 347 of our TEA assumption (\$140/tonne) and scandium oxide price ranged between -17% and +9% of
 348 our assumption (\$4,689/kg). Therefore, the sensitivity analysis was performed in $\pm 15\%$ range.

349

350 **Figure 5.** Sensitivity analysis on the net present value by changing each major economic factor by
 351 15% for REE recovery from ND lignite using the Si sol-gel biosorbent.

352 *Sc price:* REE composition is different across feedstocks, and Sc plays the most significant role
 353 in the economic feasibility for our process (Figure 5) as well as others reported.^{9,10} The market size
 354 of Sc is limited (~10 tons/yr worldwide), and there are multiple competing technologies emerging
 355 worldwide specifically for Sc extraction.⁵⁶ Therefore, Sc price could be susceptible to a decrease
 356 in the future due to potential market saturation. A reliable Sc source, on the other hand, could
 357 support robust growth in several promising applications such as aluminum-scandium alloys and
 358 solid oxide fuel cell markets. Based on our TEA, we project that the breakeven price of Sc oxide
 359 (99+% pure) would be 87% of the current assumption (\$4,075/kg) below which our proposed REE
 360 recovery process would not be profitable. The environmental impacts of our process are also highly
 361 dependent on the Sc price due to economic allocation. Variation in the REO prices can alter the
 362 allocation factors used for the LCA: If Sc oxide price decreases, the environmental impacts of
 363 Nd₂O₃ recovery (i.e., our functional unit) would increase, as more weights are allocated to Nd₂O₃.

364 *Acid consumption cost:* Acid consumption in the leaching step is one of the major cost drivers
365 and environmental hotspots for both PRB fly ash and ND lignite. Any effort to reduce acid
366 consumption, such as recycling residual acids or increasing pulp density without a significant loss
367 in REE leaching efficiency, will have a major impact on the economic and environmental
368 performances of the recovery process.

369 *Waste management:* The biosorption process itself does not introduce any acid or harmful
370 chemicals to the environment. Therefore, waste management focuses primarily on wastewater and
371 leachate treatments. Unlike fly ash which is regulated for disposal and thus is already stored in ash
372 ponds, ND lignite residuals are assumed to go through additional dewatering and disposal
373 processes (with associated costs included), in addition to the paste tailing storage cost of
374 \$0.13/kg.⁵⁷ However, there is an on-going study showing that lignite could be upgraded during
375 REE recovery so that burning it for energy not only eliminates the paste tailing storage cost but
376 adds more value due to the resulted cleaner coal.⁵⁸ Fly ash is often stored in coal ash ponds due to
377 the hazards associated with airborne particles and potentially toxic trace elements (e.g., arsenic,
378 mercury, and selenium),⁵⁹ and thus we did not assume any credits for processing them or any
379 liabilities for placing them back in the ponds. Arsenic form hydrated oxyanions is not adsorbed by
380 the cell surface and remains in the leachate solution.³⁴ Small amounts of uranium and thorium are
381 adsorbed by the cell surfaces, but they are expected to be separated from desorbed REEs after the
382 oxalic acid precipitation step.⁶⁰

383 *Cell immobilization and biosorbent reusability:* REE absorption capacity and reusability of the
384 biosorbent are keys to the economic and environmental performances. Si sol-gel exhibited a higher
385 absorption capacity and greater reuse potential based on the current performance, which could be
386 improved further as the technology matures. The REE adsorption capacity of biosorbents

387 decreases, as the number of reuse cycles increases (Eqs. 1-2). Figures S10 and S11 show that when
388 the biosorbent reuse cycles reach 61 times for PEGDA and 370 times for Si sol-gel, the net present
389 values would decrease afterwards. The sensitivity graph (Figure S11) showed that if Si sol-gel is
390 reused less than 75 times, the proposed biosorption approach would not be profitable.

391 *Challenges of biosorbents for REE recovery:* A major advantage of the presented biosorption
392 process is that it is decoupled from cell viability, which expands the allowable range of operating
393 conditions (e.g., solution composition, pH, temperatures) and enables multiple reuse cycles.
394 However, there are two potential challenges associated with the proposed method. First, matrix
395 materials could wear and tear due to repeated exposure to potentially corrosive fluids (e.g.,
396 feedstock leachates and citrate desorbent), leading to biomass loss over time, which is partially
397 reflected in Eqs. (1-2). Second, although encapsulation likely protects the cells against
398 decomposition to some extent, biomass could be decomposed by chemical or biological (e.g.,
399 predation) processes during prolonged operation, leading to biosorbent fouling.^{61,62} Further
400 engineering and testing will be required to fully gauge the impacts of these effects and overcome
401 technical challenges that arise.

402 **Conclusion**

403 TEA and LCA results confirmed the economic and environmental potentials of adopting the
404 proposed biosorption technology for REE recovery from coal byproducts. Based on our
405 comparison of ND lignite with PRB fly ash, we found that the biosorption technology was well-
406 suited for REE recovery from low-grade feedstocks that can be leached with minimal acid
407 consumption and contain soluble Sc content. The analysis helped optimize pulp density and
408 biosorbent reuse cycles for sustainable process development and scale-up. Future work may be
409 directed at scandium recovery from fly ash, improving leaching efficiency at a high pulp density,
410 testing more efficient leaching method such as alkali roasting before leaching, and field validation
411 of biosorbent reusability on a large scale.

412

413 **Supporting Information.**

414 The Supporting Information is available free of charge on the ACS Publication website. A PDF
415 file including additional information and two Excel files demonstrating TEA and LCA
416 calculations.

417 **AUTHOR INFORMATION**

418 **Corresponding Author**

419 * Corresponding author. Tel.: 1 520-621-7284. E-mail address: hjin@email.arizona.edu

420 [ORCID: 0000-0002-9531-340X](https://orcid.org/0000-0002-9531-340X)

421 **Author Contributions**

422 The manuscript was written through contributions of all authors. All authors have given approval
423 to the final version of the manuscript.

424 **Funding Sources**

425 This research is supported by the Department of Energy, Office of Fossil Energy DE-NETL
426 Rare Earth Program under award DE-FWP-LLNL-18-FEW0239. A Portion of the work was
427 performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
428 Laboratory under Contract DEAC52-07NA27344 (LLNL-JRNL-811549).

429 **References**

430 (1) Jin, H.; Frost, K.; Sousa, I.; Ghaderi, H.; Bevan, A.; Zakotnik, M.; Handwerker, C. Life
431 Cycle Assessment of Emerging Technologies on Value Recovery from Hard Disk Drives.
432 *Resour. Conserv. Recycl.* **2020**, *157*, 104781. DOI 10.1016/j.resconrec.2020.104781.

433 (2) Eggert, R.; Wadia, C.; Anderson, C.; Bauer, D.; Fields, F.; Meinert, L.; Taylor, P. Rare
434 Earths: Market Disruption, Innovation, and Global Supply Chains. *Annu. Rev. Environ.*
435 *Resour.* **2016**, *41* (1), 199–222. DOI 10.1146/annurev-environ-110615-085700.

436 (3) U.S. Geological Survey. Mineral Commodity Summaries 2020. U.S. Geological Survey
437 2020, p 200. DOI 10.3133/mcs2020.

438 (4) Tian, L.; Chang, H.; Tang, P.; Li, T.; Zhang, X.; Liu, S.; He, Q.; Wang, T.; Yang, J.; Bai,
439 Y.; Vidic, R. D.; Crittenden, J. C.; Liu, B. Rare Earth Elements Occurrence and Economical
440 Recovery Strategy from Shale Gas Wastewater in the Sichuan Basin, China. *ACS Sustain.*
441 *Chem. Eng.* **2020**, *8* (32), 11914–11920. DOI 10.1021/acssuschemeng.0c04971.

442 (5) Ayora, C.; Macías, F.; Torres, E.; Lozano, A.; Carrero, S.; Nieto, J. M.; Pérez-López, R.;
443 Fernández-Martínez, A.; Castillo-Michel, H. Recovery of Rare Earth Elements and Yttrium
444 from Passive-Remediation Systems of Acid Mine Drainage. *Environ. Sci. Technol.* **2016**,

445 50 (15), 8255–8262. DOI 10.1021/acs.est.6b02084.

446 (6) King, J. F.; Taggart, R. K.; Smith, R. C.; Hower, J. C.; Hsu-Kim, H. Aqueous Acid and
447 Alkaline Extraction of Rare Earth Elements from Coal Combustion Ash. *Int. J. Coal Geol.*
448 2018, 195 (March), 75–83. DOI 10.1016/j.coal.2018.05.009.

449 (7) Nakano, J.; Nakano, A.; James P. Bennett. System and Method for Concentrating Rare Earth
450 Elements from Coal Byproducts/Slag, 2019.

451 (8) Taggart, R. K.; Hower, J. C.; Dwyer, G. S.; Hsu-Kim, H. Trends in the Rare Earth Element
452 Content of U.S.-Based Coal Combustion Fly Ashes. *Environ. Sci. Technol.* 2016, 50 (11),
453 5919–5926. DOI 10.1021/acs.est.6b00085.

454 (9) Das, S.; Gaustad, G.; Sekar, A.; Williams, E. Techno-Economic Analysis of Supercritical
455 Extraction of Rare Earth Elements from Coal Ash. *J. Clean. Prod.* 2018, 189, 539–551.
456 DOI 10.1016/j.jclepro.2018.03.252.

457 (10) Zhang, W.; Honaker, R. Q. Rare Earth Elements Recovery Using Staged Precipitation from
458 a Leachate Generated from Coarse Coal Refuse. *Int. J. Coal Geol.* 2018, 195 (November
459 2017), 189–199. DOI 10.1016/j.coal.2018.06.008.

460 (11) Carlson, G. Feasibility Study - Final Project Report. 2018, 1–94.

461 (12) Peterson, R.; Heinrichs, M.; Argumedo, D.; Taha, R.; Winecki, S.; Johnson, K.; Lane, A.;
462 Riordan, D. *Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed*
463 *Loop Leaching Process : Final Report*; 2017. DOI 10.2172/1377818.

464 (13) Das, N.; Das, D. Recovery of Rare Earth Metals through Biosorption: An Overview. *J. Rare*

465 *Earths* **2013**, *31* (10), 933–943. DOI 10.1016/S1002-0721(13)60009-5.

466 (14) Zhang, W.; Rezaee, M.; Bhagavatula, A.; Li, Y.; Groppo, J.; Honaker, R. A Review of the
467 Occurrence and Promising Recovery Methods of Rare Earth Elements from Coal and Coal
468 By-Products. *Int. J. Coal Prep. Util.* **2015**, *35* (6), 281–294. DOI
469 10.1080/19392699.2015.1033097.

470 (15) Addleman, R. S.; Chouyyok, W.; Palo, D.; Dunn, B. M.; Brann, M. Technical Report In
471 Support of Data Uploaded for GTO Program on: Evaluation of Advanced Sorbent
472 Structures for Recovery of Rare Earths, Precious Metals and Other Critical Materials from
473 Geothermal Waters – Preliminary Results. 1–31.

474 (16) Murty, D.S.R., P.L. Mohanta, and R. R. Determination of Rare Earth Elements in Di Erent
475 Geological Matrices by ICP-AES a Er Solid Phase Micro Extraction on Activated
476 CharcoalTitle. *At. Spectrosc.* **2002**, No. 23, 65–74.

477 (17) M. Park, D.; W. Reed, D.; C. Yung, M.; Eslamimanesh, A.; M. Lencka, M.; Anderko, A.;
478 Fujita, Y.; E. Riman, R.; Navrotsky, A.; Jiao, Y. Bioadsorption of Rare Earth Elements
479 through Cell Surface Display of Lanthanide Binding Tags. *Environ. Sci. & Technol.*
480 **2016**, *50* (5), 2735–2742. DOI 10.1021/acs.est.5b06129.

481 (18) M. Park, D.; Brewer, A.; W. Reed, D.; N. Lammers, L.; Jiao, Y. Recovery of Rare Earth
482 Elements from Low-Grade Feedstock Leachates Using Engineered Bacteria. *Environ. Sci.*
483 *& Technol.* **2017**, *51* (22), 13471–13480. DOI 10.1021/acs.est.7b02414.

484 (19) Dong, Z.; Deblondeb, G.; Middleton, A.; Hu, D.; Dohnalkova, A.; Kovarik, L.; Qafoku, O.;
485 Hsu-Kim, H.; Jiao, Y.; Park, D. Microbe Encapsulated Silica Gel for Selective Exaction of

486 Sc from Coal ByProducts, Manuscript in Preparation.

487 (20) Muthu, B. R.; Yeom, S.; Tong, H. W.; Wackett, L. P.; Aksan, A. Silicon Alkoxide Cross-
488 Linked Silica Nanoparticle Gels for Encapsulation of Bacterial Biocatalysts. *J. Mater.*
489 *Chem. A* **2013**, *1* (36), 11051–11060. DOI 10.1039/c3ta12303k.

490 (21) Benson, J. J.; Wackett, L. P.; Aksan, A. Production of Monodisperse Silica Gel
491 Microspheres for Bioencapsulation by Extrusion into an Oil Cross-Flow. *J. Microencapsul.*
492 **2016**, *33* (5), 412–420. DOI 10.1080/02652048.2016.1202346.

493 (22) Brewer, A.; Dohnalkova, A.; Shutthanandan, V.; Kovarik, L.; Chang, E.; Sawvel, A. M.;
494 Mason, H. E.; Reed, D.; Ye, C.; Hynes, W. F.; Lammers, L. N.; Park, D. M.; Jiao, Y.
495 Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste
496 Leachates. *Environ. Sci. Technol.* **2019**, *53*, 13888–13897. DOI 10.1021/acs.est.9b04608.

497 (23) Scott, D. C.; Luppens, J. A. Assessment of Coal Geology, Resources, and Reserve Base in
498 the Powder River Basin, Wyoming and Montana. **2013**.

499 (24) American Coal Ash Association. Beneficial Use of Coal Combustion Products. **2017**, 1–8.

500 (25) Laudal, D. A.; Benson, S. A.; Addleman, R. S.; Palo, D. Leaching Behavior of Rare Earth
501 Elements in Fort Union Lignite Coals of North America. *Int. J. Coal Geol.* **2018**, *191*
502 (January), 112–124. DOI 10.1016/j.coal.2018.03.010.

503 (26) Mann, M. D. *Rare Earth Element Extraction and Concentration At Pilot-Scale From North*
504 *Dakota Coal-Related Feedstocks*.

505 (27) Middleton, A.; Park, D. M.; Jiao, Y.; Hsu-Kim, H. Major Elemental Composition Controls

506 Rare Earth Element Solubility During Leaching of Coal Fly Ash and Coal By-Products. *Int.*
507 *J. Coal Geol.* **2020**, 277 (103532). DOI 10.1016/j.coal.2020.103532.

508 (28) Park, D.; Middleton, A.; Smith, R.; Deblonde, G.; Laudal, D.; Theaker, N.; Hsu-Kim, H.;
509 Jiao, Y. A Biosorption-Based Approach for Selective Extraction of Rare Earth Elements
510 from Coal Byproducts. *Sep. Purif. Technol.* **2020**, 241 (November 2019), 116726. DOI
511 10.1016/j.seppur.2020.116726.

512 (29) Alkhayat, W. A.; Gerrard, A. M. ESTIMATING MANNING LEVELS FOR PROCESS
513 PLANTS. In *Transactions of the American Association of Cost Engineers*; AACE, 1984.

514 (30) Silla, H. *Chemical Process Engineering: Design and Economics*; CRC Press, 2003.

515 (31) Weber, L.; Leek, T.; Alzubairi, A. An Economic Analysis of the Extraction of Rare Earth
516 Elements from WPPA Sand Tailings Waste Stream An Economic Analysis of the Extraction
517 of Rare Earth Elements from WPPA Sand Tailings Waste Stream CBE 488 : Honors Design
518 in Green Engineering. **2015**, 36.

519 (32) Efe, Ç.; van der Wielen, L. A. M.; Straathof, A. J. J. Techno-Economic Analysis of Succinic
520 Acid Production Using Adsorption from Fermentation Medium. *Biomass and Bioenergy*
521 **2013**, 56 (13), 479–492. DOI 10.1016/j.biombioe.2013.06.002.

522 (33) Dhalberg, P. S.; Noble, A. C.; Pickarts, J. T.; Rose, W. L.; Jaacks, J. A. Bear Lodge Project
523 Canadian NI 43-101 On the Reserves and Development of the Bull Hill. **2014**, 514.

524 (34) Jin, H.; Park, D. M.; Gupta, M.; Brewer, A. W.; Ho, L.; Singer, S. L.; Bourcier, W. L.;
525 Woods, S.; Reed, D. W.; Lammers, L. N.; Sutherland, J. W.; Jiao, Y. Techno-Economic

526 Assessment for Integrating Biosorption into Rare Earth Recovery Process. *ACS Sustain.*
527 *Chem. Eng.* **2017**, 5 (11). DOI 10.1021/acssuschemeng.7b02147.

528 (35) Vahidi, E.; Navarro, J.; Zhao, F. An Initial Life Cycle Assessment of Rare Earth Oxides
529 Production from Ion-Adsorption Clays. *Resour. Conserv. Recycl.* **2016**, 113, 1–11. DOI
530 10.1016/j.resconrec.2016.05.006.

531 (36) D. Bauer, D. Diamond, J. Li, M. McKittrick, D. Sandalow, P. T. Critical Materials Strategy.
532 *US Dep. Energy* **2011**.

533 (37) Arshi, P. S.; Vahidi, E.; Zhao, F. Behind the Scenes of Clean Energy: The Environmental
534 Footprint of Rare Earth Products. *ACS Sustain. Chem. Eng.* **2018**, 6 (3), 3311–3320. DOI
535 10.1021/acssuschemeng.7b03484.

536 (38) Zaimes, G. G.; Hubler, B. J.; Wang, S.; Khanna, V. Environmental Life Cycle Perspective
537 on Rare Earth Oxide Production. *ACS Sustain. Chem. Eng.* **2015**, 3 (2), 237–244. DOI
538 10.1021/sc500573b.

539 (39) Jin, H.; Afiuny, P.; McIntyre, T.; Yih, Y.; Sutherland, J. W. Comparative Life Cycle
540 Assessment of NdFeB Magnets: Virgin Production versus Magnet-to-Magnet Recycling.
541 *Procedia CIRP* **2016**, 48, 45–50. DOI 10.1016/j.procir.2016.03.013.

542 (40) Marx, J.; Schreiber, A.; Zapp, P.; Walachowicz, F. Comparative Life Cycle Assessment of
543 NdFeB Permanent Magnet Production from Different Rare Earth Deposits. *ACS Sustain.*
544 *Chem. Eng.* **2018**, 6 (5), 5858–5867. DOI 10.1021/acssuschemeng.7b04165.

545 (41) Weng, Z.; Haque, N.; Mudd, G. M.; Jowitt, S. M. Assessing the Energy Requirements and

546 Global Warming Potential of the Production of Rare Earth Elements. *J. Clean. Prod.* **2016**,
547 139, 1282–1297. DOI 10.1016/j.jclepro.2016.08.132.

548 (42) Vahidi, E.; Zhao, F. Environmental Life Cycle Assessment on the Separation of Rare Earth
549 Oxides through Solvent Extraction. *J. Environ. Manage.* **2017**, 203, 255–263. DOI
550 10.1016/j.jenvman.2017.07.076.

551 (43) Ardente, F.; Cellura, M. Economic Allocation in Life Cycle Assessment: The State of the
552 Art and Discussion of Examples. *J. Ind. Ecol.* **2012**, 16 (3), 387–398. DOI 10.1111/j.1530-
553 9290.2011.00434.x.

554 (44) Santero, N.; Hendry, J. Harmonization of LCA Methodologies for the Metal and Mining
555 Industry. *Int. J. Life Cycle Assess.* **2016**, 21 (11), 1543–1553. DOI 10.1007/s11367-015-
556 1022-4.

557 (45) Bare, J. TRACI 2.0: The Tool for the Reduction and Assessment of Chemical and Other
558 Environmental Impacts 2.0. *Clean Technol. Environ. Policy* **2011**, 13 (5), 687–696. DOI
559 10.1007/s10098-010-0338-9.

560 (46) U.S. Geological Survey. Mineral Commodity Summaries 2012. U.S. Geological Survey
561 2012, p 198.

562 (47) U.S. Geological Survey. Mineral Commodity Summaries 2013. U.S. Geological Survey
563 2013, p 198.

564 (48) U.S. Geological Survey. Mineral Commodity Summaries 2014. U.S. Geological Survey
565 2014, p 196.

566 (49) U.S. Geological Survey. Mineral Commodity Summaries 2015. U.S. Geological Survey
567 2015, p 196. DOI 10.3133/70140094.

568 (50) U.S. Geological Survey. Mineral Commodity Summaries 2016. U.S. Geological Survey
569 2016, p 202. DOI 10.3133/70140094.

570 (51) U.S. Geological Survey. Mineral Commodity Summaries 2017. U.S. Geological Survey
571 2017, p 202. DOI 10.3133/70180197.

572 (52) U.S. Geological Survey. Mineral Commodity Summaries 2018. U.S. Geological Survey
573 2018, p 200. DOI 10.3133/70194932.

574 (53) Geological Survey. Mineral Commodity Summaries 2019. U.S. Geological Survey 2019, p
575 200. DOI 10.3133/70202434.

576 (54) Sprecher, B.; Xiao, Y.; Walton, A.; Speight, J.; Harris, R.; Kleijn, R.; Visser, G.; Kramer,
577 G. J. Life Cycle Inventory of the Production of Rare Earths and the Subsequent Production
578 of NdFeB Rare Earth Permanent Magnets. *Environ. Sci. Technol.* **2014**, *48* (7), 3951–3958.
579 DOI 10.1021/es404596q.

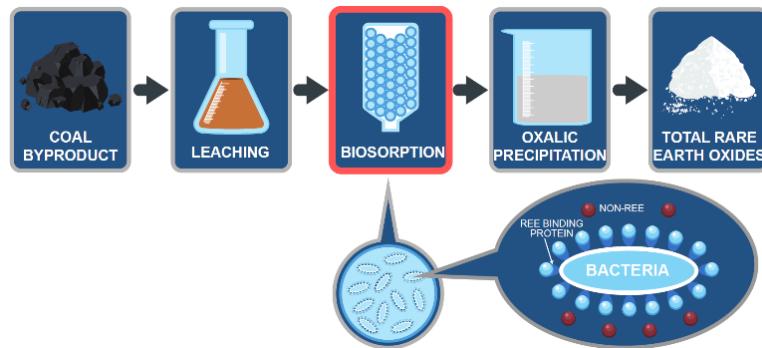
580 (55) Ychart <https://www.ychart.com>.

581 (56) Gambogi, J. USGS Scandium 19. *U.S. Geol. Surv. Miner. Commod. Summ. Febr. 2019*
582 **2019**, *1* (703), 144–145. DOI 10.3133/70170140.

583 (57) 19. Braun, T., B. Swanson, and J. V. *Engineering Study for Re-Start of the Mountain Pass*
584 *Rare Earth Element Mine and Processing Facility Mountain Pass, California*; 2010.

585 (58) Palo, D.; Lucky, C.; Haugen, C.; Engineering, B. Investigation of Rare Earth Element
586 Extraction from North Dakota Coal- Related Feedstocks. **2019**.

587 (59) Borm, P. J. A. Toxicity and Occupational Health Hazards of Coal Fly Ash (CFA). A Review
588 of Data and Comparison to Coal Mine Dust. *Ann. Occup. Hyg.* **1997**, *41* (6), 659–676. DOI
589 10.1016/S0003-4878(97)00026-4.


590 (60) Zhu, Z.; Pranolo, Y.; Cheng, C. Y. Separation of Uranium and Thorium from Rare Earths
591 for Rare Earth Production - A Review. *Miner. Eng.* **2015**, *77*, 185–196. DOI
592 10.1016/j.mineng.2015.03.012.

593 (61) Mikhaylin, S.; Bazinet, L. Fouling on Ion-Exchange Membranes: Classification,
594 Characterization and Strategies of Prevention and Control. *Adv. Colloid Interface Sci.* **2016**,
595 229, 34–56. DOI 10.1016/j.cis.2015.12.006.

596 (62) Ekowati, Y.; Msuya, M.; Salinas Rodriguez, S. G.; Veenendaal, G.; Schippers, J. C.;
597 Kennedy, M. D. Synthetic Organic Polymer Fouling Inmunicipalwastewater Reuse Reverse
598 Osmosis. *J. Water Reuse Desalin.* **2014**, *4* (3), 125–136. DOI 10.2166/wrd.2014.046.

599

600 For Table of Contents Use Only

601

602 Synopsis: PEGDA and silica nanoparticle-based biosorption could offer an economical and
603 environmentally sustainable pathway to recover rare earths from coal byproducts.

604