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Land lce Simulations of Greenland and Anta

Greenland and Antarctic ice sheets
= store most of the fresh water on earth and
= mass loss from these ice sheets

significantly contributes to sea-level rise.

The simulation of temperature and velocity of
the ice sheets gives rise to large highly
nonlinear systems of equations with a
strong coupling of the variables.

Taken from https://unsplash.com.

The simulations are also characterized by:
= The mesh structure:

= Volume mesh is obtained by
extrusion of the surface mesh
= 2D domain decomposition.
= Highly anisotropic.
= Specific combination of Dirichlet,
Neumann, and Robin boundary
conditions.
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Domain Decomposition Methods in Trilinos

= Teko: Block preconditioners for multi-physics problems

= Ifpack/Ifpack2: One-level overlapping Schwarz preconditioners

— Algebraic but not scalable

= ShyLU/BDDC: BDDC (Balancing Domain Decomposition by Constraints)

By Sandia National
Laboratories preconditioner

— Scalable but less algebraic

FROSch (Fast and Robust Overlapping Schwarz)

= Schwarz preconditioners with algebraic coarse spaces based on extension
operators, e.g., GDSW (Generalized—Dryja—Smith—Widlund) coarse spaces
— Algebraic and scalable
= Part of the package ShyLU:
(Joint work with the Scalable Algorithms group of the Sandia National
Laboratories (SNL), Albuquerque, USA)
= Implementation based on Xpetra
— Can be used with Epetra and Tpetra (linear algebra packages)
Extension to current architectures, e.g., GPUs, using the Kokkos

%o

programming model

Easy access to FROSch through unified Trilinos solver interface Thyra.
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Model Problem & Domain Decomposition

Overlapping domain decomposition
Overlapping Schwarz methods are based
on overlapping decompositions of the
computational domain €.

Overlapping subdomains i, ..., Q}, can be

Consider a Poisson model problem on [0, 1]°:
constructed by recursively adding layers of

—Au="f in£Q, elements to nonoverlapping subdomains

u=0 on 0. ;s Qe

Discretize (e.g., using finite elements)

Kx = b.

= Construct a parallel scalable

preconditioner M~1! using overlapping
Schwarz domain decomposition methods.

Nonoverlap. DD
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Model Problem & Domain Decomposition

Overlapping domain decomposition
Overlapping Schwarz methods are based
on overlapping decompositions of the
computational domain €.

Overlapping subdomains i, ..., Q}, can be

Consider a Poisson model problem on [0, 1]°:
constructed by recursively adding layers of

—Au="f in£Q, elements to nonoverlapping subdomains
u=0 on 09. 2, .., 8.
Discretize (e.g., using finite elements) x
Kx = b.

= Construct a parallel scalable

N N
preconditioner M~1! using overlapping RRRRR =
Nonoverlap. DD Overlap § = 1h Overlap § = 2h

Schwarz domain decomposition methods.
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One-Level Schwarz Preconditioners

Overlapping domain decomposition Function on Q Restriction to Q;

=

Based on an overlapping domain decomposition, Condition number estimate:

we define local restriction operators 1

Ri: VI(Q) — V;:= VI(Q), fori=1,..,N, and K (Maé_lK) <C (1 + H5>
obtain the additive one-level Schwarz

preconditioner with the typical subdomain size H and

. NG oo the width of the overlap 4.
Mos_1 = Zi:l R K "Ri,
—

local

where K; := R,-KR,-T.
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One-Level Schwarz Preconditioners

Overlapping domain decomposition Function on Q Restriction to Q;

=

Based on an overlapping domain decomposition, Condition number estimate:
we define local restriction operators 1
Ri: VI(Q) — V;:= VI(Q), fori=1,..,N, and k(Mog_ 1K) < C <1 + H(5>
obtain the additive one-level Schwarz
preconditioner

1 N
Mos_1 = Zi:l R K" Ri,
N———

local

with the typical subdomain size H and
the width of the overlap 4.

— Algebraic! but not scalable...

where K; := R,-KR,-T.
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Two-Level Schwarz Preconditioners — Lagrangian Coarse Space

Coarse triangulation Nodal bilinear basis function

The additive two-level Schwarz preconditioner reads The condition number of the two-level
Maé_g _ ¢KO—1¢T 4 ZN R,-TK,-_IR,-, Schwarz operator with classical
~—— =l Lagrangian coarse space is bounded by
coarse level — global first level — local » H
where ® contains the coarse basis functions and K (Mos »K) < C (1 + j) ;
Ko := ®TK®; cf., e.g., Toselli, Widlund (2005). cf., e.g., Toselli, Widlund (2005). The
In the classical Lagrangian coarse space, the coarse constant C is independent of h, 9, and H.

basis functions are a nodal finite element basis on the
coarse triangulation. Their construction relies on
geometric information and cannot be performed
algebraically.
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Two-Level Schwarz Preconditioners — Lagrangian Coarse Space

Coarse triangulation Nodal bilinear basis function

The additive two-level Schwarz preconditioner reads The condition number of the two-level
Maé_g _ ¢KO—1¢T 4 ZN R,-TK,-_IR,-, Schwarz operator with classical
~—— =l Lagrangian coarse space is bounded by
coarse level — global first level — local » H
where ® contains the coarse basis functions and K (Mos »K) < C (1 + E) ;
Ko := ®TK®; cf., e.g., Toselli, Widlund (2005). cf., e.g., Toselli, Widlund (2005). The
In the classical Lagrangian coarse space, the coarse constant C is independent of h, 9, and H.

basis functions are a nodal finite element basis on the  _, Scalable! But not algebraic...

coarse triangulation. Their construction relies on
Can we construct a coarse space

algebraically? — GDSW coarse spaces

geometric information and cannot be performed
algebraically.
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Two-Level Schwarz Preconditioners — GDSW Coarse Space

Non-overlapping DD Ident. vertices & edges Restr. of the null space Energy minimizing ext.

In GDSW (Generalized—Dryja—Smith—Widlund) The condition number of the GDSW operator

coarse spaces, the coarse basis functions are is bounded by
chosen as energy minimizing extensions of ’
. . . -1 H H
functions ®r that are defined on the interface I': K (MGDSWK) <cC (1 + g) (1 + log (Z)) 3
—14T
S = { _K”¢Kr’¢r } = [ z’ } cf. Dohrmann, Klawonn, Widlund (2008),
r r

Dohrmann, Widlund (2009, 2010, 2012).
The functions ®r are restrictions of the null space

of global Neumann matrix to the edges, vertices,
and, in 3D, faces (partition of unity) of the
non-overlapping decomposition.
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Two-Level Schwarz Preconditioners — GDSW Coarse Space

Non-overlapping DD Ident. vertices & edges Restr. of the null space Energy minimizing ext.

In GDSW (Generalized—Dryja—Smith—Widlund) The condition number of the GDSW operator

coarse spaces, the coarse basis functions are is bounded by
chosen as energy minimizing extensions of ’
. . . -1 H H
functions ®r that are defined on the interface I': K (MGDSWK) <cC (1 + g) (1 + log (Z)) 3
—14T
S = { _K”¢Kr’¢r } = [ z’ } cf. Dohrmann, Klawonn, Widlund (2008),
r r

Dohrmann, Widlund (2009, 2010, 2012).
The functions ®r are restrictions of the null space _
of global Neumann matrix to the edges, vertices, — We only obtain the exponent 2 for very
and, in 3D, faces (partition of unity) of the

non-overlapping decomposition.

irregular subdomains.
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Two-Level Schwarz Preconditioners — GDSW Coarse Space

Non-overlapping DD Ident. vertices & edges Restr. of the null space Energy minimizing ext.

In GDSW (Generalized—Dryja—Smith—Widlund) The condition number of the GDSW operator

coarse spaces, the coarse basis functions are is bounded by
chosen as energy minimizing extensions of ’
. . . -1 H H
functions ®r that are defined on the interface I': K (MGDSWK) <cC (1 + g) (1 + log (W)) 3
—14T
S = { _K”¢Kr’¢r } = [ z’ } cf. Dohrmann, Klawonn, Widlund (2008),
r r

Dohrmann, Widlund (2009, 2010, 2012).
The functions ®r are restrictions of the null space

of global Neumann matrix to the edges, vertices,
and, in 3D, faces (partition of unity) of the
non-overlapping decomposition.

— Scalable and algebraic!
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Weak Scalability up to 64k MPI Ranks / 1.7b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension) RGDSW (Reduced dimension GDSW)
Heinlein, Klawonn, Rheinbach, Widlund (2019) Nonzoverlapping DD Ident. vertices & edges
° 2232’\/5&:"2:51 terations N S - ‘g
© RGDSW Option 2.2 Iterations N
£ N
70 \;.\: o
60 oL
4 50 - KRR
Z © e O—0—0~—0—0—0—0, N
3 8o
30
20
10
nﬂ)O 1000 10000 100000
# Cores

© GDSWTotal © RGDSW Option 1 Total © RGDSW Option 2.2 Total

4 GDSW Setup “ RGDSW Option 1 Setup # RGDSW Option 2.2 Setup

© GDSW Solver & RGDSW Option 1 Solver & RGDSW Option 2.2 Solver
140

| [}

% 70
" RGDSW option 1 RGDSW option 2.2
* ﬁﬁ__gé:;;ﬁ Reduced dimension GDSW coarse spaces are
e constructed from nodal interface functions (different
100 1000 10000 100000
#Cores partition of unity); cf. Dohrmann, Widlund (2017).

Rajamanickam (UoS, UoC, S




Weak Scalability up to 64k MPI Ranks / 1.7b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)

Heinlein, Klawonn, Rheinbach, Widlund (2019)
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— Talk by F. Réver in MS11-01 (earlier today)




Software Framework

SiiINUS

‘ https://github.com/SNLComputation/Albany ‘

Part of Trilinos.
— MKL Pardiso as the subdo-

main and coarse solver.

A. Heinlein, M. Perego, S. Rajamanickam (UoS, UoC, SNL)
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Software Framework

Part of Trilinos.
— MKL Pardiso as the subdo-
main and coarse solver.
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‘ https://github.com/SNLComputation/Albany ‘

Hardware

All simulations performed on Cori supercomputer (NERSC).



https://github.com/trilinos/Trilinos
https://github.com/SNLComputation/Albany

Velocity Problem

We use the so called first-order (or Blatter-Pattyn)
approximation of the Stokes equations

{ -V - (2né)
*v S (2,LL é2)

—pi |g| Oxs,
—Pi |g| a}/s7

with the p; the ice density, the ice surface elevation
s(x, y), the gravity acceleration g, and strain rates €;
and éy; cf. Blatter (1995) and Pattyn (2003).

Antarctica mesh & domain decomposition.

"’f%’ﬂ', i Nonlinear viscosity model
The ice viscosity 1 is modeled using Glen’s law
u % y i g
I 1.0e+04 ‘w% 1 10
= 1000 = —A(T) ~
1o ’_ g po= SA(T) ;
— 10
[l] X where A(T) = a1e®27 is a temperature-dependent rate factor,
Al T

1.0e-02 Q‘fq’#'kry' n = 3 is the power-law exponent, and the effective strain rate é.
Velocity u solution

See Perego, Gunzburger, Burkardt (2012) and Tezaur, Perego, Salinger, Tuminaro, Price (2015) for more details
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Velocity Problem

We use the so called first-order (or Blatter-Pattyn)
approximation of the Stokes equations

{V~(2ué1) = —pilgldss,
=V -(2né&) = —pilg|dys,

with the p; the ice density, the ice surface elevation
s(x, y), the gravity acceleration g, and strain rates €;
and é; cf. Blatter (1995) and Pattyn (2003).

Antarctica mesh & domain decomposition.

Boundary conditions

= Upper surface: é; =0, j =1,2
(stress-free Neumann condition)
= Lower surface: 2pc€;j-n+ fu=0, j=1,2
(sliding Robin condition with friction coefficient 3)

= Lateral boundary: 2pé; - n = %gH (p,- — pwrz) m,j=1,2
) ) (open-ocean Neumann condition with density of ocean
Velocity u solution

water p,, and ratio of submerged ice thickness r)

See Perego, Gunzburger, Burkardt (2012) and Tezaur, Perego, Salinger, Tuminaro, Price (2015) for more details.
A. Heinlein, M. Perego, S. Rajamanickam (UoS, UoC, SNL




Antarctica Velocity Problem — Coarse Spaces

A. Heinlein, M. Perego, S. Rajamanickam (UoS, UoC, SNL

Without rotational coarse basis functions (2 rigid body modes)

GDSW RGDSW
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vg (nl its) setup solve | dim Vg (nl its) setup solve
512 4598 40.8 (11) 15.36s 12.38s 1834 426 (11) 14.99s 1250s
1024 9306 43.3 (11) 5.80s 6.27 s 3740 445 (11) 5.65s 6.08s
2048 18634 41.7 (11) 3.27s 291s 7586 42.7 (11) 3.11s 2.79s
4096 37184 41.4 (11) 2.59s 2.07s 15324 425 (11) 1.07s 1.54s
8192 72964  39.5 (11) 1.51s 1.84s | 30620 42.0 (11) 1.20s 1.16s

With rotational coarse basis functions (3 rigid body modes)

GDSW RGDSW
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vg (nl its) setup solve | dim Vg (nl its) setup solve
512 6897 35.5(11) 15.77s 11.21s 2751 40.7 (11) 15.23s 12.22s
1024 13959  35.6 (11) 6.16s 5.78s 5610 42.9 (11) 5.65s 6.04s
2048 27951 33.5 (11) 3.78s 3.45s | 11379 42.2 (11) 3.17s 2.81s
4096 55776  31.8 (11) 2.21s 3.80s | 22986 44.3 (11) 1.95s 2.70s
8192 | 109446 29.3 (11) 2.49s 5.33s | 45930 40.8 (11) 1.19s 3.13s

Problem: Velocity Mesh: Antarctica, Size:  35.3m degrees
4 km hor. resolution of freedom
20 vert. layers (P1 FE)




Antarctica Velocity Problem — Reuse

We employ different reuse strategies to reduce the setup costs of the two-level preconditioner

N
Mos_o = PKo 10T + Z;:l Ri" K 'R

restriction operators + coarse basis + coarse matrix
+ symbolic fact. (1st level) | + symbolic fact. (2nd level)

MPI avg. its avg. avg. avg. its avg. avg. its avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.9 (11) 25.10s 12.29s | 42.6 (11) 14.99s 12.50s | 46.7 (11) 14.94s 13.81s
1024 | 43.3 (11) 9.18s 5.85s | 445 (11) 5.65s 6.08s | 49.2 (11) 5.75s 6.78s
2048 | 41.4 (11) 4.15s 2.63s | 42.7 (11) 3.11s 2.79s | 47.7 (11) 2.92s 3.10s
4096 | 41.2 (11) 1.66s 1.49s | 42,5 (11) 1.07s 1.54s | 48.9 (11) 0.95s 1.75s
8192 | 40.2 (11) 1.26s 1.06s | 42.0 (11) 1.20s 1.16s | 50.1 (11) 0.63s 1.35s
Problem:  Velocity Mesh: Antarctica, Size:  35.3m degrees  Coarse space: RGDSW

4 km hor. resolution of freedom

20 vert. layers (P1 FE)
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Antarctica Velocity Problem — OpenMP VS MPI Parallelization

We can make use of OpenMP parallelization:

= Tpetra linear algebra stack in FROSch and Albany = OpenMP parallelization of the linear
algebra operations.

= OpenMP parallelization of the subdomain and coarse solver Pardiso MKL used in FROSch.

OpenMP parallelization (512 MPI ranks) MPI parallelization
OpenMP avg. its avg. avg. || MPI avg. its avg. avg. its
cores || threads (nl its) setup solve || ranks (nl its) setup solve
512 1 42.6 (11) 14.99s 12.50s || 512 42.6 (11) 14.99s 12.50s
1024 || 2 42.6 (11) 9.43s 6.80s || 1024 | 44.5 (11) 5.65s 6.08 s
2048 || 4 42.6 (11) 5.50s 4.02s || 2048 | 42.7 (11) 3.11s 2.79s
4006 || 8 42.6 (11) 3.65s 2.71s || 4096 | 42.5 (11) 1.07s 1.54s
8192 || 16 42.6 (11) 2.56s 2.32s || 8192 | 42.0 (11) 1.20s 1.16s
Problem: Velocity Mesh: Antarctica, Size:  35.3m degrees Coarse space: RGDSW
4 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Antarctica Velocity Problem — OpenMP VS MPI Parallelization

We can make use of OpenMP parallelization:

= Tpetra linear algebra stack in FROSch and Albany = OpenMP parallelization of the linear
algebra operations.

= OpenMP parallelization of the subdomain and coarse solver Pardiso MKL used in FROSch.

OpenMP parallelization (512 MPI ranks) MPI parallelization
OpenMP avg. its avg. avg. || MPI avg. its avg. avg. its
cores || threads (nl its) setup solve || ranks (nl its) setup solve
512 1 42.6 (11) 14.99s 12.50s || 512 42.6 (11) 14.99s 12.50s
1024 || 2 42.6 (11) 9.43s 6.80s || 1024 | 44.5 (11) 5.65s 6.08 s
2048 || 4 42.6 (11) 5.50s 4.02s || 2048 | 42.7 (11) 3.11s 2.79s
4006 || 8 42.6 (11) 3.65s 2.71s || 4096 | 42.5 (11) 1.07s 1.54s
8192 || 16 42.6 (11) 2.56s 2.32s || 8192 | 42.0 (11) 1.20s 1.16s
Problem: Velocity Mesh: Antarctica, Size:  35.3m degrees Coarse space: RGDSW
4 km hor. resolution of freedom
20 vert. layers (P1 FE)

— MPI parallelization is more efficient than OpenMP parallelization. However, for large numbers of
MPI ranks and a large dimension of the coarse problem, OpenMP parallelization may be useful.

A. Heinlein, M. Perego, S. Rajamanickam (UoS, UoC, SNL




Antarctica Velocity Problem — Weak Scalability

= Weak scalability study for in increasing
horizontal mesh resolution.
= 1 OpenMP thread: From 32 to 8192
processor cores
= 4 OpenMP threads: From 128 to
32768 processor cores

= The number of vertical layers is fixed to 20.
= P1 FEM spatial discretization.

Antarctica mesh & domain decomposition.

1 OpenMP thread 4 OpenMP threads
MPI mesh | # avg. its avg. avg. avg. its avg. avg.
ranks dofs (nl its) setup solve (nlits)  setup  solve

32 16km | 2.2m 241 (11) 11.97s 947s | 235 (11) 4.15s 3.25s
128 | 8km | 8.8m 320 (10) 14.08s 8.71s | 32.0 (10) 497s 285s
512 | 4km | 353m | 426 (11) 14.99s 1250s | 42.6 (11) 550s 4.02s
2048 | 2km | 141.5m | 61.0 (11) 22.83s 19.76s | 61.0 (11) 7.36s 6.55s

8192 | 1km 566.1 m 67.1 (14) 17.36s 2291s | 67.1 (14) 6.20s 7.39s
Problem: Velocity Mesh:  Antarctica, Coarse space: RGDSW
20 vert. layers (P1 FE)
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Temperature Problem

The steady state enthalpy equation reads
V-q(h)+u-Vh=4uée
with the enthalpy growing linearly with the water content ¢
e { pic (T — Tpy), for cold ice (h < hy),

hm + pwl @,  for temperate ice.
the melting enthalpy h,, := p,,c(T,, — Tp), the uniform
reference temperature Ty, and the enthalpy flux

k .
a(h) p,-c,-Vh7 for cold ice (h < hy,), T .
pf(Ci vhm + pWLj(h)7 for temperate |Ce reeniand mes omain daecomposition.
28 50 260 265 270 2731 Water ﬂux term

The water flux term

. 1

J(h) = nf(pw — pi)kod’ 8
describes the percolation of water driven by gravity;
cf. Schoof and Hewitt (2016, 2017).

Temperature T solution

See Perego et al. (in preparation) and Heinlein et. al (in preparation) for more details.
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Temperature Problem

The steady state enthalpy equation reads
V-q(h)+u-Vh=4uée
with the enthalpy growing linearly with the water content ¢
b { pic (T — Ty), for cold ice (h < hy,),
hm + pwl @,  for temperate ice.
the melting enthalpy h,, := p,,c(T,, — To), the uniform
reference temperature Ty, and the enthalpy flux

a(h) = pf‘cl_w, for cold ice (h < hp), _ -
pf<,_—i th + pWLj(h), for temperate ice. Greenland mesh & domain decomposition.
s w o Boundary conditions

» Upper surface: h = p;jc(Ts — Typ)
(Dirichlet boundary condition)

= Bed: m= G+ vVu?2+vZ—kVT.-b,
m(T—T,)=0, T, <O0.

Temperature T solution (Stefan boundary condition)

See Perego et al. (in preparation) and Heinlein et. al (in preparation) for more details.
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Greenland Temperature Problem — One-Level Schwarz VS Two-Level Schwarz

One-level Schwarz

one layer of algebraic overlap | two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.
ranks its  setup solve its  setup solve
512 18.1 (11 0.42s 0.35s | 17.1 (11 0.51s 0.40s

(11) (11)
1024 | 23.7 (11) 0.25s  0.25s | 22.1 (11) 0.27s 0.27s
2048 | 29.6 (11) 0.16s 0.17s | 27.6 (11) 0.23s 0.20s
4096 | 39.8 (11) 0.15s 0.15s | 35.6 (11) 0.17s 0.17s
RGDSW
one layer of algebraic overlap | two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.

ranks avg. its  setup solve avg. its  setup solve

512 19.5 (11) 0.44s 0.41s | 18.7 (11) 0.55s 0.46s

1024 | 25.2 (11) 0.28s 0.29s | 23.9 (11) 0.35s 0.33s

2048 | 31.5(11) 0.26s 0.24s | 29.5 (11) 0.25s 0.27s

4006 | 42.2 (11) 0.25s 0.27s | 38.2 (11) 0.25s 0.29s

Problem: Temperature  Mesh: Greenland, Size: 1.9 m degrees

1-10 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Coupled Problem

Couple the velocity and temperature problems. Therefore,
compute the vertical velocity w using the incompressibility
condition

Oxu+0yv+0,w =0,

with the Dirichlet boundary condition at the ice lower surface

m
u-n— —F]——mmm_.
L(pi — pwd)
228 w0 w0 s 20 20 3 -
i 0 i i Greenland mesh & domain decomposition.

Then, the tangent matrix of the
coupled problem has the structure

Au CuT Xu _ Fu
Cru At |xr| |Fr]’

Temperature T solution

Velocity u solution

See Perego et al. (in preparation) and Heinlein, Perego, Rajamanickam (in preparation) for more details.
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner

Consider the discrete saddle point problem
A BT| |u f
Ax = = = b.
We construct a monolithic GDSW preconditioner
N
=il —1,T T =l
Mabsw = 64507+ RTATR;,

with block matrices Ag = ¢T A, A; = ’R,'.A’R,-T, and
Ri= |:Ru’i 0 :| and ¢ = |:¢u’u0 d>"’p°:| .

Stokes flow Navier—Stokes flow

Related work:

0 Rp,i Ppuy Ppopo = Original work on monolithic Schwarz

Using A to compute extensions: ¢ = —AﬁlAquﬁr; g:}eﬂc(;)ndltloners: Klawonn and Pavarino (1998,
cf. Heinlein, Hochmuth, Klawonn (2019, 2020). ) o o
I . e = Other publications on monolithic Schwarz

preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014), and
the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Domain Decomposition Methods in Milan.
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner Monolithic vs Block Preconditioners
Consider the discrete saddle point problem 500 EMonalithic
450 Y Dagera _l
A BT| |u f o + :
Ax = = = b. i
AR S
We construct a monolithic GDSW preconditioner ﬁzzg
N 150
—1 AL, T 10 o~ vV V M
Mapsw = ¢4 ¢ + . R; A7 "Ri, 1281}'-' .
with block matrices Ay = ¢TA¢, Ai = R,’ARI-T, and % 1000 2000 3000 4000
# cores
| Rui O _ | Puw Pup MPI
Ri= { 0 RPJ and ¢ = [%’UO Sppo | Prec. e 64 256 1024 4096
Using A to compute extensions: ¢; = —A;lA,rqu; Monolithic time | 154.7s 170.0s 175.8s 188.7s
cf. Heinlein, Hochmuth, Klawonn (2019, 2020). effic. |100% 91% 88% 82%

Pty e e Bringredi T Triangular time | 309.4s 329.1s 359.8s 396.7s

effic. | 50% 47% 43% 39 %
time | 736.7s 859.4s 966.9s 1105.0s
effic.| 21% 18% 16% 14 %

Diagonal

Computations performed on magnitUDE, University
Duisburg-Essen.
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner Monolithic vs Block Preconditioners
Consider the discrete saddle point problem 500 EMonalithic
450 Y Dagera Lo
A BT| |u f o + :
Ax = = =b. i
AR S
We construct a monolithic GDSW preconditioner ﬁzzg
N 150
—1 AL, T 10 o~ vV V M
Mapsw = ¢4 ¢ + . R; A7 "Ri, 1285"-' .
with block matrices Ay = ¢TA¢, Ai = R,’ARI-T, and % 1000 2000 3000 4000
# cores
R 0 Sy Py
Ry = ’ and = il PO | MPI
i { 0 Rp,:} ® {%,uo ¢WO] Prec. ke 64 256 1024 4096
Using A to compute extensions: ¢; = —A;lA,rqu; Monolithic time | 154.7s 170.0s 175.8s 188.7s
cf. Heinlein, Hochmuth, Klawonn (2019, 2020). effic. |100% 91% 88% 82%
B oo R A NP T Trianeular time | 309.4s 329.1s 359.8s 396.7s
=1 1 BUE leffic. | 50% 47% 43%  39%
Diagonal time | 736.7s 859.4s 966.9s 1105.0s
|
& effic.| 21% 18% 16%  14%

. Computations performed on magnitUDE, University
Dy, Duisburg-Essen.

Dy, Pp,u0
— Talk by C. Hochmuth in MS11-02 (right after this talk) for more details.
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Monolithic (R)GDSW Preconditioners for Multiphysics Land Ice Simulations

We construct a monolithic two-level GDSW xwh
preconditioner

N
Mapsw = oA "0T +) RIATR,

for the tangent matrix of the coupled problem

lXu] o l?u] — : ; Temperature T solution
X 7 Lr. .
v U Velocity u solution

We use an equal-order P1 finite element discretization in space for all variables.

Au CuT
Crn Ar

Ax =

Null space

Therefore, the null space in each finite element node is given by:

1 0 0 y 0

fy1 ‘= 0 y Tu2 = ! y Tu3 = 0 s Mua i= e 9 and rr .= 0
’ 0 ' 0 ' 1 ’ 0 0
0 0 0 0 1

See Heinlein, Perego, Rajamanickam (in preparation) for more details.
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Monolithic (R)GDSW Preconditioners for Multiphysics Land Ice Simulations

We construct a monolithic two-level GDSW

preconditioner

N
Mapsw = oA "0T +) RIATR,

for the tangent matrix of the coupled problem

Au CuT

A= Crn Ar

2]-[7]=-

Fully coupled extensions

We compute coarse basis function using
extensions
o | ~AntALer | _[ o
®r ér
based on the coupled matrix A.

See Heinlein, Perego, Rajamanickam (in preparation) for

more details.

A. Heinlein, M. Perego, S. Rajamanickam (UoS, UoC, SNL

oo W7

Temperature T solution

Velocity u solution

Decoupled extensions
We compute coarse basis function using

extensions
¢ = _"Z(I_Il"zﬁrl(1>r _ o)
&r or
based on the decoupled matrix
p A 0
A=1["" .
[ 0 AT}



Greenland Coupled Problem — Coarse Spaces

fully coupled extensions

no reuse reuse coarse basis
MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vg (nl'its) setup  solve (nl'its)  setup  solve

256 1400 || 100.1 (27) 4.10s 6.40s | 18.5 (70) 2.28s 1.07s
512 2852 || 129.1 (28) 1.88s 4.20s | 24.6 (38) 1.04s 0.70s
1024 6036 || 191.2 (65) 1.21s 4.76s | 34.2 (32) 0.66s 0.70s
2048 | 12368 || 237.4 (30) 0.96s 4.06s | 37.3 (30) 0.60s 0.58s
decoupled extensions

no reuse reuse coarse basis

MPI avg. its avg. avg. avg. its avg. avg.
ranks | dim Vo (nl'its)  setup  solve (nlits)  setup  solve
256 1400 23.6 (29) 3.90s 1.32s | 21.5(34) 2.23s 1.18s
512 2852 275(30) 1.83s 0.78s | 26.4 (33) 1.13s 0.78s
1024 6036 30.1(29) 1.19s 0.60s | 28.6 (43) 0.66s 0.61s
2048 | 12368 36.4 (30) 0.69s 0.56s | 31.2 (50) 0.57s 0.55s

Problem: Coupled Mesh: Greenland, Size: 7.5m degrees Coarse space: RGDSW
3-30 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Greenland Coupled Problem — Large Problem

2428 250 255 260 265 270 2731

decoupled fully coupled decoupled
(no reuse) (reuse coarse basis) (reuse 1st level symb. fact.
+ coarse basis)
MPI avg. avg. avg. avg. avg. avg. avg. avg. avg.
ranks (nl its) setup  solve (nl its) setup  solve (nl its) setup  solve

512 | 41.3 (36) 18.78s 4.99s | 453 (32) 11.84s 535s | 45.0 (35) 10.53s 5365
1024 | 53.0 (29) 8.68s 4.22s | 47.8 (37) 5.36s 3.82s | 543 (32) 4.59s 431s
2048 | 62.2 (86) 4.47s 423s | 66.7 (38) 2.8ls 453s | 59.1(38) 2.32s 3.99s
4006 | 68.9 (40) 252s 2.86s | 79.1 (36) 161s 3.30s | 78.7(38) 1.37s 3.30s

Problem:  Coupled Mesh: Greenland, Size:  7.5m degrees Coarse space: ~RGDSW
1-10 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Thank you for your attention!

Summary Outlook

= Scalable FROSch preconditioners = The solver time is dominated by the direct
subdomain and coarse solvers

— Speedup due to the use of inexact solvers &
of GPUs.

= for the single physics velocity and
temperature problems,

= for the coupled multi physics problem.
(monolithic (R)GDSW
precondititoners)
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