
FROSch Preconditioners for Land Ice Simulations of
Greenland and Antarctica

Alexander Heinlein1 Mauro Perego2 Sivasankaran Rajamanickam2

26th International Domain Decomposition Conference, December 9, 2020
1University of Stuttgart, University of Cologne

2Sandia National Laboratories

SAND2020-13743C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Land Ice Simulations of Greenland and Antarctica

Greenland and Antarctic ice sheets
• store most of the fresh water on earth and
• mass loss from these ice sheets

significantly contributes to sea-level rise.

The simulation of temperature and velocity of
the ice sheets gives rise to large highly
nonlinear systems of equations with a
strong coupling of the variables.

Taken from https://unsplash.com.

The simulations are also characterized by:
• The mesh structure:

• Volume mesh is obtained by
extrusion of the surface mesh
⇒ 2D domain decomposition.

• Highly anisotropic.
• Specific combination of Dirichlet,

Neumann, and Robin boundary
conditions.
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Domain Decomposition Methods in Trilinos

By Sandia National
Laboratories

• Teko: Block preconditioners for multi-physics problems

• Ifpack/Ifpack2: One-level overlapping Schwarz preconditioners

→ Algebraic but not scalable

• ShyLU/BDDC: BDDC (Balancing Domain Decomposition by Constraints)
preconditioner

→ Scalable but less algebraic

FROSch (Fast and Robust Overlapping Schwarz)

• Schwarz preconditioners with algebraic coarse spaces based on extension
operators, e.g., GDSW (Generalized–Dryja–Smith–Widlund) coarse spaces
→ Algebraic and scalable

• Part of the package ShyLU:
(Joint work with the Scalable Algorithms group of the Sandia National
Laboratories (SNL), Albuquerque, USA)

• Implementation based on Xpetra
→ Can be used with Epetra and Tpetra (linear algebra packages)

Extension to current architectures, e.g., GPUs, using the Kokkos
programming model

Easy access to FROSch through unified Trilinos solver interface Thyra.
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Model Problem & Domain Decomposition

Consider a Poisson model problem on [0, 1]2:

−∆u = f in Ω,
u = 0 on ∂Ω.

Discretize (e.g., using finite elements)

Kx = b.

⇒ Construct a parallel scalable
preconditioner M−1 using overlapping
Schwarz domain decomposition methods.

Overlapping domain decomposition
Overlapping Schwarz methods are based
on overlapping decompositions of the
computational domain Ω.

Overlapping subdomains Ω′1, ...,Ω′N can be
constructed by recursively adding layers of
elements to nonoverlapping subdomains
Ω1, ...,ΩN .

Nonoverlap. DD
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One-Level Schwarz Preconditioners

Overlapping domain decomposition Function on Ω Restriction to Ω′i

Based on an overlapping domain decomposition,
we define local restriction operators
Ri : V h(Ω)→ Vi := V h(Ω′i ), for i = 1, ...,N, and
obtain the additive one-level Schwarz
preconditioner

M−1OS−1 =
∑N

i=1
RT

i K−1i Ri︸ ︷︷ ︸
local

,

where Ki := RiKRT
i .

Condition number estimate:

κ
(
M−1OS−1K

)
≤ C

(
1 + 1

Hδ

)
with the typical subdomain size H and
the width of the overlap δ.

→ Algebraic! but not scalable...
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Two-Level Schwarz Preconditioners – Lagrangian Coarse Space
Coarse triangulation Nodal bilinear basis function

The additive two-level Schwarz preconditioner reads

M−1OS−2 = ΦK−10 ΦT︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
RT

i K−1i Ri︸ ︷︷ ︸
first level – local

,

where Φ contains the coarse basis functions and
K0 := ΦT KΦ; cf., e.g., Toselli, Widlund (2005).

In the classical Lagrangian coarse space, the coarse
basis functions are a nodal finite element basis on the
coarse triangulation. Their construction relies on
geometric information and cannot be performed
algebraically.

The condition number of the two-level
Schwarz operator with classical
Lagrangian coarse space is bounded by

κ
(
M−1OS−2K

)
≤ C

(
1 + H

δ

)
;

cf., e.g., Toselli, Widlund (2005). The
constant C is independent of h, δ, and H.

→ Scalable! But not algebraic...

Can we construct a coarse space
algebraically? → GDSW coarse spaces
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Two-Level Schwarz Preconditioners – GDSW Coarse Space
Non-overlapping DD Ident. vertices & edges Restr. of the null space Energy minimizing ext.

In GDSW (Generalized–Dryja–Smith–Widlund)
coarse spaces, the coarse basis functions are
chosen as energy minimizing extensions of
functions ΦΓ that are defined on the interface Γ:

Φ =
[
−K−1II KT

ΓI ΦΓ

ΦΓ

]
=
[

ΦI

ΦΓ

]
The functions ΦΓ are restrictions of the null space
of global Neumann matrix to the edges, vertices,
and, in 3D, faces (partition of unity) of the
non-overlapping decomposition.

The condition number of the GDSW operator
is bounded by

κ
(
M−1GDSWK

)
≤ C

(
1 + H

δ

)(
1 + log

(H
h

))2
;

cf. Dohrmann, Klawonn, Widlund (2008),
Dohrmann, Widlund (2009, 2010, 2012).
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;

cf. Dohrmann, Klawonn, Widlund (2008),
Dohrmann, Widlund (2009, 2010, 2012).

→ We only obtain the exponent 2 for very
irregular subdomains.
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Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019)

RGDSW (Reduced dimension GDSW)
Non-overlapping DD

RGDSW option 1

Ident. vertices & edges

RGDSW option 2.2
Reduced dimension GDSW coarse spaces are
constructed from nodal interface functions (different
partition of unity); cf. Dohrmann, Widlund (2017).
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Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019)

Two-level vs Three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020)

→ Talk by F. Röver in MS11-01 (earlier today)
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Software Framework

https://github.com/trilinos/Trilinos

Part of Trilinos.
→ MKL Pardiso as the subdo-
main and coarse solver.

https://github.com/SNLComputation/Albany

Hardware
All simulations performed on Cori supercomputer (NERSC).
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Velocity Problem

We use the so called first-order (or Blatter-Pattyn)
approximation of the Stokes equations{

−∇ · (2µ ε̇1) = −ρi |g | ∂x s,
−∇ · (2µ ε̇2) = −ρi |g | ∂y s,

with the ρi the ice density, the ice surface elevation
s(x , y), the gravity acceleration g , and strain rates ε̇1

and ε̇2; cf. Blatter (1995) and Pattyn (2003). Antarctica mesh & domain decomposition.

Velocity u solution

Nonlinear viscosity model
The ice viscosity µ is modeled using Glen’s law

µ = 1
2A(T )−

1
n ε̇

1−n
n

e ,

where A(T ) = α1eα2T is a temperature-dependent rate factor,
n = 3 is the power-law exponent, and the effective strain rate ε̇.

See Perego, Gunzburger, Burkardt (2012) and Tezaur, Perego, Salinger, Tuminaro, Price (2015) for more details.
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s(x , y), the gravity acceleration g , and strain rates ε̇1

and ε̇2; cf. Blatter (1995) and Pattyn (2003). Antarctica mesh & domain decomposition.

Velocity u solution

Boundary conditions

• Upper surface: ε̇j = 0, j = 1, 2
(stress-free Neumann condition)

• Lower surface: 2µe ε̇j · n + βu = 0, j = 1, 2
(sliding Robin condition with friction coefficient β)

• Lateral boundary: 2µε̇j · n = 1
2gH

(
ρi − ρw r 2

)
n1, j = 1, 2

(open-ocean Neumann condition with density of ocean
water ρw and ratio of submerged ice thickness r)

See Perego, Gunzburger, Burkardt (2012) and Tezaur, Perego, Salinger, Tuminaro, Price (2015) for more details.
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Antarctica Velocity Problem – Coarse Spaces
Without rotational coarse basis functions (2 rigid body modes)

GDSW RGDSW
MPI avg. its avg. avg. avg. its avg. avg.
ranks dim V0 (nl its) setup solve dim V0 (nl its) setup solve
512 4 598 40.8 (11) 15.36 s 12.38 s 1 834 42.6 (11) 14.99 s 12.50 s
1 024 9 306 43.3 (11) 5.80 s 6.27 s 3 740 44.5 (11) 5.65 s 6.08 s
2 048 18 634 41.7 (11) 3.27 s 2.91 s 7 586 42.7 (11) 3.11 s 2.79 s
4 096 37 184 41.4 (11) 2.59 s 2.07 s 15 324 42.5 (11) 1.07 s 1.54 s
8 192 72 964 39.5 (11) 1.51 s 1.84 s 30 620 42.0 (11) 1.20 s 1.16 s

With rotational coarse basis functions (3 rigid body modes)
GDSW RGDSW

MPI avg. its avg. avg. avg. its avg. avg.
ranks dim V0 (nl its) setup solve dim V0 (nl its) setup solve
512 6 897 35.5 (11) 15.77 s 11.21 s 2 751 40.7 (11) 15.23 s 12.22 s
1 024 13 959 35.6 (11) 6.16 s 5.78 s 5 610 42.9 (11) 5.65 s 6.04 s
2 048 27 951 33.5 (11) 3.78 s 3.45 s 11 379 42.2 (11) 3.17 s 2.81 s
4 096 55 776 31.8 (11) 2.21 s 3.80 s 22 986 44.3 (11) 1.95 s 2.70 s
8 192 109 446 29.3 (11) 2.49 s 5.33 s 45 930 40.8 (11) 1.19 s 3.13 s

Problem: Velocity Mesh: Antarctica, Size: 35.3m degrees
4 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Antarctica Velocity Problem – Reuse

We employ different reuse strategies to reduce the setup costs of the two-level preconditioner

M−1OS−2 = ΦK0
−1ΦT +

∑N

i=1
Ri

T K−1i Ri.

restriction operators + coarse basis + coarse matrix
+ symbolic fact. (1st level) + symbolic fact. (2nd level)

MPI avg. its avg. avg. avg. its avg. avg. its avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.9 (11) 25.10 s 12.29 s 42.6 (11) 14.99 s 12.50 s 46.7 (11) 14.94 s 13.81 s
1 024 43.3 (11) 9.18 s 5.85 s 44.5 (11) 5.65 s 6.08 s 49.2 (11) 5.75 s 6.78 s
2 048 41.4 (11) 4.15 s 2.63 s 42.7 (11) 3.11 s 2.79 s 47.7 (11) 2.92 s 3.10 s
4 096 41.2 (11) 1.66 s 1.49 s 42.5 (11) 1.07 s 1.54 s 48.9 (11) 0.95 s 1.75 s
8 192 40.2 (11) 1.26 s 1.06 s 42.0 (11) 1.20 s 1.16 s 50.1 (11) 0.63 s 1.35 s
Problem: Velocity Mesh: Antarctica, Size: 35.3m degrees Coarse space: RGDSW

4km hor. resolution of freedom
20 vert. layers (P1 FE)
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Antarctica Velocity Problem – OpenMP VS MPI Parallelization

We can make use of OpenMP parallelization:

• Tpetra linear algebra stack in FROSch and Albany ⇒ OpenMP parallelization of the linear
algebra operations.

• OpenMP parallelization of the subdomain and coarse solver Pardiso MKL used in FROSch.

OpenMP parallelization (512 MPI ranks) MPI parallelization
OpenMP avg. its avg. avg. MPI avg. its avg. avg. its

cores threads (nl its) setup solve ranks (nl its) setup solve
512 1 42.6 (11) 14.99 s 12.50 s 512 42.6 (11) 14.99 s 12.50 s
1 024 2 42.6 (11) 9.43 s 6.80 s 1 024 44.5 (11) 5.65 s 6.08 s
2 048 4 42.6 (11) 5.50 s 4.02 s 2 048 42.7 (11) 3.11 s 2.79 s
4 096 8 42.6 (11) 3.65 s 2.71 s 4 096 42.5 (11) 1.07 s 1.54 s
8 192 16 42.6 (11) 2.56 s 2.32 s 8 192 42.0 (11) 1.20 s 1.16 s

Problem: Velocity Mesh: Antarctica, Size: 35.3m degrees Coarse space: RGDSW
4km hor. resolution of freedom
20 vert. layers (P1 FE)

→ MPI parallelization is more efficient than OpenMP parallelization. However, for large numbers of
MPI ranks and a large dimension of the coarse problem, OpenMP parallelization may be useful.
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Antarctica Velocity Problem – Weak Scalability
• Weak scalability study for in increasing

horizontal mesh resolution.
• 1 OpenMP thread: From 32 to 8 192

processor cores
• 4 OpenMP threads: From 128 to

32 768 processor cores
• The number of vertical layers is fixed to 20.
• P1 FEM spatial discretization. Antarctica mesh & domain decomposition.

1 OpenMP thread 4 OpenMP threads
MPI mesh # avg. its avg. avg. avg. its avg. avg.
ranks dofs (nl its) setup solve (nl its) setup solve
32 16 km 2.2m 24.1 (11) 11.97 s 9.47 s 23.5 (11) 4.15 s 3.25 s
128 8 km 8.8m 32.0 (10) 14.08 s 8.71 s 32.0 (10) 4.97 s 2.85 s
512 4 km 35.3m 42.6 (11) 14.99 s 12.50 s 42.6 (11) 5.50 s 4.02 s
2 048 2 km 141.5m 61.0 (11) 22.83 s 19.76 s 61.0 (11) 7.36 s 6.55 s
8 192 1 km 566.1m 67.1 (14) 17.36 s 22.91 s 67.1 (14) 6.20 s 7.39 s

Problem: Velocity Mesh: Antarctica, Coarse space: RGDSW
20 vert. layers (P1 FE)
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Temperature Problem

The steady state enthalpy equation reads
∇ · q(h) + u · ∇h = 4µ ε2e

with the enthalpy growing linearly with the water content φ

h =
{

ρic (T − T0), for cold ice (h ≤ hm),
hm + ρw Lφ, for temperate ice.

the melting enthalpy hm := ρw c(Tm − T0), the uniform
reference temperature T0, and the enthalpy flux

q(h) =
{

k
ρi ci
∇h, for cold ice (h ≤ hm),

k
ρi ci
∇hm + ρw Lj(h), for temperate ice. Greenland mesh & domain decomposition.

Temperature T solution

Water flux term
The water flux term

j(h) := 1
ηw

(ρw − ρi )k0φγg

describes the percolation of water driven by gravity;
cf. Schoof and Hewitt (2016, 2017).

See Perego et al. (in preparation) and Heinlein et. al (in preparation) for more details.
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∇ · q(h) + u · ∇h = 4µ ε2e
with the enthalpy growing linearly with the water content φ

h =
{

ρic (T − T0), for cold ice (h ≤ hm),
hm + ρw Lφ, for temperate ice.

the melting enthalpy hm := ρw c(Tm − T0), the uniform
reference temperature T0, and the enthalpy flux

q(h) =
{

k
ρi ci
∇h, for cold ice (h ≤ hm),

k
ρi ci
∇hm + ρw Lj(h), for temperate ice. Greenland mesh & domain decomposition.

Temperature T solution

Boundary conditions
• Upper surface: h = ρic(Ts − T0)

(Dirichlet boundary condition)
• Bed: m = G + β

√
u2 + v2 − k∇T · b,

m (T − Tm) = 0, Tm ≤ 0.
(Stefan boundary condition)

See Perego et al. (in preparation) and Heinlein et. al (in preparation) for more details.
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Greenland Temperature Problem – One-Level Schwarz VS Two-Level Schwarz

One-level Schwarz
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.
ranks its setup solve its setup solve
512 18.1 (11) 0.42 s 0.35 s 17.1 (11) 0.51 s 0.40 s
1 024 23.7 (11) 0.25 s 0.25 s 22.1 (11) 0.27 s 0.27 s
2 048 29.6 (11) 0.16 s 0.17 s 27.6 (11) 0.23 s 0.20 s
4 096 39.8 (11) 0.15 s 0.15 s 35.6 (11) 0.17 s 0.17 s

RGDSW
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.
ranks avg. its setup solve avg. its setup solve
512 19.5 (11) 0.44 s 0.41 s 18.7 (11) 0.55 s 0.46 s
1 024 25.2 (11) 0.28 s 0.29 s 23.9 (11) 0.35 s 0.33 s
2 048 31.5 (11) 0.26 s 0.24 s 29.5 (11) 0.25 s 0.27 s
4 096 42.2 (11) 0.25 s 0.27 s 38.2 (11) 0.25 s 0.29 s

Problem: Temperature Mesh: Greenland, Size: 1.9m degrees
1-10 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Coupled Problem
Couple the velocity and temperature problems. Therefore,
compute the vertical velocity w using the incompressibility
condition

∂x u + ∂y v + ∂zw = 0,
with the Dirichlet boundary condition at the ice lower surface

u · n = m
L (ρi − ρwφ) .

Velocity u solution

Temperature T solution

Greenland mesh & domain decomposition.

Then, the tangent matrix of the
coupled problem has the structure[

Au CuT

CTu AT

][
xu

xT

]
=
[

r̃u

r̃T

]
.

See Perego et al. (in preparation) and Heinlein, Perego, Rajamanickam (in preparation) for more details.
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Monolithic (R)GDSW Preconditioners for CFD Simulations

Monolithic GDSW preconditioner
Consider the discrete saddle point problem

Ax =
[

A BT

B 0

][
u
p

]
=
[

f
0

]
= b.

We construct a monolithic GDSW preconditioner

M−1GDSW = φA−10 φT +
∑N

i=1
RT

i A
−1
i Ri ,

with block matrices A0 = φTAφ, Ai = RiART
i , and

Ri =
[
Ru,i 0
0 Rp,i

]
and φ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: φI = −A−1II AIΓφΓ;
cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Stokes flow Navier–Stokes flow

Related work:
• Original work on monolithic Schwarz

preconditioners: Klawonn and Pavarino (1998,
2000)

• Other publications on monolithic Schwarz
preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014), and
the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Domain Decomposition Methods in Milan.

→ Talk by C. Hochmuth in MS11-02 (right after this talk) for more details.
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]
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cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0

Monolithic vs Block Preconditioners

Prec. MPI
ranks 64 256 1 024 4 096

Monolithic time 154.7s 170.0s 175.8s 188.7s
effic. 100% 91% 88% 82%

Triangular time 309.4s 329.1s 359.8s 396.7s
effic. 50% 47% 43% 39%

Diagonal time 736.7s 859.4s 966.9s 1105.0s
effic. 21% 18% 16% 14%

Computations performed on magnitUDE, University
Duisburg-Essen.

→ Talk by C. Hochmuth in MS11-02 (right after this talk) for more details.
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Monolithic (R)GDSW Preconditioners for Multiphysics Land Ice Simulations
We construct a monolithic two-level GDSW
preconditioner

M−1GDSW = φA−10 φT +
∑N

i=1
RT

i A−1i Ri ,

for the tangent matrix of the coupled problem

Ax :=
[

Au CuT

CTu AT

][
xu

xT

]
=
[

r̃u

r̃T

]
=: r .

Velocity u solution

Temperature T solution

Null space
We use an equal-order P1 finite element discretization in space for all variables.
Therefore, the null space in each finite element node is given by:

ru,1 :=

   
1
0
0
0

   , ru,2 :=


0
1
0
0

 , ru,3 :=


0
0
1
0

 , ru,4 :=


y
−x
0
0

 , and rT :=


0
0
0
1

 .
See Heinlein, Perego, Rajamanickam (in preparation) for more details.
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Monolithic (R)GDSW Preconditioners for Multiphysics Land Ice Simulations
We construct a monolithic two-level GDSW
preconditioner

M−1GDSW = φA−10 φT +
∑N

i=1
RT

i A−1i Ri ,

for the tangent matrix of the coupled problem

Ax :=
[

Au CuT

CTu AT

][
xu

xT

]
=
[

r̃u

r̃T

]
=: r .

Velocity u solution

Temperature T solution

Fully coupled extensions
We compute coarse basis function using
extensions

φ =
[
−A−1II AT

ΓIΦΓ

ΦΓ

]
=
[
φI

φΓ

]
based on the coupled matrix A.

See Heinlein, Perego, Rajamanickam (in preparation) for

more details.

Decoupled extensions
We compute coarse basis function using
extensions

φ =
[
−Ã−1II ÃT

ΓIΦΓ

ΦΓ

]
=
[
φI

φΓ

]
based on the decoupled matrix

Ã =
[

Au 0
0 AT

]
.
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Greenland Coupled Problem – Coarse Spaces

fully coupled extensions
no reuse reuse coarse basis

MPI avg. its avg. avg. avg. its avg. avg.
ranks dim V0 (nl its) setup solve (nl its) setup solve
256 1 400 100.1 (27) 4.10 s 6.40 s 18.5 (70) 2.28 s 1.07 s
512 2 852 129.1 (28) 1.88 s 4.20 s 24.6 (38) 1.04 s 0.70 s
1 024 6 036 191.2 (65) 1.21 s 4.76 s 34.2 (32) 0.66 s 0.70 s
2 048 12 368 237.4 (30) 0.96 s 4.06 s 37.3 (30) 0.60 s 0.58 s

decoupled extensions
no reuse reuse coarse basis

MPI avg. its avg. avg. avg. its avg. avg.
ranks dim V0 (nl its) setup solve (nl its) setup solve
256 1 400 23.6 (29) 3.90 s 1.32 s 21.5 (34) 2.23 s 1.18 s
512 2 852 27.5 (30) 1.83 s 0.78 s 26.4 (33) 1.13 s 0.78 s
1 024 6 036 30.1 (29) 1.19 s 0.60 s 28.6 (43) 0.66 s 0.61 s
2 048 12 368 36.4 (30) 0.69 s 0.56 s 31.2 (50) 0.57 s 0.55 s

Problem: Coupled Mesh: Greenland, Size: 7.5m degrees Coarse space: RGDSW
3-30 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Greenland Coupled Problem – Large Problem

decoupled fully coupled decoupled
(no reuse) (reuse coarse basis) (reuse 1st level symb. fact.

+ coarse basis)
MPI avg. avg. avg. avg. avg. avg. avg. avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.3 (36) 18.78 s 4.99 s 45.3 (32) 11.84 s 5.35 s 45.0 (35) 10.53 s 5.36 s
1 024 53.0 (29) 8.68 s 4.22 s 47.8 (37) 5.36 s 3.82 s 54.3 (32) 4.59 s 4.31 s
2 048 62.2 (86) 4.47 s 4.23 s 66.7 (38) 2.81 s 4.53 s 59.1 (38) 2.32 s 3.99 s
4 096 68.9 (40) 2.52 s 2.86 s 79.1 (36) 1.61 s 3.30 s 78.7 (38) 1.37 s 3.30 s
Problem: Coupled Mesh: Greenland, Size: 7.5m degrees Coarse space: RGDSW

1-10 km hor. resolution of freedom
20 vert. layers (P1 FE)
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Thank you for your attention!

Summary
• Scalable FROSch preconditioners

• for the single physics velocity and
temperature problems,

• for the coupled multi physics problem.
(monolithic (R)GDSW
precondititoners)

Outlook
• The solver time is dominated by the direct

subdomain and coarse solvers
→ Speedup due to the use of inexact solvers &
of GPUs.
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