This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
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Thermal runaway and cascading failure

. . ope . Single Cell
Validated reliability and safety is one of four ~0.5-5 Ah
critical challenges identified in 2013 Grid Energy %j
Storage Strategic Plan Strings and Targe
. . arre format cells
° Failure rates as low as 1 in several million 10500 Ah
o Potentially many cells used in energy storage &
- , o, EV Battery Pack 1005- |
> Moderate likelihood of ‘something’ going wrong oot calle
& 10-50 kw'h
Increased energy densities and other material Stationary storage

system 1000s or more
individual cells
MWh+

advances lead to more reactive systems

A single cell failure that propagates through the
pack can have an impact even with low individual
failure rates.

How do we decrease the risk?
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3 I Thermal runaway and cascading failure

The current approach is to test our way into safety
o Large system (>1MWh) testing is difficult and costly.

Supplement testing with predictions of challenging scenarios
and optimization of mitigation.

A key to designing safe systems at larger scales is
understanding cascading thermal runaway.

Parallels can be drawn to thermal runaway of metal/oxidizer
in cells to the spread of a premixed flame.
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Source: (top) https://cmte.ieee.org/pes-essb/wp-content/uploads/sites/43/2019/06/2019-SM
UL-9540A-IEC-Lithium-Test-Summary.pdf
(bottom) https://www.ul.com/news/ul-9540a-battery-energy-storage-system-ess-test-method



Cascading failure testing with passive mitigation

LiCoO, 3Ah pouch cells

5 closely packed cells with/without aluminum or copper
spacer plates

o Spacer thicknesses between 0.8 mm and 3.2 mm
o State of charge (SOC) between 50% and 100%
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Failure initiated by a mechanical nail penetration in the oute o |
cell (cell 1) : | ‘

Thermocouples (TC) between cells and spacers (if present)
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s | Finite element model for Li-ion cells in thermal runaway

Discretization in one direction (x)

Modeled as a quasi 1-D domain of thin
hexahedron elements

Multi-layered system
o Lumped battery material

o Spacers
> End block insulators

Convective heat transfer to surroundings
(scaled by surface area to volume ratio for
thin domain)

Heat conduction with chemical sources
inside battery material
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« I Finite element model equations

Energy conservation:

aT <11
pcpa =V-(KVT) + ¢

Mass conservation for species i with N,. reactions:

Energy source:



7 I Chemical source terms for thermal runaway

Li-ion batteries contain a metal and oxidizer that can react with each other
or alkyl carbonate electrolyte to release energy

Thesg reactions occur at sub-grid scales and can be approximated as pre-
mixe

Empirical chemical reactions:
> Short-circuit

CeLl + Co0; = (g + LiCo0; Metal and Oxidizer
> SElI decomposition (Richard 1999)

1
(CHz()COzLI)z - leCOg + CzH_q_ + COZ + EOZ

> Anode-electrolyte (Shurtz 2018)

2CcLi + C3H 05 = 2C + Li,CO5 + CoH,y Metal and Electrolyte
- Cathode-electrolyte (Hatchard 2001, Shurtz 2020)
2 1 2 4
Co0, + I C3H,03 — §CO3O4 + < CcO, + EHzO Oxidizer and Electrolyte



8 ‘ Chemical source terms for thermal runaway

Preliminary chemistry models from literature Extrapolating literature models to cell-scale with updated
> Based on Dahn group (1999-2001) thermodynamics
> Calibrated for onset, but under-predicts peak ~ ° Reaction rates at propagation temperature (~700°C)
temperature due to incomplete are over-predicted
thermodynamics > Velocity of a premixed flame: v = Vwa
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o I Model for solid-state particle diffusion limit

Challenge: Calorimetry measurements only at lower through shell i i
temperatures

- Lithium and oxygen must diffuse to the particle surface
to react with the electrolyte.

- Serial reactions are corrected with the “Damkohler
limited” form.

with electrolyte
at surface

Li F 3 : E
N\
Li diffusion
Reaction
i

k
k' = .
1+ Da Extrapolation to =T
101 propagation \‘_,—-*""
- The Damkohler number is ratio of surface reaction rate to temperaturesf,f"
108 ”

the rate of diffusion between an inner radius (r;) and
outer radius (r,).

108

y E
XP\"RT) (=11,

a,pD, exp (— %) i

Particle diffusion
limited rate

Da =

104
Rate
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: 100% SOC, no spacers

10 ‘ Five cell stack results

With Damkohler model

Without diffusion limiter
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Results: lower state of charge (SOC)

800

700

600

ul
o
o

Temperature (°C)
w By
o o
Q o

80% SOC

800

700-

600-

u
o
o

Temperature (°C)
S
o

75% SOC

--- C1-0 Sim
—— C1-0 Exp
--- C1-C2 Sim
——— C1-C2 Exp
-== (C2-C3 Sim
—— C2-C3 Exp
-== (C3-C4 Sim
—— (C3-C4 Exp
—-== C4-C5 Sim
—— C4-C5 Exp
-== C5-0 Sim
—— C5-0 Exp

50

40

9e
i

1ol 2e||30||60|[]|7@ 010:

8e

C1 C2 C3 C4 C5



12

Results: metallic spacers
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13 1 Results: mitigation boundaries

Interplay between heat capacity of system and energy release:

Energy/Capacity - chlls/(mcellscp,cells + mspacerscp,spacers)

100% SOC

0.8 mm Aluminum
0.8 mm Copper
80% SOC

1.6 mm Aluminum
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1.6 mm Copper
3.2 mm Aluminum
3.2 mm Copper
50% SOC
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No (Cell 2 Failure)
No (Cell 2 Failure)
No (Cell 2 Failure)
No
No
No
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Summary

Using legacy chemistry source terms predicts onset of thermal
runaway, but extrapolating this to higher temperature over-
predicts cell-scale propagation speeds.

Results suggest that inclusion of intra-particle diffusion limits (or
a similar change in the kinetics) becomes important for higher
temperature cell-scale propagation.

Predictions were tested on a range of conditions with variable
state-of-charge and passive mitigation spacers.

These results represent an extension of prediction capabilities to
predict propagation and its limits over a range of thermal
“dilution” conditions.

Understanding mitigation boundaries is important for designing
safe energy storage systems.
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